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ABSTRACT 

Uncertainty information is an important characteristic associated with much of the data scientists encounter. While such 

uncertainty information is often available, incorporating uncertainty into visualization techniques has proved challenging. 

This paper presents novel visualization approaches for a class of uncertainty data that is generated from the sensitivity 

analysis of electrical conductivity within a model of bioelectric fields from the heart. The data can be characterized as a 

set of probability density functions (PDFs) defined across a triangular mesh; however, we are also interested in the 

relationship between input and output parameters of the sensitivity analysis. This increases the complexity of the data set 

and motivates a visualization approach that provides for exploration of the data set. 
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1. INTRODUCTION 

The estimation and visualization of uncertainty information is an important research problem in both 

simulation [DeVolder 2002] and visualization [Johnson 2004]. Uncertainty is a term used to describe the 

error, confidence, and variation of a dataset in order to allow a scientist to understand the accuracy not only 

of the data but
also of the processes used to explore the data. One such technique, sensitivity analysis, helps 

the scientist to understand the effects of perturbing parameters of a function. Small perturbations of 

the
input parameters that create large perturbations in the output results can indicate areas of the function 

that are highly dependent on the input parameters and may be interpreted as unstable or possibly wrong. 

Sensitivity analysis techniques can be used not only to explore the mathematical models used to generate 

uncertainty data but also to better understand the effects of input
parameters of visualization techniques. 

While this paper focuses on uncertainty data generated from the sensitivity analysis of a mathematical model 

reconstructing a biological experiment, the methods presented are applicable to many other datasets as well. 

The National Institute of Standards and Technology [Taylor et al., 1994] defines the uncertainty of a 

measured result to be the standard deviation of the collection of data samples approximating the measurand. 

A measurand is a particular quantity to be measured, such as the temperature at a certain location and time of 

day. This measurand is estimated by a series of measurements; the true value of
the measurand is expected 

to lie within the set of measurements. Uncertainty can then be derived as the standard deviation of the set
of 

measurements, and this uncertainty value can be used to describe the confidence that the actual value of the 

measurand lies within a stated range. Uncertainty information must accompany a set of data samples for the 

set to be considered a complete result. Thus, uncertainty is becoming a more important value as the quantity 

of generated data grows with the increase in the sophistication of scientific simulation and measurement 

devices. Visualizing these data sets can become complicated, and incorporating the additional data parameter 

of uncertainty into visualizations is challenging both because adding uncertainty increases the complexity 



Figure 1. The classified human torso.   

Image courtesy Sarah Geneser. 

Figure 2. The torso mesh space (x,y) 

and information content of the visualization and because there is no agreed upon way to visually represent 

uncertainty for three-dimensional (and higher) problems. 

Thus far, uncertainty visualization approaches represent uncertainty as a scalar, vector, or tensor value. 

This paper explores the underlying probability distribution function that was used to create the individual 

measures of uncertainty. Mean and standard deviation (or variance) are easy and robust ways to quickly 

reduce the amount of data into an understandable quantity. If the underlying distribution is Gaussian 

(normal), the mean and standard deviation completely describe the underlying distribution. However, not all 

distributions are exactly normal, and the deviation from normal is often the more interesting information. 

The data used in this paper can be looked at in several ways, of which reducing it to mean and standard 

deviation is the simplest. However, since there is a functional relationship that such an approach ignores, we 

explore a variety of techniques with the goal of learning about the relationship between input parameters and 

output results. 

The remainder of this paper is structured as follows: In Section 2 we describe more fully the data we are 

using and present the traditional mean and standard deviation methods for visualizing the data. In Section 3 

we examine previous work in the field. In the following Section 4 we explain our approach to visualizing the 

data and conclude with discussion and future work. 

2. APPLICATION DATA 

The data used in this paper comes from the sensitivity analysis electrical conductivity within 

computational models of bioelectric fields of the heart. Such an approach quantifies the sensitivity of the 

electrocardiographic forward problem by creating a mathematical model to reconstruct a biological 

experiment in which the voltages on the human torso are estimated based on the input electrical 

conductivities [Geneser et al. 2005]. The simulation stochastically varies the input conductivities of different 

tissues such as fat, lungs, or muscle and examines the resulting changes in potential across the torso. Figure 

1(a) depicts the torso classified by tissue type, and (b) shows the triangular domain on which the simulation 

is computed. The dataset visualized in this paper stochastically varies the lung conductivity 50% from the 

reference lung conductivity. For each individual variation of input conductivity, κ, a set of heart voltages is 

generated at each mesh point of the torso. This pairing of input conductivity and the set of output voltages is 

called a
realization; our dataset consists of 10,000 such realizations. The most straightforward way to think 

about this data is as a volume of slices (realizations) with axes (x, y, κ), called the κ-volume. 


The dataset resulting from numerous runs of the simulation describes the sensitivity of voltages across the 

torso to small changes in the input conductivity, thus describing the uncertainty associated with the mean 

voltage at each mesh point. The main challenge in visualizing this data is in its large size; not only is it hard 

to visually understand 10,000 2D slices, it is unclear how to present this information in a way that leads to a 

proper interpretation of the sensitivity. A simple approach is to summarize the data, thus reducing the 

dimensionality of the visualization problem. This can be seen in Figure 3, in which mean (a) and standard 

deviation (b) are displayed through a color-mapped flood contour. This presentation is straightforward, 

however it discards a large amount of data, and decouples the input conductivity parameters from the output 

voltages, a relationship this works strives to preserve. 



Figure 3. The (a) mean and (b) variance of stochastic variation of lung conductivity (50% from the    

reference lung conductivity).  Images courtesy of Sarah Geneser. 

(b) variance 
(a) mean 

3. PREVIOUS WORK 

The data used in this paper can be examined in numerous ways including by looking solely at summary 

quantities, either as a collection of probability density functions (PDFs) at each mesh point or as a 3D volume 

of 2D
slices in κ-space. Visualization techniques exist to address the first two interpretations; visualizing the 

third approach is not straightforward. 

Much uncertainty visualization has focused on adding scalar or vector quantities to already existing 

visualization techniques. These values are often available alongside a dataset as tables, graphs, and charts 

[Spear 1952, Tukey 1977], but they must be incorporated into existing visualization techniques if we are to 

portray the data completely and accurately [Wittenbrink 1995]. Pang, Wittenbrink, and Lohda, 1997, have 

created a taxonomy of visualization approaches based on the type of uncertainty data. Common approaches 

include color mapping [Pang et al. 1997], glyphs [Wittenbrink et al. 1997, Grigoryan and Rheingans 2004], 

iso-surfacing [Jospeh et
al. 1999, Rhodes et al. 2003], volume rendering [Djurcilov et al. 2002], and 

annotation [Cedilnik and Rheingans 2000]. 

While the data used herein can be summarized through mean and standard deviation, a true representation 

of the data expresses the underlying distribution. Potter et al., 2007, use visual summaries to describe 

individual distributions, but this approach is problematic for higher dimensional distributions as well as for 

large collections of
distributions with spatial locality resulting from a high amount of visual clutter. 

Other methods filter down the amount of data and provide a user interface for exploration of the dataset. 

Ehlschlaeger et al., 1997, presents a method to smoothly animate between realizations of surface elevation. 

Bordoloi et al., 2004, use clustering techniques to reduce the amount of data while providing ways to find 

features of the datasets such as outliers. Kao, 2002, uses a slicing approach to reduce the dimensionality by 

projecting distributions onto cutting planes. Streamlines and volume rendering have been used by Luo et al., 

2003, to show distributions mapped over 2 or 3 dimensions. Finally, case studies of EOS Satellite and Lidar 

data have been performed by Kao, 2001 and 2004. 

This small body of work on visualizing probability density functions is an interesting starting point for 

this research.  However, the aim of this paper is to avoid the data reduction employed in these techniques, 

and instead preserve the correspondence between input and output parameters. This additional directive 

requires a visualization paradigm that can appropriately handle large datasets with high dimensionality. 

4. OUR APPROACH 

The main challenges to visualizing this dataset are its large size and data the meaning of which is not 

intuitive. While data reduction is not the
goal of this work, getting an initial understanding of the data 

through summarization is beneficial. Figure 3 summarizes the results of the simulation, presenting them in 

two images. Figure 4 combines the summaries into a single visualization by displaying the mean (a) as a 

height field using the (x.y) mesh space and voltages as the z axis, and color mapping standard deviation (b) 

using a rainbow color map. The simplicity of this approach is the strongest argument for displaying the data 



Figure 5. Volume rendering the potential volume. The left image (a) shows direct volume rendering.  The 

other two images (b-c) show iso-surfaces of the voltages in κ-volume. Bends in the iso-surfaces indicate high 

dependence on the input conductivity (κ) (highlighted by the yellow bow), while straight iso-surfaces (red 

box) indicate stochastic independence. 

(a) 

in this way. However, the reduction of data allows for very little further exploration, and this visualization 

still does not capture the dependencies between the input conductivities and the output voltages. To 

overcome these limitations, we have to look at more than just these two basic stochastic properties while still 

presenting these quantities in a clear fashion. 

Rather than simply summarizing the data, we need to consider the entire volume of data, which stores all 

realizations of the voltages in 2D space for every conductivity, κ. To create the κ -volume, we stack the 2D 

datasets for each realization into a
3D volume with z-axis associated as κ (in contrast to the (x, y, voltages) 

axes for the mean height field). For this particular dataset, the κ-volume would result in a volume with 

10,000 slices in the κ direction. Since this would lead to a very large dataset, we have chosen to subsample 

the volume to 512 slices, computing the mean of roughly 20 voltages for every voxel. This scalar volume can 

be visualized using direct volume rendering or iso-surface raycasting. Figure 5(a) 

shows the κ-volume superimposed onto the mean/variance height field. While direct volume rendering allows 

the user to see the entire volume, this technique is problematic for this data because the voltages occlude each 

other, or – if the transparency is reduced – are indistinguishable. Therefore, we have chosen to focus on iso-

surface raycasting. Figure 5 (b-c) shows two different iso-surfaces of the potential. For our dataset, the 

structure of the iso-surface rather than the actual iso-value is of interest. An iso-surface that falls straight 

down through κ-space (red box in Figure 5c) indicates that the potential at this point in 2D space does not 

vary when changing; thus, it is considered independent at that point. A bending iso-surface (yellow box in 

Figure 5c) indicates areas of high dependence on the input conductivity. As can be seen in comparison with 

Figures 3 and 4, the bend in the iso-surface corresponds to an area of high variance; however, in our 

visualization, the actual reason for this high variance becomes clear. We can also see that even in the region 

with the highest variance only small κ’s (lowest values on the κ-axis) result in potential changes. This 

relationship becomes visible only in our new visualization system. 

While the iso-surface rendering qualitatively depicts stochastic dependency and presents a quick method 

to get a global overview of potential distribution, a more quantitative measurement is also desirable. To this 

end, we consider the gradient volume of the potential. In this vector-valued dataset, we perform streamline 

Figure 4. Combining mean and standard deviation into one visualization. (a) Mean is represented as height. 

(b) Standard deviation is color mapped onto the mean height field with high deviation in red, low in blue. 

(a) mean (b) standard deviation 



Figure 7. Particle tracing, the left image shows simple points as particles while in the right image arrow 

glyphs are rendered. In still images, arrows glyphs add more information to the image. 

tracing to visualize the potential gradients. The physical interpretation of these streamlines is as follows: If a 

streamline's course is primarily
horizontal, meaning that its tangents (i.e. the gradient in the potential field) 

mainly point in x and y direction but not into κ-direction, the points along the streamline have a potential that 

is locally independent of the realizations of the input conductivities. This in turn means that a streamline 

pointing up- or downwards indicates a high dependency on κ. In fact, the length of the streamline – 

influenced by the gradient-magnitude – is a quantitative measure of these dependencies (see Figures 6 and 7). 

To further emphasize the gradient-magnitude, we also seed particles into the gradient volume. These particles 

not only convey the direction of the gradient but also allow gradient magnitude to be derived easily form 

their speed. 

5. CONCLUSION AND FUTURE WORK 

In this paper, we present a novel method to approach multi-dimensional stochastic distribution data. Our 

technique allows for the exploration of these datasets, not only presenting a very limited overview by 

displaying the mean and variance as previous visualizations do, but also allowing for both a global qualitative 

as well as a local quantitative view. As our approach makes use of an existing GPU visualization system 

[Krüger 2005], the exploration of these datasets can be performed interactively on commodity PC hardware. 

For a demonstration, please see the video at ftp://datex.sci.utah.edu/Videos/CGV08. 

As the sources of uncertainty data become more diverse, understanding the meaning of the generated 

images becomes more difficult. While many of the traditional visualization techniques will still be applicable, 

new and better techniques for understanding complicated data sets will also be required. It is our hope that 

this work serves as a starting point for the visualization of complex data and uncertainty. 

Further work in this area includes using data sets with higher-order input parameters (i.e. vector, tensor, 

etc.), and data distributions with higher-dimensional spatial localities. In addition, information visualization 

techniques can be used to increase the ways a user can explore the data, both globally and locally. Such a 

system would provide ways to answer known questions as well as to pose and test new hypotheses. 
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