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GIS Geographi ion system

COCO ( bjects in context)
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ABSTRACT
Deep learning is a subfield of artificial intelligence and machine learning based mostly on neural

networks and often combined with attention algorithms that has been used to detect and identify

objects in text, audio, images, and video. Serghiou and Rough (Am J Epidemiol. &

0000;000(00):0000-0000) present a primer for epidemiologists on deep learning model e
models provide substantial opportunities for epidemiologists to expand and amplif@
research in both data collection and analyses by increasing the geographic reach of studies,

including more research subjects, and working with large or high dimensi ta. The tools for

implementing deep learning methods are not quite yet as straightf d on ubiquitous for

epidemiologists as traditional regression methods found in st tistical software, but
there are exciting opportunities for interdisciplinary collabor ith deep learning experts, just

as epidemiologists have with statisticians, healthc

professionals. Despite the novelty of these m s, epidemiological principles of assessing
S

s, urban planners, and other

bias, study design, interpretation and ot ply when implementing deep learning

methods or assessing the findings tudi at have used them.

O
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Artificial intelligence via deep learning models underlies many of our daily technological tools
and online social interactions, encompassing activities such as object identification in images
and videos, speech recognition, text analysis and search, among many others and is beginning
to enter the biomedical and public health research arenas (1-6). Deep learning has also bee
used for identifying health conditions from radiological images and genomic data (7-12 Q
extracting data from clinical charts and notes (13-15), identifying racist content on Im’la
(16, 17), building chatbots to deliver health information (18, 19), and classifying the built and
social environments (20-26). In this issue, Serghiou and Rough (27) pravi imely primer on

the fundamentals of deep learning for epidemiological researchers used on describing the

mathematical and statistical basis for these methods. In this ry, we focus on the role
deep learning could take in epidemiology, how deep leaynin be useful to epidemiologists,
and how epidemiologists should approach these 0

Deep learning presents a potentially po s to speed and expand some traditional data

collection methods used in epide @ placing some of the human labor required for
e

extraction from qualitative dataflike patient charts (14), free responses from surveys and

interviews (28), social media £27), neighborhood measures from in-person and virtual audits or
GIS (geographic inf stem) (21, 25), and audio and video recordings (29-31), though it
also, of course, other challenges and issues. Studies using these data collection

methods rently limited by the time and effort required for data extraction, as well as the

geographic area they can cover (20, 25). For example, suppose a researcher wants to examine

nship between some built environment feature, like sidewalk conditions, and some

health outcome, like older adult falls. In that case, they will need spatially precise measures of
sidewalk conditions (32, 33). Obtaining such measures often requires manual collection efforts
that can be time consuming and costly, including examining maps, images, or other sources to

identify and quantify the sidewalk conditions. Similar efforts could be expended with deep
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learning by using the collected data as training data for neural networks, allowing researchers to
automatically quantify the presence and condition of sidewalks more efficiently in a much larger

geographic area using archived imagery such as Google Street View or Mapillary (25).

The potential to leverage such efficiency, as described by Serghiou and Rough, (27) r@
int

the training data from which neural networks can learn to identify or detect the obj st
(e.g. sidewalk conditions). These training data are usually developed by trained human’raters

who identify the objects, features, or words of interest in the raw data. | hat future-

thinking epidemiologists might choose to plan and design present ctioh protocols to

prepare for the results to be used as training data, either in th research or for future
use. Even if no such steps can be taken, protocols previou ing on human labor could use

such labor only to collect training data, allowing de

planned manual collection, potentially expandi e study to a larger geographic area or
SIS,

to replace much of the originally
population. Just as with any statistical a ever, deep learning approaches also require
training data, as well as rigorous d op of Al models through training, testing and

validation that may also require{ substantial time and costs.

Deep learning can ibute to or supplementing and augmenting current and traditional

statistical mod aches and data analyses used by epidemiologists, particularly in

cases wi high dimensional data (34, 35). Some recent evidence suggests that deep
learging, models may perform better than traditional models for creating propensity scores (36),
for screening and diagnostic instruments (37), and for causal inference in
observational studies (38-40), whereas for multiple imputation there are conflicting findings (41-
44). There are also efforts and possibilities to use deep learning for predicting individual event
censoring time (45), analyzing count data (46, 47), improving nutritional epidemiology models

(48), and estimating population prevalence or risk of diseases and mortality (49, 50). Such
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approaches, essentially considering deep learning as a tool that exploits computational power to
wring every bit of information from existing data, are simultaneously exciting and warrant
caution regarding the overfitting of those models to their training data (51). Additionally, as these
approaches are still novel and have not been applied extensively in epidemiologic and public

health research, the extent of their limitations may not yet be fully understood. x

Deep learning may also unlock new opportunities for cross-site data sharing (32). For€xample,

deep learning-driven natural language processing and image recognitio ms could be

used with potentially personally identifying electronic health record ing clinical notes

or diagnostic images to generate non-identifying data abstract Id be shared with
researchers not approved to see the original, identifyin

could dramatically lower the burden necessary for ly of pooled datasets, significantly

increasing the scope of data collaboratives (5 . ever, novel approaches to data sharing

enouyghytraining data on sites other than the site on which the algorithm was trained if they hope

te the error and put bounds on the bias.

As briefly mentioned by Serghiou and Rough, (27) there are novel approaches in the field that
readers should be aware of, particularly in generative pre-trained transformer models (also

known as foundation models). Transformer models have been a significant recent advance in
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artificial intelligence. They have gained substantial public awareness, especially during the past
year with publicly available generative text (e.g., ChatGPT), image (e.g., Midjourney or DALL-
E), video (e.g., Make-A-Video), programming code (e.g., Github Copilot), and other models (55,
56). The transformer model was first described by researchers from Alphabet (57) for natural
language processing models and later extended to computer vision by researchers at Facehgok
Artificial Intelligence Research (58). Unlike traditional neural networks, transforme els ean
learn valuable representations in unsupervised scenarios (i.e., they do not req@ search

team to train the model to recognize a particular outcome), but typically xtremely large
datasets (e.g., billions of data elements or parameters compared tomillions in the largest

traditional neural networks) to outperform traditional neural ne =Fraining a transformer

from scratch, however, is not always necessary (let alo for researchers interested in

using these models; rather existing trained models bined with new data of interest to
create models more specific to the research ion ortask of interest. These models or
traditional neural networks can also be % ith fine-tuning, such as using pre-training

and self-supervised learning(59, 6Q)!

How should epidemi aluate evidence from studies using deep learning and what

should those a de? As with all epidemiologic studies, issues of validity, reliability, and
bias rem iount. To allow readers to assess these threats, studies incorporating deep
learging, should describe the training data, what models were used, model parameters, how the

s trained, any fine tuning steps to improve the models, model performance, and ethical

aspects (61). Describing the training data is extremely important, as much of the bias and
limitations from models may originate from them. This should include how the training data were
collected (e.g., sampling methods used), the reliability and validity of those data (e.g., inter-rater

reliability or other quality control statistics), and making training data available, if possible, for
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others to examine and use. Sharing the models is very common practice among researchers in
deep learning, and if possible, sharing model weights is another consideration so the findings
can be replicated and applied to other datasets. Several online communities, such as Github,
HuggingFace.co and Deepai.org, enable researchers to share code, models and data. Shared,

common data resources for the epidemiological community could help improve the rigo é&
%

generalizability of these models as their use grows. Providing open access to the g

models from epidemiological studies could enable replicability, as well as provide some”of the
resources needed to make effective use of artificial intelligence approa example,

existing benchmark datasets widely used already for deep learnin ImageNet, COCO

(common objects in context), PaLM, LLaMA-2, Mapillary Vist of these may meet the

needs of epidemiological research, particularly for more spe topics (62). The quality of

these existing datasets also varies substantially an eet the reliability needed for

epidemiological research, especially for compli d or)specific tasks, such as detecting and
identifying small objects of the built envir, e od and nutrition, racism and discrimination,
medical images, and other video, io or data relevant to public health and epidemiology.

Epidemiologic research could greatly benefit from a set of curated models and training datasets

that have been validated@ igh reliability.

Just as epidemi ollaborate with statisticians, healthcare professionals, and other

research nals, those seeking to use deep learning in their research and practice should

seek out parthers and collaborators who are experts in deep learning to ensure fidelity and

te implementation and interpretation in epidemiologic research. Just as with other

iplines, initial collaborations can be challenging as we seek common language and
methods, but are well worth the effort. We can expect many exciting and innovative uses of
these methods in epidemiology and public health research and implementation, as well as

misuses and ethical challenges, as they become more common and accessible. As with any
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new methods or technological advances adopted by the field, the underlying epidemiological
principles of interpretation, study design, bias, causality, and others will still apply.
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