
American Journal of Epidemiology Submitted Manuscript 

Special Collection: N/A 

The views in this article do not necessarily represent those of the American Journal of Epidemiology. 

Title: Invited commentary: Deep Learning - Methods to Amplify Epidemiological Data Collection 

and Analyses 

Authors: D. Alex Quistberg, Stephen J. Mooney, Tolga Tasdizen, Pablo Arbelaez, Quynh C. 

Nguyen 

ORCiD IDs: D. Alex Quistberg 0000-0001-9730-2686; Stephen J. Mooney 0000-0001-9092-938X; 

Tolga Tasdizen 0000-0001-6574-0366; Pablo Arbelaez 0000-0001-5244-2407, Quynh C. Nguyen 

0000-0003-4745-6681  

Correspondence Address: D. Alex Quistberg, Urban Health Collaborative, 3600 Market St, 7th 

Flr, Philadelphia, PA 19104, USA 

Joint Authorship: N/A 

 

 

 

 

© The Author(s) 2024. Published by Oxford University Press on behalf of the Johns Hopkins 

Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: 

journals.permissions@oup.com. 

UNCORRECTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ae215/7714789 by U
niversity of U

tah user on 12 N
ovem

ber 2024



 

 

Affiliations: Urban Health Collaborative, Dornsife School of Public Health, Drexel University, 

Philadelphia, PA USA (D. Alex Quistberg), Department of Environmental and Occupational 

Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA USA (D. Alex 

Quistberg), Department of Epidemiology, School of Public Health, University of Washington, 

Seattle, WA, USA (Stephen J. Mooney), Department of Electrical and Computer Engineering, 

College of Engineering, University of Utah, Salt Lake City, UT, USA (Tolga Tasdizen), The 

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA (Tolga 

Tasdizen), Department of Biomedical Engineering, Universidad de los Andes, Bogota, Colombia 

(Pablo Arbelaez), Centro de Investigacion y Formacion en Inteligencia Artificial (CinfonIA), 

Universidad de los Andes, Bogota, Colombia (Pablo Arbelaez), Department of Epidemiology 

and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA 

(Quynh C. Nguyen).  

Key words: Artificial intelligence, deep learning, neural networks, epidemiologic methods, data 

collection, data analysis, computer vision 

 

Acknowledgments1: All authors contributed to the conception and design of the commentary, 

DAQ drafted the article and all authors reviewed it and revised it for critically for important 

intellectual content and all authors provided final approval of the version to be published.  

Funding: This work was supported by the Fogarty International Center of the National Institutes 

of Health (grant K01TW011782 to DAQ); by the National Library of Medicine (grants 

                                                      
1 Study investigators, conference presentations, preprint publication information, thanks. 

UNCORRECTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ae215/7714789 by U
niversity of U

tah user on 12 N
ovem

ber 2024



R00LM012868 to SJM and R01LM012849 to QCN); and by the National Institute on Minority 

Health and Health Disparities (grant R01MD016037 to QCN). The content is solely the 

responsibility of the authors and does not necessarily represent the official views of the National 

Institutes of Health.   

Conflict of Interest: We have no conflicts to report 

Disclaimer: N/A 

Data Availability Statement: N/A 

 

 

Deep Learning - Methods to Amplify Epidemiological Data Collection and Analyses 

D. Alex Quistberg, Stephen J. Mooney, Tolga Tasdizen, Pablo Arbelaez, Quynh C. Nguyen 

 

Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, 

PA USA (D. Alex Quistberg), Department of Environmental and Occupational Health, Dornsife 

School of Public Health, Drexel University, Philadelphia, PA USA (D. Alex Quistberg), 

Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, 

USA (Stephen J. Mooney), Harborview Injury Prevention & Research Center, University of 

Washington, Seattle, WA, USA (Stephen J. Mooney), Department of Electrical and Computer 

Engineering, College of Engineering, University of Utah, Salt Lake City, UT, USA (Tolga 

Tasdizen), The Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, 

UT, USA (Tolga Tasdizen), Department of Biomedical Engineering, Universidad de los Andes, 

Bogota, Colombia (Pablo Arbelaez), Centro de Investigacion y Formacion en Inteligencia 

Artificial, Universidad de los Andes, Bogota, Colombia (Pablo Arbelaez), Department of 

UNCORRECTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ae215/7714789 by U
niversity of U

tah user on 12 N
ovem

ber 2024



Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, 

MD, USA (Quynh C. Nguyen). 

 

Author Contributions All authors contributed to the conception and design of the commentary, 

DAQ drafted the article and all authors reviewed it and revised it for critically for important 

intellectual content and all authors provided final approval of the version to be published. 

 

Funding This work was supported by the Fogarty International Center of the National Institutes 

of Health (grant K01TW011782 to DAQ); by the National Library of Medicine (grants 

R00LM012868 to SJM and R01LM012849 to QCN); and by the National Institute on Minority 

Health and Health Disparities (grant R01MD016037 to QCN). The content is solely the 

responsibility of the authors and does not necessarily represent the official views of the National 

Institutes of Health.  

Conflicts of Interest We have no conflicts to report 

Data Availability: No data were used in this work 

Keywords: Artificial intelligence, deep learning, neural networks, epidemiologic methods, data 

collection, data analysis, computer vision 

Abbreviations  

GIS Geographic information system 

COCO (common objects in context) 

UNCORRECTED M
ANUSCRIPT

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/advance-article/doi/10.1093/aje/kw

ae215/7714789 by U
niversity of U

tah user on 12 N
ovem

ber 2024



ABSTRACT 

Deep learning is a subfield of artificial intelligence and machine learning based mostly on neural 

networks and often combined with attention algorithms that has been used to detect and identify 

objects in text, audio, images, and video. Serghiou and Rough (Am J Epidemiol. 

0000;000(00):0000-0000) present a primer for epidemiologists on deep learning models. These 

models provide substantial opportunities for epidemiologists to expand and amplify their 

research in both data collection and analyses by increasing the geographic reach of studies, 

including more research subjects, and working with large or high dimensional data. The tools for 

implementing deep learning methods are not quite yet as straightforward or ubiquitous for 

epidemiologists as traditional regression methods found in standard statistical software, but 

there are exciting opportunities for interdisciplinary collaboration with deep learning experts, just 

as epidemiologists have with statisticians, healthcare providers, urban planners, and other 

professionals. Despite the novelty of these methods, epidemiological principles of assessing 

bias, study design, interpretation and others still apply when implementing deep learning 

methods or assessing the findings of studies that have used them.  
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Artificial intelligence via deep learning models underlies many of our daily technological tools 

and online social interactions, encompassing activities such as object identification in images 

and videos, speech recognition, text analysis and search, among many others and is beginning 

to enter the biomedical and public health research arenas (1-6). Deep learning has also been 

used for identifying health conditions from radiological images and genomic data (7-12), 

extracting data from clinical charts and notes (13-15), identifying racist content on social media 

(16, 17), building chatbots to deliver health information (18, 19), and classifying the built and 

social environments (20-26). In this issue, Serghiou and Rough (27) provide a timely primer on 

the fundamentals of deep learning for epidemiological researchers, focused on describing the 

mathematical and statistical basis for these methods.  In this commentary, we focus on the role 

deep learning could take in epidemiology, how deep learning could be useful to epidemiologists, 

and how epidemiologists should approach these methods. 

  

Deep learning presents a potentially powerful means to speed and expand some traditional data 

collection methods used in epidemiology by replacing some of the human labor required for 

extraction from qualitative data like patient charts (14), free responses from surveys and 

interviews (28), social media (17), neighborhood measures from in-person and virtual audits or 

GIS (geographic information system) (21, 25), and audio and video recordings (29-31), though it 

also, of course, presents other challenges and issues. Studies using these data collection 

methods are frequently limited by the time and effort required for data extraction, as well as the 

geographic area they can cover (20, 25). For example, suppose a researcher wants to examine 

the relationship between some built environment feature, like sidewalk conditions, and some 

health outcome, like older adult falls. In that case, they will need spatially precise measures of 

sidewalk conditions (32, 33). Obtaining such measures often requires manual collection efforts 

that can be time consuming and costly, including examining maps, images, or other sources to 

identify and quantify the sidewalk conditions. Similar efforts could be expended  with deep 
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learning by using the collected data as training data for neural networks, allowing researchers to 

automatically quantify the presence and condition of sidewalks more efficiently in a much larger 

geographic area using archived imagery such as Google Street View or Mapillary (25).  

 

The potential to leverage such efficiency, as described by Serghiou and Rough, (27) relies on 

the training data from which neural networks can learn to identify or detect the object of interest 

(e.g. sidewalk conditions). These training data are usually developed by trained human raters 

who identify the objects, features, or words of interest in the raw data. It follows that future-

thinking epidemiologists might choose to plan and design present extraction protocols to 

prepare for the results to be used as training data, either in their current research or for future 

use.  Even if no such steps can be taken, protocols previously relying on human labor could use 

such labor only to collect training data, allowing deep learning to replace much of the originally 

planned manual collection, potentially expanding the study to a larger geographic area or 

population. Just as with any statistical analysis, however, deep learning approaches also require 

training data, as well as rigorous development of AI models through training, testing and 

validation that may also require substantial time and costs. 

  

Deep learning can also contribute to or supplementing and augmenting current and traditional 

statistical modeling approaches and data analyses used by epidemiologists, particularly in 

cases with large or high dimensional data (34, 35). Some recent evidence suggests that deep 

learning models may perform better than traditional models for creating propensity scores (36), 

prediction for screening and diagnostic instruments (37), and for causal inference in 

observational studies (38-40), whereas for multiple imputation there are conflicting findings (41-

44). There are also efforts and possibilities to use deep learning for predicting individual event 

censoring time (45), analyzing count data (46, 47), improving nutritional epidemiology models 

(48), and estimating population prevalence or risk of diseases and mortality (49, 50).  Such 
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approaches, essentially considering deep learning as a tool that exploits computational power to 

wring every bit of information from existing data, are simultaneously exciting and warrant 

caution regarding the overfitting of those models to their training data (51). Additionally, as these 

approaches are still novel and have not been applied extensively in epidemiologic and public 

health research, the extent of their limitations may not yet be fully understood.  

 

Deep learning may also unlock new opportunities for cross-site data sharing (52).  For example, 

deep learning-driven natural language processing and image recognition algorithms could be 

used with potentially personally identifying electronic health record data including clinical notes 

or diagnostic images to generate non-identifying data abstracts that could be shared with 

researchers not approved to see the original, identifying data. In principle, such approaches 

could dramatically lower the burden necessary for the assembly of pooled datasets, significantly 

increasing the scope of data collaboratives (53, 54). However, novel approaches to data sharing 

also raise novel methodological concerns and may deepen or complicate existing concerns. As 

another example, suppose a natural language processing algorithm that enables cross-site 

sharing of clinical notes identifies clinical conditions better on sites that use a particular 

electronic health record system or point-of-care note-taking tool. Such a scenario might induce 

selection bias (e.g., the algorithm is used to identify cases only and not controls) or other 

systematic measurement error (e.g., the algorithm is used to code exposure or other variables 

of interest).  Researchers must be aware of this risk before launching the study to gather 

enough training data on sites other than the site on which the algorithm was trained if they hope 

to estimate the error and put bounds on the bias. 

  

As briefly mentioned by Serghiou and Rough, (27) there are novel approaches in the field that 

readers should be aware of, particularly in generative pre-trained transformer models (also 

known as foundation models). Transformer models have been a significant recent advance in 
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artificial intelligence. They have gained substantial public awareness, especially during the past 

year with publicly available generative text (e.g., ChatGPT), image (e.g., Midjourney or DALL-

E), video (e.g., Make-A-Video), programming code (e.g., Github Copilot), and other models (55, 

56). The transformer model was first described by researchers from Alphabet (57) for natural 

language processing models and later extended to computer vision by researchers at Facebook 

Artificial Intelligence Research (58). Unlike traditional neural networks, transformer models can 

learn valuable representations in unsupervised scenarios (i.e., they do not require the research 

team to train the model to recognize a particular outcome), but typically require extremely large 

datasets (e.g., billions of data elements or parameters compared to millions in the largest 

traditional neural networks) to outperform traditional neural networks. Training a transformer 

from scratch, however, is not always necessary (let alone feasible) for researchers interested in 

using these models; rather existing trained models can be combined with new data of interest to 

create models more specific to the research question or task of interest. These models or 

traditional neural networks can also be enhanced with fine-tuning, such as using pre-training 

and self-supervised learning(59, 60).   

 

 

How should epidemiologists evaluate evidence from studies using deep learning and what 

should those articles include? As with all epidemiologic studies, issues of validity, reliability, and 

bias remain paramount. To allow readers to assess these threats, studies incorporating deep 

learning should describe the training data, what models were used, model parameters, how the 

model was trained, any fine tuning steps to improve the models, model performance, and ethical 

aspects (61). Describing the training data is extremely important, as much of the bias and 

limitations from models may originate from them. This should include how the training data were 

collected (e.g., sampling methods used), the reliability and validity of those data (e.g., inter-rater 

reliability or other quality control statistics), and making training data available, if possible, for 
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others to examine and use.  Sharing the models is very common practice among researchers in 

deep learning, and if possible, sharing model weights is another consideration so the findings 

can be replicated and applied to other datasets. Several online communities, such as Github, 

HuggingFace.co and Deepai.org, enable researchers to share code, models and data. Shared, 

common data resources for the epidemiological community could help improve the rigor and 

generalizability of these models as their use grows.  Providing open access to the data and 

models from epidemiological studies could enable replicability, as well as provide some of the 

resources needed to make effective use of artificial intelligence approaches. For example, 

existing benchmark datasets widely used already for deep learning are ImageNet, COCO 

(common objects in context), PaLM, LLaMA-2,  Mapillary Vistas, but few of these may meet the 

needs of epidemiological research, particularly for more specialized topics (62). The quality of 

these existing datasets also varies substantially and may not meet the reliability needed for 

epidemiological research, especially for complicated or specific tasks, such as detecting and 

identifying small objects of the built environment, food and nutrition, racism and discrimination, 

medical images, and other video, audio or text data relevant to public health and epidemiology. 

Epidemiologic research could greatly benefit from a set of curated models and training datasets 

that have been validated and with high reliability.  

  

Just as epidemiologists collaborate with statisticians, healthcare professionals, and other 

research professionals, those seeking to use deep learning in their research and practice should 

seek out partners and collaborators who are experts in deep learning to ensure fidelity and 

appropriate implementation and interpretation in epidemiologic research. Just as with other 

disciplines, initial collaborations can be challenging as we seek common language and 

methods, but are well worth the effort. We can expect many exciting and innovative uses of 

these methods in epidemiology and public health research and implementation, as well as 

misuses and ethical challenges, as they become more common and accessible. As with any 
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new methods or technological advances adopted by the field, the underlying epidemiological 

principles of interpretation, study design, bias, causality, and others will still apply. 
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