
3RD INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES) 1

A Task-Based Abstraction Layer
for User Productivity and Performance Portability

in Post-Moore’s Era Supercomputing
Steve Petruzza, Attila Gyulassy, Valerio Pascucci, and

Peer-Timo Bremer

Abstract—The proliferation of heterogeneous computing architectures in current and future supercomputing systems dramatically
increases the complexity of software development and exacerbates the divergence of software stacks. Currently, task-based runtimes
attempt to alleviate these impediments, however their effective use requires expertise and deep integration that does not facilitate
reuse and portability. We propose to introduce a task-based abstraction layer that separates the definition of the algorithm from the
runtime-specific implementation, while maintaining performance portability.

F

1 INTRODUCTION

Recent and future supercomputing systems are shifting to-
wards more heterogeneous computing architectures to address
post-Moore’s era supercomputing (PMES) and to increase their
power efficiency. At the same time, software infrastructures
are becoming more heterogeneous, and a number of libraries
and frameworks have been proposed to simplify accessing,
aggregating and staging simulation data as well as facilitating
the implementation of algorithms and integrate them into sim-
ulations [4], [6], [9], [13]. Despite these efforts, implementing
scalable simulations and analysis algorithms remains challeng-
ing, requiring both domain-specific expertise, and in-depth
knowledge of the chosen libraries or runtimes. While many
runtimes promise genericity, instead, achieving performance
comes from tightly coupling application to the underlying
software stack, frequently even optimizing to specific machines.
Certain simulations can currently afford this tight coupling as
they are designed with performance foremost in mind with
specific machines and software stack targets (e.g. NAMD [12],
ChaNGa [3], Legion S3D [2]), however utility and analytics
codes that are designed to be run across simulations cannot be
re-implemented for every use case. As data movement becomes
the driving bottleneck for exascale computation, these diverse
algorithms must be deployed in-situ and their performance
portability will determine the success or failure of scientific
workflows.

To leverage the increasing complexity of modern machines,
task-based runtime systems are being adopted to manage re-
sources, scheduling and execution of tasks on heterogenous
architectures. While simulation codes choose to integrate with
these software stacks in order to enable high performance and
scalability, in-situ analysis algorithms are restricted to the host
application software stack making the portability challenging
and expensive. Therefore, developers of analysis packages are
faced with the choice of restricting their efforts to a particular
runtime or even individual applications or maintaining (and
optimizing) an ever growing variation of implementations. The

• S. Petruzza, A. Gyulassy and V. Pascucci are with the SCI Institute -
University of Utah.
E-mail: spetruzza@sci.utah.edu

• Peer-Timo Bremer is with Lawrence Livermore National Laboraty

PMES Workshop, Dallas, 11 Nov 2018. http://j.mp/pmes18

existing task based runtimes provide the ability to decompose
every application in computational components of arbitrary
granularity, enabling the definition and implementation of tasks
for different hardware architectures. However, comparing the
performance of the same algorithm on different runtimes be-
comes a very expensive task and introduce the big challenge
of understanding how the same algorithm should be designed,
implemented and executed by different runtimes taking advan-
tage of their distinct data and execution models.

2 TASK ABSTRACTION LAYER

We propose a new programming paradigm for PMES systems
using a task graph to encode the data dependencies between
data processing stages in algorithms. In our model, a task
simply represents the data transformation between inputs and
outputs, and is the natural level at which programmers express
data relationships when designing algorithms. A task graph
expresses not only dependencies between internal stages of
an algorithm, but also dependencies introduced when data
is decomposed for distributed computation. For instance, in
figure 1, an in-situ distributed volume rendering algorithm is
represented in terms of tasks for local rendering and composit-
ing, with the directed edges of the graph encoding data depen-
dencies. A task-based model provides an inherent separation
of concerns in which the algorithm developer is not exposed to
any communication, synchronization or other runtime-related
concepts, and is also insulated from the architectural properties
of a target machine. Additionally, the design naturally allows
over-decomposition, which is not only useful for runtimes that
provide load balancing but also simplifies debugging at scale.

The task-based abstraction implemented as an Embedded
Domain-Specific Language (EDSL) together with a thin soft-
ware layer is sufficient to automatically adapt a task-based
model to the specific runtime systems that are used in a
scientific workflow. In contrast to existing approaches, where
significant investment is required to deploy an algorithm on a
specific runtime system, a task-based model and EDSL allows
developers to maintain a single implementation of an algorithm
that nevertheless provides a native interface and efficient imple-
mentation for a number of different software stacks.

The EDSL and software layer needs to have a frontend
with a stable and easy to program interface to express various

3RD INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES) 2

Fig. 1: The task graph for binary-swap distributed rendering
has tasks for local rendering, compositing, and writing to
storage. The arrows indicate data dependence between stages
of the algorithm.

Opera�ng	System

MPI
Controller

Charm++
Controller

Legion
Controller

Task	Graph

Applica�on
Task	1 Task	2 Task	n

Sy
st
em

So
�
w
ar
eBa

be
lF
lo
w

Fig. 2: BabelFlow architecture: The application implements a set
of tasks and expresses its dataflow using an EDSL in form of
a task graph. A BabelFlow controller, implemented natively in
one of several runtimes, then executes the task graph.

algorithms, while the backend needs to efficiently map the
implementation to the various software stacks. Simultaneously,
this layer should be easy to integrate into other (likely large and
complex) software systems both in terms of development and
build complexity as well as with respect to exchanging data
and execution control.

3 PRELIMINARY RESULTS: BABELFLOW

Much of the complexity of todays runtimes, i.e. MPI, Charm++,
Legion, etc. is that they allow user to define an almost arbi-
trarily complex algorithm or dataflow at runtime. However,
in many use cases, like visualization, analysis, or file I/O the
necessary steps are known a priory and are static. Relying on
this restriction can allow much simpler descriptions of such
algorithms. Providing backends that translate a high level de-
scription, for example, in form of a Domain Specific Language
(DSL), to an arbitrary software stack will provide a highly pro-
ductive environment for the cross-cutting development while
delivering a native interface to any consumers of the software
in their chosen system environment.

An example of effort toward this direction is the BabelFlow
Embedded DSL [10] [11], which defines a task based abstrac-
tion layer to design the algorithm and implements backends
for different runtimes (i.e., currently MPI, Legion [1] and
Charm++ [5]). The EDSL provides simple syntax for specifying
tasks and data dependencies, independent of the underlying
runtime. We demonstrated (figure 3) that the Babelflow con-
troller was able to translate the task representation to MPI,

 0

 20

 40

 60

 80

 100

 120

 128 256 512 1024 2048 4096 8192 16384 32768

T
im

e
(s

ec
)

Number of cores

IceT
MPI

Charm++
Legion

Fig. 3: As reported in [10], we demonstrated strong scaling
using Babelflow of VTK’s distributed volume rendering imple-
mented with a binary-swap task graph, using several runtimes
as backends. The overall performance was equivalent to a
hand-tuned MPI implementation (i.e. using IceT [8]).

Charm++ and Legion runtimes, and execute a volume render-
ing and image compositing workflow with the same scaling
behavior as natively implemented code (i.e., using the IceT
library [8]). Additional experiments demonstrated performance
portability for distributed merge tree computation and 3D
image registration.

Although currently limited to static task graphs, the Ba-
belflow controller could be extended to dynamic graphs as
well as data-dependent control flow dynamically changes task
dependencies. In the future this framework could also target
higher level frameworks such as ADIOS or Glean. Similarly,
the system can exploit new datamodels such as Conduit [7] to
transparently access simulation data and further uncouple the
implementation of an algorithm from the specific application
that uses it.

4 CONCLUSION

The unstoppable divergence of simulation and software stacks
will continue in the Post-Moore’s era of supercomputing. More
than ever, we now need to focus on how to quickly and trans-
parently port algorithms to different software stacks in order
to easily integrate with different applications and maximize
the utilization of the heterogeneous resources available on the
machines. Separating the definition of the algorithm from the
specific runtime implementation allows the user to focus more
on the algorithm specification and less on acquiring new skills
to implement their application on yet another runtime. We
implemented and EDSL that translates a task based algorithm
definition to different task-based runtimes implementation and
demonstrated that software portability can be easily achieved
as well as overall performance portability. We believe that this
direction can increase user productivity and also allow small
contributions, in terms of analysis and visualization algorithms,
to find widespread adoption over multiple communities using
different software stacks.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. This work is
also supported in part by NSF: CGV: Award:1314896, NSF:IIP
Award: 1602127 NSF:ACI:award 1649923, DOE/SciDAC
DESC0007446, CCMSC DE-NA0002375, and PIPER: ER26142

3RD INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES) 3

DE-SC0010498 and by the Department of Energy under the
guidance of Dr. Lucy Nowell and Richard Carson. This re-
search used the resources of the Supercomputing Laboratory
at KAUST, Saudi Arabia.

REFERENCES

[1] M. Bauer, S. Treichler et al., “Legion: Expressing locality
and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 66:1–66:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389086

[2] M. E. Bauer, “Legion: Programming distributed heterogeneous
architectures with logical regions,” Ph.D. dissertation, Stanford
University, 2014.

[3] P. Jetley, F. Gioachin et al., “Massively parallel cosmological sim-
ulations with changa,” in Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, April 2008, pp. 1–12.

[4] T. Jin, F. Zhang et al., “Using cross-layer adaptations for dynamic
data management in large scale coupled scientific workflows,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: ACM, 2013, pp. 74:1–74:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503301

[5] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent
object oriented system based on c++,” SIGPLAN Not., vol. 28,
no. 10, pp. 91–108, Oct. 1993. [Online]. Available: http:
//doi.acm.org/10.1145/167962.165874

[6] Q. Liu, J. Logan et al., “Hello adios: the challenges and lessons
of developing leadership class i/o frameworks,” Concurrency and
Computation: Practice and Experience, vol. 26, no. 7, pp. 1453–1473,
2014. [Online]. Available: http://dx.doi.org/10.1002/cpe.3125

[7] LLNL. (2014) Conduit. [Online]. Available: https://software.llnl.
gov/conduit/

[8] K. Moreland, “Icet users’ guide and reference,” Sandia National Lab,
Tech. Rep, 2011.

[9] T. Peterka, R. Ross et al., “Scalable parallel building blocks for
custom data analysis,” in Proceedings of Large Data Analysis and
Visualization Symposium LDAV’11, Providence, RI, 2011.

[10] S. Petruzza, S. Treichler et al., “Babelflow: An embedded domain
specific language for parallel analysis and visualization,” in 2018
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2018, pp. 463–473.

[11] S. Petruzza, A. Venkat et al., “Isavs: Interactive scalable analysis
and visualization system,” in Proceedings of SIGGRAPH Asia
2017 Symposium on Visualization, ser. SA ’17. New York,
NY, USA: ACM, 2017, pp. 18:1–18:8. [Online]. Available:
http://doi.acm.org/10.1145/3139295.3139299

[12] J. C. Phillips, R. Braun et al., “Scalable molecular dynamics with
namd,” Journal of Computational Chemistry, vol. 26, no. 16, pp.
1781–1802, 2005. [Online]. Available: http://dx.doi.org/10.1002/
jcc.20289

[13] V. Vishwanath, M. Hereld et al., “Topology-aware data movement
and staging for i/o acceleration on blue gene/p supercomputing
systems,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’11. New York, NY, USA: ACM, 2011, pp. 19:1–19:11. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063409

