Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melancon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

Visualizing Summary Statistics and Uncertainty

K. Potterl, J. Knissz, R. Riesenfeld3, and C.R. Johnson'

I'Scientific Computing and Imaging Institute, University of Utah
2Department of Computer Science, University of New Mexico
3School of Computing, University of Utah

Abstract

The graphical depiction of uncertainty information is emerging as a problem of great importance. Scientific data
sets are not considered complete without indications of error, accuracy, or levels of confidence. The visual por-
trayal of this information is a challenging task. This work takes inspiration from graphical data analysis to create
visual representations that show not only the data value, but also important characteristics of the data including
uncertainty. The canonical box plot is reexamined and a new hybrid summary plot is presented that incorporates
a collection of descriptive statistics to highlight salient features of the data. Additionally, we present an exten-
sion of the summary plot to two dimensional distributions. Finally, a use-case of these new plots is presented,
demonstrating their ability to present high-level overviews as well as detailed insight into the salient features of

the underlying data distribution.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and Tech-

niques

1. Introduction

As computational power, memory limits, and bandwidth
have inexorably increased, so has the corresponding size and
complexity of the data sets generated by scientists. Because
of the reduction of hardware limitations, simulations can be
run at higher resolutions, for longer amounts of time, using
more sophisticated numerical models. We can compute more
exhaustively, store more abundantly, and access data more
rapidly, all of which leads researchers to create more com-
plex systems to increase the accuracy and reduce the error in
scientific simulations.

As data becomes increasingly large and complex, visu-
alization and data analysis techniques are required that not
only address issues of large scale data, but also allow sci-
entists to better understand the processes that produce the
data and the nuances of the resulting data sets. Uncertainty,
in the form of confidence, variability, and error, as well as
model bias and trends, is regularly included within data sets
and is used to express descriptive, qualitative characteristics
of the data. Because uncertainty is crucial in understand-
ing the reliability of information and thus in objectives such
as decision making, its absence can lead to misrepresenta-
tions and incorrect conclusions. Too often, traditional visu-
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alization approaches overlook available uncertainty informa-
tion [JSO3, JohO4]. As the importance of visualizing these
large, complex data sets grows, the actual task of visualiz-
ing them becomes more complicated; incorporating the ad-
ditional data parameter of uncertainty into the visualizations
becomes even less straightforward. Difficulties in applying
preexisting methods, additional visual clutter, and the lack
of obvious visualization techniques leave uncertainty visual-
ization an unsolved problem.

The goal of this work is to create a summary plot that
incorporates higher order descriptive statistics to concisely
present data with uncertainty information. This work takes
inspiration from the visual devices used in exploratory data
analysis and extends their application to uncertainty visual-
ization. The statistical measures often used to describe un-
certainty are similar to measures conveyed in graphical de-
vices such as the histogram and box plot. This research in-
vestigates the creation of the summary plot, which combines
the box plot, histogram, a plot of the central moments (mean,
standard deviation, etc.), and distribution fitting. The box
plot has a canonical feel; the “signature” of the plot is easily
recognizable and does not need much explanation to allow
for a full understanding. The focus of this work is to create a
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summary plot that similarly incorporates higher-order infor-
mation, allowing for the quick identification of characteris-
tic features. This higher-order signature provides at-a-glance
recognition of variations from normal and allows easy com-
parison of data distributions in detail. In addition, a 2D ex-
tension of the summary plot is presented, which provides for
the comparison of correlated data. Finally, an exemplary ap-
plication of the method demonstrates the ability of the sum-
mary plot to highlight variabilities in a data set.

2. Background

Understanding data sets is an essential part of the scien-
tific process. However, discerning the significance of data
by looking only at numerical values is a formidable task. De-
scriptive statistics are a quick and concise way to extract the
important characteristics of a data set by summarizing the
distribution through a small set of parameters. Measures of
central tendency, variation, and quantiles are typically used
for this purpose. The main goal of descriptive statistics is to
quickly describe the characteristics of the underlying distri-
bution of a data set through a simplified set of values. Often
these parameters provide insights into the data that would
otherwise be hidden. In addition, data summaries facilitate
the presentation of large scale data and comparison of mul-
tiple data sets.

Creating graphics for data presentation is a difficult task
involving decisions not only about data display, but also
about data interpretation. The graphic is often intended to
show specific characteristics of the data, and the presenta-
tion style should make these characteristics clear. Numer-
ous sources outline design practices for effective data visu-
alization [CCKT83,Cle94, Tuf83, Wil99b]. These references
not only direct the researcher towards the “correct” graphi-
cal technique for specific data types, but also describe how a
visualization may be interpreted by the viewer and suggest
methodologies to influence this interpretation.

One of the most common approaches to graphing sum-
mary statistics is the box plot [Hae48, FHI89, Spe52, Tuk77],
which is the standard technique for presenting the 5-number
summary, consisting of the minimum and maximum range
values, the upper and lower quartiles, and the median,
as demonstrated in Figure 1(a). This collection of values
quickly summarizes the distribution of a data set, includ-
ing range and expected value, and provides a straightforward
way to compare data sets. Figure 1(b-d) shows various visual
modifications on the box plot, and surveys on its introduction
and evolution can be found in [CMO05, Pot06].

The box plot is often adapted to include information about
the underlying distribution, as demonstrated in Figure 1(e-
j). The most common modifications add density informa-
tion, typically through changes to the sides of the plot. The
hist plot [Ben88] extends the width of the cross bars at the
quartiles and median to express density at these three loca-
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Figure 1: Variations on the box plot. a) Abbreviated box
plot. b) Range plot [Spe52]. ¢) Box plot [Tuk77]. d) In-
terquartile plot [Tuf83]. e) Variable width and notched box
plots [MTL78] expressing sample sizes and confidence lev-
els. f) Hist plot [Ben88] g) Vase plot [Ben88] h) Box-
percentile plot [EBO3]. i) Violin plot [HN9S]. j) Skew and
modality plots [CMO5].

tions. The vase plot [Ben88] instead varies the “box” contin-
uously to reflect the density at each point in the interquartile
range. Similarly, the box-percentile plot [EBO3] and violin
plot [HN98] show density information for the entire range
of the data set. Density can also be shown by adding dot
plots [Wil99a], which graph data samples using a circular
symbol. The sectioned density plot [CC06] completely re-
constructs the box plot by creating rectangles whose colors
and size indicate cumulative density, and placement express
the location of the quartiles. Sample size and confidence lev-
els can be expressed through changing or notching the width
of the plot [MTL78] or by using dot-box plots, which over-
lay dot plots [Wil99b]. Other descriptors, such as skew and
modality, can be added by modifying the width of the me-
dian line [MTL78], thickening the quartile lines [CMO5],
or adding beam and fulcrum displays [DTO0]. Multivari-
ate extensions of the box plot expand it into two dimen-
sions [BG87,GI92,RRT99, Ton05].

3. The Summary Plot

The hybrid box plot we are introducing can be more formally
titled the summary plot. This display includes not only the
quartile information present in the form of a modified box
plot, but also a collection of descriptive statistics and den-
sity information. As shown in Figure 2, we use an abbrevi-
ated form of the traditional box plot to convey the 5-number
summary and a symmetrically drawn histogram to show den-
sity information. While this technique is similar to that of the
violin plot [HN98], we have extended it to include minimum
and maximum rather than truncating extreme values, and in-
corporated a colormapped histogram to further aid in under-
standing. Descriptive statistics, in the form of mean, stan-
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Figure 2: Anatomy of the summary plot. The abbreviated
box plot displays the range of the data distribution. The mo-
ment plot shows higher order statistics which describe fea-
ture characteristics. The histogram estimates the density of
the distribution and is displayed using a symmetric display
and a redundant colormap. Distribution fitting allows the
user to compare the data against well-known distributions.

dard deviation, and higher-order moments, are expressed as
glyphs with the design of each reflecting the semantic mean-
ing of the statistic. Finally, distribution fitting capabilities are
added to allow the user to compare against and find a best fit
from a library of well-known distributions.

3.1. The Abbreviated Box Plot

As discussed, the traditional approach to presenting sum-
mary information is through the box plot, which has been
refined numerous times in efforts to maximize the ratio of
information to ink consumption and improve aesthetics. We
have chosen to refine the plot further, as shown on the left of
Figure 2. Our plot builds on Tukey’s box plot [Tuk77] (Fig-
ure 1(c)) with a few important distinctions. The first modi-
fication removes the sides of the interquartile box. This not
only reduces the visual real estate of the plot, but also re-
moves possible assumptions incurred from the sides of the
box about the density of the distribution. The prevalence of
using the sides of the plot to indicate density is due to the
visual metaphor created by the box itself. Since 50% of the
data samples lie within the box, it is easy to assume a density
distribution that resembles the plot itself, with the highest
densities falling close to the median. However, this restricts
the plot to normal or Gaussian-like distributions, which is
not always the case. Often, the mode (or most frequently oc-
curing sample value) lies outside of the interquartile range,
which is only evident when the box plot is combined with a
density display. Furthermore, outliers are not removed from
the plot. While this choice may stretch the plot to extreme
values, we prefer to express the entire range of the data set
within the plot, rather than add additional glyphs to indicate
outliers which will increase the visual complexity of the plot.
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3.2. The Histogram

Density information is added to the summary plot as a
histogram, which is displayed using quadrilaterals whose
widths are varied with the density at each bin location. The
colormap used for the histogram was designed to be both
redundant and non-intrusive. Each color channel uses a dis-
tinct mapping, which when combined, clearly emphasizes
areas of high density without overpowering the plot with
color. The color channel is defined as follows: red is nor-
malized log density, green is normalized density, and blue
is normalized linear density. Each color channel can be seen
in Figure 2 (inset). The distinction between the maps for the
individual channels is subtle and intended to encode the den-
sity information in a manner that is reiterative, aesthetically
pleasing, and subdued so as to act as a backdrop for the more
saturated color scheme used for other plots.

3.3. Moments

The following is a list of the equations used to calculate the
various moments, and the notation that will be used through-
out the paper:

Given a data set {x;}\_|, we define the following quantities:
kth Central Moments: Uy ~ %):?/:, (xj —up )
Mean: Hy ~ %):fv:lx,-

1 yN 2
=5 Yt (xi —,Ul)

G =2

Variance:

Standard Deviation:

. _
Skew: Y=
Kurtosis: K= %
Excess Kurtosis: Ke=K—3
Tailing: T= %

where N is the number of data samples.

The moments of a distribution are statistical measures
of feature characteristics. The main distinction between the
summaries presented by the box and the moment plots is
that the quartiles give information about the location and
variation changes in the data, while moments express de-
scriptive characteristics of the look of the distribution such
as “peakedness.” These measures not only highlight uncer-
tainty through the standard deviation, but also give indica-
tions as to where the variation in the data set stems, such as
subsets of the data diverging from the mean.

One of the drawbacks of using only a box plot to sum-
marize a distribution is that multiple, distinct distributions
can have the same box plot signature. For example, one
may come across two distributions, one unimodal (having
one data value occurring most frequently) and the other
multimodal (multiple most frequent values), having identi-
cal quartiles and thus indistinguishable box plot signatures.
Adding moment information exposes differences between
distributions and allows for the expression of non-Gaussian
distributions, while maintaining the simplistic nature of the
original box plot.
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Figure 3: Moment arm abstraction from which we designed
the moment plot. Using the balance bean metaphor, each
glyph is placed so as to stabilize the weight on the beam.

The use of moments in physics provides valuable insight
into how moments express characteristics of a data distribu-
tion (Figure 3). In this example, a beam is placed on a ful-
crum, the position of which is dictated by the mean [BE92].
The moments can then be thought of as weights used to
balance the beam, each moment having a specific role in
dynamically balancing the system. While this approach is
not meant to be a physically-based explanation of moments,
those unfamiliar with the role of moments in statistics may
find this abstraction helpful.

3.3.1. Mean and Standard Deviation

The most familiar and frequently used moments are mean
and variance (the first and second moment). The average of
the data samples is an unbiased estimator of the mean of
the underlying distribution, or the expected value of a ran-
dom variable. Variance is a measure of the dispersion of the
data, indicating the distance a random variable is likely to
fall from the expected value. Standard deviation is simply
the square root of variance. For the summary plots, we use
only mean and standard deviation, as standard deviation is
derived from variance and is typically used as a measure of
uncertainty.
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Figure 4: The mean is represented by a red cross and the
median by dark grey lines on the left and right. The mean
and median glyphs align when the values are equal, thus
easing visual comparison to normal distributions.
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The addition of mean and standard deviation to the sum-
mary plot is straightforward. The mean is rendered as a dark
red cross. The width of the lines making up the cross are
constructed so that when the mean and median are displayed
at the same location, the glyphs coincide and form a straight
line across the plot. This emphasizes symmetrical distribu-
tions and quickly reveals when a distribution varies from
normal. A close up of this can be seen in Figure 4.

Standard deviation, like all even moments, is rendered as
two glyphs on the plot. Two blue curved lines are placed on
either side of the mean to express the average variation from

the mean. The glyphs are placed at mean =+ standard de-
viation and mean £ 2 xstandard deviation. This placement
allows the user to easily see where the majority of the data
lies, as well as to identify samples outside two standard de-
viations, typically referred to as extrema.
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Figure 5: Glyphs for the higher-order central moments.
Each triplet of distributions shows negative, close to zero,
and positive values for the respective moment. Each higher-
order moment is relative to the moments of a Gaussian dis-
tribution, which is the central distribution in each set.

3.3.2. Skew

Skew is a measure of the asymmetry of a distribution, or the
extent to which the data is pushed to one side or the other.
Figure 5(a) shows three distributions in which skew varies
from negative to positive. Based on the balance beam ab-
straction (see Figure 3), we use a triangle to denote skew
in the summary plot. The triangle is scaled by the absolute
value of skew, clamped so that very large skew values do not
extend the glyph beyond the the boundaries of the summary
plot. The triangle placement rests the glyph on the side of the
distribution with the highest density, pointing at the end with
the longest tail. Mathematically, we calculate the placement
of the skew glyph by first finding skew () as defined above,
and placing the glyph —vy distance away from the mean, with
the apex of the triangle pointing toward the tail of the distri-
bution. Thus, the placement of the skew glyph indicates on
which side of the mean the largest spatial grouping of sam-
ples lies.

3.3.3. Kurtosis

Kurtosis is a measure of how peaked or flat topped a distri-
bution is compared to a normal distribution. Excess kurtosis
is the standard kurtosis measure normalized by the kurto-
sis of a Gaussian. Figure 5(b) shows three distributions with
varying kurtosis, where a flat, box-like distribution can be
seen on the left. This type of distribution has large, nega-
tive kurtosis (i.e., ke < 0) and is called platykurtic. Moving
right, the kurtosis value gets very close to a mesokurtic (nor-
mal) distribution (i.e., K, = 0) and then to a highly peaked,
leptokurtic (i.e., K. > 0) distribution.
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The glyphs chosen to represent kurtosis reflect the afore-
mentioned categories of kurtosis. The glyphs are rendered
using a deep purple color and are scaled so that their size re-
flects their magnitude away from O (excess kurtosis). To dis-
tinguish between flat and peaked, the glyphs assume a flat or
sharp shape depending on the sign of kurtosis. For a highly
positive value, the glyph is very pointy; the more negative
the kurtosis value, the flatter the glyph.

3.3.4. Tailing

The final moment added to the summary plot is what we re-
fer to as tailing, which is based on the fifth central moment,
us. The quantity is sensitive to distribution asymmetry far-
ther away from the mean when compared to the skew. Tailing
will have a high magnitude when there are additional modes
in the distribution or strong outliers. Like skew, tailing is
rendered as a triangle pointing in the direction of asymme-
try. However, unlike skew, the glyph is rendered on the same
side of the mean as its sign. The size and sharpness of the ar-
rowhead is dependent on the tailing quantity, and the visual
effect of this glyph indicates when there is a significant num-
ber of samples very far from the mean. Figure 5(c) shows
a set of distributions with tailing values varying from very
negative to very positive. Upon close inspection, one can see
a cluster of outliers in the rightmost distribution, which is
indicated by the large size of the glyph.

3.4. Distribution Fitting
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Figure 6: The results of fitting 3 canonical distributions to
a single data set are shown as dotted lines on either side of
the plot.

Understanding the characteristics of a particular data set
is often less interesting than determining the canonical dis-
tribution that best fits the data because the feature charac-
teristics of the canonical distributions, such as the Gaussian,
are well known. The final element of the summary plot is a
distribution fit plot, which represents either a best-fitting dis-
tribution or a user-chosen distribution. The user is provided
with a library of common distributions including Gaussian,
Uniform, Poisson, Rayleigh, Laplace, and others, as well as
the fitting of multiple Gaussians and asymmetric distribu-
tions. The fit distribution is displayed symmetrically as a
dotted line showing the density along the axis, as seen in Fig-
ure 6. In addition, any distribution can be used as a learning
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set, allowing the user to quickly identify data sets that resem-
ble specific distributions, as well as to explore relationships
between distributions.

4. Joint 2D Summaries

Skew Variance

Not jittered
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uoljeiasq plepueis
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Figure 7: Joint summary for two 1D categorical data sets.
The red and blue lines show the joint mean and standard
deviation, respectively. The joint histogram is shown as col-
ormapped, jittered quadrilaterals emphasizing where both
data sets express density. Covariance and skew variance are
shown as glyphs centrally located within the area created by
the lines of standard deviation. These glyphs show how much
the two data sets vary together, as well as how much they are
skewed in the same direction.

In addition to a statistical summary for a 1D categorical
data set, users require methods for comparing multiple, cor-
related data sets to understand how data values are related.
In this section, we explore methods for summarizing cate-
gorical data with pairs of values associated with each sam-
ple. Figure 7 shows the joint summary plot for two 1D data
sets. The joint summary places 1D summary plots for each
data set perpendicularly to orient the viewer. Joint mean and
standard deviations, a joint histogram, and a reduced higher-
order moment plot are added, providing a display which
shows the relationship between correlated data sets.

Note that we drop the summary of cumulants for higher-
dimensional distributions. We do feel, however, that a box
plot type summary is important even in higher dimensions.
Thus we refer to a generalization of the box plot, known as
the bag plot [RRT99]. Unfortunately, the bag plot approach
does not necessarily have the same correspondence to cu-
mulant distributions as does the box plot. It is a suitable ap-
proximation for many applications, but we defer discussion
of multivariate cumulant summaries to future work.
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4.1. Joint Mean, Standard Deviation, and Density

The first measures of correlation that we add to the display
are joint mean, standard deviation and density, which are
shown in Figure 7. The display of joint mean and standard
deviation uses lines that connect the mean and standard de-
viation of one distribution to the corresponding values in the
other, taking the colors of these measures from the summary
plot. A joint histogram is used to display the density of a set
of samples drawn from a 2D distribution. Our system dis-
plays the joint histogram by rendering a quadrilateral that is
both colormapped and scaled to show the density at each bin
of the 2D distribution. This is meant to be reminiscent of a
scatter plot of the joint density for the correlated distribu-
tions. The inset of Figure 7 shows how jittering can alleviate
aliasing artifacts that occur when multiple joint summaries
are presented together, as shown in Figure 10.

4.2. Covariance and Skew Variance

For multivariate distributions, the covariance matrix is the
analogue of variance in 1D distributions. The covariance of
two data sets, {x;}_, {xj}ljy:l can be defined,

N
Vi = ¥ G =) i — )

k=1
where y; and u; are the means for each data set. Covari-
ance is a measure of how the two data sets vary in relation
to each other. For our presentations, the covariance matrix
is used to transform a unit disk so that the visual stretch of
the disk relates to the covariance of the data sets. Since we
are interested in a multivariate analogue of standard devia-
tion, we scale the covariance ellipse-disk glyph as follows:

1/ €Vmax

scale = S , Where evmax is the maximum eigenvalue of
max
the covariance matrix.

Just as covariance is the analogue of variance, higher-
order multivariate moments can also be described with ma-
trices. The so called “skew variance” of two data sets,
Y {xg }IIY:] can be expressed by two matrices, V2 ;i and
Vi j» where

i
N

M=

Vimjn = (o, — )" (xj, — )"

k=1

In general, these matrices are neither symmetric nor posi-
tive definite. Skew variance is visualized using four sharp
arrows pointing in the direction of the skew located at the
endpoints of the covariance eigenvectors. The directions of
the skew variance arrows are defined by the column vectors
of Vi ;1 and Vji jo. As with covariance, skew-variance visual-

/Vimax

izations are scaled: scale = > —"* where evmax is the max-
max
imum eigenvalue of the skew-variance matrix.

The use of skew-variance glyphs in 2D (or higher dimen-
sional) distributions is important, since joint distributions
can be very asymmetrical even when their 1D distributions

are symmetrical. While the covariance ellipse indicates the
overall trend of the joint distribution, it gives no indication
that the majority of the distribution’s density is outside the
ellipse. The skew variance glyphs indicate the strong asym-
metry of this distribution. When multiple 2D distributions
are combined, as seen in Figure 10, top inset, the moment
glyphs allow the user to visually identify each category.
Without them, the individual joint histograms would be dif-
ficult to separate.

5. Short-Range Ensemble Forecasts

We demonstrate the use of summary plots on NOAA’s Short-
Range Ensemble Forecast (SREF), a data set publicly avail-
able from the National Centers for Environmental Predic-
tion’s (NCEP) Environmental Modeling Center and Short-
Range Ensemble Forecasting Project [NCE]. The main chal-
lenges in using this data stem from its size and complexity.
The SREF ensemble contains 21 members comprising four
numerical models, each run with various parameter pertur-
bations. A single member contains 624 state variables pre-
dicted at each of the 24,00 points of the regular grid across
North America and is run out to 87 forecast hours. Each full
run of the SREF ensemble contains 36GB of data, resulting
in 108GB every day. Colormaps of the mean and standard
deviation can be seen in Figure 8, left and center.

To apply the summary plots on the SREF data, one must
decide which part of the data is interesting; generating a
summary plot for every data point is not feasible for dis-
play. This can be done by allowing the user to select re-
gions of interest, or automatically selecting as shown in Fig-
ure 9, top, right. Here, we use the k-medoids clustering algo-
rithm [Bis06] to select regions of the domain that exemplify
the variation across the region. In this case, we are looking
for areas of high variation in order to understand locations of
high uncertainty which indicates where the mean of the data
is an unreliable estimation of the outcome.

Figure 9 shows the results of using the summary plots on
the representative cluster points of the SREF data. To ease
visual interpretation within this publication, the summary
plots for each cluster location are extracted from the plot
display and enlarged. The positions of each summary plot
within the plot axis are indicated by a box plot which also
clearly shows the range of the data. In practise, the user can
zoom in and out of the plot to more closely investigate the
summary plots.

On first glance the cluster positions with high uncertainty
standout, particularly points 10, 11, and 12. This is clear
from the length of the plots, as well as the strength of the
standard deviation glyphs. More interestingly, plot 11 has
strong groupings within the density display, indicating a dis-
agreement in the predicted outcome. That is, some subset of
the ensemble mainly predict one particular outcome, while
another group predicts another, different outcome. This is in
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Figure 8: Temperature at 2M above ground at valid forecast hour 27. Color refers to the mean (leftmost) and standard deviation
(center) of the ensemble computed at each grid point. Rightmost, results of k-medoids clustering algorithm [Bis06] on the
temperature data. The domain is colormapped based cluster membership.

Temperature at 2M above ground,
03/03/2009, Valid Hour 27
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Figure 9: Summary plots for the points resulting from the clustering algorithm. Inset: (left to right) Histogram density estima-

tion using 20 bins, and kernel density estimation.

contrast to plot 12, which also has high variance, however,
this seems to be due to a small number of outliers, rather
than a strong, divergent prediction. Interestingly, the loca-
tion of the strongest prediction in plot 12 is not co-located
with the mean. This suggests that while plot 12 strongly pre-
dicts for one particular outcome, using the mean as an esti-
mation of that outcome is a poor choice. Conversely, plot 11
predicts two outcomes with high ensemble votes, the largest
subset of outcomes being very close to the mean, and thus
the mean does seem like a good choice. This type of informa-
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tion helps scientists understand the origins of member uncer-
tainty; large variation stemming from member disagreement
should be treated differently than the influence of a small
number of outliers. While colormaps of mean and standard
deviation colormaps do give indications of where such vari-
ation exists they do not allow for the greater understanding
of the underlying data that is exposed through the summary
plots. Also, the box plot alone does not convey the richness
of this data, as shown by comparing the summary plots and
their corresponding box plots in Figure 9.
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Temperature Variation with Altitude
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Figure 10: (Left, top) Close-up of the joint summary plot for multiple categorical datasets. While the joint histogram display
induces some visual clutter, the cloud-like nature of the display gives a general feel of the density trend across the data. The
covariance and skew variance glyphs help distinguish between each joint summary plot. (Left, bottom) A dialog box from the
user interface. (Right) 2D summary plot of temperature and humidity averaged across altitude slices. The trend of both variables
to condense as altitude increases is visible through the compaction of the joint density display and the reduction of the size of the
covariance glyph. The changes in orientation of the skew variance glyphs highlight the dominance of the temperature variable

at higher altitudes.

Another interesting feature of the summary plots is the
varying width of the histogram. This is a result of the number
of bins used to calculate the histogram: the less bins used,
the smoother the histogram. The number of bins chosen is
important, especially when the number of samples is small.
If a smoother density display is desired, kernel density esti-
mation [Par62] can be used to estimate the underlying data
distribution. The results of a 20-bin histogram compared to
kernel density estimation on the same data can be seen in
Figure 9, inset right. While these two plots are not meant
to be a direct comparison because they show the same data
at different levels of smoothing, the different visual results
between the two types of density estimation are apparent.
For applications in which the underlying distribution is more
important than analyzing the particular data samples, kernel
density estimation should be used.

Using the 2D summary plots, we further explore the data.
In this case, we summarize across levels of altitude to get
an understanding of how the variables change together with
height. Figure 10 shows 2D summary plots for temperature

and humidity at 28 levels of altitude. Each altitude slice is
displayed as a 2D summary plot, and the two variables are
shown as 1D summary plots along the axes for alignment.
The joint density display shows the trend of both tempera-
ture and humidity as altitude increases. The higher the alti-
tude, the less variation exists across the domain; this is visi-
ble in the smaller area taken up by the joint density display.
Likewise, the covariance glyphs change from being long,
stretched out ellipses, to fatter and more circular, and then
small, skinny ellipses at the highest altitudes, indicating the
domination of the temperature variable. The skew variance
glyphs emphasize the domination of temperature through
their evolution towards alignment with the temperature axis.
Overall, this plot accentuates the relationship between tem-
perature and humidity as altitude level increases in that both
variables are influential at lower altitudes, but temperature is
the commanding variable at higher elevations.
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5.1. Discussion

The main goal of the summary plot is to create a signature
for data distributions, providing for fast recognition of in-
teresting properties. The higher-order glyphs clearly display
deviations from a normal distribution and are easily com-
pared. Because the statistical meanings of the moments are
more complicated than the box plot, there will be a learning
curve associated with understanding the additional informa-
tion. However, due to the simplicity of the technique, a user
who has learned it will easily recognize desired character-
istics. The summary plot also reduces the amount of infor-
mation needed to convey the data distribution—a desirable re-
duction when the amount of information is too large to easily
understand, for example when dealing with large-scale data
sets.

While our design of the summary plot attempts to cre-
ate glyphs that can be presented together harmoniously and
minimize visual clutter, the presentation of all of this infor-
mation at once may still be overwhelming. To ease this prob-
lem, we have designed a user interface that allows the user to
interactively choose the desired information to investigate, a
portion of which can be seen in Figure 10, bottom inset. The
user may choose to turn on or off each piece of the summary
plot (i.e., density, moment plots, etc), zoom in on areas of in-
terest, modify distribution fitting parameters, and query the
plots for quantitative attributes, such as the number of sam-
ples or the value of specific statistical measures. The user
interface is useful for the 1D plots however is indispensable
for the 2D plots. While the cloud-like structure of the den-
sity display does visually describe the density relationship
present between data sets, it can occlude regions of the plot.
Thus, the interface allows the user to remove the density dis-
play at will, as well as choose to not show subsets of the data.
Perspective can also be problematic in the 2D plots since the
size of the variance glyphs is related to how far back they
are displayed. Again, this is eased by the control of the user
over the viewpoint and the ability to query specific values
through dialog boxes.

The higher-order moments are very sensitive to noise, out-
liers, and variations in sample size. This can be problem-
atic when the number of samples is not large enough to
adequately characterize the underlying distribution. In such
cases, the histogram visualization becomes extremely im-
portant. The visualization provides a redundant encoding
of the characteristics expressed by the moments and also
clearly shows the user that the summary is based on a sparse
number of samples. Work has been done to investigate meth-
ods for calculating higher-order moments in the presence of
noise, such as [GH97], however these approaches increase
the complexity of calculating the moments and are often
application-dependent. We have chosen to use the more sim-
plistic formulation of moments and rely on the redundancy
of the summary plot to highlight unreliabilities in the mo-
ment summary.
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6. Conclusion

Uncertainty information has been inadequately addressed in
the visualization community, largely because of the difficul-
ties involved with visually expressing this additional data. If
visualization is to become a robust decision-making tool, it
must represent uncertainty, in some form, to the audience.
This work provides a method for investigating visual char-
acteristics of a data distribution, both for learning about the
shape of the data set and for expressing the associated un-
certainty.

The 1D and 2D summary plots provide a simple way to
annotate features of a distribution, enhance distinguishablity
between datasets, and allow for the straightforward compari-
son of multiple distributions. They contain, by nature, uncer-
tainty information expressed foremost by standard deviation,
but also through the higher order characteristics of the dis-
tribution. In comparison to the box plot alone, the summary
plot quickly exposes salient features of the data set, such as
the existence and location of outliers, the amount of vari-
ability, and the skewness of a distribution. The presentation
of data in a summarized and easy to read form can quickly
communicate information about large amounts of data and
the data’s uncertainty, emphasizing meaningful characteris-
tics and facilitating visual comparisons.

This work is the basis for further work in uncertainty vi-
sualization, as well as the visualization of large-scale, mul-
tidimensional data. Such summarization methods are in-
creasingly important as the size and complexity of data
sets grows and visual reductions of dimensionality are re-
quired. When accompanied by higher dimensional visual-
ization techniques, such as volume rendering or isosurfac-
ing, summary plots are an eloquent approach for presenting
drill down information, for example, when regions of inter-
est are chosen by a user or automatically. Continuing de-
velopment of the summary plot includes the examination of
higher dimensional distribution data. While a direct exten-
sion of the summary plot into higher spatial dimensions may
not be effective, using descriptive statistics with a visual sig-
nature to highlight notable features may prove valuable. In
addition, combining information visualization and graphical
data analysis methods with preexisting scientific visualiza-
tion methods in a user guided setting will further facilitate
the understanding of data.
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