Computers chem. Engng, Vol. 15, No. 10, pp. 701-713, 1991
Printed in Great Britain. All rights reserved

0098-1354/91 $3.00 + 0.00
Copyright © 1991 Pergamon Press plc

ALGORITHMS FOR THE LOCATION OF
DISCONTINUITIES IN DYNAMIC
SIMULATION PROBLEMS

A. J. PrestoN and M. BERZINS
School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK.

(Received 21 May 1990; final revision received 17 June 1991; received for publication 11 July 1991)

Abstract—Dynamic simulation problems in the chemical engineering industry often involve computing the
solution to large sparse stiff systems of index-one or -two differential-algebraic equations (Gear and
Petzold, Siam J. Numer. Anal. 21, 716728, 1984) with frequent discontinuities in the solution. This paper
is concerned with new algorithms that are needed to handle the location of these discontinuities accurately
and efficiently. The algorithms are implemented using the SPRINT (Berzins ef al. Proc. 3rd Euro. Conf.

for Maths in Industry, 1988a) software.

1. INTRODUCTION

The chemical and production processes employed in
the petroleum and chemical industries involve in-
creasingly specialized machinery and complex control
systems. The efficient and robust control of such
processes requires the accurate prediction of the
dynamic response to changing operation conditions.
The mathematical modelling of these systems requires
the solution to a large set of sparse, stiff differential-
algebraic equations (DAEs) representing gas compo-
sitions, temperatures, pressures, flowrates, control
signals and valve positions. Discontinuities arise
from the opening and closing of valves in the net-
works and manifest themselves in either the system
variables representing the valve positions, or in their
derivatives.

A survey of alternative approaches for the handling
of discontinuities in the simulation of physical sys-
tems is provided in Capstick (1987) and Chua (1982).
The approaches are mostly interpolation based, or
regard the discontinuity conditjon(s) as additional
equations to be solved (Carver and MacEwan, 1978;
Smith, 1985).

Discontinuities first have to be detected and then
located. (Gear, 1980) has shown that if no infor-
mation is provided as to the conditions in which
discontinuities occur in a system of ODEs gross
inefficiencies can result when using a linear multistep
method. In a recent paper (Preston et al., 1989), a
table of results was presented illustrating the need for
special handling of discontinuities for a typical dy-
namic simulation problem (DSP). The location of
these discontinuities for DSPs is difficult to deter-
mine, since their position is unknown before the
integration takes place.

Once the discontinuity has been located, inte-
gration may have to be restarted.’ This is equivalent

701

to the initialization problem for DAEs, which a
number of authors have recently addressed, e.g.
Gupta et al. (1985). Pantelides (19882) and Leimkuh-
ler et al. (1991). For the DSPs considered in this
paper, the integration is restarted after a discontinu-
ity only when absolutely necessary. That is whenever
parts of the network suddenly become (in)active,
referred to in Stubbe et al. (1989) as a “type a”
discontinuity. This strategy reflects the cost of the
restarting process for multistep methods, since a
first-order formula is used at the restart. Discontinu-
ities in elements of the Jacobian matrix require no
restarting phase, and this type of discontinuity has
been classified as a “type ¢” discontinuity (Stubbe et
al., 1989). In “type b” discontinuities, a subsystem of
equations representing the process giving rise to the
disturbance are isolated, and integrated separately
over the interval straddling the discontinuity. This
localization occurs only in very large DSPs with
valves appearing in each of the network modules. In
this paper only types a and ¢ will be considered.

On restarting, it may be permissible to suspend
error control in the solution, allowing reasonably
large timesteps to develop quickly. This is the ap-
proach used in Chua and Dew (1984) for the simu-
lation of a gas transmission network. This strategy is
used whenever the integration error in successive
steps has decreased in magnitude, and may be a
viable proposition to increase the efficiency of the
integration. Implicit Runge—Kutta methods (Ralston
and Rabinowitz, 1978) have an inherent advantage
over multistep methods since they can restart at high
order and can also be used to generate accurate
starting values for high-order BDF methods (Brenan,
1983). The potential benefits of these methods for
DSPs require further investigation.

Finally, the integration should move away from the
discontinuity as quickly as possible, by selecting an

702 A. J. PresToN and M. BERZINS

appropriate stepsize and order. The efficient selection
of the order of the BDF method to be used when
integrating through smooth regions of the solution
components has already been examined (Berzins
et al., 1988).

The idea of this paper is to use a case-study
approach to investigate how to improve the numeri-
cal solution of a particular class of DSP problems
arising in industry. The paper will thus describe how
to accurately and efficiently determine the times at
which discontinuities in these DSPs occur. This will
be achieved by approximating a continuous valve
signal before (or across) the discontinuity with a
polynomial, and extrapolating forward (or interpo-
lating) to find the time at which the discontinuity is
expected to occur. Integration will be taken in
controlled steps until the discontinuity is located
sufficiently accurately.

Although the measures adopted here are specific to
a particular class of industrial problems, they can also
be applied to other problems. The main restrictions
on the methods described in this paper are that it
must be possible to identify the discontinuity by a
switch function and that it is possible to use poly-
nomial interpolation or extrapolation possibly
coupled with either a phase plane approach or ana-
lytic information about a particular component
equation.

2. A MODEL DYNAMIC SIMULATION PROBLEM

To highlight the main features of the location
problem, consider the model problem shown in
Fig. 1. This model consists of a compressor with a
suction-throttle valve to control discharge pressure. A
simplified mathematical model of this system as
supplied by Shell Research Ltd is given by the
following set of seven nondimensional equations. In
these equations y, is the suction-throttle valve pos-
ition, y, is the controller output signal (C,,,), y; is the
compressor outlet pressure (P,,,), y, is the compres-
sor inlet pressure (Pp), ys is the outlet mass flow
(Mgu)s e is the mass in drum (Mp) and y, is the inlet
mass flow (m,). The driving function y, (¢) models a
typical sharp rise and fall in customer demand:

min{(y, - »)/2,0} ify =1,
yi=<3max{(y,—»)/2,0 ify <0, (1a)
(y2—=»1)/2 if0<y <1,
V= —[ys+ (ys — PSET)/5]/15, (1b)
¥3/ys=3.35—0.075 ys + 0.001 p2, (1c)
yi=49.58"—(y,/1.23,), (1d)
V6=120y,, (le)
Ye=V1— s, (1f)

¥s=15+ Stanh(t — 10) — 5[1 + tanh(z — 15)],
t [0, 150]. (1g)

Cout PI controller
e B .
|

i Dry drum Compressor

Suction *
throttle Rut
valve (Mq |
2

Fig. I. A model dynamic simulation program.

Pou\ Mout

The initial conditions are:
»1(0)=0.75, y,(0)=0.75,
y4(0)=36.7, y5(0)=10,

y+(0) = 10.

Note that the model (1a) caters for incorrect numeri-
cal values of the valve position y,, outside the range
of its physical interval [0, 1]. This is because the valve
position is fixed (by setting p, =0) when the valve
opens at (or “beyond”) fully open (i.e. , >0 and
y;1 =1+ ¢€ for small ¢ > 0), or when the valve closes
at (or “beyond”) fully closed (i.e. y, <0 and y, = —e
for ¢ >0 and small).

y3(0) = PSET’,

¥5(0) =734,

2.1. The suction-throttle valve

The suction-throttle valve acts as an input device to
the system and controls the mass flow entering the
network. The position of the suction-throttle valve
shown in Fig. 1 will be either open (y, = 1) or closed
(y1=0), or else somewhere in between the two
(0 <y, < 1), and discontinuities will be formed in y,
when the valve changes its state. This type of (deriva-
tive) discontinuity is commonly referred to as an
order 2 discontinuity (Gear and Osterby, 1981). If the
suction-throttle valve is closed, then the flow is
internal within the network. The network is therefore
always active and no restarting phase is necessary
when the suction-throttle valve changes its state.

For later use it is convenient to define a new
variable (y;=error signal), in the model problem
(la—g), defined as the difference between the outlet
pressure coming from the controller and some con-
stant predefined setpoint PSET:

Yy =y; — PSET. 3]
This gives an equation of the form:

tay=ay@), st.0<y@)<l, 120. (3a)

where
¥2(t) = ay[y5(¢) + a3 ys(4) + a3 f ys(x)dx]. (3b)

Equation (3a) will be referred to as the discontinuity
equation for the suction-throttle valve. Here, A is a
constant of integration, a; is a fixed constant repre-
senting the response speed of the controller, a, and a,
relate to the controller gain and integral time con-
stants respectively, all of which arise in engineering

Algorithms for discontinuity location

control theory (Zeigler and Nichols, 1942). In par-
ticular, for problem (1a-g), a, = 1/2, a,= —1/15 and
a; = 1/5 and in solving the problem equation (1a) is
replaced by equation (3a) and the new equation (2)
is used to define y; in the new system.

2.2. The anti-surge valve

In larger and more realistic networks, the compres-
sor would be protected by an anti-surge valve, oper-
ating in a similar manner to the suction-throttle valve
in that it can remain partly open. (Throughout the
course of this paper, the anti-surge and suction-throt-
tle valves will together be referred to as control
valves.)

The operating characteristics of the anti-surge
valve differs from the suction-throttle valve in that

703

on the check valve position whenever these valves
switch between fully-open and fully-closed. In Gear
and Osterby (1981) an algorithm is presented for the
determination of the order of a discontinuity in an
ODE system. For the DSPs considered in this paper
though, the order of the discontinuity is known
immediately upon detection, from the type of valve
concerned, and its position before the discontinuity.
The discontinuity equation is defined only in terms
of a linear inequality of a single variable in the
network, the compressor outlet pressure (y;), and a
constant downstream pressure, PDOWN with con-
stant resistance force R. There is no system variable
explicitly representing the position of the check valve,
but its state y; is adequately described from the
following equation, which replaces equation (1g):

0
Vs =
{y; — PDOWN)/R

if y, < PDOWN (check valve closed),
if y;> PDOWN (check valve open).

®)

the recycle mass flow, error, control signal and valve
position are all set to zero when the anti-surge valve
closes. This effectively switches off part of the net-
work, and necessitates an integration restart.
Unlike the suction-throttle case, the error signal for
the anti-surge valve is defined as a function of the
system variables representing the compressor inlet
and outlet pressures resp., and QIN, representing the
volume flowrate of the gas leaving the dry drum. QIN
is defined as the ratio of the outlet mass flow from the
dry drum, to the change in density of the gas leaving
the drum; whereas in the suction-throttle case, QIN
becomes a constant (PSET). For the DSPs under
investigation, the anti-surge valves never become
fully open. The error signal causing the anti-surge
valve to open from fully-closed is defined by:
min{QIN — (0.28 y3/y,)"?, 0} if y, <0,
8 {QIN —(0.28 y,/y)'" ifo<y <l.
(42)
This is the discontinuity equation for the anti-surge
valve, with the controller output signal y, defined in
the differentiated form of equation (3b) as:
Y1=a(s+ asyg). (4b)

Note that p, is discontinuous since y; is discontinu-
ous, but that the function:

QIN — (0.28 y3/y4)"",

is continuous and zero at the point of discontinuity.

(4c)

2.3. Check valves

Larger networks also contain check valves which
act as a diode for the direction of mass flow. Check
valves are operated by a spring-loaded mechanism,
and are either fully-open or fully-closed. This means
that jump-type [order 1 (Gear and Osterby 1981)]
discontinuities are formed in the variables dependent

This explains how a change in position of the check
valve can lead to other parts of the network becoming
(in)active. The index (Gear and Petzold, 1984) of the
DAE system can therefore change, so special care
needs to be taken with the choice of integrator and
application of a sparse matrix package. Indeed, prac-
tical experiments have shown that one particular
network containing a check valve exhibits index 2
behaviour when the valve is open, and index 1
behaviour when the valve is closed. This was
confirmed by an analysis of the equations. The system
of equations defined in the model problem (la~g) has
index 1 throughout, however.

3. DISCONTINUITY DEFINITIONS

In standard simulation terminology all the discon-
tinuities considered in this paper are state events in
that they are triggered by changes in solution values
at times unknown beforehand and are thus implicit in
some sense. Authors commonly refer to explicit dis-
continuities, when the times at which the discontinu-
ities occur are known a priori (Capstick, 1987,
Pantelides, 1988b; Ellison, 1981). Of the state implicit
discontinuities there are two important subtypes of
interest. These are defined as partly-implicit and
fully-implicit, respectively. The contrast between
these two types is that in the fully-implicit case the
solution value after the discontinuity is not known
beforehand whereas in the partially-implicit case the
value after the discontinuity is known beforehand.

3.1. Partly-implicit discontinuities

The partly-implicit case appears once a valve
changes its state from partly-open to fully-open (or
fully-closed, respectively). The derivative of the vari-
able representing the valve position is known to be
zero after the discontinuity. These are order 2
discontinuities (Gear and Osterby, 1981) because

704

the variable representing the valve position is a C'
continuous function.

3.2. Full-implicit discontinuities

The fully-implicit case appears when a valve
changes its state from fully-open (or equivalently
from fully-closed). Check valves belong only to this
class since they are operated by a spring-loaded
mechanism, and are assumed to switch directly be-
tween fully-open and fully-closed in the mathematical
model. The control valves can indeed change from
partly-open or fully-open and so belong to either
class, depending on their current state. This case
includes both order 1 and 2 discontinuities (Gear and
Osterby, 1981) since the variable representing the
valve position can have either C° or C! continuity.

4. DISCONTINUITY DETECTION: THE SPRINT
SOFTWARE (BERZINS et al., 1989)

SPRINT (Berzins et al., 1989) is a general-purpose
software package for the numerical solution of time-
dependent differential equations. The kernel of the
software is a DAE integrator package based on
backward differentiation formulae (BDFs). Although
SPRINT (Berzins et al., 1989) is widely used by
mathematical modellers within Shell Research Ltd
(Frost, 1987), it was not designed to cope with the
particular difficulties associated with discontinuities
arising from DSPs. The main components of the
present software are:

(i) a “Step” routine to advance the solution over
one timestep;

(i) a nonlinear equations solver called at each
timestep;

(iii) a problem definition routine, RESID, to
evaluate the residual equations of the DAEs
being solved; and

(iv) a “Monitor” routine to interrogate the
solution and take evasive action if necessary.

At each step of the integration, a system of nonlin-
ear equations has to be solved, with program control
frequently passing to the RESID routine. Discontinu-
ities are detected inside the RESID routine through
a FLAG which terminates the current step whenever
the valve position changes its state. (Values detected
by the RESID routine lying beyond the discontinuity
will be termed as predicted values throughout the
course of this paper.) Program control then passes to
the Monitor routine to select the appropriate stepsize
needed to march up to the discontinuity.

It is possible to include regular checks for these
discontinuities through the use of a switch function
which changes sign when a valve opens or closes.
Discontinuities are detected once a sign change oc-
curs. It is then necessary to interpolate backwards on
the switching function (or extrapolate forwards using
corrected values from previous timesteps), to find an
approximation for the value of ¢ at which the discon-

A. J. PRESTON and M. BERZINS

tinuity occurred. The switch function would intu-
itively be based on the valve position. Providing a
switch function in this way is the classical approach
taken to solving systems of ODEs with discontinu-
ities, and is generally attributable to Carver (1978).
This “reverse interpolation” approach is principally
the same as that used in Smith (1985) and others.

5. EXISTING DISCONTINUITY ALGORITHMS

A description follows of two current discontinuity
handling algorithms than can be used within the
SPRINT (Berzins et al., 1989) software. Firstly, the
robust practical algorithm, MONITR (Frost, 1987),
which has been used successfully on DSPs at Shell
Research; and secondly, a general-purpose disconti-
nuity algorithm, MONITD (Berzins and Furzeland,
1984), which has been applied to a wide variety of
problems with discontinuities in time.

5.1. The MONITR algorithm (Frost, 1987) for partly-
implicit discontinuities

In the approach used inside SPRINT (Berzins and
Furzeland, 1984), partly-implicit discontinuities are
located by performing a linear interpolation back-
wards on the valve position making use of the valve
position before the discontinuity, the known state of
the valve after the discontinuity, and the predicted
valve position detected in the RESID routine. This is
illustrated in Fig. 2.

Using a switching function f'(¢, y,) = y, — 1, where
y, represents the valve position, the change in
position to fully-open can easily be detected by
comparing the sign of f[t,,y(t,)] with that of
Sth 1, ¥y8(5 1)) From Fig. 2, the fact that triangles
ABC and ADE are similar is used to refine the
interval containing the discontinuity. The diagram
shows that although the position of the valve is
known to take value 1 after the discontinuity, a
predicted value (according to the definition given
earlier) close to 1 would mean slow convergence to
the root of the discontinuity, since the difference in
area between similar triangles ABC and ADE is
small. In the existing approach, the interval contain-
ing the discontinuity is refined to a sufficient accuracy
by repeating the similar triangles approach a fixed
number of times (/ITMAX), usually between 5 and 7

D
Yy O T
; hi //,‘; vy fto gt
-~ :
B -~ 1
0pen 1 |rrviesanenns :
iE
closed O : :p :p -
o %ty ta-1
Time

Fig. 2. The MONITR approach (Frost, 1987) for the
location of a partly-implicit discontinuity.

Algorithms for discontinuity location 705

times depending on the problem. In order to compare
this algorithm with the new algorithm described later,
it is necessary to change this termination criterion.

If a discontinuity location algorithm is applied a
fixed number of times, this is no guarantee that the
discontinuity has been located accurately enough. At
fine tolerances, the stepsizes taken by the integrator
are likely to be small in the region of the discontinu-
ity, and applying MONITR (Frost, 1987) will prob-
ably result in a highly accurate location, but may be
unnecessarily expensive with respect to integration
over the whole time period of simulation. At coarse
tolerances, the same number of root-finding iter-
ations is likely to produce a poor approximation to
the point of discontinuity, since the stepsizes taken by
the integrator will be large. This may result in the
integrator taking many small stepsizes after the dis-
continuity since the discontinuity was not located
accurately enough, with the error test restricting the
growth of stepsize.

An efficient algorithm will control the error bound
in the discontinuity estimate. Bearing this in mind, an
adaptive approach can be taken in which the termin-
ation criterion for convergence depends on the size of
the interval spanning the discontinuity being less than
some prescribed constant multiplied by the local error
tolerance. Since the integrator controls the stepsize to
a large extent at tighter tolerances, the discontinuity
location algorithm is now terminated whenever the
difference between the endpoints of the time interval
straddling the discontinuity is less than some small
positive number ¢. the complete algorithm is listed
below. The notation has been simplified for brevity:

ie y,=y(t), i =y)

(i) given an interval known to contain the dis-
continuity: [z,, 12,1, ., Y441, 1%, |, calculate
an improved stepsize h,,, =h5, (1 —yh
—1/y%41—»,) and evaluate y, . ;

(i) if £ty) - S yr 15 Yair) <0, then refine inter-
val to [t,,1,,,], reject the step and replace
¥, by y,, ., otherwise refine the interval to
[t,415 2, 1], replace 1, by ¢, + h, and calculate
the predicted value of y, for the next step;

(iii) repeat steps (i) and (ii) above until
|tn_ tﬁ+l| <€

5.2. The MONITR algorithm (Frost, 1987) for fully-
implicit discontinuities

The approach taken for fully-implicit discontinu-
ities is interval bisection and is equivalent to the
method used in Gear and Osterby (1981) for locating
the root of an implicit discontinuity in a system of
ODEs. The detailed algorithm is given below with the
same simplified notation and modified termination
criterion:

(i) given an interval known to contain the discon-
tinuity: [, %11 Yo Y541, Bh 41, calculate an
improved stepsize h,,, = 4%, /2 and evaluate
¥,, using the predictor in the DAE code;

() if 0<y,,,<1 then refine the interval to
[ts» t.+ 1), reject the step, and replace y,, | by
Va+1, Otherwise refine the interval to
[tus1, th, 1], replace t, by t,+ h, and calculate
the predicted value of y, for the next step;

(iii) repeat steps (i) and (i) above until
|tn—t’r71+l|<€'

Once the algorithm has terminated, the predicted
location of the discontinuity 3, is such that
|tp — th] < € where 1y, is the actual point of disconti-
nuity. Note that the location of the discontinuity
depends on values of the solution components which
may be in error, so the estimate of the discontinuity
location error above is not exact.

In Shampine et al (1987) the difficulties in solving
a system of initial value ODEs are emphasized, so too
is determining the time(s) at which some algebraic
function of the solution has a root. A Sturm sequence
(Ralston and Rabinowitz, 1978) algorithm is used to
determine the number of discontinuities existing in
the interval of integration. Each root is then located
accurately by bisecting a polynomial interpolant, or
using a secant approach. This root finding approach
at order one is very similar to the two MONITR
(Frost, 1987) approaches described above.

5.3. The MONITD algorithm (Berzins and Furzeland,
1984)

The second existing discontinuity handling routine
in SPRINT, MONITD (Berzins and Furzeland,
1984), is based on an algorithm similar to that in
Carver and MacEwan (1987), and was designed only
for the efficient and accurate handling of discontinu-
ities arising in stiff ODEs and not for the discontinu-
ities in the DAE systems arising from DSPs.

Discontinuities are located by applying a Newton
method to a polynomial interpolating past values of
the switch function. This method as found to be
unsuitable when partly-implicit discontinuities were
first detected, since the initial estimate was often too
far away for the Newton method to converge. More-
over, in the fully-implicit case, when the interval of
time embracing the discontinuity was small, the poly-
nomial interpolating the valve position was found to
oscillate before the discontinuity, contrary to the
nature of the valve position. This is because the
polynomial interpolant is prescribed to pass through
a number of fixed solution values before the discon-
tinuity, and a single value based on the estimated
solution beyond the discontinuity without any guar-
antee that any monotonicity in the solution values is
preserved.

6. CHOOSING AN APPROPRIATE SWITCH FUNCTION

In either of the two existing approaches mentioned
above, rapid convergence to the root of the disconti-
nuity depends on the switch function being suffi-
ciently smooth across the discontinuity, since

706

interpolation is usually performed on this switch
function to find its root (Pantelides, 1988b; Gear,
1980; Curtis, 1986) and hence the discontinuity.

Suppose a fully-implicit discontinuity in p, has
been observed to occur at some time ¢§, bounded
between integration times #, and ¢, ;. In the locality
of the discontinuity, the valve position is constant
prior to ¢ =1t} (e.g. y,=1 for ¢ <t%) and linear
immediately after ¢ = ¢/, (i.e. i = « # 0). In this case
the valve is fully open prior to the discontinuity, so
attempting to estimate its position using linear inter-
polation gives the estimate of % as ¢,.

Interpolation on two values beyond the discontinu-
ity would involve using possibly unphysical estimates
of the valve position. This could result in all kinds of
errors (e.g. negative composition etc.), and does not
seem to be a sensible approach, since the solution
components can take unphysical values at the step
beyond the discontinuity.

In an attempt to find a suitable switch function for
a control valve closing from fully-open, Preston
(1991) considers a variety of C° continuous switch
functions. The conclusion of his investigations is
that the best switch function is based on the
valve position, its time derivative and using linear
interpolation. This is equivalent to the bisection
method in Gear and Osterby (1981) as described
above.

7. IMPROVEMENTS TO DISCONTINUITY HANDLING

In an attempt to improve the performance of the
algorithms mentioned above in terms of both
efficiency and accuracy, consider again the disconti-
nuity equations (3-5) that govern the position of
these valves. The objective is either to interpolate on
the left- or right-hand side of (3b), and solve the
resulting equation (3a) for ¢ Rather than use the
complicated right-hand side of equation (3b) as
the function for interpolation, it is easier to use the
variable y,, which is directly available, and also has
considerable practical significance, since y, is the
signal from the output controller that causes the
suction-throttle and anti-surge valves to change their
state.

The solution of the linear first-order ODE (3a) for
», consists of a complementary function (Y,) and a
particular integral (¥,):

Y.=kexp[—a(t —1)] for0<y, 6)

where ¢ is any fixed time between the initial time and
the time of the discontinuity, and the constant k is
determined through applying the initial conditions to
the contribution from both the complementary func-
tion and the particular integral. Provided the discon-
tinuity does not occur within two steps of the
left-hand end of the interval of integration, the value
of y, is available at the step just before the disconti-
nuity and at the step previous to this. The predicted
value of y, shortly after the discontinuity is certainly

A. J. PReSTON and M. BErZINs

available. In principle, assuming that y,(z) and y(t)
can be described as polynomials in ¢, a quadratic
(or linear) interpolant for y, can therefore be con-
structed from information obtained within the two
(or single) accepted step(s) prior to the discontinuity,
and the predicted step afterwards. If there is insuffi-
cient information available, the method of similar
triangles can be used (Frost, 1987), as outlined earlier
in Section 5.1. In the event of the discontinuity
occuring within the first timestep, the bisection
method (Gear and Osterby, 1981) can always be used
(Section 5.2).

In the locality of the discontinuity, both the sol-
ution and the computed derivatives at the beginning
and end of a step are available from SPRINT and can
be used to construct an interpolation polynomial.
Although a cubic or higher degree polynomial could
be constructed, at course tolerances the order of the
integration method has been observed to rarely go
above two in the location of these discontinuities. For
this reason, a quadratic interpolation polynomial has
been used as this provides a more accurate approxi-
mation than a first-order polynomial. The derivative
information can be used to construct a piecewise
quadratic Bernstein polynomial (McAllister and
Roulier, 1981) with continuous first derivative,
that preserves monotonicity, convexity or concavity
of the data between two integration steps. This
form of polynomial has been used because the stan-
dard interpolants associated with stiff DAE integra-
tors do not always preserve monotonicity, convexity
of concavity.

The drawbacks to this approach are that the
predicted values of the solution and derivative sup-
plied by SPRINT (Berzins et al., 1989) after the
discontinuity are less accurate than the values
prior to the discontinuity. On the other hand, the
quadratic spline is not guaranteed to preserve
monotonicity if extrapolation is performed outside
the two integration steps immediately prior to the
discontinuity. It is clearly desirable, however, that
the interpolant preserves any local monotonicity,
convexity or concavity.

7.1. Partly-implicit discontinuities

In an attempt to analyze the equations causing the
suction-throttle valve to change its state, consider
using the Bernstein quadratic spline approximation
to y,(r). This transforms equation (3a) into:

Witay=bitl +byt, +by+o(td), 0]

where ¢, =t — t, measures the time elapsed since ¢,,
the last successful step before the discontinuity was
detected. b, b, and b, are constants computed over
each of the two spline intervals (McAllister and
Roulier, 1981), whose union defines the solution
across an integration step. The particular integral is
seen to be:

Y,=btlja,+ (bya, —2b))t Jaibya, +2b)/ai. (8)

Algorithms for discontinuity location

The “initial condition” is given by the value of y, at
some chosen timestep shortly before the discontinu-
ity, t, say, and this can then be used to determine the
contribution from the complementary function in
equation (6). For the case of the suction-throttle
valve changing from partly-open to fully-open, the
constant k in equation (6) is determined from:

k=y|(t0)—b3/a1+(b2a1—2b1)/a?. ©

In order to find the time at which the valve is
fully-open, the fully-open condition y,(¢) =1 is im-
posed. This reduces equation (7) to the following
equation:

h(t) = —cqexplest,)+ 1=t}
—et,—c+o(t), (10)

where ¢, ¢;, ¢;, ¢; and ¢, are all available constants.
[Using a cubic Hermite interpolant for y,(¢) would
result in an additional term in ¢}, in equation (10).]
Further, a unique solution is assumed to exist (at 14)
where 5 € (t,, t7,). The end-points of this interval
can then be used as starting estimates in the secant
method, in order to estimate the root (t =15) of
equation (10):

t,— t’r,v+ 1
h(t)—h(th)
The implied constraint on equation (3a) becomes
invalidated whenever values are used for interp-
olation that lie beyond the discontinuity. From a
root-finding point of view, it therefore seems reason-
able to either extrapolate on accepted values, or to
interpolate with an “unphysical” value. Indeed, linear
interpolation of y, using one accepted value and one
“unphysical” value is precisely the original method
(Frost, 1987), and has been shown to work reason-
ably effectively under most conditions. However,
numerical experiments have shown better results for
extrapolation using the two values prior to the dis-
continuity than the two points straddling the discon-
tinuity. It should also be noted that the index two
version of the model problem (la-g), in which y,
(rather than y;) is specfied as a function of ¢, leads to
order 1 discontinuities in the controller output signal
,. This will, however, not affect the continuity of the
interpolant, since the predicted value of the controller
output signal beyond the discontinuity will be based
on a smooth projection of the accepted values before
the discontinuity.

t‘]é)=tn_h(tn) (11)

707

passed. The coefficients of the interpolation poly-
nomial in (7) are updated and the upper bound for
the interval containing the discontinuity is reduced.
As before, the termination criterion depends on the
predicted stepsize being less than some user-defined
constant ¢. The value of ¢ =107% was used in the
numerical experiments below.

Althought this method is specific to equation (10)
it could be applied to any problem for which it is
possible to integrate a subset of the full problem
analytically once the polynomial approximation has
been inserted.

7.2. Fully-implicit discontinuities

7.2.1. Control valves. The principles of the
method of polynomial interpolation can be applied to
both partly- and fully-implicit discontinuities occur-
ring in the control valves. In the fully-implicit case
though, equation (3a) holds only after the point of
discontinuity. To the left of the discontinuity, the
value of y, is constant (either 0 or 1) and thus y, = 0.
Hence, equation (3a) is given by either of the two
cases:

(12a)
(12b)

Control valve opening: y,(t)=0;
Control valve closing: y,(t)=1;

In the case of the control valves, the discontinuity
equation (3a) cannot be used unless predicted infor-
mation for y, is considered, as the approach of
Section 7.1 relies on the predicted value yf being
computed accurately, and is therefore rejected in
favour of solving equation (12a, b).

The solution of the resulting polynomial equation
can then be used either to advance the solution closer
to the discontinuity and thereby improve the lower
bound on ¢, or to improve the upper bound on ¢ if the
value of ¢ turns out to lie beyond the discontinuity.
In either case, at each solution of the above equation,
the coefficients of the interpolant are updated. As
described in the previous section, the process can
be terminated when the stepsize to be taken, and
hence the interval bounding the discontinuity is less
than e.

7.2.2. The phase-plane approach applied to check
valpes. The approach of Section 7.2.1. does not
deal with the case of the check valves. In order to
accommodate these a phase-plane approach is con-
sidered. It can be seen that equation (1a) is equvalent
to:

0
n=)
{(¥, —1)/2 otherwise.

if (y,>y, and y; 2 1) or (y, <y, and y; <0),

(13)

Assuming the nonlinear equation can be solved for
t, a step is taken to this value and predicted values y4
are calculated. If y% < 1, the step is accepted and the
above process is used to refine the coefficients in
equation (10) which is then solved again. If yf > 1,
the step is rejected, since the discontinuity has been

Consider taking a (y,, y,) phase-plane approach, and
calculating the time at which the solution trajectory
crosses the lines y, =y,, y, =1 and y, =0, respect-
ively. Since these lines are known a priori (from the
known state of the valve before the discontinuity),
interpolants y, = Q,(¢), y, = Q,(¢) can be computed,

708 A. J. PRESTON and M. BERZINS

and the appropriate equation required can be selected
from those listed below:

Fully-implicit discontinuity:
0,(t) = Q,(2);

Partly-implicit discontinuity (valve becoming fully-
open):

(14a)

0.()=1;

Partly-implicit discontinuity (valve becoming fully-
closed):

(14b)

0.(1) =0. (140)

Of course, applying this method to partly-implicit
discontinuities uses no information from the disconti-
nuity equation (3a), and seems to gain little advan-
tage over the MONITR algorithm of similar triangles
(Frost, 1987). This approach applied to partly-im-
plicit discontinuities has therefore been rejected.

If the phase-plane method is applied to the full-im-
plicit case, practical experiments have shown that it
is better to fix X, (¢) and use the interpolant Q,(¢) = 1
if’ a control valve is about to close, or fix Q,(¢) = 0 if
a control valve is about to open, rather than to apply
equation (14a) directly. This is because the position
of the valve is constant before the discontinuity, but
may not take the exact value of either 0 or 1, owing
to numerical error. Note that equation (14a) is
then reduced to the equivalent expression (12a, b),
so that this phase-plane method becomes identical
to that described in Section 7.2 for fully-implicit
discontinuities.

However, unlike the polynomial method, this
phase-plane approach can be applied to the case of
the check valve. The suggestion is to interpolate on
»; and compute the time at which this component
takes the value PDOWN. Numerical experiments
have shown that the interpolant passing through the
two steps before the discontinuity usually fails to
preserve monotonicity up to the discontinuity. For
this reason, the interpolant used is that passing
through the two points straddling the discontinuity.
However, in the opening of the anti-surge valve,
caution must be taken when interpolating on y,(?),
since convergence to the root may be poor. Unfortu-
nately, there is no variable in the system explicitly
describing the behaviour of the function given in
equation (4c). There is therefore no derivative infor-
mation available, which is needed for the Bernstein
quadratic spline. Hence, in this case, the interpolant
used is the unique quadratic polynomial passing
through the two accepted values of (4c) prior to the
discontinuity, and the predicted value of (4¢) after the
discontinuity.

7.2.2.1. Modification of the phase-plane ap-
proach for fully-implicit discontinuities. In the fully-
implicit case, practical knowledge of the network can
be used to improve the phase-plane method estimate

of the root of the discontinuity resulting from a
change in state of the control valves. It is known that
a small amount of time elapses for the controller
output signal to pass from the controller and actuate
the valve position. This also becomes apparent from
the following analysis.

The particular integral for y, given by equation (8)
can be rewritten as:

Y, =yy(t) = 2b,t/al — by/ai +2b Ja} 4 o(¢?). (15)
Recall that the interpolant for a,y,(¢) is given by:

@y, () =byt 4+ byt + b+ o(£). (16)
Replacing ¢ by ¢ — 7 gives:
ay,(t —t)=b 12+ byt + by + b, t?
—2thyt — bt +o(t)+o(z?), (17)
and therefore
ay,(t)=a,y,(t —t)— b7’
+(2th, + b))t +o(x) +0(r?). (18)

Substituting for y,(¢) from equation (18) in equation
(15) gives at time ¢ = ¢f, (the time at which the valve
has first been detected to change its state):

Y, =y, (th —©) — bi7*/a, + 2th by + by)i/ay
— Qthby + b, —2b,/a)/ai, (19)

but taking the initial condition for the first-order
ODE to lie at ¢ = t§, enables the contribution from
the complementary function to be calculated [see
equations (6) and (8)]. At ¢t = ¢4 we have:

k =y (th) —byJa, — b, (tp)/a, — (bya, — 2b,)

X th/at+ (bya, — 2b))a} + o(t?). (20)

This assumes of course that the valve is uncon-
strained for ¢ < ¢4,. The above two equations lead to:

0= —b1t%a + 2t b, + by)t/ay, @n

where Y, can be calculated from equation (20).
Equation (21) can be interpreted as a quadratic
equation for 7, measuring the amount of time for the
control valve to respond to the controller output
signal. In essence a subsystem of delay-differential
equations (Wille and Baker, 1988) has been solved.

The discontinuity is then expected to occur at ©
seconds beyond the point at which the signal indi-
cated the valve should change its position. Inte-
gration can then be taken to time ¢ = t§ + 7, and the
coefficients updated if necessary. Unfortunately
though, the method depends on predicted infor-
mation for the valve position which could be unreli-
able. Furthermore, at fine tolerances the time at
which ¢ = ¢{, is observed, may be such that the valve
has still not yet changed its state. Using this value of
the valve position is likely to lead to inaccurate
modelling, though taking the last observed value
beyond the discontinuity can lead to implementation

Algorithms for discontinuity location

difficulties and relies on the accuracy of old infor-
mation. In order to create a robust integrator, the
algorithm only solves the quadratic equation (21) for
1 once. Since the signal can be linear, with the
coefficient of 72 small relative to the other coefficients,
7 is computed by selecting the smallest positive root
of the following expression:

-2C

— 22
B+ (B1—440)™ =

T
where A4, B, C are the coefficients of the quadratic
equation in (21). In the event of the two roots being
complex or negative, the estimate of 7 is discarded,
and the restarting process commences.

8. IMPLEMENTATION OF THE DISCONTINUITY
DETECTION ALGORITHMS

In this section,the implementation issues for the
new algorithms are described. A number of problem
areas are also addressed.

8.1. Detecting discontinuities when the timestep is
large

Consider the case when an explicit discontinuity is
first detected (at ¢7,), much earlier than is really the
case (at p). This is likely to happen if the code takes
a large stepsize, assuming the solution to change little
over the next timestep. Suppose the interpolation
process consistently takes the value of y, before the
discontinuity and the predicted value of y, when the
discontinuity was first detected. In this case, it is
important that the algorithm allows frequent updat-
ing of the predicted time of the discontinuity, and the
predicted solution values, in order that it reflects the
current solution, rather than the solution from a
previous timestep.

Once a discontinuity has been detected, the algor-
ithms described in Section 3 are able to approximate
the time at which the discontinuity occurred and set
the stepsize to be taken by the integrator on the next
step, in order to march up to the discontinuity. The
problem here is that the stepsize set by the MONITR
routine can be larger than the code allows in the next
step as it is based on integrator step size prior to the
discontinuity. This can result in error test failures,
leading to the unnecessary expense of multiple
Jacobian evaluations. The reason for this is that
before the discontinuity is first detected, the solution
may only vary smoothly, but may vary much more
rapidly in the next few steps after the discontinuity.

The above problems have been alleviated by apply-
ing the discontinuity location algorithm whenever the
predicted time of the discontinuity has just been
updated. If the integration step to be attempted is
beyond the latest recorded time of the discontinuity,
then the stepsize is restricted to be a fraction of the
interval straddling the discontinuity (currently 0.77),
but on the third successive predicted time beyond the
discontinuity, integration is allowed to attempt the

709

step anyway. Numerical experiments have shown that
this procedure is robust and enables the discontinuity
to be bounded between the latest updated estimate of
the discontinuity, and the last integration point. This
is useful in that if the discontinuity is detected too
early than the upper bound is only restrictive for a
short time. If the discontinuity algorithm results in
three successive failures, then a switch to the original
bisection or similar triangles methods is made. In this
case, information from the most recent predicted
location of the discontinuity is used.

In the application of an interpolant, it should be
pointed out that if the interpolating polynomial
passes through two points that are close together, but
distant from the discontinuity, then small changes in
the interpolated values are likely to produce large
changes in the predicted location of the discontinuity.

Another problem can occur using the partly-
implicit method if the maximum stepsize set by the
user is quite large, since then the contributin from the
exponential function can be so large to cause
overflow error. Taking an initial condition at a large
timestep before the discontinuity is obviously going
to seriously affect the accuracy of the algorithm.,

8.2. The steady state case

In the steady state y, = y,, and the control valve is
fixed partly open for some time. The opening or
closing of the valve is also sufficient for the condition
¥, =y, to occur. The Fig. 3 shows the behaviour of
y, and y, against ¢ for the system of equations (1a-g).
The crosses mark the timesteps using a local error
tolerance of 0.001 and using the MONITR algorithm
(Frost, 1987). The steady state is observed at the
beginning and end of the time integration.

Clearly a discontinuity occurs only when the sol-
ution trajectory for y, crosses either 0 or 1. This is
why equation (16) has to be adjusted if this approach
is used as in Section 7.2.2. The switch function
supplied by the user needs to take account of this fact.

35

Valve position ¥4

=

30~

Qe — =00

Controller output signal y,
25

e O —m——

GO=0 =D G 5

20+

1.5

%V‘ﬁ-—é—m
-4
o

1.0

20 40 &0 80 100 120 140
Integration time

Fig. 3. Graph of y, and y, against ¢ using the MONITR
algorithm (Frost, 1987).

710

A. J. PRESTON and M. BERZINS

Table 1. Algorithms used for the location of discontinuities

Name Type of disc. Method PTSB PTSA
SIMTRI Partly-implicit Similar triangles (Frost, 1987) 1 1
BISECT Fully-implicit on disc. on first step Bisection (Gear and Osterby, 1981) 1 1
BPOLY* Partly-implicit Solution of (18)/Bernstein polynomial 2 0
PHASE* Fully-implicit Solution of (22a, 27) fixing @, (1) 1 1
INTER Anti-surge valve opening from zero Interpolation on (4c) 2 1

8.3. Detecting spurious discontinuities caused by the
integrator

It is possible for the time integrator to generate
spurious discontinuities by the way in which the
Jacobian matrix is updated using predicted solution
values. The Jacobian matrix is updated whenever
convergence failures occur in the Newton method, or
the error test fails. The formation of the Jacobian
requires a large number of calls to the RESID routine
with perturbed solution values. The problem here is
that the perturbation could be large enough for the
FLAG in the RESID routine to be activated, though
this has not been observed for the problems investi-
gated here. This perhaps is due to the fact that the
SPRINT software requires rapid convergence of the
nonlinear iteration. One way to avoid this possible
problem would be to evaluate the Jacobian using the
solution values at the end of the previous step. This
has, however, been observed to be less efficient in
general.

9. COMPARISON OF DISCONTINUITY DETECTION
TECHNIQUES

An experimental discontinuity module has been
constructed for use with SPRINT (Berzins et al.,
1989) which consists of the most suitable discontinu-
ity location algorithms for DSPs discussed earlier in
the paper. These are listed in Table 1.

In the above table, PTSB denotes the number
of interpolation points that are used by the
algorithm before the discontinuity, and PTSA4
denotes the number of interpolation points that
are used by the algorithm after the discontinuity.
The asterisk denotes that derivative information has
been supplied to construct a Bernstein quadratic
spline.

In the results that follow the method developed
for partly-implicit discontinuities is compared
with the similar triangles approach (Frost, 1987).
The phase-plane approach and modification
method developed for fully-implicit discontinuities is
also compared with bisection (Gear and Osterby,
1981).

9.1. Results for typical dynamic simulation problems

The performance of the discontinuity module was
assessed on three dynamic simulation problems of
industrial interest. The statistics are given for
intervals of integration which contain a single
discontinuity.

The starting point for the observation is marked by
integration passing a specified time. The end point of
the observation occurs when the algorithm has de-
tected the location of the discontinuity to within .
The number of accepted and failed steps, and
Jacobian evaluations are then recorded over this
interval.

The experimental work has been carried out on the
Amdahl 5860 machine at Leeds University. In the
tables that follow, STP records the number of steps
taken by the integrator using a local error tolerance
TOL. The number of accepted steps with the
number of failed steps in parenthesis. JAC is the
number of Jacobian evaluations, Loc denotes the
computed location of the discontinuity and CPU
denotes the amount of CPU time taken to locate the
discontinuity.

9.1.1. Case la. Partly-implicit discontinuity: closing
the anti-surge valve. This problem has 76 equations
defining the simulation. The interval of observation
was taken to be [130, tp], from a total interval of
integration [0, 500]. The maximum stepsize set for the
problem was 4 =10s. The discontinuity has been
“accurately” located at ¢t = 163.425. This was ob-
tained using a tolerance of 0.1D — 5, setting the
maximum stepsize to 4 =0.02 with the original
MONITR algorithm (Frost, 1987).

9.1.2. Case 1b. Partly-implicit discontinuity: suc-
tion-throttle valve fully-open. This problem is the
same as that mentioned above. The interval of obser-
vation was taken to be [240, t5]. The discontinuity
has been “‘accurately” located at ¢+ = 255.427, using a
tolerance of 0.1D —5 and a maximum stepsize
h =002 with the original MONITR algorithm
(Frost, 1987).

9.1.3. Case 2a. Fully-implicit discontinuity: check
valve switching to fully-open. This problem has 77
equations defining the simulation. The interval of

Table 2. Results for Case la

SIMTRI BPOLY
TOL STP JAC Loc CPU STP JAC Loc CPU
0.1D -2 9(18) 24 163.531 19.63 8(8) 14 162.984 22.20
0.1D -3 I3(15) 22 163.367 23.01 14(4) 11 163.400 25.52
0.1D —4 18(15) 21 163416 20.41 19(6) 11 163.409 19.94
0.1D—5 16(12) 15 163.415 1097 18(2) 5 163.424 10.66

Algorithms for discontinuity location 711

Table 3, Results for Case b

SIMTRI BPOLY

TOL STP JAC Loc CPU STP JAC Loc CPU
0.1D—2 6(14) 18 255285 1059 6(5) 8 255258 7.78
0.1D —3 10(16) 21 255412 13.36 7(9) 13 255.422 10.44
01D —4 11(15) 21 255424 1589 8(3) 6 255424 7.89
0.1D—5 12(12) 15 255397 856 8(5) 7 255424 565

observation was taken to be [85, 75], from a total
interval of integration [0, 150]. The maximum stepsize
to be taken was 4 = 10 s. This problem can be shown
to be index 1 before the discontinuity, and an index
2 problem after the discontinuity. Note that this is the
phase plane method with no modification. (The
modified phase plane approach does not apply to the
check valve.) For practical reasons, the finest toler-
ance the program will run at is 0.1D — 3. Using this
tolerance with the original MONITR algorithm
(Frost, 1987), and maximum stepsize 4 = 0.02, the
discontinuity was “accurately’ located at ¢ = 92.209.

9.1.4. Case 2b. Fully-implicit discontinuity: suction
throttle valve switching from fully-open. For this
small problem, described by equations (1a—g) and (2),
the interval of observation was taken to be [70, tp).
The maximum stepsize taken by the integrator was
h =4s. The discontinuity has been “accurately”
located at t = 86.478, using a tolerance of 0.1D — 5
and maximum stepsize 4 =0.15 with the original
MONITR algorithm (Frost, 1987).

9.1.5. Case 3. Fully-implicit discontinuity: opening
the anti-surge valve. The problem taken is equivalent
to that described in Case la above. The interval of
integration was taken to be [4,, tp], where A, denotes
the first step of the integration. The discontinuity has
been “accurately” located at ¢ = 9.940, using a toler-
ance 0.1D — 5 and maximum stepsize # = 0.02 with
the original MONITR algorithm (Frost, 1987).

Overall, the CPU time is often better than that of
the MONITR algorithm (Frost, 1987). The work
performed by the new code in terms of the number
of successful steps taken is similar to that before,
except that the modified phase plane method has
resulted in a significant improvement over the num-

ber of successful steps taken by MONITR (Frost,
1987). Apart from Case 3, the new algorithm has
resulted in significant savings in the number of failed
steps. This is due partly to the fact that the MONITR
algorithm (Frost, 1987) has no memory of the pre-
dicted location of the discontinuity once a successful
integration step is taken. Successive predicted steps
can therefore frequently overshoot this value.

Further numerical experiments with MONITR
(Frost, 1987), using the predicted location of the
discontinuity, and the same stepsize strategy as in the
new discontinuity algorithm, resulted in a reduction
of failed steps and Jacobian evaluations. There was
no significant decrease in the number of successful
steps taken although the MONITR algorithm (Frost,
1987) with the new strategy was able to locate the
discontinuities more accurately than before. As in the
new algorithm, the discontinuity location algorithms
used by MONITR (Frost, 1987) are applied only
after a failed step.

Apart from Case 3, there is also a large reduction
in the number of Jacobian evaluations over the
MONITR algorithm (Frost, 1987). This is due to the
stepsize to be taken for the next step being computed
less frequently than in MONITR (Frost, 1987),
helped by a reduction in the number of failed steps.
Notice also that the CPU time is influenced much
more by Jacobian evaluations, rather than inte-
gration steps. The reason for this is that the RESID
routine contains a large number of calls to compli-
cated thermodynamic routines, and has to be called
many times when evaluating the Jacobian.

In Case 3, the efficiency gain is less marked than in
Cases 1 and 2. The reason for this is that rapid
changes in the solution components in the given

Table 4. Results for Case 2a

BISECT PHASE
TOL STP JAC Loc CPU STP JAC Loc CPU
01D0—-0 2(12) 14 91572 898 4(10) 14 92946 12.54
0.1D—1 18(13) 24 92.013 21.40 17(3) 14 92,618 23.33
01D —2 21(10) 18 92,159 1497 24(3) 15 91.721 2548
0.1D -3 29(7) 1292204 999 38(2) 7 92211 10.25
Table 5. Results for Case 2b
BISECT PHASE MOD
TOL STP JAC Loc CPU STP JAC Loc CPU
01D —2 3425) 31 87.115 0.076 6(2) 4 85405 0.022
01D -3 32(223) 29 86.542 0.072 20(4) 13 86.457 0.059
0.1D —4 42(31) 38 86.466 0.094 8(6) 10 86.473 0.049
01D —5 24(16) 21 86.463 0.053 5(2) 4 86.480 0.022

CACE 15/10—C

712

A. J. PREsTON and M. BERZINS

Table 6. Results for Case 3

BISECT INTER

TOL STP JAC Loc CPU STP JAC Loc CPU
00D —2 12(12) 26 9943 3417 84) 14 9947 2580
01D -3 12(11) 20 9934 2414 9(I13) 20 9925 19.15
04D —4 25(8) 23 993 37.57 250) 25 9936 37.23
0.1D —5 45(6) 21 9932 36.66 458) 24 9939 38.80

interval of time resulted in SPRINT (Berzins et al.,
1989) severely restricting the stepsize. In short, the
stepsizes specified by the location algorithm were
largely ignored by the time integrator, except when
the tolerance was coarse. At these coarse tolerances,
the new algorithm shows inprovement over the old
code.

For a considerable reduction in work, the new
discontinuity algorithm has provided an estimate to
the location of the discontinuity, accurate to a user-
specified accuracy ¢ at a prescribed tolerance. The
user has control over the error in this location by
selecting a suitable value of ¢ before the start of the
integration. The modified phase plane method
worked well in improving the location of the discon-
tinuity at little extra cost. It is very important that an
algorithm locates the discontinuity accurately, par-
ticularly in abnormal operating events. If the simu-
lator gives a good representation of the actual system
response to control, this can be very beneficial to cost
effectiveness.

10. CONCLUSIONS

The efficient handling of discontinuities in a system
of DAEs resulting from DSPs has been considered,
with the emphasis firmly placed on location. Current
discontinuity algorithms, MONITD (Berzins and
Furzeland, 1984) and MONITR (Frost, 1987) used
within the SPRINT software (Berzins et al., 1989)
have been examined. The Newton method used in
MONITD was found to be successful only when the
switch function supplied by the user was continuous,
and when the interval containing the discontinuity
was small.

A distinction has been made within the implicit
class of discontinuities, resulting in the definition of
partly- and fully-implicit discontinuities. A study of
the equations causing the valve to change its state
led to an alternative approach for the location of
partly-implicit discontinuities. This amounted to in-
terpolation on the controller output signal. The inter-
polant used was a piecewise Bernstein quadratic
polynomial which preserved monotonicity and con-
vexity (concavity) in the data between two integration
steps. A secant iteration has been applied to solve the
resulting nonlinear equation.

The problems of obtaining a suitable switch func-
tion for fully-implicit discontinuities appearing in
control valves have been discussed. A phase-plane
approach has been presented for the fully-implicit
case and a considerable gain in efficiency has been

achieved over the MONITR approach (Frost, 1987).
The exact location of the discontinuity was improved
upon by considering the delay parameter from a
delay-differential equation.

The research has resulted in a new discontinuity
module for SPRINT (Berzins et al., 1989), which has
been successfully tested on realistic problems and
found to work satisfactorily. This module can handle
index 1 and 2 DAEs with discontinuities in solution
components or their derivatives for the DSPs under
investigation. The need for accurate location has been
stressed. Within the prescribed accuracy bounds, the
new algorithm was found to do considerably less
work than the original method based on similar
triangles (Frost, 1987), and bisection (Gear and
Osterby, 1981). This improvement was found to be
due partly to the change in location algorithm, and
also partly due to the stepsize strategy employed. The
modified phase plane resulted in further improve-
ments to the location of fully-implicit discontinuities
at little extra cost.

Acknowledgements—The help received by Simon Frost and
Laurence Scales of Shell Research Ltd for providing the
models and insight as to their behaviour, is gratefully
acknowledged. The first-named author also fully acknowl-
edges the financial support of SERC and Shell Research Ltd
through a Case Studentship.

REFERENCES

Berzins M. and R. M. Furzeland, 4 User’s Manual for
SPRINT: Part 1—Algebraic and Ordinary Differential
Equations. Report TNER.85.058, Thornton Research
Centre, Shell Research Ltd (1984).

Berzins M., P. M. Dew and R. M. Furzeland, Developing
P.D.E. software using the method of lines and differential
algebraic integrators. Appl. Numer. Math. 5, 375-397
(1989).

Berzins M., P. M. Dew and A. J. Preston, Integration
algorithms for the dynamic simulation of production
processes. Report 88.20, School of Computer Studies,
Univers. A condensed version of this report to appear in
Proc. 3rd Euro. Conf. for Maths in Industry, held at
University of Strathclyde (1988).

Brenan K. E., Stability and convergence of difference
approximations for higher index differential-algebraic
systems with applications in trajectory control. Ph.D.
Dissertation, University of California at Los Angeles
(1983).

Capstick M. A., On improving the performance of dynamic
process simulators. Ph.D. Dissertation, University of
Leeds, Dept Chem. Engng/Comput. Studies (1987).

Carver M. B., Efficient integration over discontinuities in
ordinary differential simulators. Math. Comput. Simul. 20,
190-196 (1978).

Carver M. B. and S. R. MacEwan, Numerical analysis of a
system described by implicitly-defined ODEs containing

Algorithms for discontinuity location

numerous discontinuities. Appl. Math. Modelling 2,
281-286 (1978).

Chua T. S., Mathematical software for gas transmission
networks, Ph.D. Dissertation, University of Leeds, Dept
Comput. Studies (1982).

Chua T. S. and P. M. Dew, The design of a variable-
step integrator for the simulation of gas transmission
networks. Inst. J. Numer. Math. Engng 20, 1797-1813
(1984).

Curtis A. R., Stiff ODE initial value problems and their
solution, the state of the art in numerical analysis. Proc.
of IMA[SIAM Conf., pp. 433450 (1986).

Ellison D., Efficient automatic integration of ODEs with
discontinuities. Math. Comput. Simul. 23, 12-20 (1981).

Frost S. R., Private Communication (1987).

Gear C. W., Initial value problems: practical theoretical
developments. Proc. Conf. on Comput. Techniques of
ODEs, University of Manchester (1978). Computational
Techniques of ODEs (G. Sayers, Ed.), pp. 143-162.
Academic Press. New York (1980).

Gear C. W. and O. Osterby, Solving ordinary differ-
ential equations with discontinuities. Report UTUCDCS-
R-81-1064, Dept Comput. Sci., University of Illinois
(1981).

Gear C. W. and L. R. Petzold, O.D.E. methods for the
solution of differential algebraic systems. SIAM J. Numer.
Anal., 21, 716-728 (1984).

Gupta G. K., C. W. Gear and B. Leimkuhler, Implementing
linear multistep formulas for solving D.A.E.s. Report
UIUCDCS-R-85-1205, Dept Comput. Sci., University of
Iilinois (1985).

Leimkuhler B. J., L. R. Petzold and C. W. Gear, On the
consistent initialization of differential algebraic equations.
SIAM. J. Numer. Anal. 28, 205-226 (1991).

713

McAllister D. F. and J. A. Roulier, An algorithm for
computing a shape-preserving osculatory quadratic
spline. ACM Trans. Math. Software 7, 331-347 (1981).

Pantelides C. C., The consistent initialization of differential-
algebraic systems. SIAM J. Sci. Stat. Comput. 9, 213-232
(1988a).

Pantelides C. C., SPEEDUP—recent advances in process
simulation. Computers chem. Engng 12, 745-755 (1988b).

Preston A. J., Integration of dynamic simulation problems.
Ph.D. Thesis, School of Computer Studies, Leeds
University (1991).

Preston A. J., M. Berzins, P. M. Dew and L. E. Scales,
Towards efficient D.A.E. solvers for the solution of
dynamic simulation problems. Proc. IMA Conf. on
Numer. Analysis, Imperial College of Science, Technology
and Medicine, London (1989).

Ralston A. and P. Rabinowitz, A First Course in Numerical
Analysis (2nd Edn). McGraw Hill, New York (1978).
Shampine L. F., I. Gladwell and R. W. Brankin, Reliable
solution of special event location problems for ODEs.
Numerical Analysis Report 138, Department of Maths,

University of Manchester (1987).

Smith G. J., Dynamic simulation of chemical engineering.
Ph.D. Dissertation, University of Cambridge (1985).
Stubbe M., A. Bihain, J. Deuse and J. C. Baader, STAG—a
new unified software program for the study of the dy-
namic behaviour of electrical power systems. IEEE Trans.

Power Systems 4, 129-136 (1989).

Wille D. R. and C. T. H. Baker, The propagation of
derivative discontinuities in systems of delay-differential
equations. Numerical Analysis Report No. 160 Dept of
Mathematics, University of Manchester (1988).

Ziegler J. G. and N. B. Nichols, Optimum settings for
automatic controllers, ASME Trans. 64, (1942).

