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1. INTRODUCTION 

Many areas of scientific computing involve modelling 
real world problems. The visualization of the solution 
to these problems is an essential aid in the under- 
standing of the phenomenon being modelled. Inter- 
polation schemes that will respect the physical 
properties of the underlying data are thus needed. 
One example of respecting this physical nature of the 
data is to produce values within a specific range, for 
example to ensure positivity. 

Many problems that require such treatment can be 
modelled by differential equations, either ordinary 
differential equations (ODES) or partial differential 
equations (PDEs). An important feature of these 
problems is that initial smooth conditions may 
develop into shocks and discontinuities. Some inter- 
polation schemes may produce results that introduce 
physically unreal values for such problems. 

A wide range of numerical software exists for 
solving such problems in one spatial dimension, for 
example the NAG numerical library provides rou- 
tines to solve ODES. A number of papers have 
therefore discussed the preservation of inherent 
properties of data arising from the solution of ODES, 
see Brankin and Gladwell [l] for preservation of 
convexity, Higham [2] for monotonicity and Butt and 
Brodlie [3] for preservation of positivity. 

In two spatial dimensions a number of general 
purpose PDE solvers are becoming available, such 
schemes use triangular elements because they can 
accurately represent complex domains and may be 
used in conjunction with adaptive spatial meshes. A 
number of authors use a cell-centered finite volume 
spatial discretization scheme to solve the large class 
of convection-dominated PDEs, see [4-7] for details. 
Other numerical schemes such as the finite element 
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method may also be used to solve such problems 
using triangular elements. 

The numerical solution of convection-dominated 
problems requires great care in the preservation of 
the shape of the solution. The avoidance of spurious 
oscillations around shocks is of great importance. 
Often schemes will reduce the order of accuracy 
around these features to preserve the extrema. The 
reduction of linear to piecewise constant, limiting 
higher order terms of polynomials [8], or limiting 
solution values themselves, are all used to ensure that 
no new extrema are created. Interpolation schemes 
used in conjunction with such problems must take 
great care not to introduce these unwanted features. 

Interpolation performed in a standard way will not 
provide this desired property and cause overshoots at 
shocks. The importance of eliminating spurious 
oscillations is such that accuracy is often forfeit to 
ensure this. A modified quadratic scheme is proposed 
that is prepared to forgo interpolation of the 
midpoint values to control this behaviour. 

This paper will describe a triangular based quad- 
ratic interpolant that is bounded by the minimum 
and maximum value defining it. The approximation 
of the surface this produces will preserve the inherent 
shape of the data and guarantee that all values lie 
within a given range. The new interpolant may 
therefore be utilized to preserve positivity. It can also 
be used for the visualization of the solution and by 
the numerical solver to recover values over the 
numerical domain. 

2. AN EXAMPLE PROBLEM 

Consider the following PDE defined by 

Y = 0.0001 

The solution domain is [O,l] x [O,l] in space and (0,l) 
in time. This is the Burgers’ equation, see [9], having 
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the exact solution given by functions are shown in Table 1 and have the pioperty 

u(x,y, t) = w(x, t)w(y, t) wherew(x, t) 
that they sum to unity. The interpolated value .f is 

0.1‘4 -t OX? + c 
then defined by 

= 
A+B+C 

and 
.f=c4i/; 

i=l 

‘4 = e-0.005x-o.S+4.95r)/v , However, given that there is a physical range to the 

* = e-o.25(x-o.5+o.7st)/v) 
problem, where does the standard interpolation 

, method fail to observe this? If the physical range of 
c = e-o.5(x-o.375)/v the data is defined by the interpolation data used 

The function represents two wave fronts moving 
then Fig. 2 shows the areas where this interpolation 

across the numerical domain. Consider a regular 
scheme produces values outside this range. Fig. 3 

mesh of 1458 triangles over this domain. Data values 
shows how the proposed modified quadratic inter- 

are given at each node of the mesh and also at the 
polant observes this range and produces no values 

edge midpoints of each triangle. The data values 
outside the interpolation data range. 

given at these points define the physical range of the 3. SHOCK PRESERVING INTKRI’OLATION 
problem. The problem is taken at time t=0.45. 
Figure 1 shows a surface plot of the function. All 

Two other important interpolation methods in 

surface plots are produced by the &imap package 
this area are those of Abgrall [Ill and Barth [7f. 
~~~ th 

using a 81 x 81 regular grid as input. The plot shows 
ese schemes have the common approach of 

the information without performing any additional 
using adaptive multi-triangle stencils to achieve high 

interpolation. 
Standard quadratic interpolation techniques [lo] 

can be used to fit six shape functions over each Table 1. The standard (left) [9] and medj5e.d (tight) 
triangle to give an approximation to the surface. A 2- quadratic shape functions 
D quadratic interpolant needs six data points: these 
points are usually at the vertices of the triangle and 

+, = (2L, _ l)L, 
,p2 = (2~~ - 1)~~ 

4, =Li 

the mid-points of the sides. These can be mapped to ‘#3 = (% - 1)-h 
$‘$i 

3 3 

area coordinates (Li, Ls, Ls). Six shape functions can (p4 = 2Jhh 
be fitted to these points such that they are unity at ‘$5 = =&I 

one point and vanish at the others. These shape 
46 = Z&L2 

/ movE ‘Jm0 o.aoz- l.cmo 
? 0.004 - o.ao2 

0.406 - 0.884 
0.208- 0.406 
0.010 - 0.208 

t3aow 0.010 

Fig. 1. The true Burgers’ equation. 
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ABOVE 
0.002 - 
0.604 - 
0.406 - 
0.208 - 
0.010 - 

BELOW 

1.000 
l.ooO 
0.002 
0.604 

0.406 
0.208 
0.010 

Fig. 2. Standard quadratic interpolant Burgers’ equation. 

Fig. 3. Modified quadratic interpolant Burgers’ equation. 
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order accuracy for problems which may have shocks 
and discontinuities. Abgrall’s adaptive essentially 
non-oscillatory (ENO) scheme takes the form of 
either the centroid of a triangle acting as a control 
volume for that triangle or the construction of 
control volumes around each node in the mesh. The 
method involves the construction of an interpolant 
of order n by several steps. The initial step involves 
the construction of a linear interpolant and each 
following step will increase the order of the 
interpolant. Several possible combinations of points 
can be used at each step. The choice of which points 
to use is made by examining the coefficients of the 
Lagrange polynomials constructed from each com- 
bination. The set chosen is the one in which the sum 
of the absolute values of the coefficients of the 
Lagrange polynomial is minimal. The problem is 
that the number of possible combinations grows 
rapidly, and the stencil used is potentially large. 
Abgrall controls the choice of the additional values 
considered at each step by only considering neigh- 
bouring nodes of nodes already chosen. Even so the 
growth is rapid and the points considered may be 
far removed from the original node. Abgrall’s good 
results provide a more than adequate justification of 
the scheme however. 

The aim here is to consider a simpler alternative 

0.5 

0.0 

-0.5 

-1.0 

to Abgrall’s scheme. A quadratic interpolant is 
constructed which avoids introducing new extrema 
by modifying the standard quadratic shape functions 
over each triangle. The result of this modification is 
that the new interpolant may not pass through ali the 
data points used to define it. This use of the 
interpolation information as control points rather 
than data points is not uncommon in other forms of 
interpolation. Bezier curves must lie within the 
convex hull of the corresponding B&et polynomial 
[12]. The justification for this is that other properties 
of the curve are more important, in this case the 
curve is aesthetically pleasing. In fact, the Btzier 
curve is constructed from Bernstein basis functions 
which are all positive and sum to unity over the 
parametric coordinates. The approach taken here 
thus has some similarities with Bezier interpolants. 

3.1. The standard and mod$ed quadratic interpolation 
schemes 

The problem with the standard interpolation is 
that the shape functions associated with the three 
vertex values are negative over large parts of the 
triangle. Thus it is possible for new extrema to be 
introduced. This is unsatisfactory for shock problems 
(Fig. 2 clearly shows this). 

-0.5 0.0 0.5 1.0 

Fig. 4. Contour plot of the true function. 
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The elimination of the possibility of creating new 
extrema is achieved by ensuring that all shape 
functions are bounded by the constraint, 0 < r#+< 1 
and also by maintaining the condition that E#J,= 1 
for i=l, . . . , 6. 

The value produced by a linear interpolant,fL, will 
satisfy these constraints. The three linear shape 
functions are always positive and sum to unity over 
the triangle. However, the value given by the 
standard quadratic interpolant, fs, does not satisfy 
the required constraints and can therefore create new 
extrema and can cause overshoot near shocks. 

Given the modified interpolant can be written as 

then a value of LX= 1 will give the standard linear 
interpolant and a value a = 0 will give the standard 
quadratic. The question is what range of values will 
always ensure the modified scheme displays the 
desired behaviour? To guarantee that the quadratic 
shape functions remain positive over each triangle a 
value of c( between the range 1/2<cc< 1 must be 
chosen. Under the assumption that a quadratic 
interpolant will produce better results than a linear 
interpolant, then the smallest value of a is taken. The 

1.0 

0.5 

0.0 

-0.5 

-1.0 

X 

resulting six shape functions are shown in Table 1. 
These shape functions have the properties that 
O<&<l and C4i = 1 for i=l, . . . , 6. All visual 
and numerical results shown here use the value of 
tl= l/2. Selecting tl= l/2, the new modified shape 
functions &, & and & no longer vanish at the 
adjacent edge mid-points but have a value of l/4. The 
mid-point shape functions do vanish at all other 
points but are not unity at their associated point (the 
actual value is 1/2).However, the solution methods 
used to solve these problems take great care to 
respect the physical properties of the solution. The 
elimination of spurious oscillations is a prime 
concern. The modified interpolant will ensure that 
no new extrema are created. It is this property that is 
of special interest-the ability of the scheme to not 
interpolate solution values outside the range of 
existing values. 

The use of a= l/2 will always guarantee that the 
interpolant will be bounded. This is also true when 
considering the one dimensional quadratic problem. 
An area for future work is to select a larger value of CC 
which, depends upon the six data values given to the 
interpolant, and which will still satisfy the no-new- 
extrema constraint. 

Fig. 5. Contour plot of the overshoot and undershoot when using standard quadratic interpolation. 
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4. ERROR ANALYSIS 

The modified shape functions give an error at the 
mid-point values. If the I-D situation along the edge 
of the triangle is considered then the modified 
interpolant along the edge can be defined, in 
parametric coordinates, as 

162 1458 13122 

Table 2. 

Standard quadratic 1.3038a02 6.0654e-03 1.913Oe-03 
Modified quadratic 1.22Ole-02 8.2464e-03 2.3021~03 
Linear interpolant 1.4525e-02 1.3601e-02 3.657%03 

fi (1 - g2 +f22q1 - L) sf42 

At the mid-point, L = l/2, the interpolated value, f*, 
is given by 

=@I +g2+$ti 
f =fi+@ -2h+f3) 

=fi + $2” + O(h4) 

where J and A are the vertex values, f2 is the edge 
mid-point value, h is the distance between data points 
and assuming that the function defined by fi, f2, f3 
has a second derivative. An error is introduced which 
is proportional to the distance between data points 
and the second derivative of the function at f2, the 
mid-point. Although this approach gives an error of 
the same order as the linear interpolant the difference 
in accuracy is significant, the modified quadratic 
interpolant producing superior results on test pro- 
blems, this will be shown in Section 5. 

5.lt.ESULTS 

The modified interpolant was compared to the 
standard interpolant on a number of examples. 
Numerical results were obtained to demonstrate that 
the expected order of convergence is not observed 
when dealing with problems that contain shocks and 
discontinuities. All numerical results were obtained 
over a [0, I] x [0, l] domain except for the complex 
functioninSection5.3whichhasa[-1, l]x[-1, l] 
domain. A regular mesh with 2N2 triangles is fitted 
over the domain. A Li norm is used with a seven 
point fifth order Gaussian quadrature scheme f13] for 
the numerical integration over each triangle to 
measure the error over the domain. 

5.1. Burgers’ equation 
The results for the Burgers’ equation defined in 

Section 2 are given in Table 2. This illustrates how 
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Fig. 6. Cross section using a triangular mesh with 1458 elements. 
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the expected order of convergence is not observed Table 3. 
when looking at a problem with shock waves and Number of tr+u,rrles 162 1458 13122 
discontinmties. 

5.2. Anisotropy problem 
The second function is defined by 

u(x,y,t) =&&-p 

Standard quadratic 3.6819e-03 8.1661e-04 4.0437~04 
Modified quadratic 3.506Oe-03 l.l664e-03 3.868~04 
Linear interpolant 4.5331e-03 1.9324e-03 5.1262e-04 

where B = 0.125(-x + y - 0.75t)/v 
If 0 is any angle, let fo be 

and is the exact solution to a PDE similar to that 
ifr < - 113 

used by Zegeling [14], fe(x, y) = -rsin(F) 

~+3u~+3(*.5-u)~-3”(~+~) 

2113 

ji= ;, fs(x,y)=2r-1+%$?9 

I 

< l/3 
= 0, v = 1.0 x 1o-y .Mx,Y) = IsWWl 

The solution domain is [0, l] X [0, l] in space and 
(0, 1) in time. The solution is taken at time t=O.S, 

where r = x _ cps e yand let U(X, y) be: & 

results are shown in Table 3. ifX < 1/2cos(ny) 

This again illustrates how the expected order of 
(X>Y) = 

4TY) =f&#,r) 
convergence is not observed when looking at ifX > 1/2cos(rry) 
problems with shock waves and discontinuities. U(X,Y) =f-fi(x,Y) + COS(277Y) 

5.3. Complex function 
Consider the following function from [l 11. 

This function has many discontinuities and provides 
a very challenging example for interpolation schemes. 

Cross Section y=-0.75 
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Fig. 7. Cross section using a triangular mesh with 1458 elements. 
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A contour plot of the solution is shown in Fig. 4 
while Fig. 5 shows where the undershoots and 
overshoots are found when traditional interpolation 
is used, i.e. when the value produced by the standard 
interpolant is outside the local range of the true 
function. The areas of overshoot can be seen to 
coincide with the discontinmties present in the 
function. Both plots were produced by Xprism3, 
part of the Khoros visualization software suite. The 
plots use 32 contour lines and were produced from a 
regular grid of 8 1 x 8 1 over the domain. 

Figures 6 and 7 show two cross sections through 
the function at y= -0.25 and at y = -0.75. These 
show the magnitude of the overshoot when using the 
standard interpolant and the way the modified 
interpolant respects the physical nature of the 
problem. The true function, the standard interpolant 
and the modified interpolant are shown. 

6. CONCLUSIONS 

This new method, based on modified quadratic 
shape functions, will not create any new extrema in the 
data since they are always positive and sum to unity. 
In the applications of interest, the new method also 
has the same rate of convergence on difficult 
problems, i.e. those with steep gradients as an 
unmodified quadratic. The modified quadratic also 
has the important advantage that the interpolant 
created will be bounded by the maximum and 
minimum function values used to define it. This factor 
has been a key requirement when considering the 
problem class the interpolant is designed for. How- 
ever, ensuring these properties results in the greater 
dependence of the interpolant upon the vertex based 
shape functions than the mid-point shape functions. 
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