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A B S T R A C T   

Composition-dependent inter-diffusion coefficients are key parameters in many physical processes. Due to the 
under-determinedness of the governing diffusion equations, numerical methods either impose strict physical 
conditions on the samples or require a computationally onerous amount of data. To address such problems, we 
propose a novel inverse framework to recover the diffusion coefficients using a compressed sensing method, 
which in principle can be extended to alloy systems with arbitrary number of species. Comparing to conventional 
methods, the new approach does not impose any priori assumptions on the functional relationship between 
diffusion coefficients and concentrations, nor any preference on the locations of the samples, as long as it is in the 
diffused zone. It also requires much less data compared to least-squares approaches. Through a few numerical 
examples of ternary and quandary systems, we demonstrate the accuracy and robustness of the new method.   

1. Introduction 

The inter-diffusivity coefficient is the dominant parameter governing 
exchange of substances within various kinds of practical materials. 
Although it provides mesoscale insight to a wide range of material 
processes, reliable estimation of the inter-diffusivity coefficient is diffi
cult due to its dependence on the alloy composition and the shortage of 
experimental samples. 

A standard practice in computational material science is to numeri
cally determine the inter-diffusivity from the classical Fick’s second law 
[1]. This results in n coupled one-dimensional diffusion equations for an 
alloy system of n+1 species [2,3]: 

∂ci

∂t
= ∇

(
∑n

j=1
Dij∇cj

)

, i = 1,…, n, (1)  

where ci is the concentration of species i usually obtained from the 
diffusion coupling technique and Dij is the inter-diffusion coefficient 
relating the diffusion of species i to the concentration gradient of species 

j, which can depend on ci. With the (n + 1)-th species often selected as 
the solute, the inter-diffusivity matrix Dn×n consists of n2 unknown co
efficients and two distinct frameworks have since been proposed. 

The first approach is primarily based on Boltzmann-Matano analysis 
[4,5] and aims to solve a system of time-independent first-order linear 
equations. For a ternary system, the Kirkaldy-Matano method [3] gen
erates additional (n − 1) diffusion paths whose common intersection 
point leads to extra governing equations. Later studies [6,7] seek an 
averaged inter-diffusivity over a certain composition range along the 
diffusion paths. The pseudo-binary approach [8] was proposed so that 
only two elements are considered in the diffusion zone. In general, those 
methods are computationally efficient by numerically solving as system 
of first-order linear equations independent of time. But their applica
bility is limited by stringent experimental conditions, particularly in the 
complex diffusion process of a multi-component system [9,10]. 

The second approach employs numerical inverse methods and treats 
inter-diffusivities as functions of composition, such as in the form of 
polynomials [11]. In other words, the problem of determining the inter- 
diffusion coefficients becomes the problem of determining their 
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functional coefficients. With the help of an iterative numerical scheme, 
those coefficients are adjusted until solutions of the corresponding 
diffusion Eqs. (1) match the composition profile or inter-diffusion flux 
from experimental data within a pre-defined error criteria [11–16]. Such 
an approach can relax physical assumptions on the experimental sam
ples and has been used to determine inter-diffusivities of solid solution 
as well as IMCs in various alloy systems [17,18]. Although such 
approach often takesa prioriassumption on the order of its polynomial 
expression to avoid overfitting or unphysical higher-order terms, there is yet 
any study on how to select or eliminate the order of polynomials. 

In all, effectiveness of the aforementioned approaches are largely 
dependent on how under-determined the coupled diffusion Eqs. (1) are. 
The accuracy deteriorates quickly as more unknowns are introduced 
with additional components to the alloy system (n + 1 > 3), or as the 
complexity of the functional relationship between inter-diffusivity and 
species concentrations. To address such a challenge, we propose a novel 
hybrid mathematical framework to estimate the inter-diffusion co
efficients. We employ compressed sensing to solve an under-determined 
linear system for the inter-diffusivity coefficients that is prescribed by 
the Boltzmann-Matano equations. Details of the method is presented in 
section 2 and its computational efficiency, robustness and low experi
mental cost are demonstrated via a few examples of ternary and quan
dary systems in section 3. Finally, section 4 summarizes our conclusions. 

2. Method 

The classic Boltzmann-Matano method considers the inter-diffusivity 
coefficients as variables dependent on composite concentrations [5]. By 
denoting x0 as the contact interface location between two species and 
introducing a new variable, λ = (x − x0)/

̅̅
t

√
, the Boltzmann-Matano 

method first integrates Fick’s law of diffusion (1) and thus obtains a 
system of ordinary differential equations: 

1
2t

∫ ci

c− ∞
i or c+∞

i

(

x − x0

)

dci = −
∑n

j=1
Dij∇cj, i =,…, n. (2)  

Here c− ∞
i and c+∞

i are the terminal compositions of the two end mem
bers, respectively; the Matano plane x0 can be calculated as: 

x0 =
1

c+ − c−

∫ ∞

− ∞
x

∂c
∂x

dx. (3)  

Since the diffusion coefficients are considered dependent on the con
centrations Dij(c1,…,cn), the new Eq. (2) enables one to extract Dij from 
experimental data of the concentration-distance profile in metal alloys. 
The Boltzmann-Matano method also assumes that the alloys on both 
sides of the interface are semi-infinite or large enough, such that the 
species concentration at their extreme ends is unaffected by the transient 
for the entire duration of the experiment. Given that the system of or
dinary differential equations is generally easier to compute numerically 
than the original system of partial differential Eqs. (1), the Boltzmann- 
Matano method proves to be both accurate and convenient. Hence we 
take it as the basis of our inverse framework. 

In practice, experimental data are often difficult and expensive to 
obtain. The diffusion couple technique [19] together with electron 
probe micro-analysis (EPMA) is often used to obtain composition pro
files. For fabricating just one diffusion couple, one should first bond two 
blocks of materials together and hold at certain temperatures to activate 
inter-diffusion at the initial interface. The annealing procedure may last 
from hours to days, depending on the speed of forming an inter-diffusion 
zone wide enough for analysis. The surface of the sample should be well 
polished before being subjected to EPMA. Around 50–100 sample points 

are often selected in a line parallel to the direction of element diffusion 
within the inter-diffusion zone, and it requires several minutes for the 
equipment to detect the composition at each point. As a result, the 
experiment is time-consuming to conduct and its data is thus expensive. 

Meanwhile, as additional species are incorporated in the alloy and 
the functional order between inter-diffusivity and concentrations in
creases, more samples are needed to determine the diffusion matrix D. 
As a result, the relative shortage of experimental data leads to more 
unknowns than equations in the Boltzmann-Matano system (2), which 
becomes underdetermined and the diffusion coefficients cannot be 
uniquely determined. 

To address this problem and fully utilize the few, valuable experi
mental samples, we employ compressed sensing (CS) to recover the 
diffusion matrix. In contrast to conventional least-squares method based 
on the L2-norm minimization, modern compressed sensing approach 
seeks to solve an underdetermined linear system by seeking the solution 
with the smallest ℓ1 norm, as a convex, more computable relaxation of 
the smallest ℓ0 quasi-norm solution [20–22]. Over the years, a number 
of numerical implementations have been developed in the scientific 
community including l1-magic, SPGL1 and SeDuMi among others 
[23–25]. An interesting point about the theory of CS is that it generally 
requires random measurements. Not only is this assumption crucial to 
the derivation of many strong theoretical results, but also measurements 
at random locations seem to give better results in practice and are sought 
out in real applications [26]. 

In summary, we propose the following framework to compute the 
diffusion coefficients:  

1. Obtain a number of m experimental samples at locations (x1,…, xm) on 
the concentration-distance curve.  

2. Substitute the samples into the Boltzmann-Matano expressions (2) and 
rearrange the system in the form of J = C d. 

Here Jnm×1 is the vector representing the inter-diffusion fluxes at 
those sample locations, e.g. evaluations for the left-hand-side of 
Boltzmann-Matano expression (2); C nm×n2 is the value of concen
tration gradients (∇cj) at the sample locations; and dn2×1 is the 
(unknown) vectorial form of inter-diffusivities.  

3. Construct a functional relationship between inter-diffusivities and the 
species concentrations with k unknown functional coefficients.  

4. Substitute the functional relationship above into the system in Step (2). 
Now the diffusion vector dn2×1 is rewritten as the product of a 

diagonal matrix of n2 × k dimension and a vector ak×1 for the un
known functional coefficients: 

d =

⎡

⎣
ϕ 0 0
0 ⋱ 0
0 0 ϕ

⎤

⎦a. (4)  

The diagonal entry ϕ is the prescribed functional relationship be
tween diffusion coefficients and concentrations at Step (3). For 
example, if one chooses a 2nd-order polynomial form [11]: 

Dij = α(0)
ij +

∑n

k=1

(
α(k)

ij ck + α(n+k)
ij c2

k

)
. (5)  

Here the diagonal entry and the unknown vector a are: 

ϕ =
[

I c1I ⋯ cnI c2
1I ⋯ c2

nI
]
, (6)  

a = [ a1 a2 ⋯ ai ⋯ an ]
T
, (7)  

ai =
[

α(0)
1i α(0)

2i ⋯ α(0)
ni ⋯ α(n)

1i α(n)
2i ⋯ α(n)

ni

]T
, (8) 
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where In×n is the identity matrix and the superscript T represents 
matrix transpose.  

5. Recover the functional coefficients vector a using compressed sensing 
codes such as l1-magic and SPGL1.  

6. Recover the diffusion matrix D by substituting the computed coefficients 
back to the relationship in Step (3). 

It is noted here that the numerical efficiency of our method largely de
pends on the sparsity of the solution a. In addition, entries in the 
diffusion vector d are arranged by the rows and then columns from the 
diffusion matrix D, 

d = [D11 ⋯ Dn1 D12 ⋯ Dnn ]
T
. (9)  

Without loss of generality, our framework is applicable to arbitrary form 
of the diffusion-concentration relationship other than the polynomial 

form (5), as long as the solution vector is sufficiently sparse. i.e., the 
number of non-zero entries in a should be at most on the same order as 
the number of measurements. 

The error of the calculated inter-diffusivity mainly results from the 
deviation between computed and measured inter-diffusion flux J as well 
as concentration gradient in C . Thus we define the relative error of each 
inter-diffusivity as that in an earlier study [16]: 

ΔDij

D̃ij
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Ji − J̃i

J̃i

)2

+

(
∇cj − ∇̃cj

∇̃cj

)2
√
√
√
√ , i = 1,…, n; j = 1,…, n, (10)  

in which the superscript Ã represents a quantity A from the measure
ment data. 
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Fig. 1. Benchmark solutions and results from compressed sensing on: (a) inter-diffusion fluxes, (b) concentration profile, (c) & (d) diffusion coefficients and their 
relative error (10) with respect to composition (e) c1 and (f) c2, respectively, in the case of constant inter-diffusivities for ternary system. 
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3. Results and discussion 

In this section, we evaluate our method via a few numerical examples 
of ternary (n + 1 = 3) and quaternary (n + 1 = 4) systems. In each 
example, we assume the “true” values of the diffusion coefficients are 
known and the diffusion matrix is positive-definite [27]. The corre
sponding concentration-distance curve, computed using second-order 
finite difference spatial discretization and fourth-order Runge–Kutta 
temporal scheme in MATLAB®is considered the “benchmark” solution. 
As a result, data otherwise taken from experiment to extract the diffu
sion coefficients are now taken from arbitrary locations on those “true” 
solution curve, e.g. ci(x0), ci(x1) and etc. In total, the data implemented 
in Eq. (2) include the overall diffusion time t, the measured composition 
ci at the position of each analyzation point x, and the composition 
gradient ∇ci, which is the slope of composition profile for each position 
x. To facilitate presentation, all variables are dimensionless in the ex
amples and Δt denotes the time step. Without specification otherwise, 
our algorithm uses an unweighted l1 convex optimization problem with 
the l1-magic solver. Hence, for the standard “basis pursuit” problem (4), 
there are no tuning parameters or re/weighted ℓ1 minimization. Finally, 
practical discussions on amounts of experimental data, its quality, 
spatial selections and the usage of our CS framework are also included at 
the end of this section. 

3.1. Case1: Constant Inter-diffusivity for ternary system 

We validate our CS framework via a simple case of constant inter- 
diffusion coefficients for ternary systems (n = 2). Here the true inter- 
diffusivity matrix is set as: 

D =

[
1 0.1

0.15 2

]

(11)  

Using the benchmark numerical scheme, samples at two random loca
tions, [c1(xi),c2(xi)], (i = 1,2), are taken from the concentration-distance 
curve at t = 104Δt. Now we follow the general framework and substitute 
the samples into Boltzmann-Matano Eqs. (2): 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂c1

∂x
|x1

0
∂c2

∂x
|x1

0

0
∂c1

∂x
|x1

0
∂c2

∂x
|x1

∂c1

∂x
|x2

0
∂c2

∂x
|x2

0

0
∂c1

∂x
|x2

0
∂c2

∂x
|x2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

D11
D21
D12
D22

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

J1|x1
J2|x1
J1|x2
J2|x2

⎤

⎥
⎥
⎦. (12)  

By assuming a zeroth-order functional relationship between diffusion 
coefficients and species concentrations, e.g. Dij = α(0)

ij , we rewrite the 
expressions (4) as: 

d =

[
ϕ 0
0 ϕ

]
[

α(0)
11 α(0)

12 α(0)
21 α(0)

22

]T
, ϕ =

[

I
]

, (13)  

where the identity matrix I is of 2 × 2 dimension. 
Fig. 1 (a), (b), (c) & (d) plots the benchmark solutions and results 

from our inverse method on inter-diffusion fluxes, the concentration 
profile and the diffusion coefficients, respectively. As expected for such a 
simple case, compressed sensing provides excellent estimations. To 
demonstrate the robustness of our approach in the case of random 
samples, we took 100 pairs of samples at two arbitrary locations along 
the concentration-distance curve. Their ensemble average of error in 
terms of L2-norm in concentration profile is as low as 10− 5. For a closer 
look, we plot the relative error of the diffusion coefficients in Fig. 1 (e) & 
(f). It can be seen that results become less accurate near the terminal 
composition than at the interface. This is a common problem when 

studying composition-dependent inter-diffusivities with single diffusion 
coupling. The errors arise from the composition vector of the diffusion 
coupling lying nearly parallel to an eigenvector directions of the diffu
sivity matrix [28,29]. In other words, there are many more possible 
solutions that satisfy the terminal compositions. Although such ill-posed 
problem is quite trivial as terminal solutions are generally known, one 
can apply curve data from multiple couplings with different composition 
angles and describe the inter-diffusion coefficient with a single set of 
adjustable parameters, in order to get more reliable statistical estimation 
of inter-diffusivity [30]. 

3.2. Case2: second-order Inter-diffusivity for ternary system 

Now we consider the case in which the “true” diffusion coefficients 
are of second-order polynomials of concentrations in a ternary system: 

D =

[
1 − 0.1c1 − 0.1c2 + 0.1c2

1 0.1 − 0.1c1 + 0.1c2

0.15 + 0.15c1 + 0.15c2 2 − 0.2c2 − 0.2c1 + 0.1c2
2

]

, (14)  

Now we take samples at four random locations, [c1(xi), c2(xi)], (i = 1,…,

4), on the “true” concentration-distance curve at t = 8× 104Δt, ob
tained from the high-order numerical scheme. Substituting them into the 
Boltzmann-Matano Eqs. (2): 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂c1

∂x
|x1

0
∂c2

∂x
|x1

0

0
∂c1

∂x
|x1

0
∂c2

∂x
|x1

∂c1

∂x
|x2

0
∂c2

∂x
|x2

0

0
∂c1

∂x
|x2

0
∂c2

∂x
|x2

∂c1

∂x
|x3

0
∂c2

∂x
|x3

0

0
∂c1

∂x
|x3

0
∂c2

∂x
|x3

∂c1

∂x
|x4

0
∂c2

∂x
|x4

0

0
∂c1

∂x
|x4

0
∂c2

∂x
|x4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

D11
D21
D12
D22

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J1|x1
J2|x1
J1|x2
J2|x2
J1|x3
J2|x3
J1|x4
J2|x4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)  

We assume second-order polynomials for the functional relationship 
between diffusion coefficients and concentrations (5): 

⎡

⎢
⎢
⎣

D11
D21
D12
D22

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α(0)
11 + α(1)

11 c1 + α(2)
11 c2 + α(3)

11 c2
1 + α(4)

11 c2
2

α(0)
21 + α(1)

21 c1 + α(2)
21 c2 + α(3)

21 c2
1 + α(4)

21 c2
2

α(0)
12 + α(1)

12 c1 + α(2)
12 c2 + α(3)

12 c2
1 + α(4)

12 c2
2

α(0)
22 + α(1)

22 c1 + α(2)
22 c2 + α(3)

22 c2
1 + α(4)

22 c2
2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

[
ϕ 0
0 ϕ

][
a1
a2

]

(16)  

Consequently, the diagonal entry (6) and ai (8) become: 

ϕ =
[

I c1I c2I c2
1I c2

2I
]

=

[
1 0 c1 0 c2 0 c2

1 0 c2
2 0

0 1 0 c1 0 c2 0 c2
1 0 c2

2

]

, (17)  

ai =
[

α(0)
1i α(0)

2i α(1)
1i α(1)

2i α(2)
1i α(2)

2i α(3)
1i α(3)

2i α(4)
1i α(4)

2i

]T
, i= 1,2. (18)  

In Fig. 2, we compare the benchmark solutions against those from our 
inverse method via inter-diffusion fluxes, the concentration profile and 
the diffusion coefficients, respectively. Again, compressed sensing pro
vides excellent and robust estimations. Its ensemble average L2-form 
error of the concentration profile over 100 sets of four arbitrary samples 
remains low but rises to 10− 3. The relative error of the diffusion 
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Fig. 2. Benchmark solutions and results from compressed sensing on: (a) inter-diffusion fluxes, (b) concentration profile, (c) & (d) diffusion coefficients and their 
relative error (10) with respect to composition (e) c1 and (f) c2, respectively, in the case of 2nd-order inter-diffusivities for ternary system. 
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coefficients are shown in Fig. 2 (e) & (f). Except those near the terminal 
compositions, ∊ are within 5% in most parts of the curve. We note here 
that the larger error at the middle range of each composition is due to 
larger composition gradient relative to that in the terminal region. De
viations between the computed and pre-defined inter-diffusivity may 
lead to misfit in the composition profiles, which is harder to detect from 
the composition profile. However, such misfit is exacerbated in (10) 
where the concentration gradient ∇c is computed and its accuracy 
would in turn drop in tandem with the order of derivative. Although the 
nature of such an inverse problem prevents one in general from 
obtaining the exact expressions of inter-diffusivities, one particular so
lution with high sparsity can be computed using CS. 

3.3. Case3: first-order Inter-diffusivity for quandary system 

Lastly, we consider a quandary system (n + 1 = 4) whose “true” 
diffusion coefficients are of first-order polynomials of concentrations: 

D =

⎡

⎣
1 − 0.1c1 0.1 0.2

0.05 2 − 0.2c2 0.15
0.05 0.15 2 − 0.2c3

⎤

⎦, (19)  

The corresponding “true” concentration-distance curve can be then 
obtained using the high-order numerical scheme and samples at four 
random locations, [c1(xi), c2(xi), c3(xi)], (i = 1,…,4), are taken at t = 8×

104Δt. Now the BM analysis (2) at those locations can be written as: 
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(20)  

To recover the diffusion matrix (19), we assume a first-order relation
ship between the diffusion coefficients and concentrations, e.g., 

Dij = α(0)
ij + α(1)

ij c1 +α(2)
ij c2 +α(3)

ij c3. (21)  

Following the proposed framework, the diffusion vector d (4) is 
expressed as: 

d =

⎡

⎣
ϕ 0 0
0 ϕ 0
0 0 ϕ

⎤

⎦

⎡

⎣
a1
a2
a3

⎤

⎦, (22)  

with the diagonal entry (6) and ai (8) (i = 1,2,3): 

ϕ = [ I c1I c2I c3I ], (23)  

ai =
[

α(0)
1i α(0)

2i α(0)
3i α(1)

1i α(1)
2i α(1)

3i ⋯ α(3)
1i α(3)

2i α(3)
3i

]T
, (24)  

in which I is the 3 × 3 identity matrix. 
As shown in Fig. 3 (a) & (b), the compressed sensing provides good 

estimates of the inter-diffusion fluxes and concentration profiles. The 

ensemble average of L2-form error in the concentration profiles, over 
100 sets of four random samples, are in the range 10− 3 ∼ 10− 2. How
ever, the recovery of the diffusion coefficients deteriorates in Fig. 3 (c), 
(d), (e), (f), (g) & (h). Similar to their counterparts in case 1 and 2, the 
poor performances at terminals are caused by other possible solutions 
that satisfy the terminal compositions and may be amended by including 
multiple diffusion couplings. We also note the relative errors at the 
interface rise to around 20%. Such deviation is largely due to the 
simulation errors of the numerical scheme first used to generate the 
synthetic (measurement) data and then used to construct the 
composition-distance curve once the inter-diffusivity coefficients are 
determined via compressed sensing. Independent from the CS frame
work, those errors would decrease should one have employed high-order 
numerical schemes, such as the finite element method of local discon
tinuous Galerkin, and/or with a more refined grid. However, this is 
beyond the focus of the current study and will be addressed in future 
works. 

3.4. Discussions 

Compressed sensing method works well when there is fewer data 
than unknowns. As a rule of thumb, one may select the number of 

measurement points with a minimum of 13 n × size(a ) and a maximum of 

2
3 n× size(a ), in which a is the unknown vector of functional coefficients 

and n is the number of our coupled Boltzmann-Matano diffusion equa
tions. For example, in the ternary system, the minimum number of 
measurement points is 1,2 and 4 for a zeroth-, first- and second-order 
polynomial representation of inter-diffusivity, respectively. In the qua
ternary system, the corresponding minimum number becomes 1,4, 7 for 
the zeroth-, first- and second-order polynomial representations, 
respectively. These numbers are at least representative of, sometimes 
less than the amounts one may encounter in experiments. 

In addition to the time-consuming process of EPMA experiments, 
measurement data is prone to errors mainly from its analysis step. It is 
usually believed that the experimental uncertainty of EPMA is within 2% 
in a quantitative analyzation mode. In our numerical examples, such 
experimental errors are represented by those resulting from the nu
merical scheme used to obtain the synthetic data. For measurements of 
strength σ, the ℓ2 estimation error from compressed sensing can be 
summarized as [26]: 

|∊|ℓ2
= polylog

(
n
) s

m
σ2, (25)  

where n is the size of unknown vector, s represents the number of non- 
zero entries and m is the number of data entries. A more thorough study 
on the compressed sensing method using experimental data is beyond 
the scope of this study but would be addressed in future works. 

As shown in the examples, no definite answer is given on the exact 
locations of measurements c(x) on the composition-distance curve, as 
long as they are in the diffused zone. Hence the solution vector of inter- 
diffusion coefficients from compressed sensing is non-unique, an 
inherent nature of inverse problems. However, in the context of diffu
sion modeling, those solutions are “effective” as long as they provide 
good estimations on the composition-distance curve. 

It is also noted here that for our compressed sensing framework, 
sufficient conditions to ensure that the ℓ1-regularized system indeed has 
a well-defined solution are known [31]; practical sampling conditions to 
ensure this well-posed property often rely on randomized sampling [32], 
which is also why we utilize random sampling for this procedure. 

Lastly, the nature of compressed sensing is to obtain a solution (of 
coefficients) matrix as sparse as possible. In other words, it provides a 
mean to modify the “pre-selected” order of the polynomial expression of 
inter-diffusivity as a function of compositions, in order to approach the 
actual expression by eliminating the excessive coefficients. 
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Fig. 3. Benchmark solutions and results from compressed sensing on: (a) inter-diffusion fluxes, (b) concentration profile, (c), (d) & (e) diffusion coefficients and their 
relative error (10) with respect to composition (f) c1, (g) c2 and (h) c3, respectively, in the case of 1st -order inter-diffusivities for quandary system. 
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4. Conclusion 

In this paper, we propose a novel numerical method to estimate the 
inter-diffusivity coefficients. Using the Boltzmann-Matano equations as 
predictive tools, our inverse framework employs compressed sensing to 
extract the diffusion coefficients from a small number of samples on the 
composition-distance curves. Through three numerical examples, we 
come to the following conclusions: Our method provides excellent es
timations of the inter-diffusivity coefficients and good recovery of the 
composition-distance curve. It requires less data than the conventional 
methods based on a least-squares approach as long as the solution vector 
is sufficiently sparse. The user must provide a plausible ansatz for the 
functional relationship between the diffusion coefficients and concen
trations, but the new method does not impose any additional a priori 
physical or modeling assumptions about this functional relationship. Our 
procedure also does not impose any preference on the locations of the sam
ples, as long as they lie in the diffused zone, and the procedure is applicable to 
an arbitrary number of species. Finally, it provides a means to select and 
eliminate the order of the polynomial expression of inter-diffusivity as a 
function of compositions. 

However, the problem of recovering inter-diffusivity predictions 
from concentrations is an ill-posed inverse problem, and so many solu
tions exist. The proposed method can recover relationships whose 
functional structure can be sparsely represented in a user-prescribed 
basis; while this representation is not necessarily the “correct” rela
tionship, it does choose an “effective” relationship that correctly pre
dicts concentrations. The accuracy of our approach at the terminal 
compositions could be enhanced if concentration curve data from mul
tiple couplings with different composition angles are used, and the inter- 
diffusivity coefficients are described with a single set of adjustable pa
rameters. Lastly, physical constraints such as positivity of the inter- 
diffusion coefficients can be incorporated in future inverse frameworks. 
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