Future Generation Computer Systems 122 (2021) 14-27

Contents lists available at ScienceDirect 2
FIGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs Te—
Leveraging user access patterns and advanced cyberinfrastructure to N
accelerate data delivery from shared-use scientific observatories et

Yubo Qin**, Ivan Rodero?, Anthony Simonet?, Charles Meertens, Daniel Reiner?,
James Riley?, Manish Parashar ¢

2 Rutgers Discovery Informatics Institute, Rutgers University, NJ, USA
b UNAVCO, Boulder, CO, USA
¢ Scientific Computing Imaging Institute, University of Utah, Salt Lake City, UT, USA

ARTICLE INFO ABSTRACT

Article history:

Received 7 February 2020

Received in revised form 19 December 2020
Accepted 9 March 2021

Available online 25 March 2021

With the growing number and increasing availability of shared-use instruments and observatories,
observational data is becoming an essential part of application workflows and contributor to scientific
discoveries in a range of disciplines. However, the corresponding growth in the number of users
accessing these facilities coupled with the expansion in the scale and variety of the data, is making
it challenging for these facilities to ensure their data can be accessed, integrated, and analyzed in a
timely manner, and is resulting significant demands on their cyberinfrastructure (CI).

In this paper, we present the design of a push-based data delivery framework that leverages
emerging in-network capabilities, along with data pre-fetching techniques based on a hybrid data
management model. Specifically, we analyze data access traces for two large-scale observatories, Ocean
Observatories Initiative (OOI) and Geodetic Facility for the Advancement of Geoscience (GAGE), to
identify typical user access patterns and to develop a model that can be used for data pre-fetching.
Furthermore, we evaluate our data pre-fetching model and the proposed framework using a simulation
of the Virtual Data Collaboratory (VDC) platform that provides in-network data staging and processing
capabilities. The results demonstrate that the ability of the framework to significantly improve data

Keywords:
Cyberinfrastructure
Virtual Data Collaboratory
Distributed data sharing
Distributed facilities

Data pre-fetching
Observatories

delivery performance and reduce network traffic at the observatories’ facilities.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Almost all of science is transitioning from ‘“data-poor” to
“data-rich” in the 21st century, and large-scale observatories
and shared-use instruments are playing essential roles in cat-
alyzing scientific discoveries. With the increasing availability of
shared-use instruments and observatories, observational data is
becoming an important part of application workflows and con-
tributor to scientific discoveries in a range of disciplines, and has
enabled key scientific discoveries [1,2].

However, the corresponding growth in the number of users
accessing these facilities coupled with the expansion in the scale
and variety of the data, is making it challenging for these facilities
to ensure their data can be accessed, integrated and analyzed in
a timely manner, and is resulting in significant demands on their
cyberinfrastructure (CI). At the same time, applications that use
data from these observatories expect robust, highly available and

* Corresponding author.
E-mail address: yubo.qin@rutgers.edu (Y. Qin).

https://doi.org/10.1016/j.future.2021.03.004
0167-739X/© 2021 Elsevier B.V. All rights reserved.

performant data services with low access latency [3-5]. Conse-
quently, it is essential to address the associated data management
and delivery challenges.

Recent studies have addressed these challenges from differ-
ent perspectives. Several large-scale facility projects [3,6-10]
co-design their facilities, cyberinfrastructure, and applications
to support highly-customized and high-performance end-to-end
scientific workflows. Although this supports the integration of
processes from data generation to final discovery for its targeted
workflows, developing such a specialized cyberinfrastructure is
time-consuming and expensive, and the resulting solutions are
typically inflexible.

Existing research has also explored reducing the volume of
data transferred using methods such as data streaming [11],
in-transit processing [12], edge processing [13], continuum com-
puting [14], and proxy caching [15-18]. However, these solutions
require appropriate capabilities at the edge and/or in the net-
work and a co-design of user applications, limiting their broad
adoption.

Recent CI projects [19-21] equipped with high-speed net-
works aim to address the data access challenge. For example,
the Virtual Data Collaboratory (VDC) leverages the science DMZ

https://doi.org/10.1016/j.future.2021.03.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.03.004&domain=pdf
mailto:yubo.qin@rutgers.edu
https://doi.org/10.1016/j.future.2021.03.004

Y. Qin, 1. Rodero, A. Simonet et al.

network model [22-24] to construct a dedicated regional net-
work to enable high-throughput data transfers among users, data
sources, and computing resources. However, considering that ob-
servational data is being generated at rates greater than increases
in network bandwidth, the advances in networks alone cannot
fundamentally resolve this challenge.

Furthermore, users access observational data in multiple ways
with different performance expectations and access patterns.
Users can manually download data from the observatory web-
site, run scripts that automatically query data, or subscribe to
real-time data streams. For example, automated script-based
downloads are typically a part of application workflows [4,9], and
while they often required stricter performance guarantees, their
query and access patterns are more predictable.

We believe that an integration of knowledge of users’ data
access behaviors with the CI's data-delivery mechanisms can
address data access challenges, improving data delivery perfor-
mance as well as overall CI efficiency. In this research, we study
user access and data usage patterns by analyzing the access traces
of two NSF-funded large-scale observatories, the Ocean Obser-
vatories Initiative (OOI) operated by Rutgers and the Geodetic
Facility for the Advancement of Geoscience (GAGE) operated by
UNAVCO. At the same, we experiment with the VDC platform, a
Science DMZ-based data CIs, and explore how its Data Transfer
Nodes (DTNs) can be exploited to cache and pre-fetch data. Based
on this study and its findings [25], we develop a set of opti-
mization strategies that include a distributed cache layer, hybrid
pre-fetching model (history-based and data mining-based), data
placement strategy, and streaming mechanism. Furthermore, we
combine these strategies and propose a push-based data delivery
framework that can accelerate data delivery performance for
large-scale shared-use observatories. The proposed framework is
designed to run on DTNs within the VDC platform between the
end-users and the data sources, allowing users to discover and
access data through their local DTN, and the actual transfer of
data is handled by the network of DTNs that are part of the
framework using the optimization strategies developed in this
work. From a end-users’ perspective, data access is typically local
as data is often pre-fetched and cached at the local DTN.

We have evaluated this model and framework using a simu-
lated VDC platform and access traces from OOI and GAGE. Specif-
ically, we measure latency and throughput to quantify the impact
on data access performance of end-users under different network
conditions, request traffic, and cache configurations. Moreover,
we compare our hybrid pre-fetching model with state of the
art pre-fetching models [26,27] for spatial-temporal data. The
results show that our framework, combined with the proposed
optimization strategies, can significantly improve data delivery
performance and reduce the load on the observatory’s Cl. The
main contributions of this work are as follows:

e Analysis of user access and data usage patterns for two repre-
sentative large-scale shared-use observatories.

e Development of a hybrid data management model designed to
support pre-fetching mechanisms.

e Use of DTN’s within a Science DMZ to support data pre-fetching
and caching based on user data access patterns.

e Design and prototyping of a push-based data delivery frame-
work along with optimization strategies that leverage user data
access patterns for data pre-fetching and caching.

e Experimentally evaluate the push-based data delivery frame-
work using a simulated VDC platform and access traces from
00I and GAGE.

The remainder of this paper is organized as follows. Section 2
presents motivations for the presented work. Section 3 analyzes

15

Future Generation Computer Systems 122 (2021) 14-27

the user data access patterns using OOI and GAGE access traces.
Section 4 describes the design push-based data delivery frame-
work along with optimization strategies for data pre-fetching
and caching. Section 5 presents a performance evaluation of the
system. Section 6 concludes the paper.

2. Motivation and background
2.1. Observatory data access challenge

Large-scale, shared-use scientific facilities, such as shared in-
struments, observatories and experimental platforms, have be-
come key enablers for scientific discoveries in a range of disci-
plines. For example, the Event Horizon Telescope (EHT) generated
the first images of a black hole event horizon [2], and the Laser
Interferometer Gravitational-Wave Observatory (LIGO) enabled
gravitational waves to be detected for the first time [1]. As a
result, ensuring efficient, pervasive and democratic access to data
from such facilities is essential and critical to amplifying their
scientific impact.

However, rapidly growing data volumes and rates and the
lack of sufficiently CI capabilities can limit effective access, and
prevent scientists from using the data in a timely manner. For
example, the LIGO project generates terabytes of data every day
during its “observing” mode [28], and the in-construction Square
Kilometer Array (SKA) project is estimated to generate an ex-
abyte of raw data every day though it will then be compressed
to around 10 petabytes [29]. As noted at the 2019 NSF Work-
shops on Connecting Large Facilities and Cyberinfrastructure [4,
30], many large facilities still struggle to provide broad data
transfer and access services, especially in remote environments.
Furthermore, using the wide-area network (WAN) is not the
most effective approach for transferring large data volumes. For
example, Dart et al. [31] note that it took three months to transfer
56 terabytes of climate model output data from the distributed
Coupled Model Intercomparison Project (CMIP5) archive to the
National Energy Research Supercomputing Center (NERSC). As
most facilities do not provide co-located general-use computing
and storage resources for end-users, users and application work-
flows typically have to retrieve the data over the network to local
or national resources (such as those provided by Extreme Science
and Engineering Discovery Environment (XSEDE)). Therefore, ad-
dressing data access challenges for large facilities is critical for
both scientific facilities and their users.

2.2. Cyberinfrastructure and science DMZs

Cyberinfrastructure (CI) aims to knits together the end-users,
data sources, software services, and computational resources us-
ing high-performance networks [32], with the overarching goal
of enabling advanced science and engineering application. As the
scale and complexity of applications increase, general-purpose
networks quickly become insufficient to support their require-
ments, which can include managing and transporting of terabyte-
or petabyte-scale dataset [33].

The Science Demilitarized Zone (Science DMZ) network model
[34] is developed to optimize the transfer of large-scale scientific
data. It achieves this goal by building a high-bandwidth network
(e.g., 100 Gbps) among campuses, using dedicated Data Trans-
fer Nodes (DTNs), by-passing traditional campus firewalls, and
exploiting other techniques, as discussed in [22,23], to support
high-throughput disk to disk data transfer [24].

Several recent-developed CI use the Science DMZ, such as the
Pacific Research Platform (PRP) [19] and the Virtual Data Collab-
oratory (VDC) [20]. In this work, we leverage VDC, which archi-
tecture is presented in Fig. 1. VDC constructs a high-bandwidth

Y. Qin, 1. Rodero, A. Simonet et al.

A
° Rutgers
. University

Future Generation Computer Systems 122 (2021) 14-27

Col

OCEAN
OBSERVATORIES
INITIATIVE

[Data Service Layer }

Cataloging, curating, querying, discovery, federation, etc

Network Service Layer
Data DMZ

© Penn State
University

DTN

VDC Regional network

National Cyberinfrastructure
(e.g., XSEDE)

Fig. 1. Overall architecture of the Virtual Data Collaboratory (VDC). VDC is a data DMZ-based regional network. Users can connect to VDC using Data Transfer Nodes
(DTN). The Data Services Layer support data discovery, access and processing across a federated environment that integrates multiple data sources and CI.

regional network connection. Its network services layer adopts
the Science DMZ model to allow users on different campuses,
data sources, and computational resources to connect to the
VDC network using data transfer nodes (DTN). Its data service
layer provides services, such as cataloging, curating, and querying,
which enables users to discover data across observatories that
are part for the VDC and integrate this data into application
workflows running on remote computational resources.

DTNs within the VDC architecture are used to temporarily
host data as moves across the network. Physically, the DTN is
a purpose-built Linux server with significant storage and non-
trivial computing power that is configured with the data transfer
services such as Globus’ gridFTP [35-37], and optimized for re-
ceiving WAN transfers at high speed [38,39]. For example, a
DTN is capable for executing computation-intensive tasks such
as machine-learning as proposed by the Chase-CI project [21]. In
this work, we propose to deploy a cache/pre-fetching layer on
the DTN to accelerate the data access performance for data from
observatories. We also propose to leverage DTNs for data fusion
and in-transit data processing.

2.3. Proxy caching and pre-fetching

Proxy caching is a well-known strategy for improving data
access performance for users in geographically distributed sce-
narios. It achieves this goal by keeping content that is likely used
in the near future at the locations close to its users [15,16]. Web
data pre-fetching is a mechanism for predicting and fetching data
prior to future requests [40-42]. Caching, combined with the
pre-fetching, is an effective strategy for improving the user data
access experience.

The proxy caching mechanism is typically implemented at
three levels based on the cache location: client level, proxy level,
and server level [15]. The proxy level caching is widely used in
industry to keep the content close to users but not occupy users’
local storage space. The Content Delivery Networks (CDN) [17] is
one implementation of proxy level caching.

The role of the DTN within the Science DMZ network is equiv-
alent to a proxy level cache within a web system. Therefore,
by deploying a cache layer onto the DTNs in VDC essentially
constructs a proxy server network that functions as the CDN to
accelerate user data access performance [43] but without adding
any additional hardware.

The cache replacement algorithm is crucial for web caching
due to cache storage limitations [15,16,44]. Wong et al. cate-
gorize commonly used web cache replacement algorithms into:
(1) Recency-based (e.g., Least-Recently-Used [45]); (2) Frequency-
based (e.g., Least-Frequently-Used [46]); (3) Size-based, which
evicts the largest object first [47]; and (4) Function-based, which

16

evicts objects according to their utility value [48]. The recency-
based algorithm is the most commonly used for web caching
because the web data has timeliness properties. Moreover, by
leverages machine learning techniques, efforts such Ali et al. [49,
50] further improve the Least-Recently-Used algorithm’s perfor-
mance.

Pre-fetching mechanisms enhance the caching performance by
fetching data prior to the users’ requests [40-42]. Pre-fetching
algorithms are usually categorized as content-based and history-
based. Content-based methods predict a user’s future requests
by analyzing data content. Xu et al. [51] propose to predict a
user’s future requests based on semantic preferences of previ-
ously retrieved Web documents. The history-based method con-
ducts predictions based on a user’s history records, and is the
most commonly used approach for web pre-fetching. For exam-
ple, existing studies [26,52] leverage data mining techniques to
learn user access patterns using mining the correlations from a
user’s access records. Other work [27,53] has used Markov-based
approaches to predict future requests by matching the user’s
current access sequence with history access sequences.

However, as existing literature [54] indicates, the factors de-
termining which data objects will be re-accessed can vary sig-
nificantly for different situations. Understanding user access pat-
terns and particular environment characteristics are important
for designing effective cache replacement and data pre-fetching
mechanisms.

In order to exploit the locality of DTNs and the benefit of
caching and pre-fetching, we propose to design a push-based data
delivery framework along with a set of optimization strategies,
including a hybrid pre-fetching model. To maximize the effective-
ness of caching and pre-fetching we start by analyzing the access
traces from real-world observatory and learn user data access
patterns. We then develop a customized caching and pre-fetching
mechanism that leverages this knowledge.

3. A study of observatory data access and usage patterns

In this section, we analyze traces from the NSF Ocean Obser-
vatory Initiative (OOI) and the Geodetic Facility for the Advance-
ment of Geoscience (GAGE) with the goal of understanding how
users access and utilize the data from these observatories.

00l [3,55,56] is a networked ocean research observatory with
arrays of instrumented water column moorings and buoys, pro-
filers, gliders, and autonomous underwater vehicles (AUVs) dis-
tributed across different open ocean and coastal regions. OOI
provides ocean scientists, educators, and the public the means to
collect sustained, time-series datasets to enable the examination
of complex, interlinked physical, chemical, biological, and geolog-
ical processes operating throughout the coastal regions and open
ocean.

Y. Qin, 1. Rodero, A. Simonet et al.

100%

0%

m

Q

I User Proportion s '§

80% o [Data Transfer Volume o
S —a&— Avg. Throughput L6 =
© 60% g
S [
5 £
£ 40% L
20% G

=

8

©

a

North
America

South
America

Oceania Europe Africa Asia

Fig. 2. Study of the impact of WAN performance on GAGE users’ data access
from different continents. The plot compares the proportion of users, data
transfer volume, and the associated average data transfer throughput for each
continent.

GAGE [57] (operated by UNAVCO) is a non-profit university-
governed consortium that facilitates geoscience research and ed-
ucation using geodesy. GAGE services include the operation of
the Network of the Americas (NOTA), which integrates a number
of existing networks, and engineering, instrumentation, and data
services for user of terrestrial and satellite geodetic technologies.

The analyses presented below is conducted on two traces: a
one-month (November 2018) OOI user access log that contains
17.9 million user requests, and a one-year (2018) GAGE log that
contains 77.8 million user requests. Each entry in the logs in-
cludes a publicly available IP address and the request metadata
(e.g., filename, access timestamp, etc.).

3.1. Data transfer volume and network conditions

We use the GAGE trace to study how the impact of network
performance exacerbates on data access. Since GAGE has a global
user community, we analyze access performance across differ-
ent continents. First, we estimate the user locations by reverse
tracking their public IP address. Then, we compute the user
distribution, the associated data transfer volume, and the average
data transfer throughput as shown in Fig. 2. It is worth noting that
while GAGE does have users from Antarctica who operate GPS
receivers and work with data from the McMurdo station, their
access records appear to come from other continents.

We observe that available network speed directly impacts
the volume of user data transfers. North America, Oceania, and
Europe have the highest average network throughput, and there
is a positive correlation between their user percentages and the
associated data transfer volumes. In contrast, there is a neg-
ative correlation for the rest of the continents. In particular,
for Asian users, although they account for 37% users, they only
account for 20% of the data transfer volumes and also have the
lowest network performance (about 0.568 Mbps). This implies
that low network performance limits user data access from the
observatory.

3.2, (lassification of users and requests

Data from the observatories is spatial-temporal and contains
geographic and timing information in its metadata. To query this
data, users need to provide the name of the data object and an
observation time range, i.e., the starting and ending timestamp.

Our analysis of the OOI and GAGE traces reveals two types
of requests: human requests, which are interactive requests from
humans browsing the data catalog and manually downloading
data, and program requests, which are from workflows or scripts
that routinely download data using automated APIs.

We distinguish between these types of requests based on their
access patterns, which differ in terms of their access frequencies

17

Future Generation Computer Systems 122 (2021) 14-27

Table 1
Percentage of Human Users (HU) and the Program Users (PU), and their data
transfer volumes for OOI and GAGE, respectively.

Number of users (%)

Data transfer volume (%)

HU PU HU PU
(0]0)] 86.7% 13.3% 9.9% 90.1%
GAGE 94.1% 5.9% 9.4% 90.6%

and the queried data sets. Human requests query a set of data
within a short period and then disappear. In contrast, program
requests regularly query the latest data at a consistent frequency.
We classify the users corresponding to these request types as
human user and program user respectively.

To identify the request types, we maintain a running time
window (e.g., one week) and analyze (i) each user’s request
frequency and (ii) patterns of repetition in the requests within
that time window. If a user requests the same set of data objects
more than once per day and this pattern repeats every day during
the time window, we classify this user’s future requests for this
set of data objects as program requests. All other requests are
classified as human requests.

Since access frequencies and the queried datasets differ be-
tween human users and program users, they require different
optimization strategies. As a result, it is important to understand
the relative percentages and associated data access volumes for
each user type.

3.3. A quantitative study of users and their data accesses

The user percentages and associated data transfer volumes for
human users and program users for OOI and GAGE are presented
in Table 1. More than 86.7% of users are human users for both
the observatories making them the primary user type. However,
they generated less than 9.9% of the data transfers, which implies
that program users are the primary data consumers. As a result,
we mainly focus our optimizations on requests by program users
and address human users to the extent possible.

3.4. Analysis of program requests

We analyze program requests based on the request metadata,
i.e., access time, data object, and time range, and identify three
access patterns: regular, overlapping and real-time request. These
three request types are illustrated in Fig. 3 using a sample from
the OOI trace on 23 November 2018. The horizontal axis is the
time of the access request, and the vertical axis is the time
range requested (i.e., the starting and ending timestamp of the
requested data). Each vertical blue bar in the plot is a request,
and the length of the bar represents the requested time range.

Regular requests query new data since the last request with-
out any overlap. For example, in Fig. 3(a), a user makes a request
every hour, and each request queries the most recent one-hour
of data.

Regular request represent the most common request type. Ob-
servatories typically receive new data and update their databases
at regular intervals which is determined by the characteristics of
the instruments, the CI design, and other factors such as the data
acquisition mechanism (e.g., satellite, cruise recovery). As a result,
users develop programs that download the most recently updated
data at these regular intervals.

Real-time requests are high-frequency (e.g., once per minute)
regular requests. This type of request is shown in Fig. 3(b), where
a user queries the past one-minute data every minute.

Real-time or near real-time data monitoring is typically used
to develop science gateways [11] that monitor event occurrences,

Y. Qin, 1. Rodero, A. Simonet et al.

Future Generation Computer Systems 122 (2021) 14-27

11-24 00 Table 2
° ﬂ;i i; A ! Data transfer volume for the three types of requests; Breakdown of the data
2112315 I transferred for overlapping request.
©
b ﬂg (1); | ‘ Data transfer volume Data transfer volume
E112306 ‘ ! for the three request types for overlapping requests
=
E;; gg Co ! Regular Real-time Overlapping Fresh data Duplicate data
10)00 1303 »p)"b 1309 f)\'l f)x‘) f)x‘é f)m& 1&00 (0]0)| 13.8% 25.7% 60.8% 9.6% 90.4%
3 W » W W e W W W GAGE 77.2% 6.1% 17.2% 10.5% 89.6%
User request timestamp
(a) Regular request
112312 401 =s = am User #1
112310 User #2
21123 08 351 User #3
© [l EEm X% X
; 11-23 06 30 = =u *
1x | n " EEm XOMmX X
-E 11-23 04 [a)] x u mEm X X
11-23 02 : u u -§ “
O 251® [] [0 *XX X §
100 o 9 N © ® o 2 2 T "
N N o o o A Ry o H B " x
O—’f) x‘f‘ﬁ x\'ﬁ x\»‘f) 0’1’5 «,\’f) x\»‘f’ © 201 . "
User request timestamp] m nm X
© 154x XX X
(b) Real-time request o « . mm o %
11-24 00 101 an" x
E R | 4 |
11-2318 " EE X
1) u X
9112312 5% o
% 11-23 06 BG oo [}] X X X *
=11-23 00 [] L] [A | []
gu221s oL . . . ‘ ‘ ‘
E12212 0 10 20 30 40 50 60
1122 06 Instrument location ID
11-22 00
[\ [\ [\J [\ A\ o A2 7 [\
W‘ﬁ 9.1“) \},’l’b 01”) x\»‘f) 913 0."9 0—’13 0.1‘* Fig. 4. Analysis of user request patterns. The x-axis represents instrument

User request timestamp

(c) Overlapping request

Fig. 3. Examples of the three types of user requests in the OOI trace on 23
November 2018. Fig. 3(a) illustrates regular requests where a user requests the
past one-hour of data every hour. Fig. 3(b) illustrates real-time requests where a
requests the past one-minute of data every minute (only a subset of the requests
are plotted for visualization purposes). Fig. 3(c) illustrates overlapping requests
where a user requests the past one-day of data every hour.

such as earthquake detection [5]. Since most observatories do
not support subscribe-based data delivery, programs use high
frequency pull-based requests to implement such monitoring.
Real-time requests can result in large request traffic and signifi-
cant load at the observatory. Furthermore, the data returned for
each real-time request is typically small. As a result, these re-
quests result in a large number of relatively small data transfers,
which can potentially increase the system overheads and, in turn,
reduce the quality of service provided by the observatory.

Overlapping requests are similar to the regular requests but
with overlapping time-intervals across consecutive requests.
These types of queries are illustrated in Fig. 3(c), where a user
queries the past one-day data every hour, resulting in a 23-hour
overlap between consecutive requests. While such queries are
convenient from a user’s perspective (e.g., the user is running an
application every hour that needs the most recent 24 h of data),
they can have a negative impact on the observatory as they result
in redundant data transfers and unnecessary resource utilization.

Table 2 lists the percentage data transfer resulting from each
of the three request types for OOl and GAGE. Note that for OOI
overlapping requests dominate (i.e., 60.8%), while for the GAGE
regular request dominate (i.e., 77.2%).

3.5. Analysis of overlapping requests

To quantitatively analyze the redundant data transfers result-
ing from overlapping requests, we divide the data transferred into
fresh data, which is the percentage of data that is not part of
previous request, and duplicate data, which is the percentage of
redundant data.

18

locations, and the y-axis represents requested data object IDs. The visible
patterns suggest the existence of spatial correlation across the requests.

Table 2 shows that 90.4% of data transferred in response
to overlapping requests is redundant data for OOI. Considering
that 60.8% of OOI requests are overlapping, there is a significant
amount of redundant data transfer observed in the OOI log.

Considering there is a large amount of redundant data transfer,
adding a cache layer into the CI is an effective approach for
reducing traffic and resource requirements at the observatory and
improving performance. Furthermore. since a large percentage of
the requests have predictable patterns, pre-fetching mechanisms
can also be effective.

3.6. Analyzing correlations across requests

We observe a spatial-temporal correlation across human user
requests in the OOI and GAGE traces indicating that human users
tend to query data objects in a particular region as they navigate
an observatory’s data products. There are a couple of potential
explanations for this. Scientist may be studying phenomena in a
particular regions and as a result, query data from instruments
and sensors in that region. Furthermore, observatory data portals
typically use maps to help users navigate the observatory and
explore desired instruments/sensors and associated data product
and as a result, user request tend to spatially correlated. Conse-
quently, it is possible to leverage this spatial-temporal correlation
to predict human user requests.

Fig. 4 shows the queried data objects (using their instrument
name and the instrument location) by three selected users from
the one-day OOI trace used in Section 3.4. Since OOI deploys the
same type of instrument at multiple locations [58], we use these
two pieces of information to represent a specific data object. In
the figure, we serialize the instrument name into an ID, which
is represented in the y-axis. We then serialize the instrument
locations, sort them by their proximity, and use their IDs to plot
the x-axis. Thus, the dots in the same row represent the same type
of instrument at different locations, while the dots in the same
column represent different instruments in the same location.

Y. Qin, 1. Rodero, A. Simonet et al.

Future Generation Computer Systems 122 (2021) 14-27

Search
peer DTNs
A
Query
Search Request repository
remote repository =P Process Request p—t>
Cache . Query
. Engine repository -
I Data Push >
RequeSt
Q . Vbe 9 Observatory
S Regional Network
Data retrieve Data retrieve
Users Local from outside Data flow Local from outside
Cache — < Cache 1

DTN client

DTN server

Fig. 5. Push-based data delivery framework deployed on top of the VDC Science DMZ-base architecture. The framework leverages the DTNs and their storage to
implement a distributed and interconnected cache layer. The DTNs also host the data push engine. The framework client runs at the user’s local DTNs and handles
the user requests. The framework server runs at DTNs at the observatory and is responsible for managing the distributed data cache layer for data pre-fetching and

streaming.

We observe a clear spatial correlation across requests in the
plot, as users query multiple data objects of one region (vertical)
and the same type of data object in nearby regions (horizontal).
We also observe temporal correlation in our analysis. For exam-
ple, in Figs. 3 where the consecutive blue bars, which represent
the time interval of a request, have the same length. This implies
that user (especially program users) tend to use a moving window
while querying data. These observations confirm that we can
potentially leverage this spatial-temporal correlation to predict
user requests.

4. Design of a push-based data delivery framework

The proposed push-based data delivery framework exploits
DTNs to cache queried data, manage the cached data, learn user
access patterns, and proactively push data toward appropriate
users.

The framework has a server—client architecture, as shown in
Fig. 5. Clients run at user-side DTNs, pre-process user requests by
searching for the requested data in caches at the local and peer
DTNs, forwarding the request to the server if data is not found in
these caches. The server runs at server-side DTNs that are local to
the observatory. It handles requests arriving at the observatory,
runs, executes the data pre-fetching and streaming mechanisms,
and manages the placement of cached data.

Functionally, the architecture is composed of two main com-
ponents: the cache layer and the data push engine. The cache
layer spans the client and server side DTN to create a distributed
interconnected cache network, and uses storage at the DTNs and
caches data generated in response to user requests. The data push
engine hosts the data pre-fetching and streaming mechanisms. It
predicts user requests based on access patterns and can pre-fetch
or stream data to users according based on these predictions.

4.1. Design of the hybrid data pre-fetching model

The goal of pre-fetching in this work is to predict user ac-
cesses based on observed access patterns presented in Section 3,
allowing appropriate data objects to be pushed to the user. This
is achieved as follows.

First, we exploit the spatial-temporal correlations to design
an association rule mining-based prediction model for predicting
the human requests as well as other requests that cannot be
classified, based on the work from Xiong et al. [26]. Next, we de-
sign a history-based prediction model to handle program requests
using the frequency of these requests. Finally, we develop a data
streaming mechanism to process real-time requests.

19

We use the Autoregressive Integrated Moving Average
(ARIMA) model, a widely used technique for time series predic-
tion [59,60], to predict the timestamp of the user’s next request.
This combination of models can optimize the prediction accuracy
and pre-fetching performance.

4.1.1. Representing user requests

We model user requests as a sequence R; = (ry, 1y, ..., I'n).
Each request tuple r; includes the request timestamp ts, the name
of the data object (or data stream) d, and the requested time
range (i.e., the vertical bar in Fig. 3) tr. Furthermore, we represent
the request of user j as the tuple R; in Eq. (1), where TS, =

(tS], tSy, ..., tSn>, Dn = (d], dz, PN dn>, TRn = <tr], tro, ..., trn),
n is the number of data objects queried by the user j:
Rj = (r1,r2,...,rn)
= <(tS], dlv tr1)7 (tSZa d27 trz)a D) (tsrh dfh trn)) (])
= TSp, Dy, TRy

4.1.2. History-based prediction

The history-based data pre-fetching model is used when a
request from a program user is identified. Specifically, during the
learning period, we monitor a user’s request sequence R. If its
request pattern repeats more than a threshold number of times,
then we identify this user as a program user and mark this series
of requests as predictable, and the framework starts pre-fetching
data for the user in anticipation of future requests. The learning
period and threshold are empirically set to one week and 3 times,
respectively in our experiments.

We use the ARIMA model to predict the timestamp of the
user’s next request, i.e., ts;y;. Our implementation of the model
is based on existing literature [59,60]. Training ARIMA requires
the n most recent data points (i.e., a historical time interval). The
higher the value of n is, the more accurate the prediction result
is, but the training time is longer. In our experimental evaluation,
we empirically set n to 60, which results in a training time of a
few seconds and acceptable accuracy. Since the access intervals
for regular request’s are typically in the order of hours, this ARIMA
prediction cost is acceptable.

Once the next timestamp of the user’s next request, tsj;1, is
predicted, the framework can start pre-fetching relevant data. We
use a pre-fetching offset to determine how far in advance this
data should be pre-fetched. For instance, given offset to 0.8, the
framework pre-fetches the data at a timestamp at ts;+0.8x(ts; 11—
ts;), where ts; is the timestamp of the user’s last request.

Y. Qin, 1. Rodero, A. Simonet et al.

The pre-fetching offset allows the user to control the pre-
fetched timestamp and allows for time to transfer the data. Fur-
thermore, ARIMA predictions are impacted by the considerable
variance across consecutive access times and it can take several
cycles for ARIMA to adapt, and an appropriate offset provides
sufficient time to buffer the ARIMA prediction latency and achieve
a higher pre-fetching success rate.

4.1.3. Association rule mining-based prediction

The association rule mining-based prediction model is used
for request from human users and in cases where requests do
not have identified patterns. This model uses the association rule
mining Frequent Pattern Growth (FP-Growth) algorithm [61] to
construct the prediction model similar to existing work [26,62-
64]. FP-Growth will find an association among past requests to
predict future requests for data objects, i.e., di;1. The time step
for the next request is estimated based on the last two requests
as follows: tsj.q = ts; + (ts; — tsi—1) and tri 1 = tr;.

The overall model is constructed as follows:

(a) FP-tree construction: The frequent-pattern tree (FP-tree)
is a compact structure that stores quantitative information about
frequent patterns in a database. The algorithm first scans the
training dataset and counts the number of times a data point
d; € D;, I; € L; appears in the sequence of requests. This number is
called support. Then, the algorithm finds the frequency 1-itemsets
by comparing the itemset support with a predefined threshold.
Finally, it re-scans the dataset and constructs the FP-tree.

(b) FP-Growth: Based on the FP-tree, which contains associa-
tion rules between item sets and their corresponding confidence,
the algorithm filters out association rules that have a confidence
value lower than a predefined threshold, to form the complete
set of frequent patterns.

Selecting appropriate threshold values for support and confi-
dence is important to the model performance. In this work, we
empirically set them to 30 and 0.5, respectively.

This method’s prediction accuracy is lower than the history-
based method due to the randomness in human user requests
as observed in our experiments. Therefore, once the model gen-
erates a list of related data objects for a user sorted by their
probability of repetition, the model only pre-fetches the first n
data objects within the time range tr that are identical to the
user’s last request. The choice of n represents a trade-off between
moving more data objects to increases the success rate and the
resulting larger overheads. We empirically set n to 3 in our
experiments.

4.2. Design of the data streaming mechanism

Real-time (or near real-time) data accesses to OOl and GAGE
(we observed 25.70% and 6.10% real-time requests to OOI and
GAGE respectively) are implemented as a sequence of high fre-
quency requests, which results in significant traffic at the facil-
ities. Like most such scientific observatories [3], these facilities
do not support modern push-based models for delivering real-
time streaming data. Furthermore, adding native support for data
streaming can be a significant investment [30].

In this effort, we explore how these request for real-time
(near-real-time) data can be supported more efficiently using
in-network (using DTNs) resources, request prediction and data
pre-fetching, and design a data streaming mechanism as part of
the push-based data-delivery framework. This is done as follows:
Once an incoming request is identified as a real-time request,
the framework checks the observatory for data availability and
pushes the most recent data back to the user for the duration of
the request. Furthermore, the same request coming from multiple
users can be combined into a single request to the observatory
and redundant requests can be filtered out. Finally, this data can
be cached at local DTNs to satisfy subsequent requests.

20

Future Generation Computer Systems 122 (2021) 14-27
4.3. Design of the cache layer

The cache layer of the push-based data delivery framework
designed to leverage storage at the DTNs to place data from
the observatories as close to the user as possible. The design is
consists of the choice of the cache eviction policy at each of the
local DTNs, and an overall data placement strategy across the
network of DTNs that is aware of their geographical distribution.

4.3.1. Choice of the cache eviction policy

The cache eviction policy at the local DTNs is based on the
user access patterns. As observed in the analysis presented in
Section 3, over 90.1% data transfer volume came from program
requests that typically use a moving window to query data, and
there is an overlap between consecutive requests.

Based on these observations, the least recently used (LRU) can
be an effective cache eviction policy for the local DTN, which
typically have a relatively large storage capacity (typical DTN
configurations have tens to hundreds of GBs of memory and TBs
of fast storage). Note that the LRU eviction policy can be re-
placed by other eviction policies as needed, and we compare the
effectiveness of different policies in our experimental evaluation.

4.3.2. Data placement strategy

The goal of the data placement strategy is to place the data
(and its replicas) at local DTNs that are close to potential users,
and to keep the hot data, i.e., data with a high chance to be re-
accessed, in the cache network as long as possible. The overall
data placement strategy is composed of virtual groups and local
data hubs.

A virtual group is a group of users that have common data
interests and are geographically close to each other. We can place
data objects of interest to a virtual group at a DTN that has the
best network connective to the corresponding set of users.

In order to identify virtual groups with common data interests,
we use K-Means to cluster past requests and then group users
corresponding to the resulting clusters based on geographical
proximity. We then map these user groups to appropriate DTNs
which serve as the local data hub for the group. Note that this de-
sign assumes that users consistently access the observatory using
institutional (e.g., university or research laboratory) resources and
that the DTNs within the VDC align with these access locations.

The selection of a local data hub for a virtual group is based on
three factors: network throughput, resource availability (e.g. stor-
age) and user request frequency. As illustrated in Eq. (2), we select
the DTN Vg, that maximizes the weighted sum of the three values
as the local data hub within the virtual group. In this equation,
P; represents the network throughput from DTN v; to v; and 6,
is the weight for the throughput; U; represents the DTN device
resource utilization (e.g., storage and CPU) with weight 6,; and
F; represents the request frequency of requests from the virtual
group members that are connected to this DTN and has weight
0r. We empirically set 6, = 0.6, 6, = 0.2, and 6 = 0.2.

Vinh = max(Gp Z]’?;éi P,‘j + 0,U; + QfFi), O0<i,j<n (2)

Note that clustering virtual groups and the selection of local
data hubs are performed periodically allowing the framework
adapting to users changing their groups and interests. If the local
data hub changes, the previous data hub keeps the data that was
already cached, and new data is cached at the new data hub to
minimize reconfiguration costs.

The virtual group concept is illustrated in Fig. 6 and is inspired
by [18]. As shown in the figure, the virtual groups are overlaid on
the physical infrastructure composed of DTNs that serve as the
users’ access points. Users below on to one or more virtual groups
(e.g., Virtual Group X and Virtual Group Y in the figure) based on

Y. Qin, 1. Rodero, A. Simonet et al.

Local Daia Hub =)

-
Virtual &i :E‘?
Group X

o

sel

c

Physical
Infrastructure

Fig. 6. Virtual groups and corresponding local data hub (i.e., the DTN with a
star). The layered architecture is overlaid on top of the physical infrastructure.
Users can belong to several virtual groups based on their data interests.
These groups are split into sub-groups base on their geographic locations into
sub-groups (represented by circles).

their data interests, and each virtual group is divided into sub
groups based on their geographical location and mapped to DTNs
in the physical infrastructure, which is the local data hub for the
sub group serving as its access point and local cache.

4.4. Overall operation of the framework

The overall operation of the framework is illustrated in Fig. 5.
When the client DTN receives a request, it first searches the cache
layer starting with cache at the user’s local DTN. Any portion
of the requested data found at the local cache is returned, the
peer DTNs are searched for any remaining requested data. If data
is found cached at peer DTN, it compares data transfer costs
from that DTN to transfer costs from the observatory and decided
whether to transfer data from the DTN. Any remaining data is
then requested from the server, and is also recorded by the pre-
fetching engine allowing it to update its models. Finally, the data
is pushed towards the user.

5. Experimental evaluation
5.1. Methodology and setup

We use a simulations along with OOI and GAGE request traces
to evaluate the effectiveness and performance of the push-based
data delivery framework presented in this paper under different
conditions, and quantitatively compare it with two state-of-the-
art pre-fetching models [26,27].

5.1.1. The simulator

We developed a simulator to emulate the VDC cyberinfrastruc-
ture as shown in Fig. 7. The simulated architecture is composed
of seven geographically distributed DTNs interconnected via a
wide-area network (WAN). We set DTN#1 as the VDC server that
provides key data services including data cataloging, discovery,
querying, etc.

The presented data delivery framework is deployed on the
simulated VDC platform. The VDC server DTN is also server DTN
for the framework and is the access point for the observatory. This
DTN hosts the pre-fetching engine and manage data placement.
The other DTNs (i.e., DTN#2 - #7) are the framework’s client DTNs
and collectively form the cache layer. The client DTNs can be
configured to run different cache policies and use LRU by default.

21

Future Generation Computer Systems 122 (2021) 14-27

ocEAN
OBSERVATORIES
INITIATIVE

Col

Obs@

VDC server @ @ GAGE
DTN #1

Network of the Americas

Uniavco,,

DTN #7

Fig. 7. Architecture of the simulator emulating the VDC cyberinfrastructure and
used to implement push-based data delivery framework. DTN#1 as the VDC
server and hosts the pre-fetching engine and manage data placement. The other
DTNs (i.e., DTN#2 - #7) are client DTNs and collectively form the cache layer.

O 7»4/%10 7»4/%20 7»4/%30 7»4/%?0 7»4/%50 7»4/%60 7»4/%)

\ \ . . ! !
DTN#1 *n 25 20 15

! 40
10

w
v

lv)
3
DTN#Z* 25 20 15 10 z
8
308
o3 -RElM BEON BEDN 1251 20 15 10 g
3
E
DTN#4-/ 25 |25 (/25 |25 20 15 10 25 3
Ef
DTN#5- 20 |20 20 20 (20 15 10 .
2
DTN#6- 15 15 15 15 15 15 10 Z
15 B
g
DIN#7- 10 10 10 10 10 10 10

10

Fig. 8. Configuration of the interconnection bandwidths between DTNs used by
the simulator.

In our experiment we also evaluate the Least-Frequently Used
(LFU) policy.

To emulate GAGE’s average network throughput shown in
Fig. 2, we limit the client DTNs’ bandwidth from 40Gbps to
10Gbps. The network bandwidth between DTNs is shown in Fig. 8.
Since the bandwidth is not homogeneous across DTNs, we also
evaluate the impact of the data placement strategy and the on the
virtual group and local data hub schemes. The simulation assumes
that users connect to their local DTNs at 100 Gbps.

The simulation uses a task queue at the VDC server to process
the user requests, and ten service processes. User requests arriv-
ing at the server DTN are queued in the task queue and wait for
the next available service process. Limiting the service processes
to ten allows us to evaluate the impact of increasing request
traffic on the observatory data service. When user requests arrive
faster than the service processes can process, it results in longer
queuing time and larger processing latency.

5.1.2. Evaluating the hybrid pre-fetching model

We evaluate the Hybrid Pre-fetching Model (referred to as
HPM) used by the push-based data delivery framework by com-
paring it to two state-of-the-art spatial-temporal pre-fetching
models [26,27]. The first reference model (MD1) is by Li et al. [27]
and uses the Markov method to perform predictions. The authors
connect geospatial data coordinates to convert the user access
history into an “access path”. They observe that such paths follow
Zipf’s law, and thus, they can predict user requests using a basic
Markov model. In our evaluation, we add the geospatial coor-
dinate information to the OOI and GAGE datasets and use this
model.

The second reference model (MD2) is by Xiong et al. [26]
and is a data mining-based method that uses a regional mesh
and association rules to learn the spatial correlation, and use
ARIMA to predict the temporal correlation. This model applies

Y. Qin, 1. Rodero, A. Simonet et al.

the same prediction strategy to all user requests. In contrast,
HPM distinguishes between request types (i.e., human or program
requests) and uses the appropriate model for each request type.

5.1.3. Network conditions and request traffic variations

To evaluate data delivery performance under different net-
work conditions, we consider three scenarios: best, medium, and
worst. The best case maintains the original DTN bandwidth, as
shown in Fig. 8. The medium and worst cases cap the bandwidth
at each DTN at 50% and 1%, respectively.

Request traffic represents the number of requests that the ob-
servatory receives within a unit of time. Due to limited computa-
tional capacity and bandwidth, the observatory can only process
a limited number of requests concurrently, and as a result, as the
request traffic increases, the number of pending requests in the
task queue also increases, and latency and data transfer times are
correspondingly higher. This impacts the performance of the data
delivery framework.

In our simulations, we consider three request traffic scenarios:
low, regular, and heavy. We define the traffic corresponding to the
one month traces from the OOI and GAGE as the regular request
traffic, and emulate different request traffic scenarios relative to
this traffic. To emulate the heavy request traffic, we compress
one month of requests into a one-week time interval. It means
that the observatory will receive four times the number requests
within a unit time as compared to regular request traffic. Simi-
larly, we emulate low request traffic by expanding one month of
request to span a two-month time interval.

5.1.4. Simulator configurations

As noted previously, the simulator is configured to use the LRU
cache eviction policy by default, and our evaluations compares
LRU with LFU. We also compare the performance for different
cache sizes. Specifically, due to the difference in data sizes, we
evaluate the OOI trace with cache sizes of 128 GB, 256 GB, 512 GB,
1 TB, and 10 TB, and the GAGE trace with cache sizes of 32 GB,
64 GB, 128 GB, 256 GB, and 10 TB. Note that the 10 TB cache is
large enough to cache the entire data and represents best-case
performance.

Given that OOI and GAGE requested are distributed across
the globe, in our simulations, we cluster request based on the
continent they originate from. We use the client DTNs (DTN#2
- #7) to represent the six continents (excluding Antarctica) and
distribute users across these DTNs according to their locations.
By default, the simulator uses the best network configuration and
regular request traffic configuration.

5.1.5. Evaluation metrics

In our experiments, we measure latency and throughput to
quantify the data delivery performance to end-users. Latency is
defined as the time between when the user submits a request to
when the observatory starts processing it, and includes the time
it spends in the observatory task queue. We compute throughput,
by dividing the data size by the total data transfer time.

Furthermore, we use the recall metric to evaluate the perfor-
mance of the pre-fetching mechanism, which is the percentage
of the pre-fetched data that is accessed by the user. A higher
recall value indicates that a smaller amount of pre-fetched data
is wasted. Pre-fetched data may be wasteful if the prediction was
incorrect, if the data is not delivered on time (i.e., before the user
requests it), or if the cache configuration caused it to be evicted
before it was accessed.

22

Future Generation Computer Systems 122 (2021) 14-27

5.2. Experimental results

5.2.1. Data delivery performance

This experiment compares the framework’s data delivery per-
formance considering the cache configurations described in Sec-
tion 5.1.4. Specifically, it compares the throughput and latency
under the following conditions:

e W /O Cache: Represents the current observatory data deliv-
ery method that processes all requests by directly transfer-
ring data from the observatory to the user.

e Cache Only: Represents the baseline for our framework. It
adds a cache layer using the DTNs, but does not use any
optimization strategy.

e HPM, MD1, MD2: Represent our proposed framework that
includes a cache layer and data placement optimization
strategies, and is configured with three different pre-fetching
models.

Our framework with pre-fetching achieves significant im-
provement in accelerating the data delivery performance, where
the experiments’ results are plotted in Figs. 9-12. For example,
Fig. 9 shows that, in case of 0OI, using the smallest cache size
(128GB), HPM increases data transfer throughput by 2,689.8x, and
reduces request latency by 34.8% as compared to the No Cache
case. Only adding a cache layer (i.e., the Cache Only case), we
observe a 739.6x improvement in throughput. This confirms our
analysis presented in Section 3 that indicated significant overlap
across request. It also validates the benefits of a cache layer as
a simple yet effective method for improving the data delivery
performance.

Using pre-fetching results in a 3.6x increase in throughput
relative to the baseline. Moreover, HPM performs better than the
reference models (MD1, MD2) in all cases. As seen in Figs. 9(c)-
12(c), the pre-fetching recall values indicates that HPM achieves
the best prediction accuracy. This is because there are over 90.1%
program requests in the traces (Table 1) and the HPM'’s history-
based prediction model can predict these requests with high
accuracy. In contrast, the reference models (MD1 and MD2) treat
all requests equally, which results in at least 66.7% wasted pre-
fetching and redundant data movement. This validates the bene-
fits of using user data access patterns to improve the data delivery
performance.

Furthermore, MD2 has a higher recall value than MD1 for all
cases. This indicates that the association rule-based prediction
model performs better than the Markov-based method in pre-
dicting user data request for observatories. It also suggests that
HPM'’s associated rule-based sub-prediction model performs well
for non-program requests.

Figs. 9(b)-12(b) show that our framework decreases latency
(e.g., 34.8% 0OOI, LRU, 128GB) as compared to the No Cache case.
This is because the cache layer, and the pre-fetching and data
streaming mechanisms reduce the number of data requests that
are sent to the server DTN. Hence, it reduces the size of the task
queue and allows each request to be processed faster. Specifically,
Table 3 lists the normalized count of requests arriving at the
server DTN for each configuration. HPM reduces the number of
requests served by the observatory in all cases, especially as com-
pared to the Cache Only case. This validates the benefits of using
the data push, data pre-fetching and data streaming mechanisms
for real-time requests, allowing users to mostly retrieve data from
their local DTN.

The results show that the LRU cache eviction policy works
better than the LFU eviction policy for small cache size con-
figurations. LRU achieves 79.6% (0OI, 128GB) and 91.2% (GAGE,
32GB) higher throughput than LFU using 1TB and 256GB cache

Y. Qin, 1. Rodero, A. Simonet et al.

Table 3

Normalized number of user requests for the OOI and GAGE traces that have to

Future Generation Computer Systems 122 (2021) 14-27

10000 30
No Cache No Cache: 27.89 sec 0.71 —— MD1
—¥— Cache Only <= MD2
8000
= MD1 % 0.61 —m— HPM
2 B
2 —— MD2 <
% 60001 5 pm 20 =05
5) i
o > Q
5 4000 G 15/ —e— NoCache = 0.4
3 g —¥— Cache Only
E 2000 3 ol o 0.3
— : —— MD2 ._/_‘—__‘___‘/‘
o No Cache: 1.42 Mbps —@— HPM 02
5
128GB 256GB 512GB 178 1078 128GB 256GB 512GB 178 107B 128GB 256GB 512GB 178 1078
(a) Throughput (b) Latency (c) Pre-fetching Recall
Fig. 9. 0Ol LRU cache performance.
10000 30
No Cache No Cache: 27.89 sec 0.7{ —a— MD1
—¥— Cache Only 0.6 <= MD2
8000 -
7 —— MD1 B —=— HPM
s < 2 0.5
£ 6000 Mp2 S
=] — _
< —=— HPM 820 =04
5) i
o > Q
S 4000 g 15| —— NoCache *0.3
3 g ~¥— Cache Only
S 3 —a— MD1 0.2
£ 2000 10
—— MD2 0.1
No Cache: 1.42 Mbps —m— HPM
0 5 0.0
128GB 256GB 512GB 178 1078 128GB 256GB 512GB 178 10TB 128GB 256GB 512GB 178 10TB
(a) Throughput (b) Latency (c) Pre-fetching Recall
Fig. 10. OOI LFU cache performance.
3500
—a— No Cache 30 No Cache: 29.08 sec
3000 s Cache Only __.___/ 0.20
I A—=-MDY I
2 2500 3
s — MD2 _4’_/ g 254
22000 —m— HPM S | w— —— _015| — mp1
g < ¥ 20 S —— MD2
£1500 > g
o 2 —&— No Cache —=— HPM
3 2157 _« Cache Onl 0.10
21000] ache Only
S = —+— MD1
500 101 — MD2
No Cache: 1.39 Mbps —=— HPM 0.057 — —
0 5
32GB 64GB 128GB 256GB 1078 32GB 64GB 128GB 256GB 1078 32GB 64GB 128GB 256GB 1078
(a) Throughput (b) Latency (c) Pre-fetching Recall
Fig. 11. GAGE LRU cache performance.
3500
—e— No Cache 30 No Cache: 29.08 sec
30001 —%— cache Only 0.20
— .
—— MD1
2 2500 5
g —— MD2 2 = o015
Z2000{ —m— HPM g _ 7] —— mp1
3 220 S — MD2
21500 > 8
E 9 —e— No Cache 0.10{ —#®— HPM
21000 % 151 —— cache Only
£ = | = MD1
500 10| —= MD2 0.05
o No Cache: 1.39 Mbps —m— HPM
5
32GB 64GB 128GB 256GB 107B 32GB 64GB 128GB 256GB 1078 32GB 64GB 128GB 256GB 1078

(a) Throughput

be served by the observatory.

(b) Latency

Fig. 12. GAGE LFU cache performance.

(c) Pre-fetching Recall

requests is more relevant than the frequency of request for obser-

No Cache Cache Only MD1 MD2 HPM
001 LRU 1.0000 0.5722 0.4653 0.4228 0.3928
LFU 1.0000 0.9881 0.9874 0.9871 0.9849
CAGE LRU 1.0000 0.9437 0.8707 0.8447 0.7912
LFU 1.0000 0.9107 0.8941 0.8905 0.8893

sizes respectively. In contrast, the throughput curve rises steeply
when using LFU and achieves higher throughput than LRU with
large cache sizes (i.e., 10TB, OOI). This implies that the recency of

vatories. Since DTN storage resources are limited and considering
the typical scale of observatory data, performing well with a small
cache size is important, and as a result, we suggest that using the
LRU eviction policy is a better choice. We do not further evaluate
advanced recency-based eviction models [49,50] in this paper and
consider it as future work.

5.2.2. Analysis of the pre-fetching mechanism

23

The goal of these experiments is to understand how pre-
fetching improves the local data reuse. Fig. 13 plots the average
percentage of requests that are served from the local cache for
the four strategies using the last experiment for the LRU cache

Y. Qin, 1. Rodero, A. Simonet et al.

I Cached data
[Pre-fetched data

[XXJ Cache Only
X4 MD1

Z4 MD2
E= HPM

80%

.:"

60%

R
KRR
SRR

40%

REKL
S
X

5
X
X

XX
GG
RS

X
’.

20%

LR,
&
>

0%

(a) OOI
I Cached data [XXJ Cache Only rz4a MD2
[Pre-fetched data XA MD1 E= HPM

25%

20%

15%

10%

5%

0%

64GB

128GB 256GB 10TB

(b) GAGE

Fig. 13. Data movement from the local cache. These plots shows the percentage
of requests that are served by cached and pre-fetched data.

configurations. The color in the plots marks the data sources,
where blue is the percentage of requests served using cached
data, and the yellow is percentage of requests serviced using pre-
fetched data. These plots illustrate that pre-fetching enables users
to obtain more data from their local cache. For instance, using
the smallest cache sizes (OOl 128GB, GAGE 32GB) and the HPM
pre-fetching model, the percentage of local data access is 41.9%
and 278.8% higher than the Cache Only case for OOI and GAGE,
respectively.

As opposed to passively searching cached data, the pre-
fetching mechanism proactively pushes data toward to user. It
ensures that users can access more of their data locally regardless
of whether the data is reused from the previous requests. For
example, in Fig. 13b, GAGE has a smaller number of overlapping
requests; however, the pre-fetching mechanism still enables a
much higher percentage of local data accesses as compared to
the baseline.

Furthermore, the pre-fetching mechanism can achieve near-
optimal performance with a small cache size. The best perfor-
mance is obtained for a 10TB cache size as the entire datasets for
both traces fit into the cache. HPM with the smallest cache size
can achieve 79.2% and 78.0% of this best performance, for OOI and
GAGE, respectively.

Based on these experiments, we conclude that our push-based
data delivery framework can enable users to access more data
from their local DTN cache by proactively pushing data toward
users.

5.2.3. Evaluation of the data placement strategy

In this experiment, we use HPM with LRU and the GAGE trace
to evaluate the impact of the data placement strategy on the
data delivery performance. Table 4 summarizes the results. The
first row presents the percentage of cached data that has been
optimized by the data placement strategy using different cache
configurations. We observe that the data placement strategy is

24

Future Generation Computer Systems 122 (2021) 14-27

Table 4

Impact of the data placement strategy (DP): Percentage of cached data optimized
by the DP, throughput (Mbps) for retrieving the data from a peer DTN's cache,
and the impact of the DP on total data transfer performance.

32GB 64GB 128GB 256GB Avg.
% Data opt. by DP 21.11% 17.13% 1295% 1091% 1552%
Throughput (Mbps) W/O DP 16968.15 16899.72 16763.17 1664447 16318.88
Ehp P W/ DP 2029143 2023038 2009591 1998599 2015093
Improv. % 1959% 19.71% 19.88% 20.08% 19.81%
Tot. perf, improv. (Mbps) WW/O DP 244610 260319 265892 272377 2608.00
- pert. improv. (MBPS) \yj pp 252770 267368 271345 277117 267150

Tot. perf. improv. % 3.34% 271% 2.05% 1.74% 2.46%

more effective for a small cache size because it replicates hot data
to the local data hub.

We also measure the average throughput for retrieving data
from the peer DTN cache. The data placement strategy improves
throughput by 19.81% on average. The performance increases
slightly as the cache size gets larger because the local data hub
can keep the data replica longer. Overall, the data placement
strategy improves data delivery performance by 2.46% on aver-
age. We anticipate that our data placement strategy is likely to
impact overall data delivery performance even more significantly
as the scale of the DTN network grows, the network gets more
heterogeneous and complex, and more the amount data retrieved
from peer DTN caches increases.

5.2.4. Framework performance for different network condition and
request traffic

The goal of this experiment is to evaluate the ability of the
push-based data delivery framework presented in this paper to
tolerate different network conditions and request traffic levels. As
presented in Section 5.1.3, we create three network conditions,
i.e., best, medium and worst, where medium and worst are 50%
and 1% of the best case respective, and three levels of request
traffic. Moreover, we use a LRU cache of size 1TB and 256GB for
the OOI and GAGE traces respectively. We compare the achieved
throughput, which is presented in Table 5.

The columns of the table compares performance of each strat-
egy for different network conditions. The performance remains
constant for HPM, MD1 and MD2 for the best and medium net-
work conditions. However, for the worst network condition, the
throughput drops down by 34.9% and 31.1% relative to the best
case for OOI and GAGE, respectively. These results illustrate that
the pre-fetching mechanism tolerates network bandwidth vari-
ations as it can exploit the potentially idle network resource
to transfer data in advance. We can also see that the network
conditions significantly impact the No Cache case as in this case
data needs to downloaded directly from the observatory. This
indicates that the data delivery methods currently implemented
by observatories are not very resilient to unfavorable network
conditions. Conversely, the Cache Only strategy is not significantly
affected by the network conditions because in this case, data is
mostly retrieved from the local DTN's cache.

The rows of the table present the average data transfer
throughput for each cache strategy and for the low to high
request traffic levels. The request traffic impacts all the cases
except Cache Only as there is limited concurrent processing in this
case. Since our simulations use a fixed number (ten) of service
processes, heavier request traffic implies longer queuing time.
Moreover, given sufficient processing capability, multiple concur-
rent data transfers decrease the shared bandwidth available to
each task. As a result, the data transfer time increases, which
can result in the pre-fetched data arriving too late and being
wasted. We conclude that controlling the request traffic at the
observatory is important. The push-based data delivery frame-
work presented in this paper addresses this by using caching and
pre-fetching mechanisms to reduce the request traffic.

Y. Qin, 1. Rodero, A. Simonet et al.

Table 5

Future Generation Computer Systems 122 (2021) 14-27

Pre-fetching model performance comparison for different network conditions and request traffic levels. HPM is our hybrid pre-fetching model; DM1 and DM2 are

the reference pre-fetching models.

(a) 00l throughput for different network conditions and request traffic levels using LRU.

Network Low Request Traffic Regular Request Traffic Heavy Request Traffic

No Cache Cache Only MD1 MD2 HPM No Cache Cache Only MD1 MD2 HPM No Cache Cache Only MD1 MD2 HPM
Best 2.85 1326.97 3849.01 4881.04 5609.05 1.42 1322.24 3509.73 4221.31 4705.25 1.21 1311.97 2680.96 3201.53 3582.40
Medium 2.01 1327.27834 385824 4899.32 5615.12 1.11 1319.97 3506.01 4221.02 4707.16 0.92 1312.27 2677.13 3200.63 3582.07
Worst 1.01 1326.95858 2507.73 318579 3648.89 0.71 1318.08 227810 274375 3057.84 0.58 1311.96 1739.93 2080.23 2327.72

(b) GAGE throughput for different network conditions and request traffic levels using LRU.

Network Low Request Traffic Regular Request Traffic Heavy Request Traffic

No Cache Cache Only MD1 MD2 HPM No Cache Cache Only MD1 MD2 HPM No Cache Cache Only MD1 MD2 HPM
Best 1.52 851.84 175836 2091.16 2771.17 1.39 850.00 1501.11 1903.03 2488.08 131 849.02 1147.16 134849 1729.56
Medium 1.26 853.12 1760.41 209290 2771.26 1.19 851.99 1498.31 1904.62 2487.06 1.09 848.52 1146.77 135136 1730.24
Worst 0.69 853.45 121421 1443.12 1908.88 0.69 849.97 103521 131322 1715.93 0.60 849.50 789.01 927.91 1193.97

6. Conclusion

The paper addressed data access challenges for large-scale,
share-use facilities such as instruments, observatories and exper-
imental platforms with the goal of improving data access perfor-
mance and overall user experience for these facilities. Specifically,
in this work we analyze the data access and usage patterns for
two large-scale facilities, OOl and GAGE and study how these
patterns can be leveraged to predict future requests.

In this paper, we have presented a push-based data delivery
framework that leverages user access patterns to design a hy-
brid data pre-fetching model along with optimized cache mech-
anisms aimed at accelerating data delivery performance for dis-
tributed observatories. Furthermore, we presented an implemen-
tation of this framework that leverages the VDC Science DMZ and
uses in-network DTNs to host the data pre-fetching and caching
services.

We evaluated our framework using a simulated VDC envi-
ronment and OOI and GAGE user access logs. The experimental
evaluation indicated a significant reduction in the amount of
data transferred over the network for both, the OOl and GAGE
observatories as compared to the current approach (60.7% and
19.7% improvements for OOl and GAGE respectively).

Potential future optimizations include replacing the ARIMA
time-series prediction model with the portable Recurrent Neural
Network (RNN) based predictor [65], which could further improve
performance. Our current efforts include building a prototype
implementation to be deployed in the Virtual Data Collaboratory.

CRediT authorship contribution statement

Yubo Qin: Writing - original draft, Investigation, Methodol-
ogy, Software, Visualization, Validation, Conceptualization. Ivan
Rodero: Resources, Investigation, Methodology, Conceptualiza-
tion, Writing - review & editing, Project administration, Funding
acquisition. Anthony Simonet: Investigation, Writing - review &
editing. Charles Meertens: Resources. Daniel Reiner: Resources.
James Riley: Resources. Manish Parashar: Resources, Investiga-
tion, Methodology, Conceptualization, Writing - review & editing,
Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

This research is supported in part by National Science Founda-

tion (NSF), USA via grants numbers OCE 1745246, OAC 1835692,
OAC 1826997, and OAC 1640834, and was conducted as part of

the Rutgers Discovery Informatics Institute (RDI?). The materi-
als used are based in part on services provided by the GAGE
Facility, operated by UNAVCO, Inc., with support from NSF and
the National Aeronautics and Space Administration, USA under
NSF Cooperative Agreement EAR-1724794 and NSF grant OAC
1835791. We thank the reviewers for their careful review, which
helped improve the manuscript.

References

[1] B.P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley,

C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., Observation of

gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116

(6) (2016) 061102.

K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball,

M. Balokovi¢, J. Barrett, D. Bintley, et al., First m87 event horizon telescope

results. iv. imaging the central supermassive black hole, Astrophys.]. Lett.

875 (1) (2019) L4.

I. Rodero, M. Parashar, Data cyberinfrastructure for end-to-end science,

Comput. Sci. Eng. 22 (05) (2020) 60-71.

E. Deelman, A. Mandal, V. Pascucci, S. Sons, J. Wyngaard, C. Vardeman, S.

Petruzza, 1. Baldin, L. Christopherson, R. Mitchell, et al., Cyberinfrastructure

center of excellence pilot: Connecting large facilities cyberinfrastructure,

in: 2019 15th International Conference on eScience (eScience), 2019, IEEE,

2019, pp. 449-457.

K. Fauvel, D. Balouek-Thomert, D. Melgar, P. Silva, A. Simonet, G. Anto-

niu, A. Costan, V. Masson, M. Parashar, I. Rodero, et al., A distributed

multi-sensor machine learning approach to earthquake early warning, in:

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020,

pp. 403-411.

P. Dewdney, P. Hall, R. Schillizzi,]. Lazio, The square kilometre array, Proc.

Inst. Electr. Electron. Eng. IEEE 97 (8) (2009) 1482-1496.

[7] A. Abramovici, W.E. Althouse, R.W. Drever, Y. Giirsel, S. Kawamura, FJ.
Raab, D. Shoemaker, L. Sievers, R.E. Spero, K.S. Thorne, et al., Ligo: The laser
interferometer gravitational-wave observatory, Science 256 (5055) (1992)
325-333.

[8] T.U. Kampe, B.R. Johnson, M.A. Kuester, M. Keller, Neon: the first

continental-scale ecological observatory with airborne remote sensing of

vegetation canopy biochemistry and structure, J. Appl. Remote. Sens. 4 (1)

(2010) 043510.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R.

Mayani, W. Chen, RF. Da Silva, M. Livny, et al., Pegasus, a workflow

management system for science automation, Future Gener. Comput. Syst.

46 (2015) 17-35.

[10] M. Albrecht, P. Donnelly, P. Bui, D. Thain, Makeflow: A portable abstraction
for data intensive computing on clusters, clouds, and grids, in: Proceedings
of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution
Engines and Technologies, 2012, pp. 1-13.

[11] L Rodero, Y. Qin, J. Valls, A. Simonet,]. Villalobos, M. Parashar, C. Youn,
C. Wang, K. Thareja, P. Ruth, et al., Enabling data streaming-based science
gateways through federated cyberinfrastructure, Gateways 2019, 2019.

[12] AR. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, A. Anjum, M.
Parashar, Deadline constrained video analysis via in-transit computational
environments, IEEE Trans. Serv. Comput. (2017).

2

(3

[4

[5

(6

[9

http://refhub.elsevier.com/S0167-739X(21)00084-4/sb1
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb1
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb1
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb1
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb1
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb1
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb1
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb2
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb2
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb2
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb2
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb2
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb2
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb2
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb3
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb3
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb3
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb4
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb6
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb6
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb6
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb7
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb7
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb7
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb7
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb7
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb7
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb7
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb8
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb8
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb8
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb8
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb8
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb8
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb8
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb9
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb9
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb9
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb9
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb9
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb9
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb9
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb12
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb12
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb12
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb12
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb12

Y. Qin, I. Rodero, A. Simonet et al.

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]
[33]

[34]

[35]

[36]

E.G. Renart, D. Balouek-Thomert, M. Parashar, An edge-based framework
for enabling data-driven pipelines for iot systems, in: 2013 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2019, IEEE, 2019, pp. 885-894.

D. Balouek-Thomert, E.G. Renart, A.R. Zamani, A. Simonet, M. Parashar,
Towards a computing continuum: Enabling edge-to-cloud integration for
data-driven workflows, Int. J. High. Perform. Comput. Appl. 33 (6) (2019)
1159-1174.

W. Ali, S.M. Shamsuddin, A.S. Ismail, et al., A survey of web caching and
prefetching, Int. J. Advance. Soft Comput. Appl 3 (1) (2011) 18-44.

G. Zhang, Y. Li, T. Lin, Caching in information centric networking: A survey,
Comput. Netw. 57 (16) (2013) 3128-3141.

].D. Gagliardi, T.S. Munger, Content delivery network, uS Patent 7, 962, 580
(Jun. 14 2011).

F. Jiang, C. Castillo, S. Ahalt, Cachalot: A network-aware, cooperative cache
network for geo-distributed, data-intensive applications, in: NOMS 2018-
2018 IEEE/IFIP Network Operations and Management Symposium, 2018,
IEEE, 2018, pp. 1-9.

L. Smarr, C. Crittenden, T. DeFanti, J. Graham, D. Mishin, R. Moore, P.
Papadopoulos, F. Wiirthwein, The pacific research platform: Making high-
speed networking a reality for the scientist, in: Proceedings of the Practice
and Experience on Advanced Research Computing, PEARC '18, 2018, pp.
29:1-29:8.

M. Parashar, V. Honavar, A. Simonet, I. Rodero, F. Ghahramani, G. Agnew,
R. Jantz, The virtual data collaboratory, Comput. Sci. Eng. (2019).

L. Altintas, K. Marcus, 1. Nealey, S.L. Sellars, J. Graham, D. Mishin, J. Polizzi,
D. Crawl, T. DeFanti, L. Smarr, Workflow-driven distributed machine learn-
ing in chase-ci: A cognitive hardware and software ecosystem community
infrastructure, 2019, arXiv preprint arXiv:1903.06802.

D.R.C. Magri, T.C.M. de Brito Carvalho, F.F. Redigolo, M.A.T. Rojas, M.A.S.
Junior, L.N. Ciuffo, G.N. Dias, A.S. de Moura, F. Vetter, Science dmz: Support
for e-science in brazil, in: 2014 IEEE 10th International Conference on
e-Science, Vol. 2, IEEE, 2014, pp. 75-78.

P. Calyam, A. Berryman, E. Saule, H. Subramoni, P. Schopis, G. Springer, U.
Catalyurek, D.K. Panda, Wide-area overlay networking to manage science
dmz accelerated flows, in: 2014 International Conference on Computing,
Networking and Communications (ICNC), IEEE, 2014, pp. 269-275.

L. Farrell, Science DMZ: The fast path for science data, Sci. Node. (May
2016).

Y. Qin, A. Simonet, P.E. Davis, A. Nouri, Z. Wang, P. Manish, 1. Rodero,
Towards a smart internet-scale cache service for data intensive scientific
applications, in: Proceedings of the 10th Workshop on Scientific Cloud
Computing, ACM, 2019, pp. 11-18.

L. Xiong, Z. Xu, H. Wang, S. Jia, L. Zhu, Prefetching scheme for massive
spatiotemporal data in a smart city, Int. J. Distrib. Sens. Netw. 12 (1) (2016)
4127358.

R. Li, R. Guo, Z. Xu, W. Feng, A prefetching model based on access
popularity for geospatial data in a cluster-based caching system, Int. J.
Geogr. Inf. Sci. 26 (10) (2012) 1831-1844.

LIGO: Laser Interferometer Gravitational-Wave Observatory, https://www.
ligo.caltech.edu/mit/.

SKA: Square Kilometer Array https://www.skatelescope.org/the-ska-
project/.

2019 NSF Workshop on Connecting Large Facilities and Cyberinfrastruc-
ture, https://facilitiesci.github.io/2019/.

E. Dart, M.F. Wehner, et al., An assessment of data transfer performance
for large-scale climate data analysis and recommendations for the data
infrastructure for cmip6, 2017, arXiv preprint arXiv:1709.09575.
Transforming Science Through Cyberinfrastructure, https://www.nsf.gov/
cise/oac/vision/blueprint-2019/Overview-Computational.pdf (2019).

J. Crichigno, E. Bou-Harb, N. Ghani, A comprehensive tutorial on science
dmz, IEEE Commun. Surv. Tutor. 21 (2) (2018) 2041-2078.

E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, The science dmz:
A network design pattern for data-intensive science, Sci. Program. 22 (2)
(2014) 173-185.

K. Chard, S. Tuecke, I. Foster, Globus: Recent enhancements and future
plans, in: Proceedings of the XSEDE16 Conference on Diversity, Big Data,
and Science At Scale, 2016, pp. 1-8.

W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, The globus striped
gridftp framework and server, in: SC'05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, 2005, IEEE, 2005, pp. 54-54.

26

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]
[59]
[60]
[61]

[62]

Future Generation Computer Systems 122 (2021) 14-27

B. Radi¢, V. Kaji¢, E. Imamagi¢, Optimization of data transfer for grid using
gridftp, J. Comput. Inf. Technol. 15 (4) (2007) 347-353.

Z. Liu, R. Kettimuthu, I. Foster, P.H. Beckman, Toward a smart data transfer
node, Future Gener. Comput. Syst. 89 (2018) 10-18.

R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, F. Cappello,
Transferring a petabyte in a day, Future Gener. Comput. Syst. 88 (2018)
191-198.

T.M. Kroeger, D.D. Long, J.C. Mogul, et al., Exploring the bounds of web
latency reduction from caching and prefetching. in: USENIX Symposium
on Internet Technologies and Systems, 1997, pp. 13-22.

G. Pallis, A. Vakali, J. Pokorny, A clustering-based prefetching scheme on
a web cache environment, Comput. Electr. Eng. 34 (4) (2008) 309-323.
Y.-F. Huang, J.-M. Hsu, Mining web logs to improve hit ratios of prefetching
and caching, Knowl.-Based Syst. 21 (1) (2008) 62-69.

K. Mokhtarian, H.-A. Jacobsen, Caching in video cdns: Building strong lines
of defense, in: Proceedings of the ninth European conference on computer
systems, 2014, pp. 1-13.

S. Podlipnig, L. Boszérmenyi, A survey of web cache replacement strategies,
ACM Comput. Surv. 35 (4) (2003) 374-398.

A. Vakali, Lru-based algorithms for web cache replacement, in: Inter-
national Conference on Electronic Commerce and Web Technologies,
Springer, 2000, pp. 409-418.

L. Cherkasova, G. Ciardo, Role of aging frequency and size in web cache
replacement policies, in: International Conference on High-Performance
Computing and Networking, Springer, 2001, pp. 114-123.

S. Jin, A. Bestavros, Greedydual web caching algorithm: exploiting the two
sources of temporal locality in web request streams, Comput. Commun.
24 (2) (2001) 174-183.

P. Cao, S. Irani, Cost-aware www proxy caching algorithms. in: Usenix
symposium on internet technologies and systems, vol. 12, 1997, pp.
193-206.

W. Ali, S.M. Shamsuddin, A.S. Ismail, Intelligent web proxy caching ap-
proaches based on machine learning techniques, Decis. Support Syst. 53
(3) (2012) 565-579.

W. Alj, S. Sulaiman, N. Ahmad, Performance improvement of least-recently-
used policy in web proxy cache replacement using supervised machine
learning, Int. J. Adv. Soft Comput. Appl. 6(1) (2014).

C.-Z. Xu, T.I. Ibrahim, A keyword-based semantic prefetching approach
in internet news services, IEEE Trans. Knowl. Data Eng. 16 (5) (2004)
601-611.

Q. Yang, H.H. Zhang, T. Li, Mining web logs for prediction models in
www caching and prefetching, in: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, 2001,
pp. 473-478.

A. Nanopoulos, D. Katsaros, Y. Manolopoulos, A data mining algorithm for
generalized web prefetching, IEEE Trans. knowl. Data Eng. 15 (5) (2003)
1155-1169.

K.-Y. Wong, Web cache replacement policies: a pragmatic approach, IEEE
Netw. 20 (1) (2006) 28-34.

L.M. Smith, J.A. Barth, D.S. Kelley, A. Plueddemann, I. Rodero, G.A. Ulses,
M.F. Vardaro, R. Weller, The ocean observatories initiative, Oceanography
31 (1) (2018) 16-35.

I. Rodero, M. Parashar, Architecting the cyberinfrastructure for National
Science Foundation Ocean Observatories Initiative (OOI), in: 7th Inter-
national Workshop on Marine Technology: MARTECH, vol. 2016, 2016,
99-101.

NSF Awards the Geodetic Facility for the Advancement of Geoscience
(GAGE) to UNAVCO, https://www.unavco.org/highlights/2018/award.html.
OOI: Ocean Observatories Initiative, https://oceanobservatories.org/.

J. Contreras, R. Espinola, F.J. Nogales, A.J. Conejo, Arima models to pre-
dict next-day electricity prices, IEEE Trans. Power Syst. 18 (3) (2003)
1014-1020.

D.0O. Faruk, A hybrid neural network and arima model for water quality
time series prediction, Eng. Appl. Artif. Intell. 23 (4) (2010) 586-594.

J. Han,]J. Pei, Y. Yin, Mining frequent patterns without candidate
generation, in: ACM Sigmod Record, Vol. 29, ACM, 2000, pp. 1-12.

S. Pan, Y. Chong, Z. Xu, X. Tan, An enhanced active caching strategy for
data-intensive computations in distributed gis,]J. Supercomput. 73 (10)
(2017) 4324-4346.

http://refhub.elsevier.com/S0167-739X(21)00084-4/sb13
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb13
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb13
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb13
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb13
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb13
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb13
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb14
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb14
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb14
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb14
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb14
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb14
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb14
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb16
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb16
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb16
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb18
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb18
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb18
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb18
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb18
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb18
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb18
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb20
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb20
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb20
http://arxiv.org/abs/1903.06802
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb22
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb22
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb22
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb22
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb22
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb22
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb22
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb25
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb25
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb25
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb25
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb25
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb25
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb25
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb27
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb27
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb27
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb27
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb27
https://www.ligo.caltech.edu/mit/
https://www.ligo.caltech.edu/mit/
https://www.ligo.caltech.edu/mit/
https://www.skatelescope.org/the-ska-project/
https://www.skatelescope.org/the-ska-project/
https://www.skatelescope.org/the-ska-project/
https://facilitiesci.github.io/2019/
http://arxiv.org/abs/1709.09575
https://www.nsf.gov/cise/oac/vision/blueprint-2019/Overview-Computational.pdf
https://www.nsf.gov/cise/oac/vision/blueprint-2019/Overview-Computational.pdf
https://www.nsf.gov/cise/oac/vision/blueprint-2019/Overview-Computational.pdf
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb33
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb33
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb33
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb34
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb34
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb34
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb34
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb34
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb36
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb36
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb36
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb36
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb36
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb37
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb37
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb37
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb38
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb38
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb38
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb39
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb39
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb39
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb39
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb39
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb41
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb41
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb41
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb42
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb42
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb42
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb44
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb44
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb44
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb45
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb45
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb45
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb45
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb45
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb46
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb46
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb46
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb46
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb46
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb47
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb47
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb47
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb47
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb47
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb49
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb49
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb49
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb49
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb49
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb50
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb50
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb50
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb50
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb50
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb51
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb51
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb51
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb51
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb51
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb53
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb53
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb53
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb53
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb53
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb54
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb54
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb54
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb55
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb55
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb55
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb55
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb55
https://www.unavco.org/highlights/2018/award.html
https://oceanobservatories.org/
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb59
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb59
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb59
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb59
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb59
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb60
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb60
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb60
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb61
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb61
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb61
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb62
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb62
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb62
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb62
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb62

Y. Qin, I. Rodero, A. Simonet et al. Future Generation Computer Systems 122 (2021) 14-27

[63] R. Li, W. Feng, H. Wu, Q. Huang, A replication strategy for a distributed
high-speed caching system based on spatiotemporal access patterns of
geospatial data, Comput. Environ. Urban Syst. 61 (2017) 163-171.

[64] L. Xiong, L. Yang, Y. Tao, J. Xu, L. Zhao, Replication strategy for spatiotem-
poral data based on distributed caching system, Sensors 18 (1) (2018)
222.

[65] S.-M. Tseng, B. Nicolae, G. Bosilca, E. Jeannot, A. Chandramowlishwaran, F.
Cappello, Towards portable online prediction of network utilization using
mpi-level monitoring, in: European Conference on Parallel Processing,
Springer, 2019, pp. 47-60.

Charles Meertens is the director of Geodetic Data
Services at UNAVCO. His research interests are in the
broad area of geodesy, geophysics, hydrology, informat-
ics, and volcanology. He holds a Ph.D. and M.Sc. degree
from the University of Colorado Boulder and a B.A. from
the University of California, Santa Barbara.

Daniel Reiner is a software engineer technical lead at

. . UNAVCO. H ived his B.S. fi DeVry Uni ity.
Yubo Qin received his M.S. degree, Ph.D. degree from € recetved s rom Deviy Dniversity

the Rutgers University, and B.S. degree from the Uni-
versity of Electronic Science and Technology of China.
His current research focuses on addressing data dis-
covery and geo-distributed data sharing challenges on
earth science. He is a student member of IEEE and ACM.

James Riley is a software engineer, technical lead and
senior web administrator at UNAVCO. He specializes in
linked data, user-centered design, information systems
and information architecture. He received his B.S. from
Regis University.

Ivan Rodero is Associate Research Professor at the
Rutgers Discovery Informatics Institute at Rutgers Uni-
versity. His research focus on data-driven science and
engineering, parallel and distributed computing and
advanced cyberinfrastructure. He received his M.S. and
Ph.D. degrees from the Technical University of Catalo-
nia - Barcelona Tech. He has received various awards
for his research and publications, including the IEEE
TCSC Young Achievers in Scalable Computing Award.
He is senior member of IEEE and ACM, and member of
AAAS.

Manish Parashar is the Distinguished Professor of
Computer Science at Rutgers University and the found-
ing director of the Rutgers Discovery Informatics
Institute. He is currently on an IPA appointment at
the National Science Foundation (NSF), where he is
serving as office director for NSF Office of Advanced
Cyberinfrastructure. His research interests are in the
broad areas of parallel and distributed computing and
computational and data-enabled science and engineer-
ing. He has received a number of awards for his
research and leadership and is a Fellow of the AAAS,
IEEE, and IEEE Computer Society and an Association for Computing Machinery
Distinguished Scientist.

Anthony Simonet received a master’s degree from the
University of Bordeaux, and the Ph.D. degree from
the Ecole Normale Supérieure de Lyon, France, in
2015. He is a post-doctoral associate with the Rutgers
Discovery Informatics Institute (RDI2) at Rutgers Uni-
versity in New Jersey. His research spans over multiple
domains including distributed data management, mod-
els and middleware for hybrid distributed computing
infrastructures and energy.

27

http://refhub.elsevier.com/S0167-739X(21)00084-4/sb63
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb63
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb63
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb63
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb63
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb64
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb64
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb64
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb64
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb64
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb65
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb65
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb65
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb65
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb65
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb65
http://refhub.elsevier.com/S0167-739X(21)00084-4/sb65

	Leveraging user access patterns and advanced cyberinfrastructure to accelerate data delivery from shared-use scientific observatories
	Introduction
	Motivation and background
	Observatory data access challenge
	Cyberinfrastructure and science DMZs
	Proxy caching and pre-fetching

	A study of observatory data access and usage patterns
	Data transfer volume and network conditions
	Classification of users and requests
	A quantitative study of users and their data accesses
	Analysis of program requests
	Analysis of overlapping requests
	Analyzing correlations across requests

	Design of a push-based data delivery framework
	Design of the hybrid data pre-fetching model
	Representing user requests
	History-based prediction
	Association rule mining-based prediction

	Design of the data streaming mechanism
	Design of the cache layer
	Choice of the cache eviction policy
	Data placement strategy

	Overall operation of the framework

	Experimental evaluation
	Methodology and setup
	The simulator
	Evaluating the hybrid pre-fetching model
	Network conditions and request traffic variations
	Simulator configurations
	Evaluation metrics

	Experimental results
	Data delivery performance
	Analysis of the pre-fetching mechanism
	Evaluation of the data placement strategy
	Framework performance for different network condition and request traffic

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

