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a b s t r a c t

We consider linear dynamical systems composed of differential–algebraic equations
(DAEs), where a quantity of interest (QoI) is assigned as output. Physical parameters of
a system are modelled as random variables to quantify uncertainty, and we investigate
a variance-based sensitivity analysis of the random QoI. Based on expansions via
generalised polynomial chaos, the stochastic Galerkin method yields a new deterministic
system of DAEs of high dimension. We define sensitivity measures by system norms,
i.e., the H∞-norm of the transfer function associated with the Galerkin system for
different combinations of outputs. To ameliorate the enormous computational effort
required to compute norms of high-dimensional systems, we apply balanced truncation,
a particular method of model order reduction (MOR), to obtain a low-dimensional linear
dynamical system that produces approximations of system norms. MOR of DAEs is more
sophisticated in comparison to systems of ordinary differential equations. We show an
a priori error bound for the sensitivity measures satisfied by the MOR method. Numerical
results are presented for two stochastic models given by DAEs.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In science and engineering, mathematical modelling often generates dynamical systems consisting of ordinary dif-
erential equations (ODEs) or differential-algebraic equations (DAEs). Such dynamical systems may include physical and
eometrical parameters describing possible variations in the system. For example, electronic design automation using
etwork approaches yields parametric systems of DAEs as models of electric circuits, see [1–3].
Often uncertainties are inherent in some parameters due to modelling errors, measurement errors or imperfections

f an industrial production. In this case, reliable predictions require incorporation of parametric variation in a model.
n uncertainty quantification, the most common approach is to replace the parameters by random variables, see [4,5].
onsequently, the solution of a dynamical system becomes a random process.
We consider linear time-invariant control systems of DAEs, also called descriptor systems, which include random

arameters. A quantity of interest (QoI) is extracted as a single output. Our aim is to perform a sensitivity analysis of the
oI with respect to the random variables. For this purpose, variance-based or derivative-based sensitivity measures can
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be employed, see [6–8]. We apply a global variance-based concept, where the total effect sensitivity indices characterise
the significance of the random parameters. Sensitivity analysis of this kind was previously applied to linear dynamical
systems in [9,10]. Our approach is based on converting a random linear dynamical system into a larger deterministic
linear dynamical system by using the stochastic Galerkin method [11–13]. In [14], a variance-based sensitivity analysis
of the QoI was introduced in the case of linear ODEs, where system norms such as the Hankel norm and the H∞-norm
f the stochastic Galerkin formulations yield sensitivity measures.
In this paper, we extend this approach to the case of linear DAEs. In comparison to ODEs, systems of DAEs exhibit more

omplicated analytical properties and require modified numerical methods, see [15,16]. Similar to the ODE case [14], we
pply the stochastic Galerkin method to the random system of DAEs. Furthermore, we prove a convergence property of
he Galerkin approach for partial variances related to the sensitivity measures, which is valid for both ODEs and DAEs.
he Galerkin projection is followed by a computation of several H∞-norms for the same system of DAEs, but different

selections of multiple outputs. In the single-output case, the number of required norms is equal to the number of random
parameters.

The numerical computation of H∞-norms is typically performed by iterative schemes like bisection methods. Numeri-
cal techniques can be found for ODEs in [17,18] and for DAEs in [19,20], see also the references therein. In these techniques,
(generalised) eigenvalue problems of size twice as large as the dimension of the dynamical system have to be solved in
each iteration step. Similar to the previously investigated ODE case [14], in order to reduce the computational effort for
computing H∞-norms of the related high-dimensional Galerkin systems, we use model order reduction (MOR). While
doing this, we construct low-dimensional systems, whose H∞-norms yield approximations to the sensitivity measures. It
should, however, be noted that model reduction of DAEs is more involved in comparison to ODEs, see [21] for a survey.
Based on the previous works [22,23], we derive a balanced truncation technique for an MOR of the high-dimensional
stochastic Galerkin system with many outputs. Consequently, guaranteed error bounds are derived for the sensitivity
measures. Finally, we present some results of numerical experiments for two models of electric circuits.

2. Linear differential–algebraic equations

First, we outline some general concepts for linear control systems of DAEs required in the following sections.

2.1. Linear dynamical systems

We consider a linear time-invariant control system

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

(1)

with matrices A, E ∈ Rn×n, B ∈ Rn×nin , and C ∈ Rnout×n. A system of the form (1) is a DAE (not an ODE) system if and only
if the matrix E is singular. The input u : [0,∞) → Rnin is supplied and the state is x : [0,∞) → Rn. The QoI is given by
the output y : [0,∞) → Rnout . We examine initial value problems determined by (1) together with the consistent initial
value condition Ex(0) = Ex0. Without loss of generality, we assume that Ex0 = 0. If this is not the case, we can proceed
similarly to [24] by considering a shifted state z(t) = x(t) − x0e−αt with α > 0. This approach results in a DAE system
with a consistent homogeneous initial condition Ez(0) = 0 and a new input [u(t)⊤, e−αt

]
⊤, which belongs to the space

L2([0,∞)) of square-integrable functions provided u ∈ L2([0,∞)).

Definition 1. The DAE system (1) has a regular matrix pencil λE − A if the characteristic polynomial χ (λ) = det(λE − A)
is not identically zero.

The regularity of the matrix pencil λE−A is necessary and sufficient for the well-posedness of the initial value problems.
Every regular pencil λE − A can be transformed into a quasi-Weierstrass form

E = W
[
In1 0
0 N

]
T , A = W

[
J 0
0 In2

]
T , (2)

where W , T ∈ Rn×n are non-singular, J ∈ Rn1×n1 , and the matrix N ∈ Rn2×n2 with n2 = n − n1 is nilpotent, see [16]. The
eigenvalues of J are the finite eigenvalues of the pencil λE − A. The block N corresponds to eigenvalues at infinity.

Definition 2. The index of the DAE system (1) is the smallest integer ν such that the matrix N in the quasi-Weierstrass
form (2) satisfies Nν−1

̸= 0 and Nν = 0.

The index is an important characteristic of DAE systems used in the solvability analysis, numerical methods, and control
problems for DAEs. Note that the index is independent of the definition of inputs (matrix B) as well as outputs (matrix C)
in the system.
2
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The time-dependent problem (1) with a regular pencil λE−A can be transformed into the frequency domain as follows.
pplying the Laplace transform to (1) with Ex(0) = 0, we obtain the algebraic equations

E(sX (s)) = AX (s) + BU(s),
Y(s) = CX (s),

(3)

here U , X and Y are the Laplace transforms of u, x and y, respectively, and s ∈ C is the frequency. Therein, we assume
hat the Laplace transforms exist for all s satisfying Re(s) ≥ a with some a ∈ R. Solving the first equation in (3) for X (s)
nd substituting it into the second one, we get the input–output relation Y(s) = H(s)U(s) with the transfer function

H(s) = C(sE − A)−1B, (4)

hich is a matrix-valued rational function defined for all complex numbers that are not a finite eigenvalue of the matrix
encil λE − A. Due to the singularity of E, the transfer function H may also have a pole at infinity. Such considerations
ead to the following high-level taxonomy of transfer functions.

efinition 3. A transfer function (4) is called strictly proper, if the degree of the numerator is smaller than the degree
f the denominator in each component. A transfer function (4) is called proper if the degree of the numerator does not
xceed the degree of the denominator in each component. Otherwise, it is called improper.

It should be noted that the properness condition depends not only on the state matrices A and E but also on the input
atrix B and the output matrix C . A transfer function of an ODE system (1) with E = I is always strictly proper. Many
pplications lead to linear DAEs which have proper or even strictly proper transfer functions. For example, if the DAE
ystem can be transformed into an equivalent ODE model with the same input–output relation without feedthrough term
n the output equation, then it has a strictly proper transfer function. Furthermore, DAE systems of index ν = 1 have
lways proper transfer functions.
In order to characterise the properness property for DAEs of index ν > 1, we decompose the transformed input and

utput matrices into blocks

W−1B =

[
B1
B2

]
, CT−1

=
[
C1 C2

]
ccording to (2). Then the transfer function can additively be split into

H(s) = HSP(s) + P(s), (5)

where HSP(s) = C1(sIn1 − J)−1B1 is strictly proper in view of Definition 3, and P(s) = C2(sN − In2 )
−1B2 is a polynomial

matrix-valued function. This function can also be written as

P(s) =

ν−1∑
j=0

Mjsj (6)

with the matrices Mj = −C2N jB2, j = 0, 1, . . . , ν − 1, where ν is the index of (1). Then the DAE system (1) has a proper
transfer function if and only ifMj = 0 for j = 1, . . . , ν − 1. Unfortunately, these conditions are difficult to verify in practice,
since the computation of the quasi-Weierstrass form (2) is numerically expensive and may be sensitive to perturbations.

Definition 4. The DAE system (1) is called stable, if for every ε > 0 there exists a δ = δ(ε) > 0 such that any solution
of the initial value problem (1) with u(t) ≡ 0 and Ex(0) = Ex0 satisfies ∥x(t)∥ < ε for all t ≥ 0 and all consistent initial
vectors x0 with ∥x0∥ ≤ δ. The DAE system (1) is called asymptotically stable, if it is stable and limt→∞ ∥x(t)∥ = 0 for every
solution x of (1) with u(t) ≡ 0.

The used vector norm ∥ ·∥ is arbitrary. Similarly to ODEs, the stability properties of linear DAEs can be characterised in
a purely algebraic way. One can show that the DAE system (1) with a regular pencil λE −A is asymptotically stable if and
only if all the finite eigenvalues of λE − A lie in the open left complex half-plane, see [25], for example. The asymptotic
stability implies that the transfer function (4) is bounded for all s with Re(s) ≥ a including a (small) a < 0.

2.2. H∞-norm

System’s norms are used to measure the size of control systems or, equivalently, the magnitude of the associated
transfer functions. We refer to [26, Chapter 5] for a review of various norms for ODE control systems. These norms have
been extended to DAE control systems in [27]. The most important norms are the H2-norm and the H∞-norm in the
corresponding Hardy spaces. They play a crucial role in robust control and MOR. In this paper, we use the H∞-norm
defined as follows.
3
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Definition 5. The H∞-norm of the transfer function H in (4) is defined as

∥H∥H∞
= sup

ω∈R
σmax(H(iω)), (7)

here σmax(·) denotes the largest singular value of the corresponding matrix and i =
√

−1.

The supremum in (7) is finite if and only if the transfer function H is proper and does not have finite poles in the
losed right complex half-plane. An asymptotically stable DAE system (1) of index ν = 1 guarantees that the supremum
is finite. This result immediately follows from the additive decomposition (5).

The H∞-norm can also be defined as

∥H∥H∞
= sup

u∈L2([0,∞))
u̸=0

∥y∥L2([0,∞))

∥u∥L2([0,∞))
, (8)

where ∥ · ∥L2([0,∞)) denotes the L2-norm in the Lebesgue space L2([0,∞)) of square-integrable vector-valued functions.
The right-hand side of (8) represents the operator norm of the input–output mapping in the time domain. Thus,
the H∞-norm can also be interpreted as an L2-induced operator norm which characterises the L2-gain from the input
u to the output y. We use, however, the frequency domain representation (7) because it is computable using algorithms
from numerical linear algebra.

For the computation of the H∞-norm, different numerical methods have been developed [17–20,28,29]. Most of them
are based on a relationship between the H∞-norm and the finite spectrum of the skew-Hamiltonian/Hamiltonian matrix
pencil

λ

[
E 0
0 E⊤

]
−

[
A 1

γ
BB⊤

−
1
γ
C⊤C −A⊤

]
(9)

with γ > 0, see [17,20] and references therein. In these methods, the H∞-norm is determined iteratively by updating γ .
In each iteration step, a structured eigenvalue problem for (9) of dimension 2n has to be solved until the pencil in (9)
has no finite eigenvalues on the imaginary axis. Other methods rely on a connection of the H∞-norm to the structured
complex stability radius of the corresponding system pencil and are more appropriate for large-scale problems [18,29].
An improved method for computing the H∞-norm has been proposed in [19] which is based on the direct optimisation
approach. Finally, in [28], a subspace projection method has been presented which relies on the computation of
the H∞-norm of a reduced transfer function obtained by the successive expansion of the projection subspaces.

3. Random linear differential–algebraic equations

In this section, we introduce the investigated problem and present the stochastic Galerkin method. Our considerations
mostly follow the ODE theory in [14].

We consider a parametric DAE system

E(p)ẋ(t, p) = A(p)x(t, p) + B(p)u(t),

y(t, p) = c(p)⊤x(t, p),
(10)

where E(p), A(p) ∈ Rn×n, B(p) ∈ Rn×nin and c(p) ∈ Rn depend on a physical parameter vector p ∈ Π ⊆ Rq. Typically,
the input u : [0,∞) → Rnin is independent of physical parameters. Yet, the matrix B, which induces these inputs, can
be parameter-dependent. Both the state x : [0,∞) × Π → Rn and the output y : [0,∞) × Π → Rnout depend on the
parameters. Note that we have restricted the parametric problem to a single QoI of the system meaning that nout = 1.
The sensitivity analysis of Section 4 can also be applied to the case of multiple outputs by investigating each output
component separately. Furthermore, we allow the initial condition E(p)x(0, p) = E(p)x0(p) to be parameter-dependent
with a given initial function x0 : Π → Rn, which is assumed to be consistent for all p ∈ Π . Again, by an exponentially
decaying shift, we can always attain the homogeneous initial condition E(p)x(0, p) = 0. Therefore, this condition will be
assumed in what follows.

We assume that the DAE system (10) has the same index and that it is asymptotically stable for all p ∈ Π . We also
assume that the system matrices in (10) depend continuously on the parameters. In this case, the state x inherits the
continuity, due to a classical result of continuous dependence of dynamical system solution maps on parameters. This in
turn implies that the QoI y depends also continuously on the parameters.

3.1. Stochastic modelling

In order to ascertain the effect of parametric variation on the output, we model our parameters as mutually

independent random variables. Thus, with a complete probability space (Ω,F, P), the random variables are p : Ω → Π ,

4
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i.e., ω ↦→ p(ω). Let a joint probability density function ρ : Π → R≥0 be given. If a measurable function f : Π → R
epends on the parameters, then its expected value is

E[f ] =

∫
Π

f (p) ρ(p) dp. (11)

he Hilbert space

L2(Π ) =
{
f : Π → R : f is measurable and E[f 2] < ∞

}
(12)

s equipped with the inner product

⟨f , g⟩ = E[fg] =

∫
Π

f (p)g(p) ρ(p) dp, f , g ∈ L2(Π ). (13)

he induced norm is given by ∥f ∥L2(Π ) =
√

⟨f , f ⟩. The stochastic modelling can also be generalised to the case of random
ariables without densities (e.g., discrete random variables). In such cases, one replaces ρ(p)dp with the appropriate
easure differential. In general, any measure with finite moments can be employed.
We assume that there is an L2(Π )-complete orthonormal system (Φi)i∈N consisting of polynomials, i.e., for all i, j ∈ N,

⟨Φi,Φj⟩ =

{
1 for i = j,
0 for i ̸= j.

onditions on ρ that ensure availability of such a system are discussed in [30]. The theory of the generalised polynomial
haos (PC) requires a family of orthonormal polynomials for each random distribution ρ, and most classical probability
istributions have such a family, see [5]. The choice of polynomials is not necessary for the general framework we present
elow, but polynomials are commonly used when the state varies smoothly with respect to the random parameters p.
In our case, where we assume the random parameters p = (p1, . . . , pq)⊤ to be independent, then ρ has tensorial

tructure,

ρ(p) =

q∏
ℓ=1

ρℓ(pℓ),

here ρℓ is the univariate probability density function for the scalar random variable pℓ for each ℓ = 1, . . . , q. This allows
n explicit construction of the multivariate orthonormal family {Φi} using univariate orthogonal polynomials. Let

{
φ

(ℓ)
k

}∞

k=0
ith degree(φ(ℓ)

k ) = k be a family of ρℓ-orthonormal univariate polynomials, i.e.,∫
R
φ

(ℓ)
i (pℓ)φ

(ℓ)
k (pℓ)ρℓ(pℓ) dpℓ =

{
1 for i = k,
0 for i ̸= k.

inally, with N0 := N ∪ {0}, let β : N → Nq
0 denote an enumeration that exhausts Nq

0, so that β(i) is a q-dimensional
ulti-index. Then, the multivariate polynomials can be defined as products

Φi(p1, p2, . . . , pq) = φ
(1)
β1

(p1)φ
(2)
β2

(p2) · · ·φ
(q)
βq

(pq), (14)

here (β1, . . . , βq) = β(i). The total degree of the tensorial multivariate polynomial Φi is |β(i)|, i.e., the sum of the
egrees of the component univariate polynomials. Multivariate polynomials of a low degree but with large number q of
andom variables include many constant univariate polynomials in the factorisation (14). Other types of basis functions
an also be used in the stochastic approach. However, it is computationally advantageous to use tensorial structures (14)
ith many constant factors. Let us choose the multi-index ordering β so that polynomials are partially ordered by degree,

.e., polynomials are sorted such that |β(i)| = degree(Φi) ≤ degree(Φi+1) = |β(i + 1)| is satisfied for all i ≥ 1. Furthermore,
ssuming positive signs for leading coefficients, it follows that Φ1 ≡ 1.
Consequently, we expand the state and the output of the DAE system (10) into

x(t, p) =

∞∑
i=1

vi(t)Φi(p), y(t, p) =

∞∑
i=1

wi(t)Φi(p) (15)

ith coefficient functions vi : [0,∞) → Rn and wi : [0,∞) → R, respectively. Under mild conditions on ρ, the series (15)
onverge in the norm of the Hilbert space (12) and pointwise in time, cf. [30]. Since Φ1 denotes the constant function,
he total variance of the random QoI has the form

V (t) = E
[
(y(t, ·) − E[y(t, ·)])2

]
=

∞∑
i=2

wi(t)2 (16)

for each t ≥ 0.
5
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3.2. Stochastic Galerkin method

In a numerical approximation, the infinite sums in (15) must be truncated. We accomplish this by including all
olynomials up to a total degree d described by the set of integers

Id
= {i ∈ N : |β(i)| = degree(Φi) ≤ d} . (17)

he cardinality of this set is given by |Id
| =

(d+q)!
d!q! =: m, see [5, p. 65]. Then the infinite summations in (15) are

approximated by

x(d)(t, p) =

∑
i∈Id

v̂i(t)Φi(p), y(d)(t, p) =

∑
i∈Id

ŵi(t)Φi(p), (18)

respectively, where the coefficient functions v̂i and ŵi can be determined by the stochastic Galerkin approach. Inserting
the approximations (18) into the DAE system (10) yields the residuals

Rx(p) = E(p)ẋ(d)(t, p) − A(p)x(d)(t, p) − B(p)u(t),

Ry(p) = y(d)(t, p) − c(p)⊤x(d)(t, p).

The Galerkin approach requires that each component of the residuals is orthogonal to the space spanned by {Φi : i ∈ Id
}

with respect to the inner product (13). Introducing the parameter-dependent arrays

Ψ (p) = [Φi(p)Φj(p)]
m,m
i,j=1 ∈ Rm×m, ψ(p) = [Φi(p)]mi=1 ∈ Rm,

we obtain the larger deterministic system of DAEs

Ê ˙̂v(t) = Âv̂(t) + B̂u(t), Êv̂(0) = 0

ŵ(t) = Ĉ v̂(t),
(19)

where v̂(t) = (v̂1(t)⊤, . . . , v̂m(t)⊤)⊤ ∈ Rmn, ŵ(t) = (ŵ1(t), . . . , ŵm(t))⊤ ∈ Rm, and the matrices Ê, Â ∈ Rmn×mn,
B̂ ∈ Rmn×nin , and Ĉ ∈ Rm×mn are given by

Ê = E[Ψ ⊗ E], Â = E[Ψ ⊗ A], B̂ = E[ψ ⊗ B], Ĉ = E[Ψ ⊗ c⊤
]. (20)

Here, the symbol ⊗ denotes the Kronecker product, and the probabilistic integration (11) is applied componentwise. The
system (19) has the state v̂, the same input u as in (10), and the output ŵ. We use homogeneous initial conditions in (19).

If the components of E, A, B and c in (10) are polynomials in the random variables, then the system matrices (20)
can be calculated analytically for traditional probability distributions. This property is an advantage in comparison to
stochastic collocation techniques, where quadrature errors or sampling errors emerge. In the general case, we cannot,
unfortunately, avoid the computation of the Kronecker products in (20). However, if the system matrices in (10) depend
affinely on parameters, i.e.,

E(p) = E0 +

NE∑
k=1

ηEk (p)Ek, A(p) = A0 +

NA∑
k=1

ηAk (p)Ak,

B(p) = B0 +

NB∑
k=1

ηBk (p)Bk, c(p) = c0 +

Nc∑
k=1

ηck(p)ck,

(21)

where ηEk , η
A
k , η

B
k , η

c
k : Π → R are scalar (nonlinear) coefficient functions, and Ej, Aj, Bj and cj are parameter-independent.

Consequently, the system matrices in (20) can be computed as

Ê = (Im ⊗ E0) +

NE∑
k=1

Ψ̂ E
k ⊗ Ek, Â = (Im ⊗ A0) +

NA∑
k=1

Ψ̂ A
k ⊗ Ak,

B̂ = (e1 ⊗ B0) +

NB∑
k=1

ψ̂B
k ⊗ Bk, Ĉ = (Im ⊗ c⊤

0 ) +

Nc∑
k=1

Ψ̂ c
k ⊗ c⊤

k ,

(22)

with the identity matrix Im ∈ Rm×m, the unit vector e1 ∈ Rm, and the parameter-independent matrices

Ψ̂ E
k = E[ηEk Ψ ], Ψ̂ A

k = E[ηAk Ψ ], ψ̂B
k = E[ηBk ψ], Ψ̂ c

k = E[ηck Ψ ].

This significantly reduces the computational complexity provided that NE , NA, NB, and Nc are much smaller than the
problem dimension n. Note that the full matrices in (20) need not be explicitly formed, and efficient algorithmic
implementations would leverage the Kronecker product structure shown above to accelerate computations. In particular,
an affine-linear dependence on the parameters is advantageous, where the matrices (21) have the form

E(p) = E0 +

q∑
pkEk, A(p) = A0 +

q∑
pkAk, (23)
k=1 k=1

6
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etc. Typically, some of the matrices Ak, Ek are zero. The associated matrices Ψ̂ E
k = Ψ̂ A

k = E[pk Ψ ] are sparse due to the
orthogonality of the basis polynomials. The matrices Â, Ê of the stochastic Galerkin system (19) inherit any sparsity of
Ak, Ek and Ψ̂ A

k , Ψ̂
E
k through Kronecker products. Further details on the stochastic Galerkin method for linear dynamical

systems can be found in [11–13,31].
We remark that PC in combination with the stochastic Galerkin approach is applicable to systems with a moderate

number q of random variables (say, up to one hundred). Problems with a very large number of random parameters result
in extremely large systems. Such systems require more customised approaches, but have been successfully treated, for
example, in [9] and in [32] for stationary problems.

3.3. DAE aspects of stochastic Galerkin system

Note that the stochastic Galerkin system (19) may be unstable even if the parametric DAE system (10) is asymptotically
stable for all p ∈ Π , see [33]. Likewise, the matrix Ê in (19) may be non-singular even if E(p) in (10) is singular for all

∈ Π . However, such models are rather seldom in practice. Thus, we henceforth assume that the stochastic Galerkin
ystem (19) is asymptotically stable and it has the same index ν as the DAE system (10). Sufficient conditions ensuring
he latter are given in [12,13].

Furthermore, if the DAE system (10) is semi-explicit meaning that E(p) exhibits a partitioning

E(p) =

[
E11(p) 0

0 0

]
ith a non-singular matrix E11(p) ∈ Rk×k for all p ∈ Π , then a permutation of equations and unknowns in the stochastic
alerkin system (19) yields an equivalent DAE system with the matrix

Ê =

[
Ê11 0
0 0

]
, (24)

here Ê11 = E[Ψ ⊗ E11]. If E11(p) is symmetric and positive definite for all p ∈ Π , then the matrix Ê11 is also symmetric
nd positive definite, see [34, Lemma 1]. In this case, the stochastic Galerkin system (19) becomes semi-explicit.

. Sensitivity analysis

Next, we present a global variance-based sensitivity analysis which is used to measure the influence of the individual
andom parameters on the QoI.

.1. Partial variances and total effect sensitivity indices

The Sobol indices provide a set of non-negative real numbers which describe the interaction of each subset of random
ariables, see [7,8]. Thus, the number of Sobol indices is equal to the number of non-empty subsets of {1, . . . , q}, i.e., 2q

−1.
he Sobol indices yield the total effect sensitivity coefficients which represent a variance-based sensitivity measure.
We employ an equivalent definition of the total effect sensitivity indices, where the PC expansion of a stochastic

unction, cf. [35], is used. The random output of the DAE system (10) exhibits the PC expansion (15). Let

Ij =
{
i ∈ N : Φi is non-constant in pj

}
(25)

e a set of integers for each component pj, j = 1, . . . , q, of the random vector p. Since Φ1 is the constant polynomial
degree zero), it holds that 1 /∈ Ij for all j. Then the partial variance associated with the jth random variable can be
efined via

Vj(t) =

∑
i∈Ij

wi(t)2, j = 1, . . . , q, (26)

or all t ≥ 0. It follows from (16) and (26) that 0 ≤ Vj(t) ≤ V (t) for j = 1, . . . , q. We assume that the total variance (16)
s positive for all t > 0. Then the total effect sensitivity indices are defined as

Sj(t) =
Vj(t)
V (t)

, j = 1, . . . , q. (27)

t holds that 0 ≤ Sj(t) ≤ 1 for all j = 1, . . . , q and all t > 0, hence,

1 ≤ S1(t) + · · · + Sq(t) ≤ q

ointwise in time. Often, the sum of the sensitivity indices is close to the lower bound one.
Restricting the index set Ij to polynomials up to a total degree d, we obtain the intersection

Id
j = Ij ∩ Id, j = 1, . . . , q, (28)

f. (17). Summation over this finite index set generates approximations of the partial variances (26).
7
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4.2. Stochastic Galerkin system with quadratic outputs

The stochastic Galerkin system (19) yields approximations to the sensitivity indices (27) given by

Ŝj(t) =
V̂j(t)

V̂ (t)
, j = 1, . . . , q, (29)

ith

V̂j(t) =

∑
i∈Id

j

ŵi(t)2, V̂ (t) =

m∑
i=2

ŵi(t)2 (30)

ncluding the index set (28). The following theorem demonstrates that the approximations (30) inherit the convergence
f the QoI in the stochastic Galerkin method. The proof is given in the Appendix.

heorem 1. Let y(t, ·) ∈ L2(Π ) for all t ≥ 0. If the stochastic Galerkin method is convergent in the sense

lim
d→∞

y(t, ·) −

∑
i∈Id

ŵi(t)Φi(·)

L2(Π )

= 0 (31)

or all t ≥ 0, then the approximations of the total variance and the partial variances in (30) also converge, i.e.,

lim
d→∞

⏐⏐⏐V (t) − V̂ (t)
⏐⏐⏐ = 0,

lim
d→∞

⏐⏐⏐Vj(t) − V̂j(t)
⏐⏐⏐ = 0, j = 1, . . . , q,

ointwise for all t ≥ 0.

The sensitivity indices (27) are time-dependent functions, which are determined by the choice of the input signals u.
lternatively, we can construct a single number as a sensitivity measure for each random variable.
Let ŵ(j) be the vector-valued function consisting of the components of ŵ in Id

j from (28). Then it follows from (30)
hat

V̂j(t) = ŵ(j)(t)⊤ŵ(j)(t), j = 1, . . . , q. (32)

e now construct an output matrix associated with this partial variance. To this end, we consider a diagonal matrix

Dj = diag
(
d(j)1 , . . . , d

(j)
m

)
with d(j)i =

{
1 if i ∈ Id

j
0 if i /∈ Id

j

for each j = 1, . . . , q. Then the matrix Ĉ ′

j = DjĈ contains rows that are zero. It holds that rank(Ĉ ′

j ) ≤ mj = |Id
j | due to

ank(Dj) = mj. We remove the zero rows from Ĉ ′

j and obtain a condensed matrix Ĉj ∈ Rmj×mn. Consequently, (32) implies
that

V̂j(t) = ŵ(j)(t)⊤ŵ(j)(t) = v̂(t)⊤Ĉ ′⊤

j Ĉ ′

j v̂(t) = v̂(t)⊤Ĉ⊤

j Ĉjv̂(t). (33)

The partial variance of the jth random variable can be obtained by a stochastic Galerkin system

Ê ˙̂v(t) = Âv̂(t) + B̂u(t), Êv̂(0) = 0,

V̂j(t) = v̂(t)⊤Ĉ⊤

j Ĉjv̂(t),
(34)

where a single quadratic output is defined by the symmetric, positive semi-definite matrix Ĉ⊤

j Ĉj for j = 1, . . . , q. Similarly,
the total variance is given as the single quadratic output

V̂ (t) = v̂(t)⊤C̆⊤C̆ v̂(t)

from the state in the stochastic Galerkin system (19), where C̆ ∈ R(m−1)×mn denotes the matrix Ĉ without its first row
assuming that Φ1 is the unique constant basis polynomial.

The systems (34) represent linear DAEs with a (single) quadratic output. In [36], MOR of such systems was performed by
a transformation to a quadratic-bilinear system in the case of ODEs. However, this transformation is not always feasible
in the case of DAEs. Furthermore, in this case, q systems have to be reduced. In [37], a model reduction approach for
a control system with a quadratic output specified by a symmetric positive semi-definite matrix was proposed which
requires a symmetric decomposition of this matrix like the (pivoted) Cholesky factorisation. In our application, we already
possess such a decomposition. Instead of (34), we consider the alternative stochastic Galerkin systems

Ê ˙̂v(t) = Âv̂(t) + B̂u(t), Êv̂(0) = 0,
ˆ

(35)

ẑj(t) = Cjv̂(t)

8
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for j = 1, . . . , q with multiple outputs. Then the quadratic output of system (34) can be determined as V̂j(t) = ẑj(t)⊤ẑj(t).
n Section 5, we will show that reduced-order models of the q systems (35) are obtained by the reduction of a single
inear dynamical system.

.3. System norms and sensitivity measures

Similarly to the ODE case [14], we use the H∞-norms of the stochastic Galerkin systems (35) to quantify the sensitivity
f the random QoI in the DAE system (10) with single output. In contrast, the H2-norms and H∞-norms of the separate
omponents of the transfer function of (19) were analysed in [38] to specify a sparse representation of the random QoI.
We define the sensitivity measures as follows.

efinition 6. Consider the stochastic Galerkin systems (35) with the transfer functions Ĥj(s) = Ĉj(sÊ − Â)−1B̂ for
= 1, . . . , q. Then the sensitivity coefficients are defined as

θ̂j = ∥Ĥj∥H∞
, j = 1, . . . , q. (36)

The following lemma provides a relationship between the H∞-norms of the transfer functions of the Galerkin
ystem (19) and the modified Galerkin systems (35).

emma 1. Let Ĥ and Ĥ1, . . . , Ĥq be the transfer functions of the stochastic Galerkin systems (19) and (35), respectively. Then
t holds that

∥Ĥj∥H∞
≤ ∥Ĥ∥H∞

, j = 1, . . . , q.

Furthermore, the sensitivity measures from Definition 6 can be used to bound the L1-norm of the partial variances in
he time domain.

emma 2. The stochastic Galerkin systems (35) with the initial condition Êv̂(0) = 0 yield approximations to the partial
ariances satisfying the bounds

∥V̂j∥L1([0,∞)) ≤ θ̂2j ∥u∥2
L2([0,∞)), j = 1, . . . , q.

Lemmas 1 and 2 can be proved analogously to the ODE case in [14]. Lemma 2 demonstrates that parameters with small
ensitivity coefficients (36) have partial variances close to zero in the time domain. Thus, their variations can be neglected,
.e., the parameters are remodelled as constants. This approach is called screening, see [39], or freezing of insignificant
andom variables, see [7].

The definition of the total effect sensitivity indices (27) suggest to arrange the relative sensitivity measures

θ̂ relj =
∥Ĥj∥H∞

∥Ĥ∥H∞

, j = 1, . . . , q. (37)

hen Lemma 1 implies 0 ≤ θ̂ relj ≤ 1. However, since the denominators in (37) are identical for j = 1, . . . , q, we consider
just the normalised measures

θ̂∗

j =
θ̂j

θ̂1 + · · · + θ̂q
. (38)

These quantities exhibit the property 0 ≤ θ̂∗

j ≤ 1 for j = 1, . . . , q as well.

5. Model order reduction

The sensitivity measures (36) require the computation of the H∞-norms of the large DAE systems (35) obtained
by the stochastic Galerkin method. As mentioned in Section 2.2, computing such norms involves solving generalised
eigenvalue problems of high dimension and often is a huge computational burden. To reduce the computational effort,
we apply model reduction to the DAE systems (35) and use the resulting reduced-order models to determine accurate
approximations to the sensitivity measures (36). Note that systems (35) have the same state equation as the stochastic
Galerkin system (19), and the outputs of (35) are just selected components of the output of (19). Therefore, we propose
first to approximate system (19) by a reduced-order model

Ẽ ˙̃v(t) = Ãṽ(t) + B̃u(t),
z̃(t) = C̃ ṽ(t),

(39)

with Ẽ, Ã ∈ Rr×r , B̃ ∈ Rr×nin , and C̃ ∈ Rm×r with r ≪ nm. Such a model can be computed by projection

Ã = T⊤

l Â Tr, B̃ = T⊤

l B̂, C̃ = Ĉ Tr, Ẽ = T⊤

l Ê Tr (40)

ith the projection matrices Tl, Tr ∈ Rmn×r . After these projections are identified, we use them for model reduction of
ystems (35) for all j = 1, . . . , q.
9
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Remark 1. Since the partial variances (26) do not depend on the expected value, the first row of the output matrix Ĉ
in (19) can be removed. However, we keep the complete matrix Ĉ in model reduction, because the expected value is
an important quantity often desired in statistics.

5.1. Balanced truncation

For model reduction of the stochastic Galerkin system (19), we employ a balanced truncation method. This method
was first developed for ODE systems [40,41] and then extended to DAEs in [23]. Since the DAE system (19) has many
outputs and only a few inputs, we use the balanced truncation approach developed in [22,42] for systems with many
inputs or outputs. Here, we present a modification of this approach which requires only one eigenvalue decomposition
compared to two eigenvalue decompositions and one singular value decomposition for the method in [22].

Let the stochastic Galerkin system (19) be asymptotically stable. Furthermore, for simplicity, we assume that (19) has
a strictly proper transfer function Ĥ(s). An extension to general systems with possibly improper transfer functions can
be done in a manner similar to [22,23]. First, we define a proper controllability Gramian Ĝc and a proper observability
Gramian Ĝo as unique symmetric, positive semi-definite solutions of the projected Lyapunov equations

ÊĜcÂ⊤
+ ÂĜcÊ⊤

+ P̂lB̂B̂
⊤P̂⊤

l = 0, Ĝc = P̂rĜcP̂⊤

r , (41)

Ê⊤ĜoÂ + Â⊤ĜoÊ + P̂⊤

r Ĉ⊤Ĉ P̂r = 0, Ĝo = P̂⊤

l ĜoP̂l, (42)

where P̂l and P̂r are the spectral projectors onto the left and right deflating subspaces of the matrix pencil λÊ − Â
corresponding to the finite eigenvalues. The Gramians can be used to characterise the input and output energy of the
system (19) as well as its controllability and observability properties, see [23] for more details.

One can show that the matrix ĜcÊ⊤ĜoÊ has non-negative eigenvalues λi(ĜcÊ⊤ĜoÊ), see [23]. We use them to define
proper Hankel singular values

σi =

√
λi(ĜcÊ⊤ĜoÊ) , (43)

which quantify the contribution of the individual state variables to the energy transfer from the input to the state, and
from the state to the output. The DAE system (19) can be transformed into a balanced form such that the Gramians of
the transformed system become identical and diagonal matrices with the proper Hankel singular values on the diagonal.
Then the state variables corresponding to the low proper Hankel singular values make a negligibly small contribution to
the energy transition. Therefore, they can be removed from the system without substantially changing its input–output
relationship. This identifies the projection matrices Tl and Tr defining the reduced-order model in (40). We next describe
how these matrices are computed in practice.

5.2. Computation of a reduced-order model

A reduced-order model (39), (40) via balanced truncation can be computed as follows. Using the full-rank Cholesky
factorisation of the controllability Gramian Ĝc = ZcZ

⊤
c with a full-rank matrix Zc ∈ Rmn×rc , we obtain

σi =

√
λi(ĜcÊ⊤ĜoÊ) =

√
λi(ZcZ⊤

c Ê⊤ĜoÊ) =

√
λi(Z⊤

c Ê⊤ĜoÊZc) .

hen the projection matrices Tl and Tr can be determined using the dominant subspaces of the symmetric, positive
emi-definite matrix Z⊤

c Ê⊤ĜoÊZc as follows. Let

Z⊤

c Ê⊤ĜoÊZc = [W1, W0 ]

[
Λ1

Λ0

]
[W1, W0 ]

⊤ (44)

e the associated eigenvalue decomposition, where [W1, W0 ] is orthogonal,

Λ1 = diag(λ1, . . . , λr ) and Λ0 = diag(λr+1, . . . , λrc )

ith decreasingly ordered eigenvalues λ1 ≥ · · · ≥ λr > λr+1 ≥ · · · ≥ λrc . Then we determine the projection matrices in
40) as

Tl = ĜoÊZcW1Λ
−

3
4

1 , Tr = ZcW1Λ
−

1
4

1 . (45)

he resulting reduced-order model (39), (40) has a non-singular matrix Ẽ. It is asymptotically stable and balanced. Indeed,
aking into account that the left inverses of Tl and Tr are given by

T−

l = Λ
−

1
4

1 W⊤

1 Z⊤

c Ê⊤, T−

r = Λ
−

3
4

1 W⊤

1 Z⊤

c Ê⊤ĜoÊ,

espectively, the Gramians of the reduced-order model (39) have the form

T−

r Ĝc(T−

r )⊤ = Λ
−

3
4

1 (W⊤

1 Z⊤

c Ê⊤ĜoÊZc)(Z
⊤

c Ê⊤ĜoÊZcW1)Λ
−

3
4

1 = Λ
−

3
4

1 Λ1W
⊤

1 W1Λ1Λ
−

3
4

1 = Λ
1
2
1 ,

− ˆ − ⊤ −
1
4 ⊤ ⊤ ˆ⊤ ˆ ˆ

−
1
4

1
2
Tl Go(Tl ) = Λ1 (W1 Zc E GoEZcW1)Λ1 = Λ1 .

10
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Moreover, its transfer function H̃(s) = C̃(sẼ − Ã)−1B̃ satisfies the following error boundĤ − H̃

H∞

≤ 2
rc∑

i=r+1

σi (46)

ith the proper Hankel singular values σi =
√
λi, see [23] for details.

The most expensive steps in the presented balanced truncation method consist of solving the projected Lyapunov
Eqs. (41) and (42). Since the matrix B̂ often has only a few columns (nin ≪ nm), the solution of (41) can usually be
ell approximated by a low-rank matrix Ĝc ≈ Z̃cZ̃

⊤
c with Z̃c ∈ Rmn×r̃c , r̃c ≪ rc. The low-rank alternating directions

mplicit (ADI) method [43] or the extended Krylov subspace method [44] yield such a low-rank approximation. In these
ethods, the spectral projectors P̂r and P̂l are required. For several structured DAE models resulting in circuit simulation,
omputational fluid dynamics, and constrained mechanical systems, these projectors can be constructed by exploiting
he system structure, see [43]. However, for unstructured problems, the projected Lyapunov equation with only small to
edium-sized matrices can currently be solved using the Schur–Hammarling method [45].
Next, we briefly discuss how to compute the product matrix ĜoÊZc required in (44) and (45) with Zc replaced by Z̃c.

Thus, we proceed to describe the procedure for computing ĜoÊZ̃c. First of all note that the solution of the projected
Lyapunov equation (42) can be represented as

Ĝo =
1
2π

∫
∞

−∞

(−iωÊ⊤
− Â⊤)−1P̂⊤

r Ĉ⊤Ĉ P̂r(iωÊ − Â)−1 dω.

Then we have

ĜoÊZ̃c =
1
2π

∫
∞

−∞

(−iωÊ⊤
− Â⊤)−1P̂⊤

r Ĉ⊤Ĉ P̂r(iωÊ − Â)−1ÊZ̃c dω. (47)

his integral can be approximated by a suitable quadrature rule

ĜoÊZ̃c ≈

ℓ∑
j=1

αjF (iωj) (48)

ith the weights αj, quadrature nodes ωj, and

F (iωj) = (−iωjÊ⊤
− Â⊤)−1P̂⊤

r Ĉ⊤Ĉ P̂r(iωjÊ − Â)−1ÊZ̃c ∈ Rmn×r̃c .

The matrix-valued function F can be evaluated efficiently by solving the linear systems

(iωjÊ − Â)Y = ÊZ̃c and (−iωjÊ⊤
− Â⊤)X = P̂⊤

r Ĉ⊤Ĉ P̂rY ,

if Z̃c has a small number of columns. Just one LU decomposition is required to solve the two linear systems for fixed j.
Taking into account that

ĜoÊZ̃c =
1
2π

∫
∞

0

(
F (iω) + F (iω)

)
dω,

the computation of the integral can slightly be simplified.

Remark 2. Note that instead of (48) we can approximate the symmetric matrix Z̃⊤
c Ê⊤ĜoÊZ̃c by the quadrature rule as

Z̃⊤

c Ê⊤ĜoÊZ̃c ≈

ℓ∑
j=1

αj
(
Ĉ P̂r(iωjÊ − Â)−1ÊZ̃c

)∗(Ĉ P̂r(iωjÊ − Â)−1ÊZ̃c
)
,

where only the products (iωjÊ − Â)−1ÊZ̃c need to be computed. However, we still require ĜoÊZ̃c in (45). Therefore, we
prefer to work with (47) from the beginning.

5.3. Error bound for sensitivity measures

For MOR of the Galerkin systems (35), we use the same projection matrices Tl and Tr as for (19) and compute the
reduced-order systems with the downsized matrices Ẽ, Ã, B̃ as in (40) and

C̃j = ĈjTr, j = 1, . . . , q.

These reduced systems inherit the asymptotic stability and their transfer functions inherit the properness of the full-order
models (35). Then we define

˜ ˜
θj := ∥Hj∥H∞
(49)

11
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Fig. 1. Electric circuit of the Miller integrator.

with the transfer functions H̃j(s) = C̃j(sẼ − Ã)−1B̃ as approximations to the sensitivity coefficients θ̂j in (36). The following
theorem establishes a priori error bounds for these approximations.

Theorem 2. Consider the Galerkin systems (35) with the transfer functions Ĥj and the reduced-order systems with the transfer
unctions H̃j. Let θ̂j and θ̃j be the sensitivity measures as defined in (36) and (49), respectively. Then the approximation errors
satisfy the bounds⏐⏐θ̂j − θ̃j

⏐⏐ ≤ 2
rc∑

i=r+1

σi, j = 1, . . . , q, (50)

where σi are the proper Hankel singular values of the stochastic Galerkin system (19).

Proof. Using the definitions of the sensitivity measures in (36), (49), and the reverse triangle inequality of the norms, we
obtain⏐⏐θ̂j − θ̃j

⏐⏐ =
⏐⏐∥Ĥj∥H∞

− ∥H̃j∥H∞

⏐⏐ ≤
Ĥj − H̃j


H∞

(51)

for j = 1, . . . , q. The mapping Ĥ−H̃ represents the transfer function of the (linear) difference system associated with (19),
where the same input is supplied to the full-order model and the reduced-order model, while the output is the difference
of their outputs. Likewise, the mappings Ĥj − H̃j describe the difference systems associated with (35). The outputs of
the system (35) are a subset of the outputs of the system (19) due to Id

j ⊂ Id for each j. Consequently, the outputs of
the difference system for (35) are a subset of the outputs of the difference system for (19). We obtain together with the
bound (46) thatĤj − H̃j


H∞

≤
Ĥ − H̃


H∞

≤ 2
rc∑

i=r+1

σi

for j = 1, . . . , q. Thus, the error bounds (50) hold. □

Theorem 2 demonstrates that the approximation of the sensitivity measures inherits the error bound of the model
reduction by balanced truncation. In (51), the reverse triangle inequality produces pessimistic estimates in some cases.
Yet, the derived MOR technique has the advantage that we deal with a single linear dynamical system and linear outputs,
whereas the required q-tuples of H∞-norms represent more complicated quantities of interest.

6. Illustrative examples

We now apply the sensitivity measures from Section 4 to two test examples.

6.1. Miller integrator

As the first example, we consider the electric circuit of the Miller integrator from [1]. Fig. 1 depicts the circuit diagram.
The involved physical parameter vector p = (C1, C2,G, a)⊤ contains two capacitances, a conductance and an amplification
factor. Modified nodal analysis (MNA), see [2], yields a DAE system (10) with the state x = (u1, u2, u3, ȷ1, ȷ2)⊤, where uk,

= 1, 2, 3, are the node voltages, and ȷk, k = 1, 2, are the branch currents. The involved matrices read as

A(p) =

⎡⎢⎢⎢⎣
−G G 0 −1 0
G −G 0 0 0
0 0 0 0 −1
1 0 0 0 0

⎤⎥⎥⎥⎦ , E(p) =

⎡⎢⎢⎢⎣
0 0 0 0 0
0 (C1 + C2) −C2 0 0
0 −C2 C2 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦

0 −a 1 0 0 0 0 0 0 0

12
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Fig. 2. Bode plots (magnitudes) of the Miller integrator for deterministic parameters and several outputs.

Table 1
H∞-norms of the stochastic Galerkin systems (19), sums of the sensitivity measures θ̂j , and individual sensitivities θ∗

j
(in percentage of the sum) for random parameters p = (p1, p2, p3, p4) = (C1, C2,G, a), given separate outputs in the
Miller integrator.

Output H∞-norm
∑4

j=1 θ̂j θ∗

1 (C1) θ∗

2 (C2) θ∗

3 (G) θ∗

4 (a)

u2 1.0000 0.3873 32.5% 19.8% 14.0% 33.6%
u3 2.0133 0.8746 30.9% 19.5% 12.4% 37.3%
ȷ1 0.0010 0.00045 28.1% 17.2% 25.6% 29.1%
ȷ2 0.0017 0.00090 71.6% 2.3% 20.2% 5.9%

and B = [0, 0, 0,−1, 0]⊤. The single input u = uin is the voltage source, and the single output is the node voltage u3 which
is approximately a multiple of the integral of the input voltage. Nevertheless, we investigate all four variables u2, u3, ȷ1, ȷ2
s single outputs separately. Fig. 2 shows the magnitude part of the Bode plots for the transfer function associated with
ach output in the case of constant parameters C1 = 10−10, C2 = 5 · 10−11, G = 0.001, a = 2.
We take independent uniform probability distributions of the random parameters, which vary 20% around mean values

given by the above constant selection. The index of the DAE system is two for all realisations of the random variables.
In the PC expansion (15), the multivariate basis polynomials (Φi)i∈N are products of the univariate Legendre polynomials.
We include all basis polynomials up to degree d = 3. Hence, the number of basis functions is m = 35. The stochastic
Galerkin system (19) is a DAE system of dimension mn = 175.

Four stochastic Galerkin systems (19) and their associated systems (35) are arranged corresponding to the four separate
QoIs. Since these systems are relatively small, we compute their H∞-norms (7) without model reduction. Table 1 shows
the H∞-norms of systems (19) and the sums θ̂1 + θ̂2 + θ̂3 + θ̂4 of the sensitivity measures (36) for every separate input.
The individual sensitivities with respect to the parameters indicated by percentages of this sum are also presented there.
Fig. 3 illustrates the relative sensitivity measures (38). We recognise that the parameters C1 and a are more important
than C2 and G in the output voltage u3. If the current ȷ2 represents the QoI, then the parameter C1 dominates significantly,
while the influence of C2 and a is negligible.

6.2. Band-pass filter

As the second example, we consider the electric circuit of a band-pass filter shown in Fig. 4. A single input voltage
is induced, whereas a single output voltage drops at a load conductance. MNA produces a linear DAE system (10) of
13
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Fig. 3. Sensitivity measures of different outputs in example of the Miller integrator.

Fig. 4. Electric circuit of a band-pass filter.

Table 2
Physical parameters for a band-pass filter model.
Capacitances 10−6

Inductances 10−6

Conductances 10
Conductance next to input voltage 1
Conductance at output voltage 10−3

dimension n = 23. The physical parameter vector consists in 7 capacitances, 7 inductances and 9 conductances (q = 23).
The system matrices are affine-linear functions of the parameters as in (23). The DAE system has index one for all positive
parameters, and its transfer function is strictly proper. Fig. 5 shows the Bode plot of this system for a constant selection
of the parameters specified in Table 2.

Now we replace the parameters by independent random variables with uniform probability distributions which vary
10% around the above constant choice. The basis functions are again products of the Legendre polynomials. We include
all basis polynomials up to degree d = 2. The number of basis functions is m = 300, and, hence, the stochastic Galerkin
system (19) exhibits the dimension mn = 6900. The matrices of the Galerkin system were calculated using the Kronecker
products in (22). Table 3 illustrates the sparsity of the computed system matrices. This system inherits the properties
14
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Fig. 5. Bode plot of the band-pass filter model for a constant realisation of the parameters.

Fig. 6. Proper Hankel singular values (left); approximation errors in the H∞-norm and error bound for different reduced dimensions (right).

Table 3
Sparsity of the matrices of the stochastic Galerkin system in the band-pass filter example.
Matrix # Non-zero entries Percentage

Â 46,776 0.098%
Ê 22,938 0.048%
B̂ 24 0.348%
Ĉ 300 2.26%

of the original DAE system, i.e., it is of index one, asymptotically stable and has a strictly proper transfer function. This
example was also considered in [34,46], where the one-sided Arnoldi algorithm was used for model reduction of the
stochastic Galerkin system.

Note that the equations and unknowns of the circuit model can just be rearranged such that the DAE system (10)
ecomes semi-explicit. Then the associated stochastic Galerkin system is also permuted to obtain a semi-explicit system
ith a mass matrix of the form (24). With this rearrangement, the number of differential variables is 4200 and the number
f algebraic variables is 2700.
For model reduction of the stochastic Galerkin system (19), we apply the balanced truncation method as described in

ections 5.1 and 5.2. For computing the integral (47), we use the Gauss–Kronrod quadrature rule. The dominant rmax = 93
roper Hankel singular values are shown in Fig. 6 (left). The approximation errors ∥Ĥ − H̃∥H∞

and error bounds (46) are
resented in Fig. 6 (right). In the error bound (46), we substituted all missing singular values σi for i > 93 by the singular
alue σ93.
The Galerkin systems (35) were substituted by the reduced-order models of dimension r = 60 and their H∞-norms

ere used to compute the values (49) as approximations of the sensitivity measures (36) shown in Fig. 7 (left), where
he physical parameters are ordered as in Table 2. The same quantities are also presented in Fig. 9. Furthermore, Fig. 7
right) demonstrates the sums of the sensitivity measures for each group of the physical parameters. We observe that the
onductances are less important than the capacitances and inductances.
For comparison, we perform a transient simulation of the stochastic Galerkin system (19) on the time interval [0, T ]

with T = 4 · 10−4 using the trapezoidal rule as a time integrator. As the input voltage, we supply the chirp signal

u (t) = sin
(
2πκt2

)
with κ = 109.
in

15



R. Pulch, A. Narayan and T. Stykel Journal of Computational and Applied Mathematics 397 (2021) 113666

a
r
m

Fig. 7. Sensitivity measures θ̂j (left) and merged sensitivity measures for different groups of physical parameters (right) in band-pass filter example.

Fig. 8. Expected value (left) and standard deviation (right) of random output voltage in electric circuit of band-pass filter.

Fig. 9. Sensitivity measures (36) from H∞-norms (left) and maximum of total effect sensitivity indices (52) in transient simulation (right) using
semi-logarithmic scale for the band-pass filter example.

Fig. 8 depicts the approximations of the expected value as well as the standard deviation associated with the random
output voltage. We observe that this electric circuit acts indeed as a band-pass filter, because only intermediate
frequencies pass through, while lower and higher frequencies are damped out. The time-dependent total effect sensitivity
indices (29) are determined by the outputs of the stochastic Galerkin system (19). The maximum values in time

max
t∈[0,T ]

Ŝj(t), j = 1, . . . , q, (52)

re shown in Fig. 9 (right). Likewise, Fig. 9 (left) illustrates the same quantities as in Fig. 7 (left) but using a loga-
ithmic scale. The relative positions of the maximum sensitivities (52) agree to the relative positions in the sensitivity
easures (36) shown in Fig. 9 (left).
16
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Appendix

Proof of Theorem 1. Let t ≥ 0 be fixed.
(i) It holds that

y(t, p) −

∑
i∈Id

ŵi(t)Φi(p) =

∑
i/∈Id

wi(t)Φi(p) +

∑
i∈Id

(wi(t) − ŵi(t))Φi(p).

he orthonormality of the basis polynomials allows for the application of Parseval’s identity. We obtainy(t, ·) −

∑
i∈Id

ŵi(t)Φi(·)
2

L2(Π )
=

∑
i/∈Id

wi(t)2 +

∑
i∈Id

(wi(t) − ŵi(t))2.

The first term converges to zero due to the assumption y(t, ·) ∈ L2(Π ). The convergence (31) implies that the second
term also converges to zero.

Let wd
= (w2, . . . , wm)⊤ and ŵd

= (ŵ2, . . . , ŵm)⊤ with m = |Id
|. The bound

∥wd(t) − ŵd(t)∥2
2 =

∑
i∈Id\{1}

(wi(t) − ŵi(t))2 ≤

∑
i∈Id

(wi(t) − ŵi(t))2

shows that

lim
d→∞

∥wd(t) − ŵd(t)∥2 = 0 (53)

n the Euclidean norm ∥ · ∥2. We apply the reverse triangle inequality⏐⏐∥wd
∥2 − ∥ŵd

∥2
⏐⏐ ≤ ∥wd

− ŵd
∥2.

The convergence properties and Parseval’s identity imply

lim
d→∞

∥ŵd(t)∥2 = lim
d→∞

∥wd(t)∥2 =

√
∥y(t, ·)∥2

L2(Π )
− w1(t)2. (54)

We obtain using the reverse triangle inequality again⏐⏐∥wd
∥
2
2 − ∥ŵd

∥
2
2

⏐⏐ =
⏐⏐∥wd

∥2 − ∥ŵd
∥2

⏐⏐ ·
⏐⏐∥wd

∥2 + ∥ŵd
∥2

⏐⏐
≤ ∥wd

− ŵd
∥2(∥wd

∥2 + ∥ŵd
∥2).

(55)

t follows that

lim
d→∞

⏐⏐∥wd(t)∥2
2 − ∥ŵd(t)∥2

2

⏐⏐ = 0, (56)

ince the upper bound in (55) tends to zero for increasing degree d.
(ii) The approximation of the total variance exhibits the error⏐⏐⏐V (t) − V̂ (t)

⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
∑
i/∈Id

wi(t)2 +

∑
i∈Id\{1}

wi(t)2 −

∑
i∈Id\{1}

ŵi(t)2

⏐⏐⏐⏐⏐⏐
≤

∑
i/∈Id

wi(t)2 +
⏐⏐∥wd(t)∥2

2 − ∥ŵd(t)∥2
2

⏐⏐ .
he first term tends to zero, since we assume y(t, ·) ∈ L2(Π ). The second term converges to zero due to (56).
(iii) Let wd,j and ŵd,j be the vectors consisting of the coefficients wi and ŵi, respectively, for all i ∈ Id

j . Furthermore,
f i ∈ Ij\Id

j , then it holds that degree(Φi) > d and thus i /∈ Id. We obtain an estimate for the error with respect to the
pproximations (30) of the partial variances

⏐⏐⏐Vj(t) − V̂j(t)
⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐⏐
∑

i∈Ij\Id
j

wi(t)2 +

∑
i∈Id

j

wi(t)2 −

∑
i∈Id

j

ŵi(t)2

⏐⏐⏐⏐⏐⏐⏐
≤

∑
i∈Ij\Id

j

wi(t)2 +
⏐⏐∥wd,j(t)∥2

2 − ∥ŵd,j(t)∥2
2

⏐⏐
≤

∑
i/∈Id

wi(t)2 +
⏐⏐∥wd,j(t)∥2

2 − ∥ŵd,j(t)∥2
2

⏐⏐ .
he first term converges to zero again due to y(t, ·) ∈ L2(Π ). As in (55), we estimate for the second term⏐⏐∥wd,j

∥
2
2 − ∥ŵd,j

∥
2
2

⏐⏐ ≤ ∥wd,j
− ŵd,j

∥2(∥wd,j
∥2 + ∥ŵd,j

∥2)
d d d d
≤ ∥w − ŵ ∥2(∥w ∥2 + ∥ŵ ∥2)
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uniformly for j = 1, . . . , q. This upper bound also tends to zero due to the convergence (53) and (54). □
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