
Chapter 9
Statistical Applications with Deformable
M-Reps
Anatomic Object Segmentation and Discrimination

Stephen Pizer, Martin Styner, Timothy Terriberry, Robert Broadhurst,
Sarang Joshi, Edward Chaney, and P. Thomas Fletcher

Abstract There are many uses of the means of representing objects by discrete
m-reps and of estimating probability distributions on them by extensions of lin-
ear statistical techniques to nonlinear manifolds describing the associated nonlinear
transformations that were detailed in Chapter 8. Two important ones are described
in this chapter: segmentation by posterior optimization and determining the signifi-
cant shape distinctions that can be found in two different probability distributions on
an m-rep with the same topology but from two different classes. Both uses require
facing issues of probabilities on geometry at multiple levels of spatial scale. The
segmentation problem requires the estimation of the probability of image intensity
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distributions given the object description; we describe a way of doing that by an
extension of principal component analysis to regional intensity summaries produced
using the object-relative coordinates provided by m-reps. Applications of both seg-
mentation and determination of shape distinctions to anatomic objects in medical
images are described. Also described is a variant on the segmentation program used
in estimating the probability density on an m-rep; this program fits an m-rep to a
binary image in a way that is intended to achieve correspondence of medial atoms
across the training population.

9.1 Introduction and Statistical Formulation

Both segmentation, i.e., extraction, of objects from images and characterization of
geometric differences between classes of objects are usefully accomplished in terms
of deformable shape models. In segmentation a geometric model is deformed into
the image data, allowing the method to reflect an understanding of what legitimate
or typical shapes are. In characterizing the differences between shapes in two dif-
ferent populations, the differences are measured in terms of the deformation from
one shape to another. Medial models provide a useful representation of the object or
complex of objects that undergoes deformation and of the deformations themselves.
Moreover, statistics on medial models are useful for both applications, specifying
the typicality of a shape or the population of deformations between shapes in the
two classes being compared. Finally, the segmentation application requires not only
statistics on the geometry, i.e., on the medial models or their deformations, but also
statistics on the image intensities, given a medial model. Because these intensities
are best understood statistically in object-relative coordinates, the figural coordi-
nates provided by m-reps are an important means of producing the image intensity
statistics.

In Chapter 8 the geometry of discrete m-reps and statistics on these entities were
discussed. This chapter discusses the use of these geometric representations and
their statistics, as well as the statistics on image intensities in figural coordinates for
segmentation of anatomic objects and object complexes. It also discusses the use
of these geometric representations and their statistics for statistical shape difference
characterization between classes of anatomic objects or object complexes extracted
from medical images, e.g., between the hippocampi or lateral ventricles of healthy
and schizophrenic individuals as extracted from magnetic resonance images.

In characterizing the difference between two anatomic populations the differ-
ences need not only to be specified statistically, but also this specification needs to
include where the differences are and what form of deformation occurs there, for
example, whether it is a local twist or a local bend or a local swelling or a local
contraction. Also, in segmentation, a coarse-to-fine, i.e., successively more local
approach has serious speed advantages for any given quality of segmentation. M-
reps with their coordinate systems, their provision of multiscale statistics, and their
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Fig. 9.1 A tree of objects, figures, medial atoms and voxels

medial basis’ provision of both local width and local figural orientation are well
matched to these needs.

More precisely, as illustrated in Fig. 9.1, consider a tree of geometrical entities
such that the discrete m-rep at the root of the tree describes a whole object com-
plex and such that the children of a node describe sub-entities which taken together
make up that entity. For example, if the root node describes a complex of objects, its
children would respectively describe each object making up the complex. Similarly,
if a node describes an object made up of figures, its children would respectively
describe the figures making up the object, their children might describe individual
medial atoms, and their children might describe sequences of displacement on indi-
vidual voxels. In each node is a collection of atoms made up of all its children, each
atom with a value. The value of a node is the atom values of all the atoms making up
that node. Then deforming the entity corresponding to a node deforms all of its sub-
entities, and after that deformation we may move on to the sub-entities of the node
and deform them further in some order. We refer to these stages at which processing
occurs as scale-levels.

At each scale-level other than the top of the tree, an entity m has as set of
neighbors N(m), that are at nearby physical positions. It is useful to think of the
probabilistic relationship among entities in terms of the value of each child of a
node, given the value of that node and the conditional probability of a node given
the values of its neighbors. The former describe inter-scale-level differences, and
the latter describe inter-neighbor differences, i.e., differences across position. This
view allows us to think of the problem with a Markov random field formulation in
both the scale and positional dimensions.

That is, if the m-rep n is a child sub-entity of an m-rep m, and m → n is the
value that n takes as a result of the deformations of its ancestors and most recently
as a result of its parent m, we wish the conditional probability of the deformation
describing the difference (m → n)�n, given the parent node m, where the symbol
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� denotes the geodesic path between its two operands. Similarly, if < N(n) >
describes the prediction of n based on its neighbors, we wish the conditional prob-
ability, p(n� < N(n) > |N(n)), of n� < N(n) > given the neighbor nodes N(n).
Because the essence of geometry is that entities are locally correlated, a thesis that
for medial atoms of various anatomic objects is supported by our data, it is reason-
able to condition (m → n)�n, on only the parent node m and not on ancestors more
distant in scale, and it is reasonable to condition n� < N(n) > on its immediate
neighbors N(n) and not on more distant entities.

In the work described here, we simplify the probabilistic formulation even fur-
ther. We assume that (m → n) � n is statistically independent of m and that
p(n�< N(n) > |N(n)) can be broken up into two factors, one describing the change
independent of its neighbors and the other describing the interrelationship of it with
its neighbors. Breaking things down according to this Markov formulation allows
a segmentation or hypothesis test with final locality such that the total number of
primitives at that level of locality is M (e.g., there are M voxels in the objects being
segmented or at which shape differences are being tested) to operate in O(M) time
rather than the O(M2) that are required when the relation of every primitive with
every other one must be dealt with.

The geodesic differences between m-reps used in the foregoing formulation are
in the same symmetric space as the subtrahend and the minuend. That is, the, the
geodesic differences of a collection of medial atoms is the collection of differences
of the corresponding atoms, and the difference of two atoms is the Cartesian product
of the corresponding components, as illustrated by the difference between interior
slab atoms in the following:

1. The difference of the hub positions, which like a hub position itself is a vector in
Rn.

2. The “difference” of the spoke lengths, which is the ratio of these lengths giving
the magnification of one into the other, and thus like a length itself is a scalar in
R+.

3. The “difference” of each spoke position on the unit sphere S2 with the corre-
sponding spoke’s position on S2, which can be understood as a position on S2.
There are difficulties with differences of angle differences associated with having
to specify a reference angle; these will not be further discussed here.

As a result, statistics on such geodesic differences can be accomplished by the same
methods of computing means and principal geodesics described in Chapter 8.

Finally, consider the probabilities on differences of m-reps that are the target of
statistical characterization of inter-class differences. These differences of m-reps are
again in the same symmetric space as the subtrahends and minuends. One requires
methods of hypothesis testing that yield the significance of distinctions in probabil-
ity distributions in this symmetric space and, as well, the location of such significant
changes, for various levels of locality.

In Section 9.2 we introduce segmentation via posterior optimization of defor-
mable m-reps with an overview of the approach. We find that two log probability
densities are needed, one measuring the geometric typicality of an m-rep and the
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other measuring the match between the m-rep and an image. In Section 9.3 we dis-
cuss how to train the first probability density, given binary images of sample objects,
and how to measure this geometric typicality on any m-rep, given this training.
In Section 9.4 we discuss estimating the probability density on image intensities
given a medial model and how to measure this probability density on any target
image. In Section 9.5 we conclude our discussion of segmentation by specifying
the segmentation scale at the smallest scale level, that of the voxel, followed by
the excellent results obtained using our multi-scale method using the geometric and
intensity probabilities. In Section 9.6 we discuss means of hypothesis testing based
on m-reps for statistical characterization of shape differences between populations
of objects or object complexes. Section 9.7 gives some examples of results using
this method. In Section 9.8 we discuss the apparent strengths and weaknesses of the
medial methods we propose for the segmentation application and characterization of
shape differences application, as compared to alternative object representations. In
that section we also discuss work that remains in both these methods of application
of m-reps and in the formulation of m-reps themselves and their statistics.

9.2 Segmentation by Posterior Optimization of Deformable
M-Reps: Overview

Published studies by others and our own research results strongly suggest that seg-
mentation of a normal or near-normal object (or objects) from 3D medical images
in all but the simplest cases will be most successful if it uses (1) knowledge of the
geometry of not only the target anatomic object but also the complex of objects pro-
viding context for the target object and (2) knowledge of the image intensities to be
expected relative to the geometry of the target and contextual objects.

We use the general segmentation approach already shown by others to lead to
success ((Cootes et al., 1993; Staib and Duncan, 1996; Delingette, 1999), among
others; also see (McInerny and Terzopoulos, 1996) for a survey of active surfaces
methods), namely deforming a geometric model by optimizing an objective function
that includes a geometry-to-image match term which is constrained by or summed
with a geometric typicality term. In this approach a model of the object(s) to be seg-
mented is placed in the target image data and undergoes a series of transformations
that deform the model to closely match the target object.

In computer vision an important class of methods uses explicit geometric models
in a Bayesian statistical framework to provide a priori information used in posterior
optimization to match the deformable shape models against a target image. Using
this approach, we start from a statement of the segmentation objective as finding
the most probable conformation of the target object(s) m given the image I, i.e.,
of computing argmaxm p(m|I). Here m is the geometric representation of the target
object(s), in our case the tree of medial atom meshes that comprises an m-rep, and I
is a tuple formed by a 3D array of image intensities. The probability density p(m|I)
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is frequently called the posterior density, so the method is called one of posterior
optimization (Duda et al., 2001).

By Bayes rule, argmaxm p(m|I) = argmaxm[logp(m) + logp(I|m)]. Thus the
geometric typicality term ideally measures the logarithm of the so-called prior prob-
ability density, the probability density that the candidate geometric entity exists in
the population of objects, as described in Chapter 8. And the geometry-to-image
match term ideally measures the logarithm of the so-called likelihood, the probabil-
ity density that the target image values, relative to the candidate geometry, would
arise in the population of images from that modality. As a fundamental means of
obtaining efficiency, we optimize such an objective function for successively smaller
spatial tolerances (spatial scales), where each of the spatial scale levels are object-
relevant: the object complex, the object, the slab (or tube) figure, the figural section,
and the voxels not only interior to the object(s) but also the voxels between them,
which we call interstitial voxels.

The success of the deformable shape models posterior optimization approach
depends on the object representation, i.e., the structural details and parameter set
for the deformed model, as well as on the form of the objective function. The most
common geometric representation in the literature of segmentation by deformable
models is made up of directly recorded boundary locations, sometimes called b-reps
(Cootes et al., 1993; Kelemen et al., 1999), also see papers surveyed by (McInerny
and Terzopoulos, 1996). Our m-reps representation (Fig. 9.2), principal geodesic
analysis to produce its statistics, and the associated segmentation method use a
medial representation intended to produce improved and/or more efficient segmen-
tations for the reasons given in Chapter 8, Section 11. The most relevant of these
advantages for this application are the efficient training of the prior it provides, its
ability to provide a coordinate system in which to describe intensities probabilisti-
cally, and its inherent multi-object, multi-scale nature, which leads to effectiveness
and efficiency of segmentation of single or multiple objects. However, small inden-
tations and protrusions of anatomic objects are impractical to model medially. Our
approach to solving this problem is to implement a non-medial voxel stage described
in Section 9.5.1.

M-reps, combined with the voxel-level representation, provide their advantages
over other deformable object representations at the expense of a level of complex-
ity that required the development of special theoretical underpinnings, software,

Fig. 9.2 M-rep modeled kidney with its medial mesh, a liver model that is made from two figures,
one for each lobe, and male pelvis model made from multiple objects (two bones, bladder, rectum,
prostate). The kidney model also shows the underlying representation of a sampled medial surface
and a tiled boundary
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and validations. Largely automatic segmentation by large to small application of
deformable m-reps has been implemented in software called Pablo (Pizer et al.,
2005b) that accomplishes 3D segmentations in a few minutes. Software for building
and training models has also been developed. The methods underlying this software
and its abilities are the subject of Sections 9.2–9.5.

The next two sections give a more specific picture of Pablo’s method (Section
9.2.1) and operation (Section 9.2.2).

9.2.1 Segmentation Method: Posterior Optimization for Multiscale
Deformation of Figurally Based Models

Our method for deforming a model into image data typically begins with a manually
chosen initial positioning of the mean model, frequently via choosing a few rough
landmark positions. The segmentation process then follows a number of stages of
segmentation at successively smaller levels of scale. The spatial tolerance of the
resulting segmentation can be large at the largest scale level but decreases as the
scale gets smaller.

As illustrated in Fig. 9.3, at each scale level, i.e., level of the tree shown in
Fig. 9.1, the same log prior + log likelihood objective function is optimized by
geometrically transforming the entities at that scale level, using a transformation

Fig. 9.3 Stage by stage progress of deformable m-rep segmentation of the kidney. Top: rendered
3D view, after model alignment via landmarks, the figure stage, and the figural section (atom)
stage. Bottom: results on axial, sagittal and coronal CT slices. Each image compares progress
through consecutive stages via overlaid curves: magenta—aligned position; green—post object
stage; red—post atom stage
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global to the respective entity. Thus, at the largest scale level, the object ensemble
stage, the whole object ensemble undergoes a global transformation. At the next
smaller scale level, each object making up the object ensemble separately under-
goes a transformation global to it. And as the computation moves to successively
smaller scale stages, successively smaller entities making up the entities at the next
larger scale level, namely figures, subfigures, and medial atoms, are optimized with
a transformation global to each of them. The series of optimizations concludes with
a small relocation of all of the voxels in the image being optimized.

At all of these scale levels, we follow the strategy of iterative conditional modes,
so the algorithm cycles among the component entities in random order until the
group converges.1 For example at the figural atom stage, the algorithm cycles
through the atoms in random order.

At each scale level larger than the voxel scale level, the geometric transformation
of the entity is made up of a typically deterministic similarity transformation and
a maximum posterior warp. The similarity transform, a translation, rotation, and
uniform magnification, aligns the entity to neighboring entities of the same type
(objects to neighboring objects, medial atoms to neighboring atoms), except it aligns
to landmarks at the largest scale. The warp is formed from a few principal geodesics
(see Chapter 8) of the deformations of that entity experienced in the training data.
At the voxel scale level, the optimization is over displacements per voxel of only a
few voxel widths. The result is that we typically optimize 6 or fewer parameters per
entity, providing efficiency and convergence of the segmentation at that scale level.

At each scale level we use the conjugate gradient method to optimize the log
prior + log likelihood objective function. The log prior metric is detailed further in
Section 9.3. As detailed in Section 9.4.2, we have implemented a way of computing
the log likelihood that measures the geometry-to-image match based on probabil-
ity densities on intensity distribution features in various figural-coordinate-specified
regions inside and outside of the object (Fig. 9.4) such that each region is expected
to be a constant mixture of tissue types (Broadhurst et al., 2005).

9.2.2 Segmentation Method: User Operation

M-rep-defined objects can be viewed as a boundary mesh (at any of a number of ver-
tex spacing levels), a rendered surface, a collection of points at the aforementioned
boundary vertices, or a medial atom mesh. Most users find the first two of these
the most useful. Images are normally viewed in a tri-orthogonal display, with the
three possible slice directions fixed to the cardinal within-image and cross-image
slice directions given by the stored target image. The displayed object can be pre-
sented together with the intensity display (see Fig. 9.3). Moreover, we also provide

1 The convergence properties are shared with all iterative conditional modes methods and are based
on the underlying Markov random field. In practice, convergence always occurs, but sometimes
the convergence is to a local maximum of the objective function rather than the desired global
maximum.
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a b c

Fig. 9.4 Boundary-relative regions used for measuring geometry-to-image match to a kidney.
(a, b) Example from two different patients displayed in 2D cuts. The kidney interior region is
portrayed in blue, and the kidney exterior region is portrayed in orange. (c) A mesh showing in
3D the m-rep implied boundary of the kidney, and the kidney interior and exterior regions in two
orthogonal cuts through the 3D image

a boundary display mode on the displayed slice, in which the 3D object does not
appear but the curve of its intersection with the displayed slice(s) is displayed on
that slice (those slices).

Using these viewing mechanisms, the user either chooses the location of pre-
selected landmarks in the target image, which is then used as the basis of an
Procrustes initialization of the model, or he or she manually initializes the chosen
model by placing it in an initial position relative to the 3D image (for example, see
Figs. 9.3-bottom row, 9.4c, and 9.9-bottom left). The initialization transform derived
from the landmarks is frequently a similarity transform, but we have found it also
useful that this landmark-based transform optimize in the shape space of the prin-
cipal geodesics of the object with a data-match term given by the sum of squared
model landmark to image landmark squared distances, with each squared distance
divided by its tolerance squared.

The landmarks on the model are chosen as a specified spoke end. These land-
marks appear as colored spots on the base model in the display space. These
landmarks can also be used for editing an m-rep in the middle of the optimization
process or as another term in the geometry-to-image match.

The user is also given control of the values of the weights controlling the strength
of the geometric typicality term in the objective function, relative to the geometry-
to-image match term. However, since the two terms are now both Mahalanobis
distances, the default weight of unity needs seldom be changed.

9.3 Training and Measuring Statistical Geometric Typicality

To be able to measure a log prior, one needs a parametrized function that one
can evaluate with any m-rep for the desired object as the argument. Section 9.3.1
describes the means for training the parameters of this prior probability density on
m-reps that is then used to measure geometric typicality of any candidate m-rep
appearing in the optimization of the log posterior. This training of the prior is done
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by principal geodesic analysis of m-reps fit to binary images extracted from training
greyscale images. Section 9.3.1 describes both the fitting of m-reps to binary images
and how principal geodesic analysis is used at multiple scales to produce the prior
probabilities needed for the various scale levels. Section 9.3.2 describes the means
for measuring the log prior at multiple scales needed in the multiscale segmentation
procedure.

9.3.1 M-Rep Model Fitting and Geometric Statistics Formation

Model-building must designate the figures making up an object or object ensemble,
give the size of the mesh of each figure, and give the way the figures are related. It
must also specify each medial atom in the model forming the mean object or object
ensemble and the variability of these at many scale levels. Illustrated in the panels
of Fig. 9.5 are m-rep models of a variety of anatomic structures that we have built.

Fig. 9.5 M-reps for a kidney, a liver, and a male pelvis. Top row: mesh of atom hubs; middle row;
mesh of medial atoms (including spokes); bottom row: the implied boundaries shown with atom
mesh(es)
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In the following we sketch our model building procedure, leaving the details of how
we meet this challenging goal to other papers (Merck et al., 2006).

Because an m-rep is intended to allow the representation of a whole population
of an anatomic object across patients, we build it based on a significant sample
of instances of the object. Typically we use some tens of instances, say 50. For
each instance we begin with both a 3D binary image representing the interior of the
object, typically manually segmented, and an associated 3D greyscale image (CT or
MRI or another modality).

Styner et al. (2003a) describe a tool for producing m-rep models from such binary
image samples, based on the principle that effective segmentation depends on build-
ing a model that can easily deform into any instance of the object that can appear
in a target image. We can use this tool to compute the set of appropriate figures at a
given level of approximation from a training population, or we can choose the fig-
ures based on anatomic expertise to correspond to named anatomic structures. The
tool measures the level of approximation in the figure computation step via error in
volume overlap (typically 98%). In either case, given the figures, the tool chooses
the number of atoms in each figure as the minimal number that can fit every training
instance to a given error measured by the mean absolute distance of the surfaces
(typically 5% of the average radius).

More recently we have completed a stable web-sharable tool called Binary Pablo
for fitting an m-rep model to each member of a collection of binary images and
deriving the Fréchet mean and principal geodesic modes and variances (Merck et al.,
2006). Once a base model is generated, we use Pablo to deform it into the binary
segmented training images. The program optimizes an objective function that has
an “image match” term giving an average distance between the boundary implied
by the m-rep and the binary image boundary, and three geometry terms: (1) giving
an average squared-distance between each atom and the geodesic average of its
neighbors, thus producing a regular mesh of atoms; (2) discouraging folded objects
by penalizing rSrad eigenvalues ε1 (see Chapter 3); (3) giving a squared-distance
from a reference m-rep. The sharable version only operates for single-figure objects,
but versions that fit m-reps to multi-figure objects and to multi-object complexes are
available in our research toolkit.

Given the m-rep models for all the training cases (Fig. 9.6), we use a tool initially
developed in Dam et al. (2004) and further developed by Lu (Lu et al., 2003) to
compute the mean model and the principal-standard-deviation-weighted principal
geodesics describing its variability. This tool uses the method of principal geodesic
statistics on symmetric spaces described in Chapter 8, Section 7. As with linear
statistics, each principal geodesic has an associated variance, and moving along that
geodesic gives a principal mode of variation of the population of m-reps.

The statistics at one scale level need to describe the variability of the geomet-
ric entity at that scale level after the variability at the larger scale levels has been
accounted for and after alignment to neighboring entities has been done. Descrip-
tion of this residue statistics, based on the theory of Markov random fields, is given
in Lu et al. (2003).
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Fig. 9.6 Left: A subset of our population of training kidneys. Right: the mean of the population
and the mean +/−1 standard deviation in each of the first two principal geodesic modes

With these means and a number of principal geodesics chosen to capture some
fraction of the variance at that scale level, deforming a geometric entity at that
scale level involves aligning the object to its neighbors and then computing the
coefficients of the principal geodesics of the deformation of that entity.

9.3.2 Measuring Statistical Geometric Typicality

The geometric typicality that we wish to use is log(p(m)), or in the case that m has
neighbors N(m), log(p(m|N(m)). But except for an additive constant and a constant
multiplier of −0.5, when the principal geodesic analysis given in Section 8.7 is used,
the log probability density in the symmetric space at any scale level is just a Maha-
lanobis distance in a tangent space to that symmetric space. Thus, when optimizing
in the space of principal geodesics, we are optimizing over the weights ai of the
projections vi of the unit-variance principal geodesics onto the feature space tangent
plane at the mean. For any value of these ai, and given the variances σ2

i of the princi-
pal geodesics in that tangent plane that are derived in the principal geodesic analysis,
the Mahalanobis distance of −∑i a2

i forms the geometric typicality measure.
As discussed earlier, at all scale levels but the global one this geometric typicality

metric of the relevant geometric entity needs to reflect its shape properties but also
its relation to immediately neighboring peer entities. This can be accomplished with
principal geodesics that were computed with augmenting atoms in adjacent objects
or figures (see Chapter 8, Section 7).

Two special neighbor relations deserve comment. One is the non-interpenetration
relation among very nearby (possibly abutting) objects (see the male pelvis in Fig.
9.2). Not only the correct relative position, orientation and size need to be reflected
in the geometric typicality, but also an interpenetration of the figures needs to result
in a low geometric typicality. The second neighbor relation of note is that between
a protrusion or indentation subfigure to the “host” figure on or into which it sits
(see liver in Figs. 9.2 and 9.5) or the relation between an object and a nearby, pos-
sibly abutting, object. In Chapter 8 we argued that the subfigure should ride on the
boundary implied by the host’s representation and be known in the figure-relative
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coordinates of the host. The augmentation idea mentioned as applying to nearby
objects uses a similar concept. Thereby we can make measurements of typicality
in terms of the position of the subfigure (or related object) relative to the host, the
orientation of the subfigure relative to the host, and the size of the subfigure relative
to the host. When slight modifications of the hinge atom relationship are created
due to motions in symmetric spaces not maintaining the relationship of hinge atoms
to their host figure boundary, we find success in simply projecting the hinge atoms
back onto the host boundary along host surface normals (interpolated spokes).

9.4 Training and Measuring Statistical Geometry-to-Image
Match

Methods for training and measuring a probability density on image intensities must
do so in a way respecting correspondence of locations across the population. There
is much good work on correspondence, e.g., (Davies et al., 2002; Yushkevich et al.,
2005), but here we suggest that correspondence be obtained through object-relative
coordinates (Fig. 9.7). For m-reps that means that the figural coordinates provided
by u = (u,v,φ ,τ) within figures (see Chapter 8, Section 3) and by u = (v,w,φ ,τ),
within inter-figural blend regions (see Chapter 8, Section 8) provide the means of
correspondence. More precisely, intensity statistics are done with respect to I(u).

Recall that within an object main figure and within a subfigure outside of the
blend region, (u,v) measures relative location along the medial sheet, φ expresses
which side of the medial sheet the location is or at the end where in the transi-
tion between the sides the location is, and τ gives the fraction of the distance along
the spoke from the medial end to the boundary end. For interfigural blend regions
between a subfigure and a host figure v and φ are the cross-figure figural coordi-
nates of the subfigure and w ∈ [−1,1] moves along the blend from the curve on
the subfigure terminating the blend (w = −1) to the curve on the host figure termi-
nating the blend (w = +1). Section 9.4.1 describes the computation transforming
between Euclidean coordinates x and figural coordinates u. Between objects one
must interpolate between the figural coordinates of the nearby objects. The means

Fig. 9.7 Correspondence over deformation via figural correspondence. In each pair of corre-
sponding marked points, the two points have the same value of the figural coordinates u =
(u,v,φ ,τ)
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of this interpolation is still a subject of research, but one of the options is described
in Section 9.5.1.

We have used two basic methods that go from m-reps and associated greyscale
images to geometry-to-image match functions on an image given an m-rep. The
method we used first (Stough et al., 2004) was based, like that of the active shape
method of Cootes et al. (1993), on normalized correlation between cross bound-
ary intensity profiles and template profiles determined in training. However, in our
method the template in each profile was chosen from among a limited number of
possibilities chosen by clustering profiles during training, and values needed in the
normalizations of the target profiles at each boundary vertex were also determined
during training, thus stabilizing the normalization. Both normalized correlation
methods produce a log probability density only under the poor assumption that the
profiles are uncorrelated and that the tissue mixture at a voxel in the template can
be expected to be precisely the same as that in the corresponding voxel in the target
image. To overcome the first weakness Ho (2004) argues for improvements based
on multiscale profiles, produced by a variant on Gaussian weighting across but not
along the profiles.

Either variant of this profile match method can be expected to achieve less suc-
cess than our new method, which is designed to produce log probabilities without
these faulty assumptions. Our experiments on kidney segmentation, sketched in Sec-
tion 9.5.2 and detailed in (Broadhurst et al., 2006), showed the new method to give
better results in practice. Thus we describe only the new method, which generates a
log likelihood on discrete quantile functions from the intensities in regions relative
to the m-rep. It is detailed in Section 9.4.2.

9.4.1 Transforming Between Figural and Euclidean Coordinates

The geometry-to-image match term in the objective function requires object-relative
image positions x(u) to be computed in large number. Thus, interpolation within I(x)
must be very efficient. In Pablo at present, this transformation x(u) is done through
the mechanism of subdivision surface methods (Thall, 2004), as described below.
Han is developing a more accurate method based on the interpolation of medial
atoms (see Chapter 8) and is seeing how to make it adequately speedy.

In the subdivision surface method we interpolate the boundary first and conse-
quently can interpolate medial atoms at any position on the sheet of atoms. The
implied boundary is computed from the set of atom spokes connected into quadri-
lateral and triangular tiles both within figures and in interfigural blend regions
(Figs. 8.3 and 8.13). The boundary interpolation is accomplished by a variation of
the very efficient Catmull-Clark subdivision (Catmull and Clark, 1978) of the mesh
of polygonal tiles. Thall’s variation (Thall, 2004) of Catmull-Clark subdivision pro-
duces a limit surface that iteratively approaches a surface interpolating in position
to spoke ends and with a normal interpolating the respective spokes. That surface is
a B-spline at all but finitely many points on the surface. The program gives control
of a tolerance on the normal and on the closeness of the interpolations.
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The resulting B-spline allows the computation of both boundary positions b and
boundary normals U, which are spoke directions there. Interpolating the medial
radius r as well as u and v at such boundary positions allows the computation of
x(u) = b + (τ −1) U.

Points x can also be given a figural coordinate u by finding the figural coordi-
nates of the closest medially implied boundary point, using the boundary normal or
the gradient of the distance function as the spoke direction, and calculating τ from
the intersection of this spoke with the sheet of hubs. This calculation, however, is
fraught with danger, since the boundary may be inadequately smooth.

9.4.2 Geometry-to-Image Match via Statistics on Discrete Regional
Quantile Functions

9.4.2.1 Conceptual Basis for Statistics on Intensity Quantile Functions

Any efficient geometric description does not capture all there is to say about the
biology or physics of the individual being modeled. Thus for a given medially spec-
ified object or complex of objects, the variation between different images of the
same class of object frequently is due not only to intensity noise but more so to the
variation of the materials of which the object are made and of the variation across
the object of the weights of those materials making up the materials mixture. Thus in
medical images there is variation across patients of the locations of specified tissue
types within and between their respective objects. This suggests that point-by-point
correspondence as provided, for example, in the active shape models and active
appearance models of (Cootes et al., 1993, 1999), where the probability densities are
on corresponding intensity values, be replaced by probability densities on regional
collections of intensities, ignoring the particular locational correspondences within
these regions. In particular, this suggests probabilities on intensity summaries, such
as histograms, of regions expected to have uniform mixtures of tissue types.

Our regional intensity summary based match method (Broadhurst et al., 2005;
Pizer et al., 2005a) uses a region inside the object and a region outside the object
(Fig. 9.4) and sometimes subregions of these regions defined according to figural
geometry.

The feature space formed by using the bin counts of histograms of intensity pro-
vides a poor basis for probabilistic analysis. The weakness is exemplified by the
fact that the average of two unimodal histograms in this form would be a bimodal
histogram, rather than a unimodal histogram whose center is between the two being
averaged. In the following we argue that instead representing the regional intensity
collection by the curve of intensity values versus quantile (regional intensity quan-
tile function, or RIQF) allows an effective log probability density to be calculated
by factor analysis. Also, histogram bin counts as features suffer from quantiza-
tion effects, i.e., binning errors, while discrete RIQFs do not since no arbitrary bin
boundaries are selected.



284 S. Pizer et al.

The RIQF of an intensity distribution i can be shown to be the inverse of the
cumulative distribution function I of i. Discretely sampling the RIQF yields the
discrete RIQF (DRIQF). The DRIQF is an n bin quantile function where each bin
j, representing 1/n of the probability distribution area, stores its average image
intensity i j. Considering these values in sorted order, the DRIQF for region k can
be represented as a vector ik = (ik1, . . . , ikn). Computing this vector requires partial
sorting of the list of N intensities in the region, taking O(Nlog(n)) time.

The effectiveness of using standard statistical tools to construct a probability dis-
tribution of RIQFs depends on the fact that the space of RIQFs has several known
linear properties related to Euclidean distance and thus mean and principal com-
ponents. Euclidean distance between RIQFs corresponds to the Mallows distance
(Mallows, 1972; Levina and Bickel, 2001) between the corresponding probability
distributions, defined as follows. For two continuous one-dimensional distributions
with cumulative distribution functions Q and R, and RIQFs q = Q−1 and r = R−1,
respectively, the Mallows distance between them is defined as the Minkowski L2

norm between q and r:

M2(q,r) =
(∫ 1

0
|Q−1(t)−R−1(t)|2dt

)1/2

=
(∫ 1

0
|q(t)− r(t)|2dt

)1/2

.

The Mallows distance can be shown to measure the work required to change one dis-
tribution into another by moving probability mass, i.e., the Earth Mover’s distance
between the corresponding probability distributions, intuitively a good measure of
difference between RIQFs. For DRIQFs q and r, the Mallows distance is defined as
the L2 norm of the vector difference between q and r:

M2(q,r) =

(
1
n

n

∑
j=1

|q j − r j|2
)1/2

.

Location and scale changes to any probability distribution, or changes in any
affine combination of the DRIQF values, are linear in the space of DRIQFs. Sev-
eral families of common continuous distributions, including Gaussian, uniform, and
exponential distributions, are parameterized by location and scale parameters. Thus,
DRIQFs of each of these families of distributions exist in a two-dimensional lin-
ear subspace. Also, the Euclidean average (or any linear combination) of a set of
DRIQFs from one of these families of distributions results in a DRIQF contained
within the family and having means and standard deviations averaging (or corre-
spondingly linearly combining) the respective means and standard deviations. For
example, the Mallows distance between two Gaussian distributions N(µ1,σ2

1 ) and
N(µ2,σ2

2 ) is
√

(µ1 − µ2)2 +(σ1 −σ2)2. The average in this space of a set of RIQFs
corresponding to Gaussian probability densities is a Gaussian with a mean and
standard deviation equal to the average mean and standard deviation of the set of
Gaussians. However, a weakness of the space is that for probability distributions
composed of a mixture of multiple underlying unimodal distributions, changing the
mixture amount is a nonlinear operation.
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Fig. 9.8 Bladder DRIQFs (top) and corresponding histograms (bottom). Left: training samples;
right: learned mean and ±2 standard deviations along the first principal direction

The consequence of the foregoing is that analysis of regional intensity distribu-
tions can be captured by linear statistics on their DQRIFs, which can efficiently
capture variation in location and scale change. The method is not effective for
dealing with multimodal probability distributions with widely separated peaks and
varying interpeak separations, but our experience is that it works well for unimodal
probability distributions and even multimodal probability distributions whose peaks
are not widely separated.

DRIQFs of interior and exterior regions of the bladder in 15 CT images are shown
in Fig. 9.8. The first two principal directions of variation of the interior and exterior
regions capture 95% and 97% of the variation, respectively. DRIQFs of subregions
can also be constructed; this example and this discussion are only in terms of interior
and exterior regions. In this example, the contribution of each voxel to the DRIQF
is Gaussian weighted by its distance to the surface. This allows narrow regions to
be defined that have larger capture ranges and smoother objective functions during
segmentation than equivalent non-weighted regions. In each region, gas and bone
intensities have been automatically removed from the distribution using a threshold,
and the probability of each is independently measured. The Mallows distance is
sensitive to the variation in these intensities due to their extreme intensity values
compared to the differences in fat and tissue intensities.

9.4.2.2 Training Probability Densities on Regional Intensity Quantile
Functions

The probability densities on DRIQFs that we use are estimated by principal compo-
nent analysis of the DRIQFs, taken as feature vectors. Then the geometry-to-image
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match of the DRIQF obtained from a target image region is a Mahalanobis distance
based on this principal component analysis. In the following we detail the estimation
of this Mahalanobis distance function.

We model the variation in our DRIQF feature space as a multivariate Gaussian
distribution. The dimension of this space is equal to the number of bins used to
represent a DRIQF, which is typically 200. This often results in a high dimension,
low sample size situation, which prevents us from estimating a full rank multivariate
Gaussian model. Therefore, we use principal component analysis to estimate a low
dimensional subspace, typically of dimension 2–4, in which we build a Gaussian
model. We then measure the expected distance to this subspace by summing the
remaining eigenvalues since during segmentation we expect to estimate the prob-
ability of many image regions that are not typical of the training regions. Thus,
the final Gaussian model for each region is of dimension equal to the number of
eigenmodes plus one.

The geometry-to-image match function is the resulting Mahalanobis distance
function. Intuitively, the Mahalanobis distance of a target DRIQF is equal to the
Mallows distance between the probability distribution corresponding to the target
DRIQF and that corresponding to the mean RIQF, modified by the standard devia-
tions in each direction of the Gaussian model. Thus the Mahalanobis distance is a
natural enhancement of the Mallows distance that accounts for the variability in the
training set.

The training data on which the principal component analysis is done is formed
as follows. For each training case we have a greyscale image, a binary image, and
an m-rep fit to the binary image as discussed in Section 9.3.1. Voxel correspon-
dences specified by m-rep based figural coordinates (Section 9.4.1) allows us to
compute the set of DRIQFs for each object-relative image region across the training
images. When determining if a voxel belongs in a region, we initially use the binary
image, not the m-rep, to label voxels as being inside or outside the object. This
allows us to define mean DRIQFs that correctly provide references for the Maha-
lanobis distances used to form the geometry-to-image match. These DRIQFs do
not, however, measure the expected variation of the actual training segmentations.
Therefore, we estimate the covariance of the DRIQF in each region from the DRIQF
values based on m-rep region labeling minus the already computed respective mean
DRIQF, which is based on binary labeling.

9.5 Pablo Details and Results

9.5.1 The Voxel-Scale Stage of Segmentation

After all of the stages of segmentation that modify the medial atoms, an m-rep
has undergone transformation from the beginning model (typically the mean of the
global object complex or object). Figural coordinates allow this transformation to
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be understood as a diffeomorphism within all of the objects making up the com-
plex represented by the m-rep. This warp can be interpolated into a chosen portion
of 3-space including the complex, including the interstitial space between multiple
objects or figures, if the complex is made up of more than one figure. A further finer
scale transformation on that portion of 3-space can then be determined.

We interpolate the transformation from the objects to the surrounding 3-space,
as follows. Each implied boundary position of the m-rep is understood as the tip of
a particular m-rep spoke, either one of the basic representation or one interpolated
from it. That spoke is from a medial atom m(1) at particular figural coordinates
that allow it to be associated with a corresponding atom m(0) in the original m-rep
model. Paths m(t), 0 ≤ t ≤ 1, in the abstract space of atoms between the original
atoms and the corresponding transformed atoms can be found according the mathe-
matics in Chapter 3, Section 3.3, such that at every t the m-rep is unfolded and thus
the continuous transformation of m-rep interiors is diffeomorphic. These paths can
be sampled in t to produce a path of the corresponding spoke ends, and this sequence
of positions can be used as a boundary condition in a landmark interpolation method.
For example, one can use the thin-plate spline interpolation (Bookstein, 1991) on
each of the corresponding successive pieces of the paths of all of the spoke ends.
If the interstitial transformation was not diffeomorphic, as when objects slid along
each other between individuals, an interpolation that allowed such transformations
would need to be used.

We determine the fine scale warp to be composed with the transformation inter-
polated from the medial transformation using the fluid-flow warp method of (Miller
et al., 1999). If the final map might not be diffeomorphic, as when regions of gas
formed or were lost in the rectum or when tumors existed in the particular patient but
the model was of well patients, then a warp method that permitted such situations
would need to be applied.

The approach of computing a small scale space warp to be composed with a
medially determined warp has the following advantages over computing the whole
deformation as a space warp from an atlas. Optimizing large scale deformations is
likely to be heavily affected by local minima, and in any case it is very likely to
be slow as result of having to work over the combinatorially related, many small
voxels. Indeed methods that have attempted to compute such warps have found it
necessary to begin the process by preceding the voxel-scale warp by applying larger
scale transformations such as ones based on manually chosen landmarks (Chris-
tensen et al., 1997). Using medial transformations to provide the large scale warp
has advantages of being automatic, of using object-based correspondences, and of
dividing itself into multiple scales, e.g., global to the object complex, object by
object (with sympathetic inter-object relations), figure by figure (with sympathetic
inter-figure relations), and medial atom by medial atom (reflecting inter-atom rela-
tions). Using these many scale levels produces both a much improved likelihood of
convergence to the global optimum and qualitatively improved speed.
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9.5.2 Evaluation of Segmentations

We have applied Pablo anecdotally to the segmentation of variety of organs or organ
complexes. M-rep models have been built for both the liver (Han et al., 2005b), a
multifigure object, and the heart (Pilgram et al., 2003), a multi-object ensemble, and
statistical description of these anatomic entities have been generated. Controlled
evaluations, described in the next two sections, have been carried out for the follow-
ing two situations: (1) the extraction of kidneys from new patients’ CT scans; (2)
the extraction of the bladder, prostate, rectum complex from CT scans of a patient
on one day of radiation treatment given the CT scans and segmentations of that
patient on the planning day and other days of treatment. The first of these involves
the segmentation of a single single-figure object with statistics drawn from many
other patients’ images, so we refer to it as an inter-patient segmentation. The second
involves the segmentation of a multi-object complex with the statistics describing
the variation across days within a patient (intra-patient).

9.5.2.1 Inter-Patient Kidney Segmentation Results

We have studied segmentation of the kidney from CT scans over a few years. An
early result of evaluation of an earlier form of Pablo was described in (Rao et al.,
2005). In that study we determined that averaged over a particular test sample, two
humans’ manual segmentations differed from each other in average surface dis-
tance over the kidney by 1.2 mm. Averaged over these cases the Hausdorff distance
between the two segmented kidneys was 10 mm.

In a controlled study on segmentation of kidneys from 3D CT images of clinical
quality, we used the sum of Mahalanobis distances described in Sections 9.3 and
9.4.2 as the objective function at the figure (object) stage. Since the log probability
densities relieves the necessity of setting the relative weights of the two terms of
the objective function by user control, these weights were set to unity in the study.
However, at the atom stage we used the average squared-distance between each atom
and the geodesic average of its neighbors, i.e, the atom irregularity penalty used
in Binary Pablo (Section 9.3.1) for the geometric typicality, since the probability
density training for the atom stage was not yet ready. This required a manually
set weight on this term, which was held fixed for the experiment. The DRIQFs
used in the geometry-to-image match at both stages were from Gaussian weighted
regions inside and outside the kidney that had σ = 3 mm. In one trial training was
on 20 cases and testing was done on 19 cases. In another trial leave-one-out testing
was applied, i.e., all tests with 38 training cases and 1 test case were evaluated.
In the geometry-to-image match, principal components carrying 97% and 99% of
the variance were used to form the inside-object and outside-object log probability
densities, respectively.

For our evaluation, we first consider the segmentation result to be that leading
to minimum values of the atom-stage objective function. On the 19 test CTs the
segmented kidneys had average surface distances to one human segmentation that
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was at least as good as found between humans in the Rao study on a different test
set. More precisely, the computer vs. human segmentations differed from each other
in average surface distance over the kidney by 1.2 mm on the average case, and the
Hausdorff distance between the two segmented kidneys was 6.8 mm on the average
case. In all of the test cases, the automatic segmentation was usable without editing
in radiotherapy treatment planning, although a voxel-stage editing would have been
considered desirable in many of the cases. In fact, the automatic segmentations are
frequently judged to be superior to the manual segmentations, and they have the
additional benefit of being reproducible, even if the initialization is slightly different.

In the leave-one-out experiment, with its larger training sets, the results were
roughly equivalent. The results of both experiments are given in more detail in
(Broadhurst et al., 2006). An atom stage with a probabilistic geometric typicality
might be expected to yield a further improvement.

These results were made less impressive by the fact that the objective function
optimum that was found was not always achieved when we used the initialization
based on six landmarks that we anticipated using for clinical purposes, namely, the
north and south poles of the kidney and the two kidney crests at the level of the renal
pelvis, and two positions at that level centered between the two crest landmarks.
However, only 2 of the 19 cases in the first experiment and 4 of the 39 cases in the
leave-one-out experiment would have required editing for clinical purposes.

9.5.2.2 Intra-Patient Multi-Object Male Pelvis Segmentation Results

As illustrated in Fig. 9.9, we have built a model for the multi-object ensemble of
bladder, prostate, and rectum in the male pelvis. We have fit this multi-object model
into a few dozen binary segmentations of these organs from fraction-by-fraction2

CT images in five patients’ cases, and after alignment of the prostate based on
the two landmarks of the urethral entrance into and exit from the prostate, and
after alignment of the bladder based on two polar and four equatorial landmarks,
we have built statistical descriptions of the variability of the these objects across
fractions within each particular patient. As well, we have built DRIQF statistics
as described in the previous section, but here for six regions: interior and exterior
regions for each organ. For the prostate and for the bladder, we also evaluated the
use of approximately 200 overlapping regions to produce the exterior DRIQFs.

Finally, we have used these statistics to segment the prostate and the bladder from
the CT images in other fractions in a leave-one-out experiment. (The rectum was
represented as a tubular m-rep, and successful segmentation of the rectum was done
in a separate experiment.) The initialization was done using the aforementioned
landmarks. Since we are nearly ready to apply our method of principal geodesic
analysis on medial atom residues and factor analysis on DRIQFS in local atom-
relative object regions, we have optimized at the object stage only. The best results
are produced when using the 200 exterior regions for DRIQFs. These results show

2 A fraction is the radiation treatment on a given day.
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Fig. 9.9 M-reps for segmenting the male pelvis in CT images in later radiotherapy fractions. Top
left: m-rep for pubic bones, used to register the later day fraction images with the first day fraction.
Top-right: the m-rep for the bladder, prostate and rectum. Bottom left: a visualization of the bladder,
prostate rectum m-rep’s implied boundaries relative to a slice of the associated 3D CT image.
Bottom middle and right: the segmentation result in a later fraction, shown in one of the image
slices first vs. the greyscale CT image and then vs. the human segmentation shown in white

segmentations that have a median, over the cases, of the intersection/average vol-
ume overlap to a human segmentation of 93% for both the bladder and prostate and
a median, over the cases, of the average closest point distance to the human segmen-
tation of 1.13 mm for the bladder and 0.99 mm for the prostate. The numbers for the
prostate, comparing segmentation based on statistics from a human who produced
the training manual segmentations to the that human’s result in the left-out-case,
should be compared to the numbers comparing another observer’s manual segmen-
tation of the prostate to that of the training observer in one of the five patients’
set of 16 multi-day CTs (Foskey et al., 2005). The agreement of the two humans’
segmentations was 81% volume overlap and 1.9 mm average closest point surface
separation.

When our segmentation was not as good as we wished, there were two explana-
tions. First, in many of the segmentations of the bladder, a smaller scale refinement
was necessary. We expect this to be accomplished when the log posterior optimiz-
ing atom stage is applied. Second, in a few cases the bladder initialization based
on prostate landmarks was not adequate, but with a bladder-based initialization the
segmentation was improved in a majority of cases.

This multi-object segmentation has been adapted for the clinical situation of
adaptive radiotherapy by training the object principal geodesics by a pooling of
aligned deviations from the mean of other patients. The results, which will soon be
published with the details of the method, are comparable to those reported above.
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Also, we expect shortly to report results of the atom-stage refinements of these
segmentations.

Moreover, we are presently investigating having each object’s change at the
object scale level be divided into an m-rep change ∆msel f independent of neigh-
boring objects and an m-rep change ∆mngbr reflecting the effect on the object
of changes in neighbor atoms (Jeong et al., 2006). The neighbor-induced change
is statistically described using the method of augmented object descriptions and
prediction described in Chapter 8, Section 8. ∆mngbr is decomposed as a condi-
tional mean of the object, given designated neighbor atoms in its neighbors, plus
a neighbor-effect residue with its own probability density. Probability densities on
∆msel f , on the augmented object, and on the neighbor effect residue are estimated
by repetition of successive principal geodesic analyses. In segmentation the poste-
rior is successively optimized with the prior iteratively in succession being the self
probability density and the neighbor residue probability density, respectively. Initial
results from statistical analysis on the bladder, prostate, rectum object complex are
biologically reasonable, but it remains to test this approach by segmentations that
use the self and neighbor residue probability densities.

9.5.2.3 Speed of Computation

The speed of a 3D segmentation on a Pentium IV, 1.7 GHz computer subdivides as
follows.

• Preprocessing computations take less than 1 second.
• The largest scale stage (the object complex stage for an ensemble, the object

stage for a single multifigure object, the figure stage for a single-figure object)
takes a about 5 seconds per iteration and on the average requiring 20 iterations
for a total time of about 3 minutes to determine the geometric warp coefficients.

• When the smaller scale medial stages are appropriately re-programmed, the same
numbers will apply to each subfigure stage and about double for a full pass
through the atoms at the atom stage, modulo the number of iterations required.

• The voxel displacement stage has not been timed, but it is expected to operate in
under a minute.

Thus the total time for a kidney segmentation will typically be 7 minutes to segment
a single-figure object.

While the method’s speed has already benefited strongly from moving much of
the computation from the deformation stage to the model building stage, there is
still much room for speedup of integer multiples by more medial levels of coarse
to fine, by medial deformation measured directly from the atoms without resort to
the implied boundary, by having the gradients of the objective function relative to
the changing parameters needed by the optimization steps be computed analytically
rather than with numerical derivatives (shown in initial tests to more than double the
speed), and just by more careful coding.
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9.6 Hypothesis Testing for Localized Shape Differences
Between Groups

We now focus on the quantitative morphologic assessment of structures between
groups of human subjects. Our examples are individual brain structures in neu-
roimaging. Conventional methods study only volumetric changes, which explain
intuitively global atrophy or dilation of structures. On the other hand, structural
changes at specific locations are not sufficiently reflected in volume measurements.
Statistical shape difference testing has thus become of increasing interest. Its poten-
tial to precisely locate morphological changes and to discriminate between groups
makes it a good choice for studying pathological morphologic processes due to
disease, as well as neuro-developmental processes. For example, we may wish to
understand the shape differences in the hippocampus, caudate nucleus, cerebral ven-
tricle complex in the brain between control patients and schizophrenics, or we may
be interested in the differences of the hippocampus between 2-year olds who will
develop autism and 4-year olds who will develop autism.

We focus in this section on the hypothesis testing of whether and where there
are m-rep shape differences between the groups. We will discuss both global tests
and truly local tests. Hypothesis testing applications using other medial descriptions
have been proposed by Golland et al. (1999) and Bouix et al. (2005a).

We call the group designator C, which is numbered from 1 to the number of
studied groups. Each group Ci consists of the objects of a sample of Ni cases. We
assume that the objects or object complexes have been aligned across all cases, with
the same alignment applied for the cases in both classes. The discrete m-rep objects
are described as a tuple of medial atoms. The first idea is either to take all the atoms
together and do a global test by studying the multivariate tuple of atoms × the 8
or 9 parameters per atom. Such a test can be powerful but will fail to localize the
differences found to a particular collection of locations (i.e., parameters).

The alternative is to do a local (for a particular parameter of a particular atom)
test on each atom parameter, at each position. We will use the term location to refer
to such a combination of parameter and atom. The first idea might be to design
a statistical test separately on any such location, and then to repeat that test over
all atoms × parameters. However, the atoms are all correlated, and the param-
eter values are all correlated. To avoid unintended looseness in the threshold for
rejecting the null hypothesis for any parameter, the threshold for rejection has to be
adjusted for each parameter in a way reflecting the correlations. In Section 9.6.1.2
we describe a non-parametric permutation method to deal with this problem for
individual parameters.

Section 9.6.2 will then focus on testing the full m-rep atom parameters jointly
in symmetric space at a fixed scale. Finally, Section 9.6.2.2 will discuss why even
atom by atom testing is not adequately local to the regions determined by the atoms
and how to more appropriately handle locality.
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Fig. 9.10 Scalar m-rep shape difference (schematically in 2D) of 2 m-rep objects: Differences
in the radius (top graph) and position (lower graph) are studied separately in Euclidean space.
The properties express different kinds of underlying processes (growth vs. deformation) that are
assumed to be statistically independent in the scalar testing

9.6.1 Tests in Euclidean Space

9.6.1.1 Univariate Tests in Euclidean Space

We may test a particular location (see Fig. 9.10). Here we focus on the two param-
eters, local position and radius (Styner et al., 2003b, 2004) of a particular atom.
We first compute the group average objects by averaging the position and radius for
each medial atom across each group. The overall average location is then computed
as the average over all group average locations and serves as a template for com-
puting univariate shape distance measurements. The signed position and thickness
differences to the template are computed separately for the specified atom. The sign
of the position difference is computed using the direction of the template medial
surface normals.

Global shape analysis is computed by analyzing summarizing features such as the
mean, median or other quantile measurements of the local differences across each
object by standard statistical hypothesis tests. The choice of the feature evidently
influences the outcome of the tests. The statistical tests mainly include parametric
mean difference tests based on the Students-t distribution, and non-parametric mean
difference tests, as well as parametric analysis of variance tests (ANOVA).

Local shape analysis does not need a summarizing feature as it is a truly local test.
It is computed by testing each medial atom independently with a standard statistical
hypothesis test. This results in a significance value (P-value) for each parameter and
medial atom. We can represent this significance in a 3D visualization using color and
size of spheres at the atom positions of the overall average object. This visualization,
called a medial statistical significance map, allows one to locate significant shape
differences between the groups in an intuitive but not truly local fashion (see Section
9.6.2.2). However, this raw significance map is incorrectly optimistic in regard to
false-positive error rate because the atoms as well as the individual parameter values
of a single atom are correlated, leading to the multiple comparison problem, a topic
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of active research in the field of shape analysis (Worsley et al., 1996; Nichols and
Holmes, 2001).

The raw significance map can be corrected for this multiple comparison prob-
lem using a uniformly sensitive, non-parametric permutation test approach (Pantazis
et al., 2004) described in the next section. This results in a corrected significance
map. In contrast to the raw significance map, which is a quite optimistic estimate of
the real significance map, the corrected significance map is a somewhat pessimistic
estimate, as discussed in the next section.

9.6.1.2 Multivariate Permutation Tests in Euclidean Spaces

The permutation tests we describe here localize regions (atom indices or parame-
ters thereof) in objects that exhibit statistically significant morphological variation
among two population groups while controlling the risk of any false positives, as
long as the object features are in a Euclidean space. We find local thresholds that
control the false-positive error rate and at the same time achieve uniform sensitivity
among all locations.

We assume we have two groups of local parameter sets, group A and group
B. Each parameter set represents either shape parameters or differences of shape
parameters. We want to test the two groups for difference in the means at each loca-
tion. Permutation tests are a valid and tractable approach for such an application.
Our null hypothesis is that the distribution of the parameter set at each element is
the same for every subject regardless of the group. Permutations among the two
groups satisfy the exchangeability condition, i.e., they leave the distribution of the
statistic of interest unaltered under the null hypothesis. Given n1 members of the first
group ak, k = 1 . . .n1 and n2 members of the second group bk, k = 1 . . .n2, we can
create M ≤ (n1+n2

n2

)
permutation samples. A value of M from 20,000 and up should

yield results that are negligibly different from using all permutations (Edgington,
1995).

The complex set of steps needed to test the null hypothesis that the two groups
have the same probability distributions is illustrated in Fig. 9.11. We take the reader
through this process step by step. For each permutation sample j, we compute a
difference metric Tj between the groups, with elements Ti j. For univariate Euclidean
parameters the absolute distance between the means of the groups is often used:

Ti j =
∣∣µ̂ai j − µ̂bi j

∣∣ (9.1)

where i is the location index, j the permutation index. If we wish to sense locations
at which differences of collections of parameters at the locations are signficant, we
can use difference metrics for multivariate, Euclidean or non-Euclidean parameters,
as long as the difference metric itself is in Euclidean space, such as the multivariate
Hotelling T 2 test statistic for the collection: T 2 ∝ D2 = (µ̂a − µ̂b)T Σ̂−1(µ̂a − µ̂b),
where Σ̂ is the pooled sample covariance. In R

n this statistic is invariant to coor-
dinate transformations and is uniformly the most powerful test with this property
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Fig. 9.11 Illustration of the permutation scheme. In the bottom row we create M permutation
samples from the original data. We let j index the permutations and let i index the locations. For
each permutation and location we compute the group difference metric Ti j, which is probability-
normalized into T p

i j . The data is then summarized across all locations to create the conservative

summary statistic S j over all locations. The empirical distribution of S j , called F̂S is used to define
a global threshold Sth which for each location is applied to the probability-normalized test statistic
obtained from the division to be tested, into groups A and B

(see Anderson, 1958 for a derivation). We cannot use this statistic directly on the
multivariate combination of all atoms and parameters due to its inability to provide
sensing of location.

In Fig. 9.11 it is assumed that we are given a target division of the data into two
groups, A and B. To achieve uniform sensitivity across all locations, the parameter
(or group of parameters) value Ti j at each location is first transformed to a uniformly
distributed probability density value on [0,1], making all locations comparable. This
is applied both to the test grouping, producing T p

i0 , and as illustrated in the bottom
row of Fig. 9.11, it is also applied to the random permutations derived from the
union of groups A and B, producing the T p

i j . We can compare T p
i j for each param-

eter i within each permutation j to produce a conservative summary statistic S j for
each permutation. Across the permutations the distribution of this summary statistic
produces a common threshold Sth for each of the respective probability-normalized
local parameters T p

i0 , as illustrated in the top row. The justification and specification
of this scheme now follows.

The conservative summary statistic that we use for each permutation is the small-
est probability density value over all locations i. We may then use the empirical
distribution of this conservative summary statistic to extract thresholds that control
the false positives to a desired level.

This method depends on having a form of normalization in the statistic Ti j that
makes the locations comparable. A suitable normalization scheme is based on com-
puting p-values, i.e., at each spatial location we compute the empirical distribution
across permutations and then replace the statistic Ti j for each permutation sample
with its p-value T p

i j . The normalized metric T p
i j is then guaranteed to have a uniform

distribution on [0,1] under Ho for each i.



296 S. Pizer et al.

We can use the normalized data to define a local threshold map that controls the
false-positive error rate to a desired level, say α = 5%, when applied to the original
data. If the conservative summary statistic of the local parameters is S j = mini{T p

i j }
over all locations i and F̂S is the empirical cumulative distribution function of S, the
appropriate global thresholds for a level α test would be F̂−1

S (α). For example, if
we choose a threshold that leaves 5% of the area of the empirical distribution on the
left side of S j, then we have 5% probability of one or more false positives across all
locations. This threshold Sth can be directly applied to T p

i0 (the statistic formed by
probability-normalizing the original data with permutation index j = 0). Since the
statistic Ti j is normalized separately for each location i, the same Sth corresponds
to different values of local thresholds p−1

i (Sth) of the unnormalized statistic Ti0 at
different locations.

Due to the use of the minimum p-value statistic across the whole surface, this
correction scheme is focused only on controlling the rate of false positives at the
given level α (commonly α = 0.05) across the surface. No similar control of the
rate of false negatives is available with this scheme. As the local significance level
correctly controlled for false negatives can be anywhere between the raw p-value
and the p-value corrected with our scheme, this corrected significance map is a
pessimistic estimate of the true significance map.

9.6.2 Tests in Symmetric Spaces

The ideas in the previous section must be generalized to the non-Euclidean feature
spaces appearing in m-reps and their symmetric space. We can derive permutation
tests for equality of means of two groups using elements of the symmetric space.
The sample means of each group, µ̂a and µ̂b, can be computed using the techniques
described in Chapter 8. Replacing Ti j from (9.1) with

Ti j = d(µ̂∗
a , µ̂∗

b ) (9.2)

yields a natural extension of local tests to symmetric spaces.
This provides a way to produce tests for a single aspect of the m-reps, such as

position or radius of a particular atom, independently of the others, but typically
we require a multivariate test using all of the parameters of one or more atoms
simultaneously. We cannot fall back on Hotelling’s T 2 test because it applies only
to the linear case. Instead we can apply a transformation that forms new features
from marginal probabilities, handling differing degrees of variability or correlation
and making the test independent of magnification.

9.6.2.1 Global Multivariate Permutation Tests in Symmetric Spaces

We must now generalize the desirable properties of Hotelling’s T 2 test to a nonpara-
metric, nonlinear setting. One seemingly attractive option is to perform statistics
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in the tangent plane as is done with principal geodesic analysis, since its linearity
means Hotelling’s T 2 test can be applied directly. However, with two samples, the
question that arises is which tangent plane, since there is a different one around each
sample’s mean, and there may be no unique map between them.

The other conceptual problem is that if one follows geodesics past the cut locus—
the set of points where two or more geodesics cross—then points on the manifold
no longer have a single well-defined representative in the tangent plane. Instead of
addressing these problems, we take a more general approach, which only requires
that our objects lie in a metric space.

Our approach is based upon a general framework for nonparametric combination
introduced by Pesarin (2001). The general idea is to perform a set of partial tests,
each on a different aspect of the data, and then combine them into a single summary
statistic, taking into account the dependence between the variables and the true mul-
tivariate nature of the data. When performing the partial tests, we require that each
distribution has the same structure around the mean—equivalent to the assumption
of a common covariance required by Hotelling—and test for a difference of means.
More precisely, following the idea described in the previous section, we map each
feature to its marginal probability and use these probability values as features. The
following two sections describe the details.

Partial Tests. We compute test statistics Ti j as before, where as before i indexes
the model parameters and j is the permutation index. We now turn to the case where
we have Q test statistics: one for each of the parameters in our shape model. Let
µa,i and µb,i be the means of the ith model parameter for each group. Then we
wish to test whether any hypothesis H1,i : {µa,i �= µb,i} is true against the alterna-
tive, that each null hypothesis H0,i : {µa,i = µb,i} is true. The partial test statistics
Ti j, i ∈ 1 . . .Q, j ∈ 1 . . .M are defined analogously to (9.2).

It can be shown that each of our mapped features T p
i j has the properties of

being significant for large values, consistent, and marginally unbiased, as defined
in (Pesarin, 2001). Given that, Pesarin shows that a suitable combining func-
tion (described in the next section) will produce an unbiased test for the global
hypothesis H0 against H1.

Since each of our tests are restricted to the data from a single model parameter
and we have assumed that the distributions around the means in each group are
identical, they are marginally unbiased. We cannot add an explicit test for equality
of the distributions about the mean, as then the test for equality of means would be
biased on its outcome.

To illustrate these ideas, we present a simple example, which we will follow
through the next few sections. We take two samples of n1 = n2 = 10 data points
from the two-dimensional space R×R

+, corresponding to a position and a scale
parameter. The samples are taken from a multivariate normal distribution by expo-
nentiating the second coordinate, and then scaling both coordinates by a factor of
ten. They are plotted together in Fig. 9.12a. They have a common covariance (before
the exponentiation), and the two means are slightly offset in the second coordinate.
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Fig. 9.12 The observed data and test statistics for our simple example. (a) shows the distribution
of our two samples, with ×’s for the first and ◦’s for the second. (b) shows the distribution of the
partial test statistics under permutation. The large dot indicates the location of the observed data
point

We construct Q = 2 partial test statistics using (9.2) for each coordinate, and
evaluate them using Monte Carlo simulation with M = 10,000 permutations.

The results are shown in Fig. 9.12b. The first partial test value lies in the middle
of the distribution, while the second lies near the edge. However, the scale of the
first test is much larger, because no logarithm is involved in its metric.

Multivariate Combination. Given the partial tests from the previous section, we
wish to combine them into a single test, while preserving the underlying depen-
dence relations between the tests. This is done in the following manner. We apply
the same M permutations to the data when computing each of partial tests, and we
then compute a p-value statistic, T p

i j as in Section 9.6.1.2. It is critical to use the
same permutations for each partial test, as this is what captures the nature of the
joint distribution.

We now wish to design a combining function to produce a single summary statis-
tic, T ′

j , from each p-value vector Tp
j . For one-sided tests, this statistic must be

monotonically non-increasing in each argument, must obtain its (possibly infinite)
supremum when any p-value is zero, and the critical value S′th must be finite and
strictly smaller than the supremum. If these conditions are satisfied along with those
on the partial tests from the previous section, T ′

j will be an unbiased test for the
global hypothesis H0 against H1 (Pesarin, 2001).

Our combining function is motivated by the two-sided case (with signed dis-
tances), where we can use the Mahalanobis distance. Thus we need to transform
the uniformly distributed p-values to a random variable that is normally distributed
with mean zero and standard deviation 1. This is straightforwardly accomplished by
applying the inverse of the cumulative density function for that Gaussian after sub-
tracting 1

2M . The extra 1
2M term keeps the values finite when the p-value is 1, and it

is negligible as M goes to infinity. That is, we compute a Uj vector for each permu-
tation, where Ui j = Φ−1(T p

i j − 1
2M ), j ∈ 1 . . .M, and Φ is the cumulative distribution

function for the standard normal distribution. The map via the p-values and the Φ
function gives the statistics known distributions that are directly comparable.

Arranging the Uj vectors into a single M × p matrix U, we can estimate the
covariance matrix Σ̂U = 1

M UT U and use the Mahalanobis statistic: T ′
j = (Uj)T Σ̂−1

U Uj.
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In the event that the data really is linear and normally distributed, the Σ̂U matrix con-
verges to the true covariance as the sample size goes to infinity (Pallini and Pesarin,
1992), making it asymptotically equivalent to Hotelling’s T 2 test. Even if the sam-
ple size is small, the matrix ΣU is well-conditioned regardless of the number of
variables, since it is the covariance over the M permutations.

Typically, our distances are not signed, so we are interested in a one-sided test.
In this case, we use the positive half of the standard normal cumulative distance
function, Ui j = Φ−1(1− 1

2(T p
i j − 1

2M )) and assume the Uj distribution is symmetric
about the origin. This assumption, however, implies that the covariance between
Ui1 j and Ui2 j is exactly zero when i1 �= i2. The diagonal entries of Σ̂U are 1 by
construction, so Σ̂U = I, the identity matrix. The fact that the p-values of the partial
tests are invariant to scale obviates the need for arbitrary scaling factors. Thus, our
one-sided combining function is

T ′
j = (Uj)T ·Uj. (9.3)

The normality of the partial test statistics is not required. Also, even though the
marginal distributions of the Uj vectors are normal, the joint distribution may not be.
Therefore, we must use the empirical distribution of T ′

j in order to compute the final
p-value of the global test: T ′

0
p. It is this nonparametric approach that corrects for

correlation among the tests, even without explicit diagonal entries in the covariance
matrix.

We return to our example from the previous section. The Uj vectors are plotted
in Fig. 9.13a, along with the α = 0.05 decision boundary, and our sample is shown
to lie outside of it. As can be seen, equal power is assigned to alternatives lying at
the same distance from the origin in this space. Figure 9.13b shows this boundary
mapped back into the space of the original p-values.

The entire procedure is very similar to procedures used in correction for multiple
tests described in the previous sections. However, instead of trying to find a local
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Fig. 9.13 The empirical distribution of our example plotted against the decision boundary at α =
0.05. (a) The distribution of the Uj vectors, where the cutoff is a circle centered around the origin.
(b) The distribution of the original p-values with the decision boundary pulled back into this space.
The observed value is shown as the large dot in both plots
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threshold for each test individually, we carve out a region of the multivariate T p
i j

space that contains some particular fraction, e.g., 5%, of the data to label as signifi-
cant. We lose the ability to say which test is significant but gain power in the cases
where multiple statistics independently signal significant differences.

9.6.2.2 Local Multivariate Tests in Symmetric Spaces

A test on all of the geometric primitives (e.g., medial atom) taken together is not
truly a large scale test, for it confuses correlation with spatial scale. A test on each
geometric primitive is not truly a small scale test, for it will respond equally well
to a variation with large spatial scale as to one with a small scale. The Markov
assumption on geometric neighbors allows the separation of scales by removing
the correlation of neighboring elements from an element. In particular, if we can
estimate the best predictor of a primitive by its neighbors and subtract that predictor
from the primitive, the resulting residue provides the entity to test for significant
variation at the specified locality.

This idea can be used for primitives such as objects or figures, but we are
presently working to test it at the scale of the medial atom. Using the ideas in Sec-
tion 9.1, the hypothesis testing would thus be done on each geodesic difference of
the interpoland from the atom. However, we are still working on this form of local
test, so the following section simply tests the atoms, one by one, rather than their
residues.

9.7 Applications of Hypothesis Testing to Brain Structure Shape
Differences in Neuro-Imaging

This section presents two application of hypothesis testing of m-rep objects. In
the first application, scalar hypothesis testing of individual medial parameters was
employed (see Section 9.6.1.2) for analyzing hippocampal shape in schizophrenia.
In the second application, hypothesis testing in the symmetric space (see Sec-
tion 9.6.2) was employed for analyzing ventricular shape in healthy twins and in
schizophrenia.

9.7.1 Hippocampus Study in Schizophrenia

In the study presented in this section, we investigated the shape of the hippocam-
pus structure in the left and right brain hemisphere in schizophrenic patients (SZ,
56 cases) and healthy controls (Cnt, 26 cases). The hippocampus is a gray matter
structure in the limbic system and is involved in processes of motivation and emo-
tions. It also has a central role in the formation of memory. Hippocampal atrophy
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has been observed in studies of several neurological diseases, such as schizophre-
nia, epilepsy, and Alzheimer’s disease. The goal of our study was to assess shape
changes between schizophrenic patients and the control group.

The subjects in this study all have male gender and the same handedness. The
two populations are matched for age and ethnicity. The hippocampi were seg-
mented from inversion-recovery-prepped SPGR MRI datasets (resolution: 0.9375×
0.9375×1.5mm) using a manual outlining procedure based on a strict protocol and
well-accepted anatomical landmarks (Duvernoy, 1998). The segmentation was per-
formed by a single clinical expert (Schobel et al., 2001) with intra-rater variability
of the segmented volume measurements at 0.95. Spherical harmonic (SPHARM)
coefficients were computed using a sampling of 2,252 points, and the results were
normalized via a rigid-body Procrustes alignment and a scaling to unit volume. The
m-rep model was built on the aligned full population including the objects of all
subjects on both sides, with the right hippocampi mirrored at the interhemispheric
plane prior to the model generation. The resulting m-rep model has a single figure
topology and a grid sampling of 3 × 8 medial atoms, in total 24 atoms. The range
of the average distance error between the fitted m-rep’s boundary and the original
boundary was between 0.14 and 0.27 mm (mean error 0.17 mm), less than half the
voxel size of the original MRI, so the medial shape analysis should capture the shape
changes in the image data.

The template for the medial shape analysis was determined by the overall average
structure. As the two populations are not equal in size, we computed the overall
average as the average of the population averages. Due to age variation in both
populations, the shape difference values were corrected for age influence, using a
linear least squares model.

The global shape analysis in Table 9.1 shows a strong trend in the m-rep position
analysis on the left side. The m-rep thickness analysis is significant for neither hip-
pocampus. This suggests a deformation shape change in the hippocampus between
the schizophrenic and the control group. The results of the m-rep position analysis
shows a stronger significance than the SPHARM-PDM analysis that was also car-
ried out. Additionally to the mean difference, several quartile measures (Median,
75% and 95%) were analyzed and produced structurally the same results.

The m-rep local position shape analysis (Fig. 9.14) yields significant changes
that are in roughly the same position, mainly in the hippocampal tail, as shown by
SPHARM-PDM shape analysis and by distance maps of the averages. No signifi-
cance was found in the local m-rep thickness analysis. Similar to the outcome of
the global analysis, the local m-rep position analysis shows a stronger significance

Table 9.1 Results of global shape analysis (average across the surface/medial manifold): Table
of group mean difference p-values between the schizophrenic and control group (∗: significant at
α = 0.05 significance level)

Global analysis M-rep thickness M-rep position

Left p = 0.722 p = 0.0513
Right p = 0.751 ∗p = 0.0001
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M-rep local shape analysis of the position property
Corrected for multiple comparisons

Statistical p-value colormap
p > 0.05 ; p = 0.05 p = 0.001

Fig. 9.14 Statistical maps of the local shape analysis from posterior and lateral views, corrected
for multiple comparisons. The m-rep analysis shows the statistical significance at each medial
atom using both the color and the radius of spheres placed at the atom positions. The main area of
significance is located at the hippocampal tail. The corrected results are overly pessimistic

than the SPHARM-PDM analysis. The local shape differences are mainly located
at the right hippocampal tail, with near significance in the left hippocampal tail. By
inspecting the average structures of the two groups, we further find that the hip-
pocampal tail region of the control group in our study is more bent than the one of
the schizophrenic group.

9.7.2 Lateral Ventricle Study of Healthy and Schizophrenic Twins

The data for these experiments comes from a twin pair schizophrenia study con-
ducted by Weinberger et al. (2001). High resolution (0.9375× 0.9375× 1.5 mm3)
MRIs scans were acquired from three different subject groups: 9 healthy monozy-
gotic twin pairs (MZ), 10 healthy dizygotic twin pairs (DZ), and 9 monozygotic twin
pairs with one twin discordant for schizophrenia and one twin unaffected (DS). See
Fig. 9.15 for some examples. A fourth group of 10 healthy non-related subject pairs
(NR) was constructed by matching unrelated members of the two healthy groups.
All four groups were matched for age, gender, and handedness. A tenth healthy,
monozygotic twin pair was discarded due to possible brain shape changes attributed
to major head trauma suffered by one of the twins in a car accident at age seven. A
tenth twin pair discordant for schizophrenia was discarded due to hydrocephaly in
the unaffected twin.

The left and right lateral ventricles were segmented using automatic atlas based
tissue classification (van Leemput et al., 1999) and 3-D connectivity. An automatic
morphological closing operation was applied to ensure a spherical topology. An
area-preserving map was used to map them to a sphere, after which they were
converted to a spherical harmonics representation (SPHARM) (Brechbühler et al.,
1995). Correspondence on the boundary was established using the first order har-
monics (Gerig et al., 2001). Point Distribution Models (PDMs) were constructed by
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Fig. 9.15 Left: An example m-rep of a left lateral ventricle. The mesh vertices and off-shooting
spokes make up the medial atoms. The shape the m-rep was fit to is shown as a point cloud sur-
rounding it. Right: Ventricle pairs from five monozygotic twin pairs (top) and five dizygotic twin
pairs (bottom)

uniformly sampling the boundary at corresponding points. The m-rep models were
constructed using a robust method that ensures a common medial topology (Styner
et al., 2003a). For our data, this consists of a single medial sheet with a 3×13 grid of
medial atoms, which provides 98% volume overlap with the original segmentations.

From this data set, we wish to determine if the twin pairs that were more closely
related had smaller variations in shape. We also wish to see if the shape variations
between the discordant and the unaffected twins in the schizophrenic pairs is similar
to the normal variation between healthy monozygotic twins. For this purpose, we
use the partial test statistics:

Ti j =
1
n1

n1

∑
k=1

d(a1∗
ki ,a

2∗
ki )−

1
n2

n2

∑
k=1

d(b1∗
ki ,b

2∗
ki ). (9.4)

Here (a1, a2) form the twin pairs for one group, while (b1,b2) form the twin pairs
for the other. The partial tests are applied separately to all three components of the
medial atom location, x, as well as the radius and two spoke directions. This gives
six partial tests per medial atom, for a total of p = 3× 13× 6 = 234, much larger
than the sample size. Each is a one-sided test that the variability in group 2 is larger
than that in group 1.

For consistency with previous studies (Styner et al., 2005), all shapes were
volume normalized. After normalization, we also applied m-rep alignment, as
described by Fletcher et al. (2004), to minimize the sum of squared geodesic
distances between models in a medial analog of Procrustes alignment. First, the
members of each twin pair were aligned with each other, and then the pairs were
aligned together as a group, applying the same transformation to each member of a
single pair.

In order to ensure invariance to rotations, we had to choose data-dependent coor-
dinate axes for the x component of each medial atom. Our choice was the axes
which diagonalized the sample covariance of the displacement vectors from one
twin’s atom position to the other at each site. While this had some influence on the
results, the general trend was the same irrespective of the axes used.
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Table 9.2 p-values for paired tests for the difference in the amount of shape variability in groups
with different degrees of genetic similarity. Results from our method are in the first two columns,
while results from a previous study (Styner et al., 2005) are in the last two for comparison. Groups
are: monozygotic (MZ), monozygotic twins with one twin discordant for schizophrenia (DS),
dizygotic (DZ), and non-related (NR) (∗: significant at the α = 0.05 significance level).

Our study Boundary study
(Styner et al., 2005)

Left Right Left Right

MZ vs. DS 0.12 0.38 0.28 0.68
MZ vs. DZ ∗0.00006 ∗0.0033 ∗0.0082 ∗0.0399
MZ vs. NR ∗0.00002 ∗0.00020 ∗0.0018 ∗0.0006
DS vs. DZ ∗0.020 ∗0.0076 0.25 0.24
DS vs. NR ∗0.0031 ∗0.00026 ∗0.018 ∗0.0026
DZ vs. NR 0.16 0.055 ∗0.05 ∗0.016

For each pair of twin groups, we generated M = 50,000 permutations, and com-
puted their p-value vectors. Following Section 9.6.2.1, these were mapped into Uj

vectors, from which the empirical distribution of the combined test statistic T ′k
from (9.3) was estimated, producing a single global p-value.

The results are summarized in Table 9.2. For comparison, we list the results
of a previous study which used a univariate test on the average distance between
corresponding points on the PDMs (Styner et al., 2005). While we note that the
significance of a p-value on an experimental data set is not a useful metric for com-
paring different methods, it is interesting to see the differences between the two.
Our tests give a consistent ranking: MZ ≈ DS < DZ ≈ NR, which is fully transi-
tive. The boundary study, however, finds a significant difference between DZ and
NR, but fails to identify the difference between DS and DZ.

We also performed local tests, to identify specific medial atoms with with strong
differences. A multivariate test was conducted using our procedure on the 6 com-
ponents of each atom, and the results were corrected for multiple tests using the
minimum p-value distribution across the shape described in Section 9.6.1.2. The
results are shown in Fig. 9.16.

9.8 Discussion and Future Work

9.8.1 Are M-Reps Effective?

The main objective of this chapter was to describe m-reps based methods for 3D
medical image segmentation and for statistical characterization of differences of
anatomic shapes seen in populations of medical images. M-reps have been used
both to capture knowledge of object geometry and to give a basis of the positional
correspondences needed in training and measuring geometry-to-image match log
probabilities. As well, they have allowed efficient, multiscale operation in both train-
ing the probabilities and applying them. It has been our expectation that they provide
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Fig. 9.16 Results for local tests for the difference in shape variability in groups with different
degrees of genetic similarity. Atoms with differences significant at the α = 0.05 level are shown in
a larger size. Tests not shown had no significant local differences

more stable estimates of modes of variation and the associated principal variances
for a given number of training samples than alternative bases for geometric statis-
tics, and we have some early results suggesting that this is the case, but this is yet to
be proven.

In addition, much more than other geometric representations, m-reps have pro-
vided a means of yielding probability distributions whose samples were very un-
likely to be geometrically improper, avoiding illegal interpenetrations and creases.
Checks on geometric propriety via Srad has avoided creasing or near creasing and the
improved estimates of boundary normals without lowering the tightness of bound-
ary fits to training binary images. DRIQF statistics based on these fits have led to
improved segmentations.

The success of m-reps as an object representation designed for statistical uses
should be judged by the success of the applications. Within the class of deformable
models methods that might be considered to provide comparable segmentation accu-
racy, robustness and low interaction requirements, m-reps based segmentations are
among the speedier.

In terms of accuracy and robustness, the 3D segmentation method based on
m-reps have produced single-figure object, viz. kidney, segmentations that are com-
petitive with human manual segmentation and are, to our knowledge, the most
accurate kidney segmentations reported in the literature. The same can be said of
the initial multi-object segmentations of male pelvis objects in CT images using
intra-patient statistics, though given the serious challenge of this problem, further
work must be done before the method can be tested on many patients and its results
compared to the results of alternative methods for segmentation of these objects.
Moreover, while the apparatus for segmentation of multi-figure objects exists and
has been tried on simple test cases, real application and testing of such segmentation
is yet to be done.

Of course, when comparing m-reps to other object representations that are being
used for segmentation via deformable models, the issue is not simply whether
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m-reps are as good or better than the alternatives, but whether they are enough bet-
ter to justify the complexities of the medial representation. Controlled, quantitated
validation on a variety of objects by multiple methods in competition needs to be
carried out before this can be judged.

We are in the process of making the following improvements to our deformable
m-reps segmentation method and software:

1. Sensing and reporting locations on the segmented object that do not have the
expected level of geometry-to-image match, so that the user can take actions of
relocating that object section and then restart the segmentation.

2. Bringing to routine usability a posterior optimizing atom stage as well as the
option of computing a small scale diffeomorphism both in the target object(s)
and in the interstitial space between objects in place of the small scale boundary
displacement.

3. Developing a form of our software intended for clinical use and thus being as
automatic as possible, and making all interactions in clinical terms.

The m-rep hypothesis testing tools have been applied to several studies in neuro-
imaging and have shown to provide meaningful results. The main advantage of our
m-rep hypothesis testing tools over boundary based testing tools is the identification
of different types of processes using the different m-rep atom properties. This leads
to results that are more intuitively interpretable. In several studies of the hippocam-
pus, the caudate and the lateral ventricles, we have shown that the overall results
correlate well between medial and boundary description, but also that our m-rep
analysis is able to capture additional information not seen in the boundary analysis.

Our current hypothesis testing tools are based on a true multivariate permutation
test approach for hypothesis testing in direct products of metric spaces. The resulting
test does not require a priori scaling factors to be chosen, and captures the true
multivariate nature of the data. It is well-defined even in the high-dimensional, low-
sample size case. The method has been developed for m-reps, though it is suitable
for any type of metric data, including potentially categorical data. An important
area for future research is the design of suitable partial tests to use in each space.
Because they cannot be broken into smaller pieces than a single component of the
direct product, the distance to the mean and similar tests are limited in the types of
distributions they can describe. For example, the distance from the mean can only
characterize an isotropic distribution on the sphere. This would allow us to relax our
assumption of identical distribution about the mean.

Even though our hypothesis testing tools have matured to a degree that they can
be employed routinely in neuro-imaging studies, there are several limitations to our
current tools making the following enhancements to our methods necessary:

1. Developing a combined analysis of multiple objects in order to capture corre-
lated differences of the shape in neighboring brain structures such as the lateral
ventricle and the caudate.

2. Enhancing the analysis scheme to incorporate several layers of scale starting at
the global multi-object scale down to the local single atom scale.
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3. Incorporating statistical models of patient covariates such as gender, age and
medication in the permutation test algorithm. The current method incorpo-
rates covariates by correcting atom parameters independently using least-squares
linear regression.

9.8.2 Other M-Rep Uses and Properties

In a separate paper (Crouch et al., 2003) we have shown how the space parametriza-
tion provided by m-reps also allows the interior of the object to be divided into
mesh elements useful for efficient mechanical modeling of intra-patient motion of
anatomic structures due to such interventions as intrarectal imaging probes. The
measures of mechanical energy computed in this approach could be used for seg-
mentation of a patient whose segmented m-rep from an earlier (e.g., planning) image
can be used as the model for a segmentation in a later (e.g., intra-treatment) image.

M-reps provide one means of modeling objects and collections of objects;
boundary representations (b-reps) are a common alternative means of such object
modeling. They share the limitations of all object modeling methods, namely that
a single object model will not serve for a class of objects with mixed topologies at
the figural level. However, because they explicitly model the interfigural relations,
they have special weaknesses when these relations are variable over the population
of objects. For example, an m-rep for a right kidney and a separate left kidney will
not perform well for a horse-shoe kidney, in which the kidneys are joined. For such
mixed classes, a separate m-rep is required for each exemplar. Another issue shared
with other object models is instability for nearly spherically or circularly symmetric
objects. In such cases the nearly degenerate geometry creates computational insta-
bilities in discriminating among the three major axes which in turn can cause an
m-rep to “flip” during deformation in the image data in an unstable manner. How-
ever, m-reps share with other object models the particular strength of resolving these
orientational instabilities via the relations among objects.

M-reps’ special abilities relative to b-reps derive from their explicit representa-
tion of object orientation changes such as twisting and bending and of object size
changes such as widening and narrowing. Thus statistics on rectal widenings due to
gas, on the variability in the relative pose of the two lobes of the liver, and on the
orientation of the bladder relative to the prostate are very effective in m-reps terms.
The limitations not of m-reps by themselves but of m-reps with statistics come in
situations when the orientational or magnificational relationships are very variable.
Thus, like b-reps m-reps are well suited to complex slabs and tubes such as the
cerebral cortex or the intestine, and both are well suited to intra-patient variations of
these structures over time. But because in the population of humans the variability
of the folding structure of the cerebral cortex is high and the variability of the curva-
ture of the intestine is high, statistics on m-reps is a weak tool over that population
for these structures.
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Because m-reps represent the interior of objects, they lose their effectiveness in
image situations where only one side of an object appears in an image, and they
have weakness relative to b-reps in situations where one side of an object boundary
is statistically stable but the other side has great variability. In that situation b-reps
can ignore the unstable or unimaged side, whereas m-reps inherently must represent
both sides together.

M-reps allow statistics by providing a fixed topology of sheets and their branch-
ing. As presently designed, populations that are not well modeled by fixed topology
m-reps together with voxel scale refinements will require a different geometric
representation.
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