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Abstract We consider the Bayesian approach to the linear Gaussian inference problem of inferring
the initial condition of a linear dynamical system from noisy output measurements taken after
the initial time. In practical applications, the large dimension of the dynamical system state poses
a computational obstacle to computing the exact posterior distribution. Model reduction offers a
variety of computational tools that seek to reduce this computational burden. In particular, balanced
truncation is a system-theoretic approach to model reduction which obtains an efficient reduced-
dimension dynamical system by projecting the system operators onto state directions which trade off
the reachability and observability of state directions as expressed through the associated Gramians.
We introduce Gramian definitions relevant to the inference setting and propose a balanced truncation
approach based on these inference Gramians that yield a reduced dynamical system that can be
used to cheaply approximate the posterior mean and covariance. Our definitions exploit natural
connections between (i) the reachability Gramian and the prior covariance and (ii) the observability
Gramian and the Fisher information. The resulting reduced model then inherits stability properties
and error bounds from system theoretic considerations, and in some settings yields an optimal
posterior covariance approximation. Numerical demonstrations on two benchmark problems in model
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reduction show that our method can yield near-optimal posterior covariance approximations with
order-of-magnitude state dimension reduction.

Keywords Bayesian inference · Balanced truncation · Model reduction

1 Introduction

The task of updating computational models to take into account empirical observations — a task
that plays a central role in data assimilation — occurs in a diverse range of disciplines, including
geophysics, oceanography, and atmospheric sciences [12,27, 35,43]. Specific applications include sea
ice modeling [47, 58], geothermal reservoir model calibration [19, 20], and nitrogen concentration
of water bodies [24]. In the Bayesian inferential approach to data assimilation, model parameters
p ∈ Rd are related to observed data m ∈ Rdobs through a measurement model that combines a
forward map G : Rd → Rdobs with additive stochastic noise ε ∈ Rdobs :

m = G(p) + ε. (1.1)

Before observations are obtained, uncertainty about the model parameters is encoded in a prior
probability distribution for p. The probability distribution of the measurements conditioned on the
parameter, m|p, is called the likelihood. After observations are obtained, the Bayesian approach
computes an updated posterior distribution for p|m which reflects the uncertainty in the param-
eters conditioned on the measured data and is proportional to the product of the prior and the
likelihood of the data. Once the posterior distribution has been characterized, subsequent steps in
application may require computing and utilizing posterior statistics. In the linear Gaussian case, this
requires computing only a posterior mean and covariance, but for general non-Gaussian posteriors,
these statistics are approximated using sampling procedures [52] (e.g., rejection sampling [25,26,42]
or Markov chain Monte Carlo methods [4, 33, 39]). Modern overviews of inference techniques and
algorithms can be found in excellent survey articles [22,55] and textbooks [17,37,56].

In practical settings, several factors may pose computational challenges to the use of Bayesian in-
ference. First, the parameter dimension d is often large; e.g., when p represents the high-dimensional
spatial discretization of a continuous field. Second, it is common to be interested in parameter values,
p, at an initial time, with observations, m, taken after the initial time. In these settings, the forward
model may involve simulation of a high-dimensional dynamical system, making the characterization
of the posterior distribution computationally expensive.

To reduce this computational burden, one class of methods exploits the fact that in practice the
data are only informative in a low-dimensional subspace of Rd. We highlight the approach of [54]
for the linear Gaussian setting, which defines the posterior covariance as a negative semi-definite
update to the prior covariance. The work [54] shows that the optimal low-rank approximation to
this update lies in a subspace spanned by directions identified from dominant eigenvalue-eigenvector
pairs of a matrix pencil that encodes a trade-off between the prior uncertainty and the Fisher
information of the measurement model. This low-rank approximation performs well when dobs � d,
as is common in data assimilation problems for weather and climate [12, 35]. More broadly, this
approach is beneficial in cases where the eigenvalues of the matrix pencil exhibit rapid decay, which
can occur even if dobs > d: some examples are discussed in the introduction of [54]. Extensions
of the approach in [54] have been used to develop low rank approximation strategies for inverse
problems with nonlinear forward models [21], goal-oriented notions of optimality [53], and low-rank
tensor-based approaches to reducing computational complexity in time as well as state [9].

A complementary class of methods employs model reduction, which seeks to reduce the expense
of evaluating the forward model G. In projection-based model reduction, a high-dimensional linear
dynamical system is approximated by projecting the system operators onto a low-dimensional sub-
space, yielding an inexpensive low-dimensional dynamical system [2, 3, 8, 31]. One popular strategy
known as balanced truncation [40, 41] defines the projection subspace as the span of the dominant
eigenvectors of a matrix pencil that encodes a trade-off between states that the system can easily
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reach and states that contribute more to the system output. States are retained if they are both
highly observable and easily reachable; otherwise, they are discarded. The resulting reduced-order
dynamics evolve in a way that approximate the input-output map of the original large-order dy-
namical system with high fidelity, frequently with far smaller system order [7, 31,38,44].

1.1 Contributions of this article

This work considers the Bayesian inference setting where the parameter p to be inferred is the
initial state (at time t = 0) of a linear dynamical system, which is presumed to have a Gaussian
prior distribution. A linear observer views the evolving state at selected times t > 0 in the presence
of Gaussian measurement noise. The primary goal of this work is then to propose a new method
of model reduction for linear dynamical systems in this setting that exploits natural connections
between (i) the optimal posterior approximation strategy of [54] and (ii) the system-theoretic model
reduction method of balanced truncation. Our contributions are:

1. We define a notion of prior compatibility with system dynamics that allows the prior covariance
matrix to be interpreted as a reachability Gramian in the inference context.

2. We propose two strategies for choosing a compatible prior: (i) by subjecting the system to a
stochastic driving force at negative times to “spin up” the system state to a stationary distribu-
tion, and (ii) by modifying an incompatible prior to make it compatible. The spin-up strategy is
related to ideas from the work [46] which considers stochastic dynamical systems.

3. We define a noisy observability Gramian that modifies the usual system-theoretic observability
Gramian definition to account for additive noise in measurements.

4. We argue that the noisy observability Gramian is a natural continuous-time analogue of the Fisher
information matrix, and we introduce two observation processes under which the Fisher infor-
mation matrix recovers (in expectation/in the continuum limit) the noisy observability Gramian
up to a scaling constant.

5. We propose a model reduction approach for our inference setting that applies the method of
balanced truncation using a compatible prior covariance and the noisy observability Gramian,
which inherits system-theoretic stability and error guarantees.

6. We show that the proposed approach can recover the optimal posterior covariance approximation
of [54] in certain cases.

7. We demonstrate numerically that the proposed approach yields near-optimal approximations
when the noisy observability Gramian and Fisher information matrix define similar approxima-
tion subspaces, which occurs in our numerical experiments when measurements are closely spaced
over a long observation interval. Even when measurements are limited and the approximation
subspaces are not particularly close, the proposed approach yields approximations that achieve
order-of-magnitude system state dimension reduction with low, albeit sub-optimal, errors.

We note that [54] shows that the optimal low-rank posterior update coincides with an oblique
projection of the high-dimensional forward map G. Our contributions extend this result in two ways:
first, we show that the low-rank update is in fact immediately associated with a low-dimensional
reduced model for the linear dynamical system. This enables efficient evolution of the reduced dy-
namical system for low rank inference in settings where the mapG is only available implicitly through
a high-dimensional linear dynamical systems model. Second, we show that with certain observation
models, this reduced model has bounded error and inherits stability. We also note an earlier work [38]
developed a goal-oriented low-rank approach to classical and statistical inverse problems that was
also inspired by balanced truncation but departs from the dynamical system setting: the parameter
is inferred in a low-dimensional subspace defined by an ‘experiment observability Gramian’ and a
goal-oriented ‘prediction observability Gramian’. In contrast, we show that balanced truncation for
dynamical systems can be used to develop reduced dynamical systems with desirable properties.

Section 2 introduces our Bayesian inference problem for the initial condition of a linear dynamical
system, summarizes the balanced truncation approach to model reduction, and presents the low rank
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inference procedure via optimal posterior updates from [54]. Section 3 introduces our Gramian defini-
tions for the inference setting, proposes the balanced truncation posterior approximation approach
based on these Gramians, and proves results regarding the error, stability, and optimal posterior
covariance approximation of the resulting model. These theoretical results are based on specific rela-
tionships between system theoretic Gramians and matrices appearing in inference that are discussed
in detail in Section 4. Section 5 presents and discusses numerical demonstrations of the proposed
method on two benchmark problems. Section 6 summarizes our discussion and considers directions
for further investigation.

2 Setting and background

In this section, we introduce our notation (Section 2.1) and formulate the Bayesian inverse prob-
lem we consider for a high-dimensional linear dynamical system (Section 2.2). We summarize two
approaches to dimension reduction relevant in our setting: the system-theoretic approach to model
reduction of linear time-invariant systems (Section 2.3) and the low rank inference approach of [54]
(Section 2.4).

2.1 Notation

Vectors will be denoted by boldface lowercase letters, e.g., v, and matrices by boldface uppercase
letters, e.g., V . We will use ‖v‖ to denote the Euclidean (`2) norm, and ‖v‖2M = v>Mv for
symmetric positive (semi-)definite M to denote the squared weighted M -(semi)norm. For square
matrices A and B of the same size, A � B and A � B mean that A −B is positive definite and
positive semidefinite, respectively, with analogous meanings for ≺ and �. The positive integers d, din,
and dout denote the dimensions of state, input, and output vectors of our dynamical system. Random
vectors (i.e., vectors of random variables) will not be denoted differently from (deterministic) vectors,
but their properties will be noted when they are introduced. The expectation of a random vector x
is denoted as E[x] and the covariance of two random vectors x,y is denoted cov[x,y].

2.2 Problem formulation

We consider the following linear dynamical system:

dx

dt
= Ax, (2.1)

where x(t) ∈ Rd and A ∈ Rd×d. The initial state x(0) = p is unknown. Noisy measurements mi of
the system output are taken at times 0 < t1 < t2 < . . . < tn according to the following measurement
model:

mi ≡ Cx(ti) + εi = CeAtip+ εi, (2.2)

where C ∈ Rdout×d is the state-to-output operator and εi ∼ N (0,Γ ε) represents independently and
identically distributed additive Gaussian noise, with positive definite covariance Γ ε ∈ Rdout×dout .
In our analysis, we will consider both finite n and n = ∞ measurements, and we will allow the
observations times t = (t1, . . . , tn)> to be either deterministic or randomly distributed. Random
observation times are to be interpreted in the sense that they are uncertain at the beginning of the
observation process, but become known as measurements are taken. The random observation model
is introduced principally to facilitate discussion of the linkage between observability Gramians and
Fisher information in Section 4.2.3.
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Our task is to infer the unknown initial state x(0) = p from the noisy measurements in eq. (2.2).
We use a Bayesian statistical approach to do so; i.e., we take as given a Gaussian prior:

p ∼ N (0,Γpr) (2.3)

with prior covariance Γpr ∈ Rd×d. The Gaussian prior, combined with our linear Gaussian measure-
ment model (eq. (2.2)), yields the following Gaussian likelihood conditioned on the measurement
times:

m | (p, t) ∼ N (Gp,Γobs), (2.4)

where m ∈ Rndout , G ∈ Rndout×d, and Γobs ∈ Rndout×ndout are given as follows:

m ≡

m1

...
mn

 , G ≡

CeAt1

...
CeAtn

 , Γobs ≡


Γ ε

Γ ε
. . .

Γ ε

 . (2.5)

The Bayesian posterior distribution (conditioned on the measurement times) for such a prior and
likelihood is again Gaussian:

p | (m, t) ∼ N (µpos,Γpos), (2.6)

where

µpos = ΓposG
>Γ−1obsm, Γpos =

(
H + Γ−1pr

)−1
, (2.7)

where H ∈ Rd×d denotes the Fisher information matrix of m with respect to the parameter x0:

H ≡ G>Γ−1obsG =

n∑
i=1

G>i Γ
−1
ε Gi =

n∑
i=1

eA
>tiC>Γ−1ε CeAti . (2.8)

In practical settings, the high state dimension d can pose challenges to the computation of the
conditional posterior statistics (2.7), especially when G is available only implicitly through a com-
putationally expensive model that evolves the high-dimensional dynamical system (2.1). Our pro-
cedure addresses this challenge by providing a computationally efficient strategy for emulating the
dynamical system through model reduction.

2.3 System-theoretic model reduction via balanced truncation

Balanced truncation [40,41] is a system-theoretic method for projection-based model reduction that
yields a cheaply evaluated low-dimensional reduced model whose input-output map approximates
that of the original high-dimensional system. Section 2.3.1 describes the system theory setting and
Section 2.3.2 presents the balanced truncation method.
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2.3.1 System theory background

The usual setting in which balanced truncation is considered involves a linear time-invariant (LTI)
system given by

dx

dt
= Ax+Bu(t) (2.9a)

y = Cx (2.9b)

where u(t) is a din-dimensional input which drives the system filtered through the input port,
B ∈ Rd×din , and C ∈ Rdout×d describes the dout-dimensional observer output, y(t). This system-
theoretic setting differs from our inference setting in eq. (2.1) through the presence of an input u(t)
and the lack of noise in the output y(t) (compared to the measurements mi defined in eq. (2.2)).

We assume that the system (2.9) is stable, i.e., the eigenvalues of A lie in the open left half-plane.
The stable system (2.9) has infinite reachability Gramian P∞ ∈ Rd×d and observability Gramian
Qy ∈ Rd×d, given by

P∞ ≡
∫ ∞
0

eAtBB>eA
>t dt, Qy ≡

∫ ∞
0

eA
>tC>CeAt dt. (2.10)

We use subscripts ·∞ and ·y to denote the specific Gramians defined in (2.10), contrasting with
generic reachability and observability Gramians, P and Q, which could be defined either as above
or in other ways. Note in particular that Qy denotes an observability Gramian tied to the LTI
output y (2.9), whereas we will later introduce a Gramian Qm for noisy measurements m (2.2).
The Gramians P∞,Qy are unique solutions to the dual Lyapunov equations

AP∞ + P∞A
> = −BB>, A>Qy +QyA = −C>C. (2.11)

These infinite-horizon Gramians for the dynamical system (2.9) are associated with a reachability
energy and an observability energy, defined as quadratic forms with respect to a state x̂ ∈ Rd,
respectively, as

‖x̂‖2
P−1
∞
≡ x̂>P−1∞ x̂, ‖x̂‖2Qy ≡ x̂

>Qyx̂. (2.12)

The reachability energy ‖x̂‖2
P−1
∞

is the minimum L2-norm
∫∞
0
‖u(t)‖2 dt of a control input, u(t),

required to steer the system from the origin (x(0) = 0) to x̂, potentially over an infinite time horizon.
Similarly, observability energy ‖x̂‖2Qy is the L2-norm

∫∞
0
‖y(t)‖2 dt of the (noise-free) output signal

over an infinite time horizon generated by the free evolution of the system initialized at x(0) = x̂ with
null input, u(t) = 0. While the Gramian definitions in eq. (2.10) are perhaps the most commonly
used, finite-horizon and discretized/approximate Gramian definitions are also sometimes employed,
the latter especially for large-scale problems where solving eq. (2.11) is computationally intractable.
For details, see, e.g., [2, 6, 10,31].

A system is reachable if P∞ is positive definite (denoted as P∞ � 0) and a system is observable
if Qy � 0. The system is minimal if it is both reachable and observable. In all that follows, we
assume that the system is minimal.

2.3.2 Balanced truncation

In projection-based model reduction, a reduced model is obtained by projecting the system operators
onto low-dimensional subspaces. In balanced truncation, these subspaces are determined by the
dominant eigenvectors of the matrix pencil (Q,P−1), i.e., the vi associated with the dominant
eigenvalues, δ2i , satisfying

Qvi = δ2i P
−1 vi, (2.13)
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where P is a reachability Gramian and Q is an observability Gramian: the standard balanced
truncation approach takes P = P∞ and Q = Qy, but we will in Section 3 introduce approaches

that use different Gramians. The scalars {δi}di=1 with δ1 > δ2 > · · · > δd are called the Hankel
singular values and are the nonzero singular values of the underlying Hankel operator. We assume
that the Hankel singular values are distinct to simplify the presentation. The dominant eigenvectors,
vi, maximize the following Rayleigh quotient:

v>Qv

v>P−1v
=

(
‖v‖Q
‖v‖P−1

)2

. (2.14)

Thus, directions retained by balanced truncation will be simultaneously easy to reach (low reacha-
bility energy) and easy to observe (high observability energy), or will realize some trade-off between
these two desirable properties.

The balanced truncation procedure has the following explicit algebraic formulation. Suppose P =
RR> andQ = LL> (e.g., through a Cholesky factorization), and letU∆Z> = L>R be the singular
value decomposition of L>R. Then ∆ contains the Hankel singular values, ∆ = diag (δ1, . . . , δd) .

Define T = RZ∆−
1
2 ∈ Rd×d and note that T is invertible with T−1 = ∆−

1
2U>L>. The ordered

generalized eigenvectors, vi, of (Q,P−1) are the columns of V = RZ, and through a renormalization

by ∆−
1
2 become the columns of T .

T is a balancing transformation, meaning that in the transformed coordinates x̃ = T−1x the
reachability and observability Gramians are equal diagonal matrices. The transformed LTI system
is given by,

dx̃

dt
= Ãx̃+ B̃u(t) (2.15a)

ỹ = C̃x̃, (2.15b)

with

T x̃ = x, Ã = T−1AT , B̃ = T−1B, C̃ = CT ,

and the system (2.15) is called (principal-axis) balanced because its reachability and observability

Gramians P̃ and Q̃ are equal and diagonal, satisfying

T−1PT−> = P̃ = Σ = Q̃ = T>QT . (2.16)

Order-r balanced truncation obtains a reduced dynamical system by transforming to the balancing
coordinates x̃ and truncating to the leading r components of this balanced state. Denote by U r,Zr ∈
R
d×r the leading r columns of U ,Z, respectively, and let ∆r denote the upper-left r × r block of

∆. Then, let T r denote the leading r columns of T and let S>r denote the leading r rows of T−1,
i.e.,

T r = RZr∆
− 1

2
r ∈ Rd×r, S>r = ∆

− 1
2

r U>r L
> ∈ Rr×d. (2.17)

Note that S>r T r = Ir. Then, the order-r balanced truncation approximation of (2.9) is a Petrov-
Galerkin approximation given by restricting the state to lie in range(T r), and by enforcing (2.9) on
range(Sr)

⊥. This results in the reduced-order approximation of eq. (2.9),

dxr
dt

= Arxr +Bru(t), (2.18a)

yr = Crx, (2.18b)

where Ar = S>r AT r ∈ Rr×r, Br = S>r B ∈ Rr×din , Cr = CT r ∈ Rdout×r, and T rxr ≈ x.
Balanced truncation provides guaranteed stability and a priori L2-error bounds on the approxi-

mation error expressed in terms of the Hankel singular values in (2.13):
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Lemma 2.1 (Thm. 7.9 of [2]) Consider the system (2.9) with output y and reachability and
observability Gramians P∞ and Qy defined in (2.10). If the original system (2.9) is stable, then the
reduced model (2.18) is both stable and balanced: the infinite-horizon reachability and observability
Gramians of the reduced state, xr, are diagonal and equal, and given by

P r ≡
∫ ∞
0

eArtBrB
>
r e
A>r tdt =

∫ ∞
0

eA
>
r tC>r Cre

Artdt ≡ Qyr
= diag (δ1, . . . , δr) ∈ Rr×r. (2.19)

Furthermore, if x(0) = 0, then the output yr of eq. (2.18) commits an error bounded by twice the
sum of the truncated Hankel singular values:

‖y − yr‖L2(R) ≤

2

d∑
j=r+1

δj

 ‖u‖L2(R) . (2.20)

2.4 Low rank inference via optimal posterior covariance approximation

We now summarize the main results of [54] for dimension reduction of the linear Gaussian Bayesian
inverse problem by optimal approximation of the posterior covariance and mean. This approach is
applicable even when G does not entail the evolution of a dynamical system, and thus complements
the model reduction approach of Section 2.3.

Let (τ2i ,wi) denote the ordered generalized eigenpairs of the pencil (H,Γ−1pr ), i.e.,

Hwi = τ2i Γ
−1
pr wi, (2.21)

with w>i Γ
−1
pr wj = δi,j , where δi,j denotes the Kronecker delta, and τ1 ≥ τ2 ≥ · · · ≥ τd. Then, note

that the posterior covariance, Γpos, satisfies

Γpos = (Γ−1pr +H)−1 = Γpr −
d∑
i=1

τ2i
1 + τ2i

wiw
>
i . (2.22)

When there are only a few non-zero eigenvalues, τ2i (e.g., when dobs � d), or when τ2i decays rapidly
with i, the sum in (2.22) can be well-approximated by a low-rank symmetric positive semidefinite
matrix. The work in [54] thus considers the optimal approximation of Γpos within the following class
of rank-r negative semidefinite updates to Γpr:

Mr :=
{

M ∈ Rd×d
∣∣ M = Γpr −KK> � 0 with rank(K) ≤ r

}
. (2.23)

The distance between the true posterior covariance and an approximation within Mr is measured
by the Förstner metric [28] between symmetric positive semidefinite matrices A,B ∈ Rd×d:

dF (A,B) =

d∑
i=1

ln2(σi), (2.24)

where σi are the eigenvalues of the pencil (A,B). The Förstner distance is invariant to similarity
transformation, and dF (A,B) = dF (A−1,B−1). The Förstner distance is widely used in statistics,
being the natural Riemannian metric on the manifold of positive-definite (e.g., full-rank covariance)
matrices [14, Section 6.1] that can be generalized with appropriate modifications to rank-deficient
manifolds of semi-definite matrices [15].

The Förstner-optimal approximation Γ̂pos to Γpos within the class of rank-r updates Mr,

Γ̂pos = arg min
M∈Mr

dF (Γpos,M) (2.25)



Model Reduction of Linear Dynamical Systems via Balancing for Bayesian Inference 9

is then given by [54]:

Γ̂pos = Γpr −K∗K>∗ where K∗K
>
∗ =

r∑
i=1

τ2i
1 + τ2i

wiw
>
i , (2.26)

with optimal Förstner distance

dF

(
Γpos, Γ̂pos

)
= min
M∈Mr

dF (Γpos,M) =

d∑
i=r+1

ln2

(
1

1 + τ2i

)
. (2.27)

An alternative analysis in [54] allows one to associate the optimal approximation (2.26) with the
posterior covariance of a projected forward map. Note that the pairs ( 1

1+τ2
i
, w̃i) with w̃i = Γ−1pr wi

are the generalized eigenpairs of the pencil (Γpos,Γpr). Let Πr =
∑r
i=1 w̃iw

>
i denote the oblique

spectral projector for Γ−1pr Γpos onto span{w̃1, w̃2, . . . , w̃r}. Then, let

Ĝ = GΠ>r , Ĥ = Ĝ
>
Γ−1obsĜ, (2.28)

denote the projected forward map and projected Fisher information, respectively. Then, the optimal
posterior covariance approximation (2.26) can be equivalently expressed as

Γ̂pos = (Γ−1pr + Ĥ)−1. (2.29)

The work in [54] further considers optimal approximation to the posterior mean µpos in two
different classes of mean approximations: a class of low-rank (LR) mean approximations given by

VLR
r := {v = Nm |N ∈ Rd×ndout , rank(N) ≤ r} (2.30)

and a class of mean approximations given by low-rank update (LRU) approximations to the posterior
covariance:

VLRU
r := {v = (Γpr −N)G>Γ−1obsm |N ∈ R

d×d, rank(N) ≤ r}. (2.31)

Within VLR
r , the class of low-rank mean approximations (2.30), the following mean approximation

is optimal in the sense that it minimizes the ‖ · ‖Γ−1
pos

-norm error averaged over the joint distribution

of the initial condition (with marginal given by the prior) and the data (e.g., Bayes risk):

µ̂LR
pos =

r∑
i=1

τi
1 + τ2i

wiw̃
>
i = Γ̂posĜ

>
Γ−1obsm. (2.32)

Within VLRU
r , the class of low-rank update mean approximations (2.31), the optimal mean approx-

imation in the ‖ · ‖Γ−1
pos

-norm Bayes risk is given by [54]:

µ̂LRU
pos = Γ̂posG

>Γ−1obsm. (2.33)

Note that in a dynamical systems setting, computation of the posterior approximations Γ̂pos, µ̂
LR
pos,

and µ̂LRU
pos requires evolving the full high-dimensional dynamics ofG and then projecting the result to

obtain Ĝ. In the next section, we propose a model reduction approach that yields a low-dimensional
dynamical systems model by combining elements from this posterior covariance approximation ap-
proach and from balanced truncation.
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3 Balanced truncation for Bayesian inference

We now explore the application of the balanced truncation procedure of Section 2.3 to obtain a
reduced model for the linear dynamical system (2.1) in an effort to reduce computational cost in
our Bayesian inverse problem. To do this, we first negotiate two technical hurdles which frustrate
a direct connection: the dynamical system (2.1) lacks an input and thus a notion of reachability,
and the standard infinite-horizon observability Gramian Qy accounts for neither the additive mea-
surement noise nor the specific observation times of the measurement model (2.2). To reconcile
these discrepancies with the inference problem, we introduce suitably modified Gramian definitions
in Section 3.1. In Section 3.2, we then present two variations of our proposed balanced truncation
approach to Bayesian inference. In Section 3.3, we establish conditions under which one variation
of our proposed method will approximately recover the optimal approximation qualities of the low
rank inference procedure established in [54], with a faster computation of the forward maps via
a stable and balanced reduced approximation of the dynamical system. The second variation we
present may appear more natural, though it does not inherit the stability guarantees of a proper
balanced truncation. Both variations will be explored in numerical examples in Section 5.

3.1 Inference Gramians

We begin by introducing a definition of prior-compatibility which allows the prior covariance, Γpr,
to be interpreted as a reachability Gramian of a forced system related to (2.1).

Definition 3.1 The prior covariance, Γpr, will be said to be prior-compatible with state dynamics

induced by A if AΓpr + ΓprA
> is negative semidefinite.

If a prior covariance Γpr satisfies Definition 3.1, then there exists some B ∈ Rd×din with din =

rank(AΓpr +ΓprA
>) such that the Lyapunov equation (2.11) AΓpr +ΓprA

> = −BB> is satisfied.
Thus, the prior-compatibility with state dynamics means that the prior covariance matrix Γpr is
the reachability Gramian of an LTI system with dynamics specified by A and an input port matrix
B. It is not generally necessary to identify a particular port matrix, B, for Definition 3.1 to hold,
although in some applications B may be naturally provided (for example if the end goal of the
inference problem is to determine a control input). Discussions of how a compatible prior might be
either naturally defined or obtained by modifying a non-compatible prior are provided in Section 4.1.

We make use of a modified observability Gramian that is motivated by the noisy measurement
model for m. Recall that the standard observability Gramian Qy defines an energy that is the
squared L2-norm of the output signal y(t). In our inference context, where the measurement at time
ti, mi, is an output polluted by measurement noise εi ∼ N (0,Γ ε), we quantify the discernability of
the signal from the noise by the Mahalanobis distance from the equilibrium state 0 to the conditional
distribution N (CeAtip,Γ ε) of mi|(p, ti):

D
(
0,N (CeAtip,Γ ε)

)
:=
∥∥CeAtip

∥∥
Γ−1
ε
. (3.1)

One way to understand why this is a natural way to measure the distance between a distribution
(the signal with observation noise) and a point (the stable equilibrium) is to note that for the case
of a Gaussian distribution, neighborhoods of the mean of the distribution defined by the Maha-
lanobis distance contain the most probability relative to any other set with the same Lebesgue
measure (Appendix B). This motivates our definition of a modified observability Gramian for noisy
measurements.

Definition 3.2 The noisy observability Gramian Qm ∈ Rd×d is given by

Qm ≡
∫ ∞
0

eA
>tC>Γ−1ε CeAt dt. (3.2)
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Thus, Qm defines an energy based on integrating over all positive time the squared Mahalanobis
distance between the equilibrium and the noise-polluted outputs. Note that the Fisher information
matrix H (2.8) can be viewed as defining an analogous energy based on summing over discrete
measurement times. This analogy motivates an approximation of H in terms of Qm discussed in
subsequent sections.

3.2 Method

We propose a model reduction approach for the inference problem defined in Section 2.2 that applies
the balanced truncation procedure of Section 2.3 by taking first a compatible prior covariance, Γpr,
and then using as inference Gramians P = Γpr and Q = Qm. This leads to the following reduced-
order model for the linear dynamics (2.1):

dxr
dt

= Arxr, xr(0) = S>r p, (3.3)

whereAr = S>r AT r, and the following reduced-order approximation to the measurement model (2.2):

mi ≈ Crxr(ti) + εi, (3.4)

where Cr = CT r, and εi ∼ N (0,Γ ε) as before. The reduced dynamics (3.3) and measurement
model (3.4) define a reduced forward map from the reduced state to the noise-free output:

GBT ≡

Cre
Art1S>r

...

Cre
ArtnS>r

 =

Cre
Art1

...
Cre

Artn

S>r ∈ Rndout×d. (3.5)

We then define a corresponding reduced-order approximate Fisher information matrix,

HBT ≡ G>BTΓ
−1
obsGBT = Sr

(
n∑
i=1

eA
>
r tiC>r Γ

−1
ε Cre

Arti

)
S>r , (3.6)

and associated posterior mean and covariance approximations:

µpos,BT = Γpos,BTG
>
BTΓ

−1
obsm, Γpos,BT =

(
HBT + Γ−1pr

)−1
. (3.7)

As previously discussed at the end of Section 3.1, the noisy observability Gramian Qm can be viewed
as a continuous-time analogue of H. This suggests a variation of the proposed method that uses
the inference Gramians P = Γpr and Q = H to define the balanced truncation. We label the two
variations of our proposed method as follows:

1. BT-Q, which uses the inference Gramians (P ,Q) = (Γpr,Qm) in order to define the posterior
approximations in (3.7), and

2. BT-H, which uses the inference Gramians (P ,Q) = (Γpr,H) in order to define the posterior
approximations in (3.7).

While the BT-H approach may seem to be a more natural choice for our inference setting, we will
show in Section 3.3 that the BT-Q approach inherits desirable properties from standard system-
theoretic balanced truncation that the BT-H approach generally does not enjoy.
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3.3 Properties

We note that while the principal goal of the balanced truncation approach in the present work is
to provide a reduced model approximation to posterior quantities, the proposed BT-Q approach
inherits guarantees from the system-theoretic LTI setting, as described in our first result.

Lemma 3.1 Suppose Γpr is prior-compatible with the state dynamics (2.1) as defined in Defini-
tion 3.1. Then, there exists a B ∈ Rd×din so that Γpr and Qm are the infinite reachability and
observability Gramians of the following LTI system:

dx

dt
= Ax+Bu(t), ȳ(t) = C̄x(t), (3.8)

where C̄ = Γ
− 1

2

obsC.
Additionally, the balanced reduced LTI system (2.18) based on the inference Gramians Γpr and

Qm is balanced, stable, and satisfies the following Hankel singular value tail bound: if x(0) = 0, then

‖C̄x(t)− C̄rxr(t)‖L2(R) ≤

2

d∑
j=r+1

δj

 ‖u‖L2(R), (3.9)

where δj are the Hankel singular values associated with the inference Gramians Γpr and Qm.

Proof The first part of Lemma 3.1 follows immediately from the compatibility condition in Defi-
nition 3.1 and from replacing C with C̄ in eq. (2.10). The second part then follows from direct
application of Lemma 2.1 to (3.8). �

Corollary 3.1 The proposed balanced truncation reduced model (3.3) for the inference dynamical
system (2.1) is stable.

Corollary 3.1 has practical significance for the proposed BT-Q approach of Section 3.2, be-
cause computing the approximate posterior quantities requires evolving the reduced dynamics given
by (2.1): Corollary 3.1 guarantees that these reduced dynamics preserve the stability of the full dy-
namics. On the other hand, while the error and balancing guarantees of Lemma 3.1 for LTI systems
are not directly applicable to the inference setting we consider here, they may serve as the basis for
future extension to inference problems with control inputs.

We now turn our attention to the quality of the proposed posterior covariance approxima-
tion eq. (3.7): again, we focus on the BT-Q approach. The BT-Q posterior covariance approximation
must tautologically be suboptimal relative to the optimal approximation scheme of [54] discussed
in Section 2.4. A natural question is: when does covariance approximation approach optimality? In
comparing the covariance approximations (3.7) and (2.29), it is clear that as r → d, both HBT →H

and Ĥ →H; i.e., both the balanced truncation Fisher information approximation and the projected
Fisher information of [54] converge to the true Fisher information and thus the two posterior covari-
ance approximations both converge to the full posterior covariance. However, since our goal is a low
rank approximation with r � d, we would like some sense of when we can expect HBT to be close

to Ĥ for general r.

For HBT resulting from the BT-Q approach, approximate agreement with Ĥ requires that the
dominant r generalized eigenvectors of the pencil (H,Γ−1pr ) be close to the dominant r generalized

eigenvectors of the pencil (Qm,Γ
−1
pr ). This would follow when the Fisher information H (2.8) is

approximately proportional to the noisy observability Gramian Qm in Definition 3.2, that is Qm ≈
hH for a scaling factor h. This would seem to apply to situations in which the observations are of
sufficient frequency and duration for the discrete sum in H to provide, up to normalization, a good
approximation to the integral in Qm. In Section 4.2, we formalize this idea and identify the scaling
factor h as the (average) inter-observation interval and establish two limits of observation protocols
under which we can obtain Qm as a rescaled limit of H.
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Even when the spectral projections based on H and Qm are close, there remains a difference

between Ĥ and HBT because the former involves the evolution of the full dynamics represented by
matrix A, whereas the proposed balanced truncation approximations require only the evolution of a
computationally inexpensive reduced system Ar. Remarkably, we can formulate a relation between
the balanced truncation approximation to the Fisher information and the optimal low rank inference

approximation Ĥ without a further assumption about the size of r.
To express this connection precisely, we consider the following noisy observability Gramian for

the balanced truncation approximation:

QBT
m ≡ Sr

(∫ ∞
0

eA
>
r tC>r Γ

−1
ε Cre

Art dt

)
S>r ∈ Rd×d. (3.10)

The quantityQBT
m can be viewed as a continuous-time analogue ofHBT: it lifts the reduced Gramian

for the reduced state xr ∈ Rr to the full state x ∈ Rd via the map Sr. Thus if the sum in H well-
approximates the integral in Qm, i.e., hH ≈ Qm, we would also expect hHBT ≈ QBT

m because
HBT and QBT

m have the same sum-to-integral relation as H and Qm, differing only in the use of
reduced operators Cr and Ar vs. full operators C and A.

Proposition 3.1 Let (τ2i ,wi) and (δ2i ,vi), respectively, denote the ordered generalized eigenpairs of
the pencil (H,Γ−1pr ) and (Qm,Γ

−1
pr ), respectively, with normalization w>i Γ

−1
pr wi = 1 and v>i Γ

−1
pr vi =

1. Then, if the r dominant eigenpairs match up to a scaling constant h > 0, i.e., if

δ2i = h τ2i , wi = vi, ∀i ≤ r, (3.11)

then QBT
m = h Ĥ.

Proof The integral in eq. (3.10) is the noisy observability Gramian of the balanced truncation reduced
system and thus, by Lemma 3.1 it is balanced, i.e.,∫ ∞

0

eA
>
r tC>r Γ

−1
ε Cre

Art dt = diag{δ1, δ2, . . . , δr} ≡∆r. (3.12)

Define V r = [v1,v2, . . . ,vr] and note from its definition in (2.17) that S>r = ∆
1
2
r V
>
r Γ
−1
pr . Thus,

eq. (3.10) is equivalent to

QBT
m = Γ−1pr V r∆

2
rV
>
r Γ
−1
pr .

Similarly defining W r = [w1,w2, . . . ,wr], we have from (2.28),

Ĥ = Γ−1pr W rΣ
2
rW

>
r Γ
−1
pr

with Σr = diag{τ1, τ2, . . . , τr}. Under the assumption (3.11), this gives us QBT
m = hĤ. �

Proposition 3.1 provides us with a bridge between HBT and Ĥ for any r, including r � d. It
suggests the following argument: as noted above, when Qm ≈ hH, generally QBT

m ≈ hHBT will

also be true, and Proposition 3.1 would imply QBT
m ≈ hĤ, so that HBT ≈ Ĥ. That is, when Qm

and H are approximately proportional, the BT-Q posterior covariance approximation converges
to the optimal one without further assumption on r. Rigorizing such an argument would require
a formulation of Proposition 3.1 with approximate rather than precise equalities of the dominant
eigenpairs. Rather than pursuing this cumbersome exercise, we instead support this argument by
numerical experiments in Section 5. We confirm that in observation scenarios where the Fisher
information matrix H and noisy observability Gramian Qm are approximately proportional, the
BT-Q approach leads to near-optimal posterior covariance approximations.

The preceding discussion provides intuition for what types of measurement models will lead to
posterior covariance approximations that are close to the optimal low-rank approach of [54]. Our



14 Qian, Tabeart, Beattie, Gugercin, Jiang, Kramer, Narayan

analysis and discussion do not address the quality of the posterior mean approximation in (3.7):
while the balanced truncation mean approximation does belong to the class of low rank mean
approximations (2.30) considered in [54], the balanced truncation mean approximation differs in
the use of the balanced truncation adjoint approximation vs. the projected full adjoint used in the
optimal low-rank mean (2.32) of [54]. Numerical experiments in Section 5 compare empirically the
balanced truncation means with the optimal means of [54]. We emphasize that in the dynamical
system setting, both optimal approximations of [54] require the evolution of the full dynamics,
whereas the proposed balanced truncation approximation approach requires only the evolution of a
computationally inexpensive reduced system.

Until now we have focused on properties of the BT-Q approach, and the result of Proposition 3.1
relies on the assumption (3.11) that the dominant eigenspaces of Qm and H match, and that the
associated eigenvalues match up to a constant scale factor. Comparable guarantees for the BT-H
approach, which involves replacing Qm with H in the balanced truncation approximation, appear
unlikely for general choices of Fisher information matrix, since they cannot generally be interpreted
as infinite-horizon observability Gramians for any minimal LTI system, and so Lemma 2.1 does not
directly apply. However, when the dominant generalized eigenvectors of the pencils (H,Γ−1pr ) and

(Qm,Γ
−1
pr ) coincide, then the BT-H and BT-Q reduced models will be equivalent, as stated in our

next result (note that no conditions are imposed on the generalized eigenvalues here).

Proposition 3.2 Let (τ2i ,wi) and (δ2i ,vi), respectively, denote the ordered generalized eigenpairs of
the pencil (H,Γ−1pr ) and (Qm,Γ

−1
pr ), respectively, with normalization w>i Γ

−1
pr wi = 1 and v>i Γ

−1
pr vi =

1. Then, if the r dominant eigenvectors match, i.e., if wi = vi, for all i ≤ r, then the reduced model,
Ar = S>r AT r, Br = S>r B, Cr = CT r, produced using the state space projection T rS

>
r defined

by the pencil (H,Γ−1pr ), replicates (up to a diagonal scaling of basis) the reduced model produced by

standard balanced truncation using the pencil (Qm,Γ
−1
pr ).

Proof Suppose the truncation order is r, and let the columns of Vr = [v1,v2, ...,vr] collect the
dominant generalized eigenvectors of the pencil (Qm,Γ

−1
pr ) which are presumed to be shared with

the pencil (H,Γ−1pr ). Taking ∆r = diag{δ1, δ2, ..., δr} and Σr = diag{τ1, τ2, ..., τr}, we may write

QmVr = Γ−1pr Vr∆
2
r and HVr = Γ−1pr VrΣ

2
r . Defining Γpr = RR>, Qm = LL>, and H = L̃L̃

>
,

we determine singular value decompositions U∆Z> = L>R and ŨΣZ̃
>

= L̃
>
R, with associated

truncated matrices,U r,∆r, Zr, Ũ r,Σr, and Z̃r. The truncated balancing projection determined by

the standard Gramians Qm and Γpr are given by Tr = RZr∆
− 1

2
r and S>r = ∆

− 1
2

r U>r L
>, producing

a standard balanced truncation reduced model defined as Ar = S>r AT r, Br = S>r B, Cr = CT r.

The corresponding projection determined by the inference Gramians H and Γpr are given by T̃r =

RZ̃rΣ
− 1

2
r and S̃>r = Σ

− 1
2

r Ũ
>
r L̃
>

, producing a reduced model defined as Ãr = S̃
>
r AT̃ r, B̃r = S̃

>
r B,

C̃r = CT̃ r. Notice Vr = RZr = RZ̃r, so that Zr = Z̃r. Hence with D = Σ
− 1

2
r ∆

1
2
r , we have

T̃r = RZ̃rΣ
− 1

2
r = RZr∆

− 1
2

r D = TrD

Likewise, L>Vr = U r∆r, and L̃
>

Vr = Ũ rΣr, which implies LU r∆r = QmVr = Γ−1pr Vr∆
2
r, and

L̃Ũ rΣr = HVr = Γ−1pr VrΣ
2
r so that

S̃>r = Σ
− 1

2
r Ũ

>
r L̃
>

= Σ
1
2
r V>r Γ

−1
pr = D−1∆

1
2
r V>r Γ

−1
pr = D−1∆

− 1
2

r U>r L
> = D−1S>r

Thus, the two state space projections are equal: T̃rS̃
>
r = TrS

>
r and the two reduced models are

state-space equivalent: Ãr = D−1ArD, B̃r = D−1Br, and C̃r = CrD.

Proposition 3.2 tells us that when the BT-H and BT-Q generalized eigenproblems define the
same dominant r directions, then guarantees applicable to the BT-Q approach will transfer to the
BT-H approach as well. We note that this result relies crucially on the fact that both approaches use
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Γpr as the reachability Gramian – matching of the dominant subspaces is not sufficient to guarantee
state-space equivalent reduced models if different reachability Gramians are used. We numerically
compare the BT-Q and BT-H posterior approximations in Section 5: our results show that while the
BT-H approach often leads to similar results as the BT-Q approach, the BT-Q approach is more
robust.

4 Relationships between System-Theoretic and Bayesian Inference Gramians

The proposed approach in Section 3 hinges on two relationships between the canonical system-
theoretic Gramians and the inference Gramians that we define in Section 3.1. We discuss now in more
depth some theoretical and practical issues pertaining to these connections. In Section 4.1, we discuss
Definition 3.1 for prior compatibility in more detail, and provide two strategies for constructing
priors with the desired compatibility properties which are also suitable for the Bayesian inference
task. In Section 4.2, we explore the relationship between the Fisher information matrix and system-
theoretic observability Gramians, and describe two limiting settings in which the Fisher information
matrix recovers the noisy observability Gramian up to a multiplicative constant.

4.1 Prior covariance compatability

As briefly discussed in Section 3.1, if a prior covariance matrix Γpr satisfies Definition 3.1, then there
exists some B ∈ Rd×din for which Γpr is exactly the reachability Gramian for the LTI system (2.9).
We emphasize that not all covariance matrices will be prior-compatible with respect to dynamics
determined by an independently assigned stable matrix, A. One example of this takes Γpr = I and
A to be any stable matrix whose numerical range extends into the right half plane, i.e., a matrix
A having eigenvalues in the complex open left half-plane but such that A + A> has at least one

positive eigenvalue. With d = 2, for example, A =

[
−1 3
0 −2

]
would have this property. We now

present two strategies for formulating compatible prior covariances: Section 4.1.1 describes how a
prior covariance may naturally be defined as the result of a spin-up process if an input port matrix is
available. Section 4.1.2 describes how an incompatible prior covariance may be modified to to ensure
compatibility.

4.1.1 Spin-up

Given A and a matrix B ∈ Rd×din , a compatible prior may naturally be defined by stochastically
exciting or “spinning up” the dynamical system (2.1) from t = −∞ to t = 0 as follows:

dx =

{
Ax dt+B dW (t), t < 0,

Ax dt, t ≥ 0,
(4.1)

where the usual control-theoretic input [5, 23, 29] has been replaced by white noise. Here the noise
is represented by differentials dW (t), where W is a vector of dimension din containing independent
copies of standard Brownian motion [30]. The matrix B acts as the port matrix distributing the
white noise driving onto the state components.

The stationary distribution of the system (4.1) during the stochastic driving period has statistics
given in the following proposition.

Proposition 4.1 At any finite time t ≤ 0, the state x(t) governed by eq. (4.1) is normally distributed
with constant mean and covariance given by

E[x(t)] = 0, cov(x(t)) = E[x(t)x>(t)] =

∫ ∞
0

eAτBB>eA
>τ dτ (4.2)
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Moreover, Γ ≡ cov(x(0)) is a solution to the Lyapunov equation, (2.11),

AΓ + ΓA> = −BB>. (4.3)

We provide the proof in Appendix A. Equating this stationary distribution with the prior distribu-
tion (2.3) on x0 = x(0) gives the relations:

µpr = 0, Γpr =

∫ ∞
0

eAtBB>eA
>t dt. (4.4)

This is consistent with the practice of “spinning up” atmospheric models so that their starting
state (at least before data from observations are incorporated) reflects a plausible “background
covariance” [34,50]. Thus, eq. (4.4) provides a natural way of specifying a prior distribution satisfying
Definition 3.1 if an input port matrix is specified. Indeed, [46] define the (infinite-time) reachability
Gramian for a stochastic system such as eq. (4.1) as the stationary covariance of the state.

4.1.2 Compatibility modification

We now suppose that we are given a prior covariance Γpr that does not satisfy Definition 3.1 and
provide a direct computational procedure that modifies the prior so that it is compatible. Suppose
Γ 0 is a given positive definite matrix that we take as an initial approximation for a prior covariance
matrix that fails to be prior-compatible, i.e.,

M0 = AΓ 0 + Γ 0A
> 6� 0,

so that, say, M0 is indefinite. If we write the spectral factorization of M0 as

M0 = [U+ U−]

[
Λ+

Λ−

] [
U>+
U>−

]
,

where Λ+ = Ω2
+ contains the strictly positive eigenvalues of M0 while Λ− contains the comple-

mentary nonpositive (i.e., negative and zero) eigenvalues of M0. The nearest negative semidefinite
matrix to M0 (with respect to either the spectral norm or the Frobenius norm) is M− = U− Λ−U>−,
and the modification to Γ 0 that achieves this nearest negative semidefinite residual satisfies:

A(Γ 0 +∆) + (Γ 0 +∆)A> = U− Λ−U>− � 0

or equivalently,

A∆+∆A> + U+ Λ+ U>+ = 0, (4.5)

which will have a unique positive definite solution, ∆ = E>E. Since U+Λ+U>+ has an immediately
accessible square root, namely U+Ω+, the Cholesky factor, E, of ∆ can be computed directly
using an approach introduced by Hammarling in [32]. This in particular allows one to compute a
unique compatible prior Γpr := Γ 0 + ∆. The modification, ∆, to Γ 0 is not generally the smallest
modification to Γ 0 making it prior-compatible. Rather, it is the uniquely determined modification
to Γ 0 producing the nearest negative semidefinite residual. See Appendix D for a routine in matlab
that implements this compatibility computation.
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4.2 Observability Gramians and the Fisher information matrix

Our proposed approach is motivated by connections between the Fisher information matrix and
system-theoretic observability Gramians. In contrast to the connection between the prior covariance
and the reachability Gramian discussed in Section 4.1, we describe in Section 4.2.1 a fundamental
obstacle to establishing a precise relation between the Fisher information matrix and an observability
Gramian under a general given observation protocol. However, the Fisher information matrix H can
approach the noisy observability GramianQm, up to a scaling factor of sampling frequency, in certain
limits. Note that this scaling factor of inverse time arises because Qm is a time integral and thus has
an extra dimension of time when compared to H, which is a sum. Section 4.2.2 considers the limit
of continuous measurements and Section 4.2.3 considers infinite discrete-time measurements taken
at times distributed according to a Poisson process. These approaches are related to asymptotics
of covariance approximations by Fisher information matrices [1], and are also related to models of
infill and domain asymptotics in statistics [18,59,60].

While infinite-horizon definitions (2.10) of system-theoretic Gramians are most commonly used,
and indeed are required for the results of Lemmas 2.1 and 3.1 to hold, other Gramian definitions
exist [2, 6, 31]. For example, one can define the Gramians over a finite time interval [t1, t2], lead-
ing to time-limited Gramians. Furthermore, in practical balanced truncation settings, the infinite
time-horizon Gramians are sometimes approximated via numerical quadrature [13, 16, 40, 48, 57]
or via approximate solution methods to the Lyapunov equations that yield low-rank Gramian ap-
proximations [11, 36, 51]. In this context, the scaled Fisher information matrix can be viewed as an
approximation to the infinite noisy Gramian of Definition 3.2, see, e.g., [45, 49]. When H is a suffi-
ciently close approximation to Qm so that their dominant generalized eigenpairs with Γ−1pr coincide,
then Proposition 3.1 applies.

4.2.1 Incompatibility of the Fisher information matrix

From formal duality, one could formulate a likelihood-compatibility condition, in analogy to Defini-
tion 3.1 for the prior covariance, by saying a Fisher information matrix H is likelihood-compatible
with state dynamics induced by A, if HA + A>H is negative semidefinite. That would im-
ply the existence of some C ∈ Rdout×d such that H solves a dual Lyapunov equation (2.11)
A>H +HA = −C>C, and is thus the infinite-horizon observability Gramian of an LTI dynamical
system (2.9) with output port matrix C. Replacing the noisy observability Gramian Qm with a
likelihood-compatible H in the BT-Q approach of Section 3.2 (which requires a compatible prior)
would then yield a reduced model that inherits the theoretical guarantees of Lemma 3.1 and Propo-
sition 3.1.

Unfortunately, Fisher information matrices for observation models that occur in plausible in-
ference settings will be extremely unlikely to be likelihood-compatible. In particular, the Fisher

information as defined in (2.8), H =
∑n
i=1 e

AT tiCTΓ−1obsCe
Ati , is often rank-deficient, and in that

case in order for H also to be likelihood compatible with respect to the dynamics determined by A,
it is necessary for ker(H) to be an invariant subspace for A, which is extraordinarily unlikely to occur
with measurement models specified in practice. One may include adjustments to the Fisher informa-
tion intended to enforce likelihood-compatibility (analogously to the prior compatibility modification
of Section 4.1.2) however such adjustments appear difficult to justify since they would represent sig-
nificant ad hoc changes to the observation protocol that at best would be unrealistic.

4.2.2 Continuum Limit of Regularly Spaced Observations

We proceed next to show that despite the frustrated equivalence between the Fisher information
matrix and a continuous-time observability Gramian under general observation protocols, we can
establish a formal proportionality between these quantities in an idealized continuum limit of finely
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spaced perpetual observations. Suppose the measurement times {ti}ni=1, with n ≥ 2, in the definition
of the Fisher information matrix (2.8) are equispaced in the interval [tstart, tend], i.e.,

ti := tstart + (i− 1)h, h :=
tend − tstart
n− 1

, (4.6)

for i = 1, . . . , n. If we scale the Fisher information matrix by the sampling time interval h, then the
large-n energy limits to an integral (we make the dependence of H on n explicit here):

Ĥ∞ := lim
n→∞

hHn = lim
n→∞

h

n∑
i=1

eA
>tiC>Γ−1ε CeAti =

∫ tend

tstart

eA
>tC>Γ−1ε CeAt dt. (4.7)

In this finite observation interval setting, Ĥ∞ satisfies the modified Lyapunov equation,

A>Ĥ∞ + Ĥ∞A = eA
>tendC>Γ−1ε Ce

Atend − eA
>tstartC>Γ−1ε Ce

Atstart . (4.8)

We recover the noisy infinite observability Gramian of Definition 3.2 if we take the observation
start time tstart ↓ 0 and observation end time tend ↑ ∞ together with the finer spacing h of the obser-
vations, provided the normalization of the energy scales appropriately with the sampling interval.

Proposition 4.2 Let a stable matrix A and an output matrix C be given. Define a collection of

observation times {ti}ni=1 by ti = (i − 1)h(n) where h(n) ≡ T (n)
n−1 with the observation time interval

T (n) increasing sublinearly with the number of observations so that T (n)→∞ while h(n) = T (n)
n−1 →

0 as n→∞. Then,

lim
n→∞

h(n)

n∑
i=1

eA
>tiC>Γ−1ε Ce

Ati =

∫ ∞
0

eA
>tC>Γ−1ε Ce

Atdt. (4.9)

Proof The integrand on the right hand side and the summand on the left hand side are continuous
matrix functions whose norm is bounded and decays exponentially. Truncating both the sum and
the integral to times 0 ≤ t, ti ≤ τ leads to a Riemann sum convergence on this truncated interval.
The truncated component ti, t > τ can be bounded in norm by a function of the form k1e−k2τ for
positive constants k1 and k2 depending on the norm of C, the norm bound on Γ−1ε , and the stability
properties of the matrix A. By taking τ ↑ ∞, we achieve the stated result. �

4.2.3 Observation Models at Random Times

Observability Gramians with an integral form can also be associated to observation models that
take place at discrete, but randomly distributed, moments of time. For example, the observation
times in a field experiment might not be perfectly predictable due to considerations of weather,
availability of human resources, and/or availability of equipment. We do not propose randomly
distributed observation times as an important practical innovation, but rather to provide another
means of interpreting the relation between the observability Gramian and the Fisher information.

As in the previous section, we specify a time tstart when observations begin and a time tend when
observations end. If we have n observations to be taken at independent and uniformly distributed
times over this interval ti ∼ U(tstart, tend), we would have a random Fisher information due to the
randomness in the ti. However, if we average over the realizations of the uniformly distributed
observation times, we would obtain the mean Fisher information:

H̄ ≡ (tend − tstart)−n
∫ tend

tstart

∫ tend

tstart

· · ·
∫ tend

tstart

n∑
i=1

eA
>t′iC>Γ−1ε Ce

At′i dt′1 dt′2 . . . dt
′
n

=
n

tend − tstart

∫ tend

tstart

eA
>tC>Γ−1ε Ce

At dt.
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The same mean Fisher information would result if we divided the observation period into n equal
subintervals of length h = (tend − tstart)/n, and took one observation at a time ti that is uniformly
distributed within each size-h subinterval:

H̄ =

n∑
i=1

1

h

∫ tstart+ih/n

tstart+(i−1)h/n
eA
>t′iC>Γ−1ε Ce

At′i dt′i

=
1

h

∫ tend

tstart

eA
>tC>Γ−1ε Ce

At dt. (4.10)

Notice we have n subintervals in this formulation, as compared to the n − 1 subintervals in Sec-
tion 4.2.2 because we have here n observations distributed in the interior, rather than the endpoints,
of the subintervals.

To obtain the standard infinite horizon observability Gramian (2.10) under a similar paradigm,
we consider a countably infinite sequence of observations at randomly distributed times (n → ∞).
Under the appropriate limiting models of random measurements we can recover, in expectation, an
infinite-horizon Gramian multiplied by the sampling frequency.

Proposition 4.3 Let a stable matrix A and an output matrix C be given. Let {ti}i≥1 be a random
sequence of times defined by either of the following models:

(a) For some h > 0, ti ∼ U((i− 1)h, ih).
(b) For some h > 0, the {ti}i≥1 are the realization of a Poisson point process on [0,∞) with intensity

h−1.

Then, as n ↑ ∞, the expected Fisher information (4.10) limits to an infinite-time observability
Gramian scaled by the mean sampling frequency:

lim
n→∞

E

[
n∑
i=1

eA
>tiC>Γ−1ε Ce

Ati

]
= h−1

∫ ∞
0

eA
>tC>Γ−1ε Ce

Atdt. (4.11)

Proof Define

f(t) := ξ> · eA
>tC>Γ−1ε Ce

At · ξ.

where ξ ∈ Rd. Under model (a), a similar computation as in eq. (4.10) yields,

E

[
n∑
i=1

f(ti)

]
= h−1

∫ hn

0

f(t)dt. (4.12)

Since f is non-negative, continuous for all t ≥ 0, and decays exponentially for large t, we also have,

lim
n→∞

∫ hn

0

f(t)dt =

∫ ∞
0

f(t)dt. (4.13)

As ξ ∈ Rd was arbitrary, we obtain the result (4.11). Under model (b), note that f is integrable for
t ≥ 0. Then Campbell’s theorem for Poisson processes asserts that

E[

∞∑
i=1

f(ti)] = h−1
∫ ∞
0

f(t) dt.

This, along with,

E

[
lim
n→∞

n∑
i=1

f(ti)

]
= lim
n→∞

E

[
n∑
i=1

f(ti)

]
, (4.14)

which follows from the monotone convergence theorem, and again the arbitrary choice of ξ ∈ Rd,
proves the desired result. �
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Remark. The standard observability Gramian (2.10) would correspond to an infinite sequence of ob-
servations at unit frequency, either according to a standard Poisson point process or a randomized
sampling within regularly spaced intervals. The above result also implies that the large-n expecta-
tion of the Fisher information matrix (2.8) equals the (scaled) infinite-time observability Gramian,
assuming the observations ti are distributed according to one of the models in Proposition 4.3.

5 Numerical experiments

We now demonstrate the balanced truncation approaches on two test problems based on LTI systems
that are benchmarks within the system-theoretic model reduction community1: a heat equation ex-
ample and a structural model for the ISS1R module. For each LTI system, the inference problem is
to infer the initial system state from output measurements made after t = 0 corrupted by Gaussian
noise. For each system, we will use the system dynamics to determine a compatible prior covari-
ance matrix as defined in Definition 3.1. Then, we will compare the posterior mean and covariance
approximation performance of three approaches:

1. from [54], the optimal low-rank update (OLRU) approximations of the posterior covariance (2.26)
and mean (2.33), and the optimal low-rank (OLR) posterior mean approximation,

2. the BT-Q posterior mean and covariance approximation of Section 3.2 based on the pencil
(Qm,Γ

−1
pr ), and

3. the BT-H posterior mean and covariance approximation of Section 3.2 based on the pencil
(H,Γ−1pr ).

For both LTI systems, we consider both a ‘good’ observation model where the final observation time,
T , and number of measurements, n, are both large, as well as a ‘bad’ observation model where T and
n are both small. Sections 5.1 and 5.2 describe the heat equation and ISS1R problems, respectively,
and present numerical results for the aforementioned posterior approximations. Section 5.3 discusses
the numerical results from both examples.

5.1 Heat equation

We consider the heat equation in a one-dimensional rod with homogeneous Dirichlet boundary
conditions. The state and output dimensions are d = 200 and dout = 1, respectively, and the single
output is the temperature measured at 2/3 of the rod length. We define the prior covariance Γpr to
be the infinite reachability Gramian (2.10) that would result from taking B = I. The true initial
condition is drawn from N (0,Γpr) and used to generate noisy output measurements at ti = ih, for
i = 1, 2, . . . , n. The noise values at each measurement are independently and identically distributed:
Γ εi = Γ ε = σ2

obs, where the noise standard deviation is chosen to be roughly 10% of maximum
magnitude of the noiseless output, σobs = 0.008.

We consider in Figure 5.1 an observation model with n = 5×105 measurements spaced h = 10−4

apart, for a final observation time T = 50. The spectral abscissa of A for this system is ≈ −0.1, so
this T value is about five times the slowest characteristic timescale. We therefore expect that the
finely spaced observations in this model can capture most of the system dynamics and approximate
the infinite integral. Indeed, the relative Frobenius norm difference between hH and Q is 0.1% in
this case. In contrast, Figure 5.2 considers a limited observation model with n = 100 measurements
spaced h = 0.1 apart, for a final observation time of T = 10. In this case the relative Frobenius norm
difference between hH and Q is 15%.

1 LTI system matrices and documentation for both examples can be found online at
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction.

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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Fig. 5.1: Results for the heat equation model with measurements spaced h = 10−4 apart until T = 50, for which
Qm and hH have a relative error of 0.1%. In the left panel we plot τi and δi, the square roots of the generalized
eigenvalues of the pencils (H,Γ−1

pr ) and (Qm,Γ
−1
pr ), respectively. These are normalized relative to δ1, τ1, respectively,

and coincide with the Hankel singular values. In the middle and right panels, we compare respectively the relative
errors of the posterior means of the various low-rank approximation approaches in the `2 norm, and the errors of the
posterior covariances in the Förstner distance.

Fig. 5.2: Results for the heat equation model with measurements spaced h = 10−1 apart until T = 10, for which
Qm and hH have a relative error of 15%. The quantities plotted are as defined in Figure 5.1.

5.2 ISS1R module

This benchmark LTI system is a structural model for the flex modes of the Zvezna service module
of the International Space Station [2]. The state and output dimensions are d = 270 and dout = 3,
respectively; the outputs correspond to roll, pitch, and yaw gyroscope measurements. An input
matrix B with din = 3 is provided as part of the model that corresponds to roll, pitch, and
yaw jet controls. This B is used to generate a compatible prior Γpr. The true initial condition
is drawn from N (0,Γpr) and used to generate noisy output measurements. The noise covariance
Γ ε = diag{0.00252, 0.00052, 0.00052} is set so that the noise standard deviation of each output is
roughly 10% of the maximum output signal as before.

Figure 5.3 considers an observation model with n = 3000 measurements spaced h = 0.1 apart for
a final observation time T = 300. In this case, the relative difference between hH and Qm is 1%.
Figure 5.4 considers n = 10 measurements spaced h = 1 apart for a final observation time T = 10.
In this case, the relative difference between hH and Qm is 53%.

5.3 Discussion

In both test problems, when the observation model has a large number of observations, n, with high
temporal resolution hH is a close approximation of Qm in the Frobenius norm (Figures 5.1 and 5.3).
In this case we observe good agreement in τi and δi, the square roots of the generalized eigenvalues of
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Fig. 5.3: Results for the ISS1R model with measurements spaced h = 0.1 apart until T = 300, for which Qm and
hH have a relative error of 1%. The quantities plotted are as defined in Figure 5.1.

Fig. 5.4: Results for the ISS1R model with measurements spaced h = 1 apart until T = 10, for which Qm and hH
have a relative error of 53%. Because r = 30 = ndout, the OLR/U approximations correspond to the full posterior in
this case. The quantities plotted are as defined in Figure 5.1.

the pencils (H,Γ−1pr ) and (Qm,Γ
−1
pr ), respectively. The posterior covariance approximations using

both BT approaches are optimal for low-to-middling values of r, indicating agreement not only in the
generalized eigenvalues but also in the leading generalized eigendirections. At higher r, the balanced
truncation posterior covariance approximations diverge from the OLRU approximation, indicating
that the trailing eigendirections do not match as well, but the balanced truncation approximations
exhibit respectable errors nevertheless. In contrast, when the observation model has smaller n, with
lower temporal resolution of observations (Figures 5.2 and 5.4) and shorter observation intervals, we
observe poor agreement in δi and τi and significantly sub-optimal posterior covariance approxima-
tions from balanced truncation approaches for all but the smallest r-values. This indicates generally
poor agreement in the generalized eigenpairs of (Qm,Γ

−1
pr ) and (H,Γ−1pr ), in all but the leading few

directions.

Across all test cases, the BT-Q mean error exhibits similar decay to that of the square root
of the generalized pencil eigenvalues δi (these are the Hankel singular values of the system (3.8)).
We note that while it may be possible to bound the posterior mean error using system-theoretic
results, the error bound of Lemma 3.1 does not automatically apply to the posterior mean. Showing
that this or a similar bound holds is a direction for future work. In contrast, while the BT-H mean
error performs similarly to the BT-Q mean error when hH and Qm are close; in cases where hH
is far from Qm the BT-H error is higher, significantly so in the ISS1R case of Figure 5.4. We
note that while both the OLR/U mean approximations can achieve lower errors than the balanced
truncation approach, the OLR/U mean approximations require evolving the full adjoint dynamics in
the dynamical system setting, while the balanced truncation approaches provide a low-dimensional
adjoint to evolve. Finally, we observe that in some cases (particularly in Figure 5.4) the BT-Q mean
error is smaller than that of the OLR approach. This does not contradict the optimality results of [54],



Model Reduction of Linear Dynamical Systems via Balancing for Bayesian Inference 23

as the OLR mean is optimal in the Bayes risk, not the `2-norm in which we compare posterior mean
approximations.

Our results show that our proposed approach of Section 3.2 provides an efficient low-dimensional
reduced model that can be used to compute posterior mean and covariance approximations that
are near-optimal when the observation model allows the (H,Γ−1pr ) eigenpairs to closely approximate

the (Qm,Γ
−1
pr ) eigenpairs. However, our results show that even when these eigenpairs are far apart,

the BT-Q approach of Section 3.2 provides approximations with reasonably low (albeit sub-optimal)
error.

6 Conclusions

We consider the linear Gaussian Bayesian inverse problem for inferring the initial condition of a
high-dimensional linear dynamical system from noisy measurements taken at t > 0. In this setting,
we propose a new model reduction method that exploits natural connections between the system-
theoretic method of balanced truncation and the optimal posterior approximation work of [54]. To
adapt balanced truncation to the inference setting, we define new Gramians for the inference context.
We introduce a notion of prior compatibility that allows the prior covariance to be interpreted as an
infinite reachability Gramian, and we propose two ways of constructing a compatible prior: (i) as
the stationary covariance of a system that has been spun-up for t < 0 by white noise and (ii) via a
modification to an incompatible prior. We also define a noisy observability Gramian which measures
observability energy in a way that accounts for the additive noise in the inference measurements and
show that this Gramian coincides with the (scaled) Fisher information matrix in two limits: (i) the
limit of continuous observations and (ii) the expectation of countably infinite Poisson-distributed
measurement times.

Our proposed approach uses the prior covariance and noisy observability Gramian as inference
Gramians in the method of balanced truncation to obtain a reduced model that inherits system-
theoretic stability and error guarantees. Additionally, when the dominant generalized eigenpairs
of the pencil defined by these inference Gramians match those of the pencil defined by the Fisher
information matrix and the prior covariance, our reduced model can additionally recover the optimal
posterior covariance approximation of [54]. Our model yields a reduced dynamical system which can
be cheaply evolved to approximate the full system: in this way, our approach extends the work
of [54], which does not automatically yield a reduced dynamical system. However, the posterior
mean approximations considered in [54] and in our approach are different in general.

Numerical experiments on two benchmark problems from the model reduction community demon-
strate that our proposed approach yields near-optimal posterior mean and covariance approximations
when the noisy observability Gramian is close to the scaled Fisher information matrix. We demon-
strate theoretically and by numerical examples that these matrices are close when the observations
are of suitable frequency and duration. When these two matrices differ significantly, the proposed
approach yields sub-optimal posterior mean and covariance approximations that nevertheless exhibit
low errors that may be acceptable in some applications.

The connections between linear Gaussian Bayesian inference problems and model reduction via
balanced truncation which we have established here are intended as a potential means for transfer-
ring perspectives between the two research communities. Some open questions about the proposed
method are directions for future work, including: how to effectively leverage the proposed reduced
model for computational gains in data assimilation applications; analysis of the posterior mean
approximation; and extension to nonlinear settings. Another natural extension of the proposed ap-
proach is to Bayesian inference of the initial state of a system driven stochastically for all time,
including through the observation period, which is observed at possibly countably infinite and pos-
sibly random times. See Appendix C for a discussion of this problem.
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A Proof of Proposition 4.1

Proof The equation (4.1) can be solved by integrating factors in the standard way because the stochastic product
rule applied to d(eAtx) produces no corrections:

x(t) =

∫ t

−∞
eA(t−s)B dW (s)

With the Ito isometry, which is equivalent to the formal rule E[dW (s)dW (s′)] = Iδ(s− s′) dsds′, we compute:

E[x(t)x>(t)] =

∫ t

−∞
eA(t−s)B(eA(t−s)B)> ds =

∫ t

−∞
eA(t−s)BB>eA

>(t−s) ds

=

∫ ∞
0

eAsBB>eA
>s ds, (A.1)

which also shows that dE[xx>] = 0. The method of moments gives:

d(xx>) = (Ax dt+B dW (t))x> + x(x>A> + dW>(t)B>) +B dW (t)dW (t)>B>

= Axx> dt+ xx>A> dt+B dW (t)x> + x dW (t)>B> +BB> dt (A.2)

Taking expectations and using E[dWx] = 0, we recover the desired Lyapunov equation (4.3):

dE[xx>] = 0 = (AE[xx>] +E[xx>]A> +BB>) dt.

�

B Optimality Property of Mahalanobis Distance for Gaussian Distributions

Proposition B.1 The neighborhood M ≡ {z ∈ Rd : D (z,N (µ, Σ)) < δ} defined by the Mahalanobis distance (3.1)
satisfies the following optimality condition:

M = argmax
S∈O:λ(S)=λ(M)

P(S).

where P denotes the probability measure on Rd corresponding to a multivariate Gaussian distribution with mean
µ ∈ Rd and covariance matrix Σ ∈ Rd×d, O is the collection of open sets in Rd and λ(S) denotes the Lebesgue
measure of set S.

Proof M can be verified by definition to correspond to an ellipsoidal level set of the multivariate Gaussian density,
with the probability density strictly greater on the interior of M than on the complement. Consequently, for any
S ∈ O, the probability density on S \M is strictly greater than the probability density on M \ S. If M and S have
the same Lebesgue measure, then so do S \M and M \ S. Thus P (S \M) ≤ P (M \ S), with equality holding only if
P (S \M) = 0, which can only happen if S = M since both sets are open. �

C Stochastic Forcing Continuing Through Positive Times

We consider here how the connection between balanced truncation and the optimal low-rank posterior update proce-
dure described in [54] is affected if we were to consider the more natural case of a stochastic linear dynamical system
driving consistently for both positive and negative times:

dx = Ax dt+B dW (t), −∞ < t <∞. (C.1)

Now the observations involve noise not only from the measurement process, but from the dynamical noise at
previous times. We can write in place of Eq. (2.2):

mi = CeAtix0 +Ξi,

where

Ξi =

∫ ti

0
CeA(ti−s)B dW (s) + εi.
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In the expression of the abstract linear Bayesian inference problem:

m = Gx0 +Ξ,

the noisy component Ξ ∈ Rdobs of the measurements is now correlated across observation times. Thus,Ξ ∼ N (0,Γ tot)
where Γ tot ∈ Rdobs×dobs has block structure:

Γobs =


Γ ε1,ε1 Γ ε1,ε2 · · · Γ ε1,εn
Γ ε2,ε1 Γ ε2,ε2 · · · Γ ε2,εn

...
... · · ·

...
Γ εn,ε1 Γ εn,ε2 · · · Γ εn,εn

 . (C.2)

with covariances of measurements at different times given explicitly by;

Γ εi,εj = Γ εiδij +

∫ max(ti,tj)

|ti−tj |
CeAsBB>eA

>sC> ds

with Kronecker delta function δij . The reason for the correlations is the influence of the common past driving noise.
These correlations are indeed mitigated if the observation times are spaced sufficiently far apart so the minimal
eigenvalue of −A|ti − tj | becomes large, but this is not a terribly interesting case as it would imply also weak
dependence of the observations on the state x0. The correlation in the effective measurement noise would lead to a
very different expression for the Fisher information matrix in Eq. (2.8)), as Γ−1

obs would no longer be block diagonal,
and we would thereby lose interpretability of the Fisher information matrix as a discretized version of an observability
Gramian.

D Modification of covariance to induce prior-compatibility

This appendix complements the discussion in Section 4.1.2: We provide below a Matlab routine that, given a system
matrix A and a prior covariance Gamma0, returns the upper-triangular Cholesky factor R Gam of a modified prior that
is compatible with the state dynamics of A. Our matlab function listed below utilizes the lyapchol routine from the
Control System Toolbox to solve (4.5) for the Cholesky factor E of the prior modification ∆.

function R_Gam=minmodPriorCompat(Gamma0,A)
% Find a minimal residual modification producing
% a modified Gamma0 that is prior-compatible with A
% Input: Gamma0 - initial covariance matrix (n x n positive def matrix)
% A - dynamic system matrix (n x n strictly stable matrix)
% Returns: R_Gam - the Cholesky factor of a modification of Gamma0
% making it compatible with A: Gamma1 = R_Gam’*R_Gam = Gamma0 + E’*E
% such that A*Gamma1+Gamma1*A’ is the *nearest* negative semidefinite
% matrix to A*Gamma0+Gamma0*A’ - Note that E’*E is *not* the minimal
% perturbation to Gamma0 required for prior-compatibility.
%
% (Requires lyapchol from control system toolbox).
%
R0=chol(Gamma0);
M0=A*Gamma0+Gamma0*A’;
[V,D]=eig(M0); eigval=real(diag(D));
flagPos=(eigval>0);
% If Gamma0 is prior-compatible then flagPos is empty
if isempty(flagPos)

R_Gam=R0;
else

d_pos=sqrt(eigval(flagPos));
V_pos=V(:,flagPos);
E = lyapchol(A,V_pos*diag(d_pos));
[~,R_Gam]=qr([R0;E],0);

end
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