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Abstract—Data collected by large-scale instruments, observatories, and sensor networks are 
key enablers of scientific discoveries in many disciplines. However, ensuring that these data 
can be accessed, integrated, and analyzed in a democratized and timely manner remains a 
challenge. In this article, we explore how state-of-the-art techniques for data discovery and 
access can be adapted to facility data and develop a conceptual framework for intelligent data 
access and discovery. 

 
¢ Science in the 21st century is being 

transformed by our unprecedented ability to collect 
and process data from a variety of sources. For 
example, large-scale multiuser scientific 
observatories, instruments, and experimental 
platforms provide a broad community of researchers 
and educators with open access to shared-use 
infrastructure and data products generated from geo-
distributed instruments and equipment [1]. These large 
facilities (LF) have recently enabled significant 
scientific discoveries such as the detection of 
gravitational waves [2] and the imaging of the event 
horizon of a black hole [3]. 

However, as the number and scale of such LF 
increases along with corresponding growth in the 
number, distribution, and diversity of users, ensuring 

that LF data can be discovered, accessed, integrated, 
and analyzed in a timely manner is a growing 
challenge that is resulting in significant demands on 
LF cyberinfrastructure (CI) [4]. For example, the 
Ocean Observatory Initiative (OOI) [5] integrates over 
1,250 instruments, producing over 25,000 data items 
and over 100,000 data products. Similarly, each 
antenna of the Square Kilometre Array (SKA), the 
world’s largest radio telescope project, produces raw 
data at the rate of approximately 0.5-1TB per second 
and approximately 300PB of data after pre-processing 
per telescope per year1. 

                                                
1 https://www.skatelescope.org/the-skaproject/ 
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Satisfying the overarching goal of LF of ensuring 
democratized and equitable access to their data and 
data products across the broadest set of users can be 
challenging. Many LF (e.g., OOI) provide data-
download portals and interfaces, and discovering 
data/data-product using these portals can be 
challenging, especially for users from a different 
domain, due to data complexity, diversity, and 
volumes. Furthermore, data access times for the same 
high-resolution data can range from near-real-time 
streaming access to several weeks via shipped disk 
drives. For example, Dart et al. [6] demonstrated that 
transferring 56TB of climate data to the NERSC 
computing center took up to three months due to 
network bandwidth and the poor performance of data 
transfer nodes. Furthermore, access to low-latency, 
high-bandwidth network connections and adequate 
computing and storage resources remains a significant 
challenge, especially for smaller and under-resourced 
institutions. Although national resources may be 
leveraged, such as those funded by the U.S. National 
Science Foundation (NSF), they are oversubscribed 
and are separate from the LF. Furthermore, using 
them to process LF data requires users to download 
the data, get the data ready for their workflows, and 
then upload the data and the workflow to the national 
resource for execution. As a result, their effective use 
in processing LF data is limited by users' local 
resources.  

Consequently, democratizing LF-enabled science 
requires new approaches for data discovery, access, 
and processing. Recent years have seen advances in 
related technologies and capabilities aimed at 
increasing access to commercial data and data 
services. These technologies aid data discovery, 
proactively recommend data that are most relevant to 
the user, and provide anytime/anywhere access to 
these data. Recent efforts also address how 
corresponding services can be developed for science 
data and to support science workflows [7]. 

The objective of this paper is to explore how these 
approaches, coupled with an understanding of the data 
and their usage, can be effectively used to democratize 
access to LF data/products and to accelerate the 
science enabled by LF. In this paper, we build on 
concepts and technology presented in [9] and [10] to 
construct an intelligent data discovery and delivery 
framework composed of (1) user query analysis 
techniques to model access patterns and associated 
localities and affinities; (2) optimized data caching, 
data pre-fetching, and data steaming mechanisms to 
support optimized push-based data delivery; and (3) a 
data recommendation framework based on the 
collaborative knowledge-aware graph-attention 

network (CKAT) recommendation model to facilitate 
data discovery. We also present an evaluation2 of the 
effectiveness and performance of these components 
using access traces from two NSF-funded large-scale 
observatories, the OOI and the Geodetic Facility for 
the Advancement of Geoscience (GAGE). The results 
show how the data discovery and delivery framework 
and the mechanisms it provides can broaden access to 
LF. 

AN INTELLIGENT DATA DISCOVERY AND 
DELIVERY FRAMEWORK FOR LF 
 

Several research advances in CI technologies can 
be leveraged to address LF data discovery and 
delivery challenges. For example, the demilitarized 
zone (DMZ) network model [8] creates a dedicated 
network to enable high-throughput data transfer for 
scientific data flows. A data transfer node (DTN) [9] 
provides an access point for users connecting to a 
DMZ network and is responsible for managing and 
optimizing data transfers. These CI elements can be 
used to analyze users’ requests in the network; 
identify the patterns, localities, and affinities 
described above; and host services that use this 
information to improve data access performance. For 
example, frequently accessed data can be cached at 
DTNs. Furthermore, the analysis can be used to 
develop strategies for predicting future queries and for 
pre-fetching data to DTN storage closer to the user. 
Finally, the analysis of user data query patterns can be 
used for recommending other relevant data to users 
and to host such recommendation services at DTNs.  
Motivated by these observations, we propose an 
intelligent data discovery and delivery framework as 
illustrated in Figure 1. The Analysis Module analyzes 
user accesses to identify patterns as well as localities 
and affinities. This knowledge is then used by the 
Intelligent Data Delivery Service to cache frequently 
used data, predict a user’s subsequent queries, and 
pre-fetch the corresponding data. The Data Discovery 
Service uses the analysis along with domain-specific 
data models and user associations to generate a 
knowledge graph to implement a data recommendation 
service. Together, these services can help move us 
toward democratizing access to LF data following the 
FAIR data access principles.  

 

                                                
2 The sources are available at https://gitlab.com/sci-
data for reproducibility. 
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Figure 1. Overarching architecture of the 
intelligent data service framework.  

 
The implementation of this framework leverages 

the Virtual Data Collaboratory (VDC). VDC 
implements a data-DMZ that supports data sharing 
and data-driven collaborations between VDC hubs 
through DTNs. It also integrates data from other 
sources such as LFs. 

 
ANALYZING LF DATA AND DATA ACCESS 
 
Analyzing LF data and user data usage and query 

patterns is essential to understanding correlations and 
predicting user behaviors. Such analysis also enables 
the identification of ineffective practices or 
bottlenecks and thus the improvement of system 
performance. Our goal is to classify users and model 
their queries or requests to identify affinities that can 
anticipate users’ requests, thus enabling us to 
discover relevant data items. To do this, we analyzed 
one year of requests from the OOI and GAGE access 
traces. OOI and GAGE support data discovery and 
access through their web data portal and API. Our 
analysis showed that wheras most of the accesses in 
the traces were via the data portal, 90.1% of the data 
downloads used APIs and were triggered by 
workflows or scripts. We term users accessing data 
using these APIs program users, and since this type of 
user is the major data consumer, we focus on 
improving the access performance for program users. 
We believe that any request patterns identified for 
these requests would remain consistent since they are 
programming based on well-defined requirements, 
and they can be used to predict future requests based 
on historical data.  

We analyzed the program requests in the traces 
based on different parameters, such as time intervals 
between them, set of queried data, and query time 
range to identify consistent request routines. We 
identified three access patterns: regular, overlapping, 
and real-time requests. Regular requests represent the 
most common request type and query new data since 
the last request without any overlap. Real-time 
requests are regular high-frequency requests typically 

used to monitor the occurrence of specific events. 
Overlapping requests are like regular requests but with 
overlaps across consecutive requests. 

We also found significant data reuse across queries 
in both traces. On the one hand, this reuse comes from 
the overlapping portion of a user’s consecutive 
requests. On the other hand, it results from similar 
data requests generated by different users (i.e., groups 
of users request similar data items). This reuse allows 
us to leverage data-caching mechanisms immediately 
to improve data access performance and reduce 
redundant queries and transfers. 

We also analyzed correlations across data queries 
and identified three key types of affinities: 
1. Facility instrument locality. Data from 

instruments that are located close together tend to 
be queried together. LFs typically deploy 
multiple instruments in an area with high research 
value. As a result, users studying that area will 
naturally download data from some or all the 
instruments within the area. Consequently, 
instrument locality defines spatial affinities 
between data and data products and results in 
corresponding correlations across data queries. 
Our analysis of the OOI and GAGE access traces 
shows that, on average, users make 43.1% and 
36.3% of their queries for data objects from 
instruments located in one region, and 51.6% and 
68.8% of their queries are to the same data type, 
respectively. We also observed a temporal 
correlation across user queries in our analysis. 
Figure 2 shows the requested data objects (using 
their instrument name and the instrument 
location) from a fragment of the OOI trace 
clustered by users.  The observed patterns suggest 
the existence of a spatial correlation across the 
requests as users request multiple data objects of 
one region and the same type of data object in 
nearby regions.  We also observed a temporal 
correlation in our analysis. 

2. Domain data model. Data produced by LF 
instruments and observations are typically used to 
derive data products, and the “recipes” used in 
this derivation are defined in the facilities’ data 
models. For example, studies in oceanology use 
conductivity, temperature, and depth data to 
calculate water salinity and density. These 
domain-specific relationships define data-model 
affinities between data and result in 
corresponding correlations across data queries. 
For example, conductivity, temperature, and 
depth data are correlated and are likely to be 
requested together to calculate water salinity and 
density. 
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3. User association. A classic association used in 
collaborative filtering recommendation models is 
that users with similar interests download similar 
data items. This association indicates that if two 
users have similar characteristics, such as 
research interests, they will likely request the 
same data items. Identifying such associations is 
difficult since facilities typically do not keep 
track of users or ask them to create profiles. 
However, our analysis shows that determining 
user similarity according to their geographical 
proximity is possible because most LF users are 
researchers or other stakeholders who are part of 
larger research groups and/or working as part of 
projects. Thus, users working on the same project 
(e.g., from the same organization or institute) 
would, with high probability, request similar data 
items. Consequently, we can leverage user 
locality as an indicator of data affinity and the 
resulting correlation across queries. Our analysis 
of the OOI and GAGE access traces validates 
user association and shows that users within the 
same research group (or same organization) tend 
to have similar data-query patterns. 

 

 
Figure 2. Representation of users’ requests from 

a fragment of the OOI trace. Each cluster 
represents a distinct user (please see in color).  

INTELLIGENT DATA DELIVERY SERVICE 
 

The data delivery service aims to improve the user 
data access performance by pre-fetching data to DTNs 
close to the users and enabling them to access data 
primarily from the cache rather than retrieving them 
from the remote data source. The pre-fetching 
mechanism is based on user request history. As 
discussed above, over 90.1% of the volume of data 
downloaded is in response to queries from program 
users, i.e., queries generated by automated programs 
or scripts. These queries, by their nature, are 

predictable. As a result, by pre-fetching the relevant 
data items and caching requested data that can 
potentially service future requests, the local cache at 
the DTN storage can serve a large fraction of user 
requests. 

The data delivery service is designed based on 
these insights, as illustrated in Figure 3. The 
architecture consists of two primary functional 
components: the cache layer and the data push 
mechanism. The cache layer spans DTNs at the data 
sources (i.e., the LFs) and at the users, and forms a 
distributed interconnected cache network using 
storage available at the DTNs. The goal of the data 
placement strategy is to place the data at local DTNs 
that are close to potential users, and to keep data with 
high probability to be accessed in the future in the 
cache network. The overall data placement strategy is 
composed of local caching based on LRU and virtual 
groups. Virtual groups are groups of users who have 
common data interests and are geographically close to 
each other. We can place data objects of interest to a 
virtual group at a DTN that has the best network 
connected to the corresponding set of users. We use k-
means clustering to identify virtual groups. The data 
push mechanism is responsible for pre-fetching and 
stream data based on the analysis user access patterns. 

 

 
Figure 3. Architecture of the intelligent data 

delivery service. 
Clients run on DTNs at the user side and pre-

process user requests by searching for the requested 
data in the cache layer.  If the requested data are not 
present in the cache, the request is forwarded to a 
server, which runs at DTNs at the data source, i.e., the 
LF. The server also runs the data pre-fetching 
mechanisms and manages the placement of cached 
data. 

The evaluation of the data delivery service is based 
on the simulation of the VDC architecture with seven 
geographically distributed DTNs interconnected via a 
wide-area network and uses the OOI and GAGE 
request traces to evaluate the effectiveness and 
performance of the data delivery service under various 
operational conditions and using different scenarios. 
The results show that the delivery service improves 
data delivery performance and quality of service along 
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different dimensions as compared to current practices. 
Key results of our evaluation are summarized below. 

 
1. Higher throughput and lower latencies 

achieved. The data delivery service provides 
improvements in the data delivery throughput 
of over 2,600 times and reduces the latency 
from request submission to data access by 
38%. These improvements are mainly the 
result of requests being served using cached 
data.  

2. Data delivery performance is more robust to 
network variation. The data delivery service is 
more robust to the network variations. Data 
access performance does not dramatically 
change with changing network conditions. 
Overall network bandwidth requirements are 
also reduced, especially over the wide area, as 
redundant data requests are eliminated.  

3. Reduced load and network traffic at the LF. 
The data delivery service reduces the total 
requests and corresponding network traffic at 
the LF, as many requests are satisfied using 
cached data at the client side. 

 
We also studied how pre-fetching improves local 

data reuse. Figure 4 shows the average percentage of 
requests that are served from a local cache, using 
virtual groups, and caching with pre-fetching (referred 
to as “Smart Cache” in Figure 4). The results indicate 
that pre-fetching enables users to obtain more data 
from their local cache. As opposed to passively 
searching cached data, the pre-fetching mechanism 
proactively pushes data toward to user. Thus, it 
ensures that users can access more of their data locally 
regardless of whether they are reused from the 
previous requests. Furthermore, the pre-fetching 
mechanism can achieve near-optimal performance 
with a small cache size. Please refer to [10] for more 
details. 

Overall, we observe that the proposed data delivery 
service significantly improves performance and 
enhances its service robustness in response to complex 
real-world variations. 

 

 
Figure 4. Percentage of data movement from the 
local cache for OOI (top) and GAGE (bottom).  

INTELLIGENT DATA DISCOVERY 
 

As noted earlier, as the number of data and data-
products available at LF grows, discovering data/data-
products of interest can be extremely challenging. The 
data discovery service aims to recommend data and 
data products to users that are most relevant to their 
research interests. However, most popular e-
commerce recommendation models are based on 
linked data and rich metadata about a user’s personal 
history and preferences. Such data may not be 
available and relevant when recommending data and 
data products from an LF, and the existing models do 
not directly translate for such recommendations. In the 
case of LF users, data requests are based on research 
needs. Furthermore, facilities typically do not keep 
track of user histories or require users to create 
personal profiles listing their preferences. As a result, 
the data discovery service uses knowledge about user-
query patterns and correlations across user queries 
along with domain-specific data models. 

As noted earlier, our analysis of user requests to 
production facilities identified three key affinities that 
characterize query behaviors: instrument locality, 
data-domain model, and user association. Harvesting 
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these affinities is critical to automate the data 
discovery process, and they can be obtained by a 
combination of information sources, including the 
facility instrument metadata, user query traces, and 
external sources such as Wikipedia. This information 
is then captured in a knowledge graph, which is an 
effective method to represent such information, 
capturing the facts as the nodes and presenting the 
relationship among facts as the paths. Several recently 
proposed recommendation models leverage 
knowledge graphs to carry the auxiliary information to 
help address the cold-start and data-sparsity 
challenges. In our case, the knowledge graph contains 
information about the three types of affinities 
described above. 

To construct data discovery services capable of 
recommending relevant data items to LF users, we 
developed a Collaborative Knowledge-aware 
ATtention network (CKAT) recommendation model. 
The overall recommendation generation process is 
summarized in Figure 5.  

 

 
Figure 5. Overview of the recommendation 

process based on based on the CKAT model. 
 
We first represent each knowledge source as its 

own graph. To correlate the knowledge sources, we 
can consolidate these individual knowledge graphs 
into a Collaborative Knowledge Graph (CKG) 
through entity alignment. The CKG enables diverse 
information to be connected in the graph to form a 
collaborative signal. The CKG construction process 
also allows us to examine different knowledge 
combinations, which is key to achieving sound 
recommendations. Paths in the CKG represent the 
connection of two data items. Whereas first-order 
connectivity occurs when data items are directly 
connected, high-order connectivity occurs when there 
is a path between two data items across multiple nodes 
in the graph. The advantage of combining various 
knowledge sources using the CKG is the ability to 
identify connections between two indirectly related 
data items, which requires capturing long-distance 
paths (i.e., high-order connectivity) in the graph, 
which can be achieved using a graph neural network 
(GNN). However, before sending the CKG to the 
GNN, we need to convert and embed the graph 
representation into a vector representation, as 
illustrated in Figure 6.   

Existing embedding models such as TransE and 
TransH assume that entity and relation are vectors in 
the same space, so similar entities will be close to 
each other in the same entity space. However, each 
entity can have many aspects, and different relations 
pay attention to the various aspects of the entity. For 
example, the relation of (location, contains, location) 
is 'contains', and the relation of (person, born, date) is 
'born'. Therefore, these two relations are very 
different. To address this issue, we select the TransR 
[11] model, which considers relations in two distinct 
spaces, i.e., entity space and multiple relation spaces 
(relation-specific entity spaces), and performs the 
translation in the corresponding relation space, thus 
reflecting the importance of two items in different 
relationships. 

In the case of LF data usage, two data items can be 
used together for different research purposes for 
which the correlation or importance of the two data 
items is different. For example, the correlation of 
physical environmental variables can be relevant for 
climate change research but can also help in the 
understanding of shorter term effects such as the 
impact of invasive species on migratory species 
through predation. Therefore, being able to distinguish 
between these differences is important. Recent work 
by Wang et al. [12] has demonstrated that GNNs can 
capture high-order connectivity through high-order 
information propagation. However, key issues may 
impact learning performance, such as irrelevant paths 
(i.e., noise) that can impact the ability to find actual 
correlations. Since nodes can be connected via 
different paths in the graph, not all of them have the 
same importance in a certain relation. Thus, we apply 
the attention mechanism to enable the GNN training 
process to focus on the important relations. 

 

 

Figure 6. Overview of the embedding layer (i.e., 
converting a KG into vector representation) 

 
The experimental evaluation of the CKAT-based 

data discovery service shows that it can effectively 
recommend data to users, and it has recommendation 
accuracy that is over 6.12% higher compared to the 
state-of-the-art models. The evaluation also shows that 
knowledge combination plays a key role in the results, 
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indicating knowledge sources must be carefully 
selected to obtain sound results. The results also 
differed between facilities, indicating that a pre-
selection process is needed for each facility to achieve 
optimal results. More knowledge sources do not 
necessarily provide better recommendation results. 
Only the related knowledge sources are needed. Our 
experiments illustrate that once we purposely insert 
“noise” (i.e., irrelevant) knowledge to the best 
knowledge combination, the recommendation 
worsens, which emphasizes how important the 
knowledge selection process is. Furthermore, when 
we disable the attention mechanism, the 
recommendation result is impacted by every 
knowledge source input, which illustrates the attention 
mechanism does help eliminate the noise knowledge 
information and helps  improve training accuracy. 
Figure 7 illustrates the high-order connectivity in 
inferring user preferences, i.e., using the attention 
score to represent the affinity using OOI data. The 
figure shows how CTD data are recommended when 
the user previously queried ADCP data, which are 
obtained from sensors at the same location (Cabled 
Endurance Array). We observed that the instrument 
locality is more influential than other general 
attributes. 

  
 

 
Figure 7. Sample recommendation outcome 

using OOI data. The arrows show the 
recommendation scores. 

 
The CKAT model demonstrates a new 

methodology and direction to assist users in 
discovering facility data through exploiting diverse 
knowledge sources. Please refer to [10] for more 
details. 

 

CONCLUSION 
 

Society today is facing more complex problems 
requiring the solutions and associated data-driven 
workflows to discover sufficient correlated data as the 
inputs, which often involve multiple data sources 
across disciplines. LF data and CI are becoming an 
essential part of data-driven science and will play 
more important roles in future scientific discoveries. 
We propose an approach to address such data 
discovery and access challenges in using the facility 
data by exploring the knowledge of user access 
behaviors and the opportunities in the CI to bring 
convenience to the science communities and 
democratize access to LFs data and knowledge. 

This article provides a conceptual data framework 
for intelligent data access and delivery. It proposes the 
concept and construction methodology of the 
collaborative knowledge graph to represent the 
auxiliary information extracted from facility metadata,  
domain knowledge, and  history of user requests. The 
experimental evaluation building upon the VDC 
architecture and modern AI-based models exhibits a 
significant reduction of data access and data transfers 
from LFs’ repositories compared to current 
approaches. 

The path forward to improve data access and 
delivery methods includes distilling knowledge 
exploring the connection between LFs data and their 
associated research, which is natural in human 
learning. In addition, these methods can deliver 
personalized recommendations by creating researchers
’ profiles from publications and modern techniques 
such as natural language processing and knowledge 
representation learning.  

These concepts can translate to other LFs beyond 
those studied in this article. We envision the proposed 
framework through VDC to become a pervasive in-
network environment that can enable all service 
components with online learning capabilities, from a 
distributed cache network to hybrid pre-fetching 
models, data streaming mechanisms, and intelligent 
cache data placement strategies. VDC represents the 
foundation to enable the proposed framework and 
recommendation-based system across multiple LFs as 
a central component of a national data fabric.  
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