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Abstract—The Uintah computational framework is used for
the parallel solution of partial differential equations on adaptive
mesh refinement grids using modern supercomputers. Uintah is
structured with an application layer and a separate runtime
system. Uintah is based on a distributed directed acyclic graph
(DAG) of computational tasks, with a task scheduler that effi-
ciently schedules and executes these tasks on both CPU cores and
on-node accelerators. The runtime system identifies task depen-
dencies, creates a task graph prior to the execution of these tasks,
automatically generates MPI message tags, and automatically
performs halo transfers for simulation variables. Automating
halo transfers in a heterogeneous environment poses significant
challenges when tasks compute within a few milliseconds, as
runtime overhead affects wall time execution, or when simu-
lation variables require large halos spanning most or all of the
computational domain, as task dependencies become expensive
to process. These challenges are magnified at production scale
when application developers require each compute node perform
thousands of different halo transfers among thousands simulation
variables. The principal contribution of this work is to (1) identify
and address inefficiencies that arise when mapping tasks onto the
GPU in the presence of automated halo transfers, (2) implement
new schemes to reduce runtime system overhead, (3) minimize
application developer involvement with the runtime, and (4) show
overhead reduction results from these improvements.

Index Terms—Uintah, hybrid parallelism, parallel, GPU, het-
erogeneous systems, stencil computation, optimization, concur-
rency, halo transfer

I. INTRODUCTION

W ITH energy efficiency being a key component in ex-
ascale initiatives, namely the 20 MW aspiration for

exascale power consumption set by entities like the DOE,
supercomputers are now heavily leveraging accelerator and
coprocessor-based architectures to meet these power require-
ments. These heterogeneous systems pose significant chal-
lenges in terms of developing software for computational
frameworks like the open-source Uintah framework [1], that
seek to utilize available accelerators such as graphics process-
ing units (GPUs).

The design of Uintah maintains a clear separation from the
application layer and its runtime system, allowing application
developers to only be concerned with solving the partial dif-
ferential equations on a local set of block-structured adaptive
mesh patches, without worrying about the runtime details such

as automatic MPI message generation, management of halo
data and the life cycle of data variables, or indeed any details
with the multiple levels of parallelization inherent to these
heterogeneous systems. Furthermore, the public API exposed
to application developers should remain simple, shielding
them from the complex details involved with the parallel
programming required on these systems.

Automatic halo processing is a productivity necessity for
many simulations utilizing Uintah. Each compute node may
have over a thousand computational tasks, thousands of sim-
ulation variables, and thousands of halo transfers both intra-
node and internode. Productivity would be lost if application
developers were involved with complicated runtime specific
decisions for each halo transfer. Prior work [2] describes an
initial design for managing GPU tasks alongside CPU tasks
within Uintah. The prior runtime targeted simulations utilizing
long-lived GPU tasks (on the order of seconds or minutes)
requiring extensive halo dependencies among variables in most
or all of the computational domain. For these simulations,
it was most efficient to perform all halo logic entirely in
host memory. However, for tasks that compute within a few
milliseconds, the overhead to prepare the tasks is far larger
than their time to compute. The focus of this work is to sig-
nificantly improve time to solution for simulations containing
these short-lived tasks while also supporting other simulations
requiring thousands of automatic halo transfers per node.
The Wasatch (Section VIII-B) component and reverse Monte
Carlo Ray Tracing (RMCRT) component (Section VIII-C) in
particular are motivations for these runtime improvements.

The extension of the GPU approach in the initial design [2]
requires that data remain on the GPU for as long as possible
to avoid data movement across any data bus or network. This,
in turn, requires that some halo data management occur on the
GPU, whether the halo data arrive from (1) other nodes, (2)
host memory, (3) within the GPU, or (4) from another GPU
on the same node. Similarly, if a task requires high numbers
of upcoming GPU memory allocations, this should also be
processed in as few API calls as possible. These challenges
must be balanced alongside CPU tasks, so that a mixture of
GPU and CPU tasks can be used for a computation, allowing
each type of task to process where it is most efficient.

This paper describes enhancements and optimizations to the
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Uintah runtime system that go well beyond the initial support
for GPU tasks in the original design [2]. This paper is an
extended form of the conference paper [3]. The extensions
beyond the conference paper are contained in Section V, the
first two-thirds of Section VI, and a revised related work
Section IX. New results in Section VIII show the importance
of this work. We provide results demonstrating significant
reduction in GPU overhead, allowing tasks where speedups
over the CPU version were previously unattainable to now
outperform their CPU counterparts. In particular, six opti-
mizations are covered, (1) persistence of GPU data (Section
III), (2) managing halo cell scenario in many memory spaces
(Section III-B), (3) eliminating data store contention and
reducing the size of Uintah’s GPU data store (Section IV), (4)
managing several concurrency scenarios present with parallel
scheduler threads (Section V), (5) additional GPU-specific
work queues needed within the task scheduler (Section VI),
and (6) allocating all data variables in one contiguous memory
buffer instead of several (Section VII). These optimizations
can use, but are not dependent on, CUDA paged memory
or specific tools such as CUDA Unified Memory or CUDA-
aware MPI. These optimizations can be adapted to other multi-
tiered memory structures, such as additional NVRAM, by
providing a framework to allow data to be managed in both
high bandwidth and high capacity memory.

We begin by giving an overview of the Uintah framework in
Section II. Section III details work done to enable persistence
of simulation data on GPUs and how this work has enabled
management of multiple, difficult halo data scenarios. Section
IV describes changes for how GPU tasks obtain variable data
from a data store. Section V covers concurrency logic added
to Uintah to manage memory in a heterogeneous parallel en-
vironment. Section VI describes changes to the task scheduler
queues. Our approach to minimizing GPU API call latency is
covered in Section VII. Nodal results from these improvements
are shown in Section VIII. Related works are given in Section
IX. The paper concludes in Section X with a discussion on
future work.

II. UINTAH OVERVIEW

The open source Uintah framework [1], [5] is used to solve
problems involving fluids, solids, combined fluid-structure
interaction problems, and turbulent combustion on multi-core
and accelerator based supercomputer architectures. Problems
are either initially laid out on a structured grid and over-
decomposed into hexahedral blocks of cells (patches) [6] with
the multi-material ICE code for both low and high-speed
compressible flows, or by using particles on that grid [7] with
the multi-material, particle-based code MPM for structural
mechanics. Uintah also provides the combined fluid-structure
interaction (FSI) algorithm MPM-ICE [8], the ARCHES tur-
bulent reacting CFD component [9] designed for simulating
turbulent reacting flows with participating media radiation,
and Wasatch [10], a general multiphysics solver for turbulent
reacting flows.

A. Data Stores

Simulation data is managed by a distributed data store
known as a Data Warehouse, an object containing metadata for
simulation variables. Actual variable data itself is not stored
directly in a Data Warehouse, it is instead stored in separate
allocated memory which the Data Warehouse manages. The
metadata indicates the patches on which specific variable data
resides (hereafter referred to as grid variables), halo depth or
number of halo cell layers, a pointer to the actual data, and
the data type (node-centered, face-centered, etc.). Access to
simulation data in the Data Warehouse is through a simple
get and put interface. During a given time step, there are
generally two Data Warehouses available to the simulation,
(1) the Old Data Warehouse, which contains all data from
the previous time step, and (2) the New Data Warehouse,
which maintains grid variables to be initially computed or
subsequently modified. At the end of a time step, the New
Data Warehouse is moved to the Old Data Warehouse, and
another New Data Warehouse is created.

With the availability of on-node GPUs, Data Warehouses
specific to GPUs are used. Each GPU is assigned its own Old
and New Data Warehouse, analogous to the host-side’s Data
Warehouses. A GPU Data Warehouse contains a reduced set of
metadata, and manages only the simulation variables the GPU
task will need for a task computation. Through knowledge of
the task graph, the Uintah runtime system is able to prepare
and stage the GPU Data Warehouses and copy the metadata
into GPU memory prior to task execution.

Application developers can utilize existing Data Warehouse
API if they choose. An example of this is shown in Section
VIII, where we focus on a simple seven-point stencil for the
Poisson equation in 3D. In this task data is retrieved from
and placed into Data Warehouse objects using simple get and
put methods. Other application developers will take existing
computational programs originally not written for Uintah, and
create tasks with function pointers to their existing code. An
example of this is the Wasatch [10] component, a finite volume
computational fluid dynamics code that is designed to solve
transient, turbulent, reacting flow problems. Uintah itself needs
no knowledge of how the Wasatch tasks work, other than the
simulation variables used for each task.

B. Task Scheduling and Execution

Uintah task schedulers are responsible for scheduling and
executing both CPU and GPU tasks, memory management of
grid variables, and invoking MPI communication. There are
several task schedulers available within Uintah. In this work,
we focus on the Unified Scheduler [4], shown in Fig. 1. This
scheduler uses a fully decentralized approach without a control
thread. All CPU threads are able to obtain work as well as
process their own MPI sends and receives. All CPU threads
prepare, schedule, and execute CPU and GPU tasks with an
arbitrary number of CPU cores and on-node GPUs. All aspects
of a GPU task are processed asynchronously, so that a CPU
thread can process other tasks while work is occurring on
a GPU. Through moving from an MPI-only approach to a
nodal shared memory model [11] (a combination of MPI and
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Fig. 1. Uintah heterogeneous nodal runtime system and task scheduler. [4]

Pthreads) where each node has one MPI process and threads
execute individual tasks, the Uintah framework has been made
to efficiently scale to hundreds of thousands of cores solving
a broad class of complex engineering problems [12].

Parallelism within Uintah is achieved in three ways. First, by
using domain decomposition to assign each MPI rank its own
region of the computational domain, e.g. a set of hexahedral
patches, usually with spatial contiguity. Secondly, by using
task level parallelism within an MPI rank to allow each task
to run independently on a CPU (or Xeon Phi) core or available
GPU, and third, by utilizing thread level parallelism within a
GPU. Work toward thread-level parallelism for the Xeon Phi
is currently underway, and will be based on the idea of a
task worker pool, or group of CPU threads that cooperatively
execute a single task.

C. Application Developer Interaction with the Runtime

Uintah maintains a clear separation between an application’s
code and its runtime system and hence the details of the
parallelism Uintah provides through its runtime system are
hidden from the developer and a task itself. In the application
layer, an application developer is responsible for providing
task parameters to the runtime system. An example of a 27-
point stencil task declaration is given in Fig. 2. The developer
lists all grid variables that will be used in the task computation,
and indicates whether these grid variables come from the Old
or New Data Warehouse. Each grid variable is assigned as
Computes, Modifies, or Requires. Computes are grid variables

Fig. 2. A Uintah task declaration which informs the runtime of a 27-point
GPU stencil computation on a single Uintah grid variable.

to be allocated by the runtime system to hold data computed
by the task. Modifies are grid variables which were previously
computed and will be modified by the task. Requires are read-
only grid variables computed in a prior task. The number of
needed halo cells layers for any Requires is also indicated. The
developer specifies whether the task is a GPU task or a CPU
task. Once a task is declared, the application developer should
not have to worry about the details of memory management.
That developer can write task code assuming the runtime sys-
tem will have prepared all grid variables’ memory, including
gathering halo cell data.

All needed halo dependency logic can be gleaned from
analyzing the task graph’s dependencies. For example, for the
task listed in Fig. 2, the Uintah runtime will create one task for
every patch on the computational domain. Next, the runtime
will identify all simulation variable dependencies among those
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tasks. Suppose a patch is surrounded by 26 other patches in
the structured grid, then since the simulation variable in the
task requires a layer of halo cells, Uintah will generate 26
inbound dependencies and 26 outbound dependencies. If any
of these tasks are on different nodes, Uintah will automatically
generate and issue MPI sends and receives.

A single task dependency represents one halo region that
must be copied from a source grid variable to a destination
grid variable. Uintah does not create one task per dependency,
rather, a single task can have many (up to thousands) of
halo dependencies with other tasks. By not treating each
dependency as a separate task allows Uintah to use far fewer
tasks to keep the task graph size small for faster analysis. This
approach of limiting the amount of tasks is crucial for Uintah
to scale to hundreds of thousands of cores for production scale
problems containing global halo requirements [13], where
tasks on each patch have halo dependencies with all other
patches in the computational domain. While Uintah operates
with a static task graph, halo dependencies could be added
dynamically during a timestep as the task scheduler processes
tasks dynamically prior to task execution.

Before a task executes, the Uintah scheduler and data ware-
house automatically ensures all halo data is gathered into the
simulation variables. Productivity is achieved by allowing the
application developer to quickly define all halo dependencies
through two simple arguments. For example, in Fig. 2, had
the application developer not specified Ghost::AroundNodes,
1 for one cell layer of halo dependencies, but rather
Ghost::AroundNodes, 100 or Ghost::AroundNodes, 32767,
Uintah would automatically handle all halo management on
a nearly global or global scale. What separates Uintah and
the work in this paper from other GPU-enabled runtimes like
Legion [14], Charm++ [15], StarPU [16], and PaRSEC [17]
is that Uintah provides a combination of three features: (1)
minimal application developer interaction to define halo de-
pendencies while allowing the runtime to completely automate
all data movement and halo processing, (2) support for a
mixture of problems containing both local halo and global
or nearly global halos and across multiple adaptive mesh
refinement levels, and (3) ability to reach full scale on current
machines like Titan [18] and Mira [19]. In production scale
multiphysics problems with thousands of simulation variables,
thousands of computational tasks per node, and potentially
hundreds of thousands of simulation variable dependencies per
node [13], it is vital the Uintah runtime assume maximum
responsibilities for all halo dependency analysis and halo
transfers to aid application developer productivity. support
When a task is executed, Uintah executes the user supplied
task entry function. Within the entry function an application
developer typically writes serial C++ code for CPU and
Xeon Phi tasks and CUDA parallel code for GPU tasks.
That entry function could utilize other parallel tools such as
OpenCL [20], OpenACC [21], OpenMP [22], Raja [23], or
Kokkos [24]. Uintah application developers have not used
OpenCL as its performance often lags behind CUDA code
[25]. OpenACC has not been used as doesn’t fully support
Xeon Phi KNL vectorization. OpenMP 4.0 introduced GPU
support, but current compiler implementations are limited

and lacking in GPU performance [26]. Raja and Kokkos
share high level similarities in utilizing lambda expressions
for portability and performance with minimal disruptions to
application developers. Future Uintah work is focused on
utilizing Kokkos as its current feature set is more extensive
and mature. Regarding memory management, CUDA offers
compelling features such as CUDA-aware MPI and Unified
Memory to reduce the amount of temporary halo buffers
and provides automatic memory movement between host and
GPU memory. Uintah does not restrict itself to only CUDA-
aware MPI implementations, and Uintah provides automatic
packed halo buffers which can then be made to work with
GPUDirect if needed. Uintah does not use Unified Memory
as CUDA kernels operating in a Unified Memory environment
demonstrate significantly slower execution times [27], and
any GPU-to-host memory transfer requires a synchronization
barrier prior to CUDA Compute Capability 6.x or expensive
page faulting for Compute Capability 6.x [28]. We desire per-
formant kernels executing concurrently on numerous streams
without any synchronization and as a result we use the Uintah
runtime to automate halo transfers and data movement between
host and GPU memory without blocking operations.

D. Prior Runtime and Motivations for This Work
Prior work [2] targeted a GPU-based reverse Monte Carlo

Ray Tracing (RMCRT) simulation, which requires replication
of radiative properties among nodes to facilitate local ray
tracing. The application developer informed the runtime of
the required data replication by specifying very large halos
around radiative data variables. The runtime used these large
halos to automatically scatter and gather radiative halo data
among up to thousands of nodes. All halo logic occurred
in host memory for four reasons: (1) it required minimal
additional code to debug and maintain, (2) it allowed for quick
development to support GPU-enabled tasks with large halos,
(3) the host memory halo logic had been proven to scale to
256K cores, and (4) it was more efficient to gather halo data
in host memory and then send the simulation variable to GPU
memory in a single host-to-GPU copy, rather than using many
GPU-to-GPU copies, incurring fewer API latency costs.

The prior runtime had deficiencies. For short-lived GPU
tasks with simulation variables requiring small halo re-
gions, performing halo transfers in host memory was pro-
hibitively expensive. Another problem was limited patch over-
decomposition options. The prior runtime could only sequen-
tially execute GPU tasks, and so patch sizes were chosen to
fill all GPU streaming multiprocessors. We desired a solution
that kept simulation variables persistent in GPU memory, per-
formed halo transfers in GPU memory, and allowed for con-
currently executing GPU kernels for more over-decomposition
options while keeping all GPU streaming multiprocessors full.

One target application in particular is the Wasatch compo-
nent. Wasatch utilizes many short-lived GPU tasks with small
halo regions around simulation variables. Wasatch employs a
formalism of the DAG approach to generate runtime algo-
rithms [29], and an Embedded Domain Specific Language
(EDSL) called Nebo [30], [31]. Nebo allows Wasatch de-
velopers to write high-level, Matlab-like syntax that can be
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Fig. 3. Uintah’s initial runtime system to prepare CPU and GPU task grid
variables with halo data from adjacent grid variables.

executed on multiple architectures such as CPUs and GPUs.
RMCRT also remains a target application to verify the new
runtime efficiently handles large halos. In this work, RMCRT
simulations can now take advantage of concurrently executing
kernels.

III. PERSISTENCE OF GPU DATA
AND MANAGING HALO CELLS

The Uintah runtime system now allows data to exist only
in host memory, or only in GPU memory, or both. For tasks
employing pointwise computations, this design easily allows
application developers to make grid variable data persistent on
GPUs. However, for tasks requiring halo data, data persistence
does not provide any automatic halo management in GPU
memory. This section describes how Uintah now processes
halo data in an environment with many memory spaces.

A. Prior Runtime Model

Only three halo data copy scenarios were used in the prior
runtime (see Fig. 3). All halo data management was handled
in host memory then copied back into GPUs. While functional
and simple, this approach heavily utilized the PCIe bus.

For example, suppose each MPI rank is assigned a 4×4×4
set of patches, and each patch contains 64 × 64 × 64 cells.
Also suppose this simulation has only one grid variable for
stencil computations, the grid variable exists in GPU memory,
the grid variable holds double values, and 1 layer of halo cells
are required for all MPI rank neighbors. In this model, an MPI
rank can require 56 of the 64 patches to be copied to host,
and halo data sent out. Then the MPI rank would receive halo
data data for 56 patches, process them in host memory, and
then copy them into the GPU. Assuming a bus bandwidth of
8 GB/s, the data transfer time alone for this one grid variable
into host memory would be roughly 14 ms and another 14 ms
to copy it back into the GPU. For many Uintah GPU tasks
which compute within a few milliseconds, this is impractical.

B. Current Runtime Model

With data staying persistent in GPUs, more halo data
scenarios must be managed. Uintah must prepare grid variables
for both CPU tasks and GPU tasks by obtaining halo data from
grid variables in adjacent patches (adjacent grid variables)

Fig. 4. Uintah’s current runtime system to prepare CPU and GPU task grid
variables with halo data from adjacent grid variables.

Fig. 5. Halo data moving from one memory location to another are first
copied into a contiguous staging array prior to being copied to that memory
location. Later a task on the destination will process the staging array back
into the grid variable.

in whatever memory location they exist. These adjacent grid
variables can exist in four memory locations, (1) host memory,
(2) GPU memory, (3) another on-node GPU’s memory, or
(4) off-node. With four possible source locations and four
possible destination locations, there are 16 possible halo data
copy scenarios. Because a task does not manage halo data for
patches or nodes it is not assigned to, this number is reduced
to 12 scenarios, as shown in Fig. 4. While it is possible to
reduce these 12 into fewer scenarios by employing more MPI
ranks per physical node, Uintah’s runtime system obtains its
performance by allowing a physical node to function in only
one MPI rank. If NVLink [32] is considered, the number of
halo data copy scenarios will then increase by needing to
determine which data bus to use.

Instead of writing specific code for each of the 12 sce-
narios, the process can be simplified by batching together all
source/outgoing halo data copies into a collection of staging
grid variables, and then later batching all destination/incom-
ing halo data copies into another collection of staging grid
variables.

As shown in Fig. 4, halo copies now occur entirely within
the same memory space if the source and destination grid
variable reside in the same space. For example, two adjacent
grid variables in GPU memory can simply copy their halo data
to each other. Otherwise if the halo data must be copied to
another memory location, then contiguous arrays with packed
data are employed as shown in Fig. 5. Packed buffers are used
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because these simulation variables contain non-contiguous
halo data in memory. Host-to-GPU and GPU-to-GPU transfers
within an MPI rank are simplified and made more efficient, as
the cost of many individual transfers between memory spaces
is almost always far greater than the cost of creating a packed
buffer and sending that buffer. For halo transfers using MPI,
packed buffers copied GPU-to-host allow Uintah to use any
MPI implementation. Further, packed buffers in GPU memory
provide the potential of performance equal to or exceeding
non-contiguous data structure solutions provided by CUDA-
aware MPI implentations [33].

In the prior runtime system example of a node containing
a 4× 4× 4 set of patches, a minimum of 14 ms was required
simply to transfer the data GPU-to-host over the PCIe bus.
This new approach has been implemented in Uintah’s runtime
system. Profiling this particular problem results in combined
transfer and processing times of roughly 1 to 2 ms.

A benefit of this halo cell management is that automated
halo copies into GPU memory was merged with the scheduler
code as described in Section VI which is responsible for
copying simulation variables into GPU memory. So whether
only halo cells needs to be copied across the PCIe bus, or a
regular grid variable without halo cells needs to be copied,
the scheduler treats both the same. These halo cells can all be
processed in batches, rather than one at a time, so that if a
GPU task requires N grid variables each needing halo cells,
then all N can be processed together. This batching enables
efficiency gains in two ways, (1) through runtime allocations of
contiguous regions as detailed in Section VII, and (2) through
utilizing kernel calls to perform GPU-to-GPU halo processing
as detailed in the remainder of this section.

1) Batching Example: Suppose a 27-point stencil task re-
quires that a particular GPU data grid variable send its halo cell
data to its 26 neighbors, and then receive halo cell data from
those same 26 neighbors. Of these 26 neighbors, suppose 11
are found within that GPU, 6 are found within another on-node
GPU, and 9 are off-node. This data grid variable will then be
assigned a collection of 15 staging regions (6 for the on-node
GPU and 9 for off-node), each of which are contiguous arrays.
A kernel will be called to perform 15 halo cell copies within
that GPU. After the kernel completes, the runtime system
identifies those 6 dependencies which belong to another GPU,
and so 6 GPU peer-to-peer copies are invoked. The runtime
then identifies those 9 dependencies that belong off-node, and
MPI is used to send this data as necessary. Once all data is sent
out, it is the responsibility of the scheduler processing future
tasks to gather these halo cells back into data grid variables.

When a future task needs to use this same grid variable
with halo cells, the runtime will recognize that it will need
to gather together the halo cells from 26 neighbor patches. It
will look in the node’s own Data Warehouses and find that
halo cells for all 26 exist in various memory locations on that
node. It will then process these in bulk and prepare the GPU
data grid variable for GPU task execution.

2) Batching Analysis: Batching all halo groups for later
processing incurs an overhead cost by delaying halo copies
that could otherwise be launched immediately. However, the
cost of a launching a single kernel for one batch of halo groups

may be preferable to the cost of invoking many smaller kernels
or copies. The cost of processing halo data for a Uintah task
can be described as ttotal = a ∗ ta + n ∗ tc, where a is the
number of invoked API actions, ta is the CUDA API latency
to issue a kernel or copy call, n is the number of groups of
halo data copies, and tc is the time required to copy all halo
items in a group. For the upcoming measurements, we varied
the number of items in a halo group between 162 and 1282

cells and used a machine with an Nvidia K20c GPU and an
Intel Xeon E5-2620.

Three halo processing approaches were tested: (1) a single
streamed CUDA kernel with code to perform these copies, (2)
multiple streamed CUDA kernels with each performing some
of the needed copies, and (3) multiple GPU-to-GPU copy calls
issued from CPU code. For the first two tests (utilizing CUDA
kernels), we observed a kernel launch latency (ta) of ∼4-5 µs,
and time to copy all items in a group (tc) of ∼1-3 µs. For
the third test (multiple GPU-to-GPU API calls isused from
CPU code), we observed a copy call latency (ta) of ∼5-6 µs,
and the time per copy (tc) of less than 1 µs. Unfortunately,
for grid variables, not all halo groups are contiguous, with
some halo groups requiring cell-by-cell copies as there are
no halo cells occupying contiguous memory regions among
them. The resulting total API call latency required for these
cell-by-cell copies is orders of magnitude worse than the first
two approaches and will no longer be analyzed.

Determining whether Uintah should issue halo copies im-
mediately or batch and launch them all as a group is dependent
on the length of time the runtime analyzes and adds a group
to a batch. Currently the Uintah runtime requires ∼1-3 µs of
analysis per halo group to possibly add it into an upcoming
batch. Because the kernel latency of ∼4-5 µs is greater than
the time required to analyze a single halo group, the runtime
should not issue one streamed kernel per halo group as this will
always lead to greater halo copy overhead. For these reasons,
Uintah’s runtime creates and processes only one batch. A
possible alternative approach has the runtime utilizing multiple
batches total, where a batch begins copying halo data when
several groups are queued and several more groups remain
to be analyzed. However, this would cut into the efficiency
gains of contiguous allocation blocks described in Section VII,
as more batches would require more allocation blocks. For
current production problems utilizing Uintah, the overhead
costs involved with batching only one set of halo groups is
minor in comparison to task execution times, and so further
optimizing this batching process is not a high priority and left
as future work.

IV. GPU DATA WAREHOUSE
MODIFICATIONS

The Uintah GPU Data Warehouse is a data store containing
metadata for simulation variables in GPU memory. The GPU
Data Warehouse itself is entirely contained within an object,
updated in host memory, and copied into GPU memory. It
aids productivity by allowing application developers to easily
retrieve task simulation variables within CUDA code without
having to manually pass in each simulation variable’s data
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Fig. 6. Each GPU task gets data into its own small Task Data Warehouses,
rather than the old approach of all GPU tasks sharing the same large GPU
Data Warehouses.

Fig. 7. A profiled half millisecond range of an eight patch simulation
showing Data Warehouse copies. Before, the initial runtime system had many
large Data Warehouse copies (only one shown in this figure). After, the
new runtime system’s small Task Data Warehouses copy into GPU memory
quicker, allowing GPU tasks to begin executing sooner (eight Data Warehouse
copies are shown in this figure).

pointer into a kernel. It also aids the runtime by tracking which
simulation variables exist in GPU memory. Previously, the
GPU Data Warehouse only operated with sequential kernels
and could not function correctly with concurrent kernels. This
section describes modifications required for concurrent kernel
execution, while also using these data stores to aid in halo
gathering entirely within GPU memory.

A. Concurrent GPU Data Warehouses

The prior GPU Data Warehouse model [2] did not function
with concurrently executing GPU tasks because the Uintah
scheduler updated the GPU Data Warehouse prior to each task
executing. The GPU Data Warehouse in GPU memory could
not be updated when another task was currently executing and
using it. A second problem was the GPU Data Warehouse
memory footprint was relatively large, on the order of a few
megabytes, due to needing larger fixed-sized array buffers.
For GPU tasks that computed within a few milliseconds, the
time to copy the GPU Data Warehouse into the GPU was
unacceptably large. A third problem related to productivity
occurred when an application developer retrieved simulation
variables from the data warehouse object despite the task
definition not explicitly indicating it would use the variable.
Depending on task execution order, those simulations variables
may often, but not always, be found in GPU memory, leading
to inconsistent behavior.

Task Data Warehouses were created in order to solve these
three problems. The driving concept of Task Data Warehouses
is that each GPU task receives its own self contained GPU
Data Warehouse objects in GPU memory, wholly independent
and not used by other tasks, with only the information it
needs to manage halo data copies and grid variables for task
computation (see Fig. 6). These small Task Data Warehouses
in GPU memory serve as read-only snapshots of a subset of the
GPU Data Warehouse. A GPU task kernel will then have no
knowledge or capability to access grid variables unrelated to its
own task. This eliminates coordination and contention issues
related to tasks previously sharing a GPU Data Warehouse in
GPU memory. This also results in having the full GPU Data
Warehouse only existing in host memory, as it is never copied
in full into GPU memory as one large object.

B. Utilizing Task Data Warehouses for Halo Gathering

Keeping simulation data persistent in GPU memory required
a mechanism to allow halo cell gathering within GPU memory
using simulation variables containing non-contiguous halo data
(e.g. 3D faces of a grid variable). CUDA Unified Memory was
not used because as described previously in Section II, Unified
Memory frequently incurred blocking operations and kernel
performance reductions. CUDA-aware MPI was not used as
most halo gathers would occur within an MPI rank. We utilized
a common method to pack and unpack halo buffers [33] using
a CUDA kernel in GPU memory.

The Task Data Warehouse object already contained data
address and layout information, and so the metadata containing
the logic to process these halo transfers in a CUDA kernel
was also placed within a Task Data Warehouse object. The
scheduler thread responsible for preparing a task’s simulation
variables prior to execution is also responsible for preparing
this metadata. Before a GPU task executes, a CUDA kernel
is invoked which reads the Task Data Warehouse for halo
copying metadata and copies these halo buffers back into the
simulation variables.

Storing both simulation variables and halo copying metadata
in a Task Data Warehouse required a change of the internal
structure of the data store object. Originally the data store
object used fixed sized arrays within the object so as to avoid
multiple deep copies. But as we discovered some simulations
required far more simulation variables than others, we likewise
noticed the GPU Data Warehouse’s memory footprint was
becoming too large. Adding an additional array containing
halo copying metadata within this data store object made the
memory footprint even larger. While employing object deep
copies was tempting at this point, a more efficient approach
was found.

Our solution merged both the array for simulation variables
and the array for halo copy logic into one array. This results
in a compact Task Data Warehouse object consisting of a
few data members followed by one array. Because it is a
serialized object in memory, only one copy into GPU memory
is required. The end result of these all structural improvements
is that each task no longer requires copies of GPU Data
Warehouse objects that were megabytes in size. Now they are
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Fig. 8. Two scheduler threads are each assigned a different task to analyze.
They do so independently in parallel. Each sees that simulation grid variable
X is not yet in GPU memory. The runtime must determine which thread
performs the data copy.

only a few kilobytes in size. Fig. 7 shows the improvements
of this approach, demonstrating how more Data Warehouse
objects can be copied into GPU memory in less time.

V. SIMULATION VARIABLE CONCURRENCY AND LIFE
CYCLES

Multiple task scheduler threads concurrently prepare simu-
lation variables for upcoming tasks. Two or more tasks may
require the same simulation variable and possibly also require
halo data be gathered for a simulation variable. The initial
GPU engine [2] targeted problems where tasks did not share
simulation variables. Previously it sufficed to simply give each
grid variable a boolean value to indicate if a grid variable was
valid in host memory and if it was valid in GPU memory. As
we have expanded the runtime to more simulations where tasks
shared simulation variables, finer control over a grid variable’s
memory status was required. In this section we describe a
solution which is designed to scale to compute nodes with
many additional memory hierarchies and memory spaces.

A. Task Scenarios Requiring Scheduler Coordination

Two examples below highlight how simulation variables and
possibly halo data may be shared among tasks. For the simplest
example, refer to Fig. 8. Suppose a simulation computes grid
variable X in host memory on timestep 1. On timestep 2,
suppose that grid variable X’s status is redefined as a (read-
only) Requires grid variable, as described in Section III. The
task graph has two tasks, task A and task B, which compute
on the GPU and requires timestep 1’s grid variable X for the
computation.

Next, consider an example involving gathering halo cells.
Suppose grid variable X was computed in timestep 2 in GPU
memory. In timestep 3, tasks C and D need to perform stencil
computations using timestep 2’s grid variable X. Here Uintah
will supply the halo cell data from spatially neighboring
patches and place that halo data in GPU memory. However
this halo cell data must still be gathered into grid variable X.

The scheduler again prepares tasks C and D in parallel on two
CPU threads, and notices that grid variable X’s halo cell data
is not yet prepared. A race condition occurs when both CPU
threads are given the responsibility to perform this ghost cell
gather step.

These examples demonstrate a need for different task sched-
uler threads to utilize concurrent solutions. Overall, three types
of actions must be considered within Uintah: (1) allocations
of simulation variables, (2) copies from one memory region
location to another, and (3) gathering in halo cells. These are
not limited to simulation variables in GPU memory space, they
can occur in any space where tasks utilize simulation variables,
such as host memory, NVRAM, and hard disk space.

1) First Attempted Solution Using Duplication: We at-
tempted to preserve what had been a core philosophy of
Uintah’s schedulers, treating scheduler threads and tasks as
fully independent so that no two scheduler threads had to
coordinate with one another. This core philosophy required
less runtime code and quicker development by avoiding co-
herency scenarios altogether, and we considered extending it
into GPU memory. We proposed allowing multiple copies of
data to exist in a memory location. For example, if both tasks
A and B need grid variable X from the previous time step
to be copied into GPU memory, then two instances of the
same grid variable X would be created and copied in GPU
memory, with each task gaining ownership over one of these.
This approach however created new problems. There would be
noticeable overhead when needing to copy multiple instances
of grid variables with large patch sizes. Furthermore, if two
tasks need halo data to be gathered simultaneously, performing
this action twice would again add noticeable overhead. Also,
task launch times could be delayed as now these tasks must
always wait until their data is prepared in the needed memory
location, whereas if two or more parallel tasks shared grid
variable data then any task can all proceed the moment the
shared data is ready. For these reasons, this approach was not
implemented.

2) Implemented Solution: The runtime requires that sched-
uler threads preparing tasks should coordinate with one an-
other. Our solution adopts a first-touch policy. The first sched-
uler thread to recognize a necessary preparation action for
a simulation variable (such as a halo gather) is the thread
which will soon perform that action. If other scheduler threads
recognize that action is in progress and not completed, that
task is placed back in a work queue for later processing.
For example, if both tasks A and B need grid variable X
in GPU memory prepared with 2 layers of halo cells, then
as two scheduler threads each prepare these tasks, whichever
thread recognizes this need first becomes the one to perform
the halo gather. Similar first-touch policies are introduced for
memory allocation and memory copies. In the case of halo
gathering, no scheduler thread is allowed to claim ownership
of gathering halo cells for a grid variable until all adjacent
halo cell information has been received and is available in
that memory space.
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Fig. 9. A bit set layout for the status of any simulation grid variable in
a memory location. Every simulation grid variable in every memory space
contains a bit set. Reads and writes to this bit set are handled through atomic
operations.

B. Simulation Variable Status Bit Set

To accomplish first-touch coordination between scheduler
threads, a 32-bit atomic bit set is used (see Fig. 9). If a
simulation has two memory spaces (such as host memory and
GPU memory), then each grid variable is assigned two of
these bit sets. A bit set has six assigned bits for allocating,
allocated, copying in, valid, gathering halo data, and valid
with halo data. Again consider the example described in Fig. 8
of both tasks A and B needing grid variable X copied from host
memory into GPU memory. Each thread assigned to prepare
these tasks can perform an atomic read to see if space for this
grid variable in GPU memory has been allocated. Suppose the
allocation bit was previously set. Then both threads can then
see if the GPU grid variable’s copying in bit or valid bit have
been set. Suppose neither the copying in bit nor the valid bit
have been set. Each thread attempts an atomic test and set on
the copying in bit, and the winner must perform the GPU-to-
host copy. The other thread continues on analyzing other grid
variables needed for that task.

Prior to task execution, the scheduler now checks all grid
variables assigned for that task to see if all valid or valid with
halo data bits are set. If some bits are not yet set, then it must
be the case that another task started but did not complete its
assigned action. The task goes back into an appropriate queue
and will be checked again shortly after. The scheduler thread is
unaware which other scheduler threads are preparing necessary
grid variables, only that a bit has been set indicating the desired
action will be completed by another scheduler thread. These
work queues are described in more detail in Section VI.

These atomic status bits also allow for better understanding
of the state of simulation grid variables at any given time. For
example, it is possible to set multiple bits so that a grid variable
may be listed as both allocated and valid in host memory. It
is also possible that a grid variable in GPU memory can be
allocated, valid, and currently gathering halo data. If a grid
variable does not exist in a memory space, then no bits are
set. With 6 of the 32 bits reserved for these statuses, the other
26 bits can be used to indicate copy out destinations. Suppose
a future compute node has multiple hierarchies of host RAM

and multiple GPUs. Each memory location can be assigned
an ID number corresponding to these bits. Suppose one grid
variable is being copied from GPU #1 to GPU #2 and to high
capacity host RAM, then the two bits representing those two
destinations can be set in that grid variable’s bit set. Doing
this allows for greater control in case a grid variable needs
to be vacated from GPU memory to make room for others.
Before deallocation, the grid variable’s bit set can be checked
to ensure it is not currently being used as part of a data transfer.

The value of this approach is shown in Section VIII-C, in
which an order-of-magnitude speedup is shown on a complex
ray-tracing radiation calculation on up to 2K GPUs. We also
report initial results showing a 4-5X speedup at 16K GPUs on
a larger radiation calculation.

VI. TASK SCHEDULER ENHANCEMENTS

The Uintah Unified Scheduler [4] (see Fig. 1) functions
by having all CPU threads independently checking shared
priority queues for available tasks to process. Tasks proceed
through these several work queues during its execution life
cycle, similar to that of an execution pipeline. During this
flow through these queues, grid variables are staged in the
proper memory location and coupled to halo data if required.
The overall flow of these queues has evolved through three
distinct themes. This section will briefly describe the prior
two themes and explain the current theme now in use.

The first Uintah GPU runtime system [2] targeted tasks with
long execution times on the order of seconds to minutes. All
halo management occurred in host memory, even for GPU
tasks. Grid variables listed as Requres were copied into GPU
memory, the GPU task kernel executed, and all computed data
was copied back into host memory for possible future halo
cell processing. This GPU enabled runtime was developed in
relatively little time, utilized all host halo cell logic developed
in years past, and easily allowed for utilization of multiple
GPUs in a compute node.

The second Uintah GPU runtime system [3] targeted tasks
with short execution times on the order of milliseconds.
The overall theme changed to keep data persistent in GPU
memory as long as possible, and to avoid as many host-
to-GPU and GPU-to-host transfers as possible. A scheduler
thread preparing a task was still responsible for staging all
of that task’s grid variables and gathering in all needed halo
data, independent of any other scheduler thread. When a work
queue’s CUDA stream completed, the scheduler thread could
know that phase of the task preparation was completed and
could move onto the next work queue.

Implementing this second GPU runtime took considerable
effort and required the creation of much smaller Task Data
Warehouses (see Section IV), packing and unpacking halo
buffers (see Section III), and managing multiple scenarios of
copying memory from one memory location to another (see
Fig. 4). The end result of these changes allowed for GPU vs.
CPU speedups using Uintah for tasks which compute in a few
milliseconds.

This work, the third GPU runtime, added additional con-
currency checks, which targets simulations with many tasks
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Fig. 10. A simplified flow of all scheduler queues a GPU task must pass
through.

that share grid variables and also share halo requirements
for simulation variables. Now a task is only responsible for
staging grid variables and gathering halo data if it was the
first arriver to claim that action. Furthermore preparation of
grid variables is no longer the exclusive responsibility of that
scheduler thread, but can be accomplished by many scheduler
threads working with the same grid variables in parallel. A
scheduler thread must now verify if a task’s grid variables are
ready before that task can move to the next queue.

A. GPU Task Queues

A GPU task now proceeds through five queues as shown in
Fig. 10. They are (1) Process all MPI receives. (2) Manage
any halo data gathers in host memory if possible. For all
potential GPU allocations, copies, and/or halo data gathers
necessary for this task, determine which of those becomes
assigned to this task using an atomic first arriver policy (see
Section V). Perform asynchronous host-to-GPU copies for the
task’s grid variables for which it is responsible to copy into the
GPU. Create Task Data Warehouses (see Section IV) for this
task which contains information about each grid variable and
necessary meta data for later halo data gathers (see Section
III). Asynchronously copy these Task Data Warehouses to the
GPU. (3) Set every valid bit to true for all Requires grid
variables this task was assigned to copy into the GPU. For
every grid variable requiring halo data, see if all adjacent halo
data is valid in GPU memory. If all needed grid variables can
proceed with halo data gathering, and this task was assigned
responsibility to gather that halo data, asynchronously launch
a GPU kernel to complete this action. If halo data gathers
cannot yet take place due some adjacent halo data not yet
in this GPU, place this task back into this work queue to be
checked later. (4) For every grid variable for which this task
was responsible for gathering halo data, set those valid with
halo data bits. Check if all grid variables requiring gathered
halo data valid with halo data bits set. If not, place this task
into this work queue to be checked later. If all grid variables

Fig. 11. A simplified flow of all scheduler queues a CPU task must pass
through.

are ready, asynchronously launch the GPU task. (5) Set every
valid bit to true for all Computes and mark the task as done.

B. CPU Task Queues
Previously in the first GPU runtime model [2], the scheduler

never required a CPU task to search any GPU memory space
for a simulation variable. As a result, the task scheduler
utilized only two queues. The first queue for processing MPI
receives, and the second for executing tasks.

A CPU task now proceeds through four queues as shown
in Fig. 11. They are (1) process all MPI receives. (2) For all
potential host memory allocations and/or copies necessary for
this task, determine which of those becomes assigned to this
task using an atomic first-touch policy. Perform asynchronous
GPU-to-host copies for all task grid variables for which it is
responsible to copy into host memory. (3) Set every valid bit
to true for all Requires grid variables this task was assigned
to copy into host memory. If some task grid variables are not
yet valid in host memory, place this task back into this work
queue to be checked later. (4) Run the CPU task as all host data
is available in host memory. Any needed halo data gathering
happens during task execution.

C. Differences Between GPU and CPU Queues
The workflow for GPU queues and CPU queues work

flow is fairly similar. A task’s life cycle of data preparation,
halo data management, execution, and updating of bit sets
follows the same general concepts. The only major differences
between CPU and GPU task queues are (1) GPU tasks need
some form of task data warehouses due to difficulty of
managing concurrency for grid variable data warehouses in
global GPU memory. (2) GPU tasks are queued and executed
asynchronously through streams while CPU tasks are executed
on the same CPU scheduler thread which processed that
work queue. (3) CPU tasks can prepare simulation variables
(allocation and halo gathering) during task execution, rather
than relying on the scheduler to allocate and prepare these
variables beforehand.

VII. EFFICIENT MEMORY MANAGEMENT USING
CONTIGUOUS BUFFERS

Allocating GPU memory and copying memory host-to-GPU
can be expensive operations because of latencies associated
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Fig. 12. A profiled time step for a Wasatch task using the initial runtime
system. Most of the Uintah overhead is dominated by freeing and allocating
many grid variables.

Fig. 13. A profiled time step for a Wasatch task using the new runtime
system. The runtime system determines the combined size of all upcoming
allocations, and performs one large allocation to reduce API latency overhead.

with these API calls. The initial GPU runtime allocated mem-
ory one grid variable at a time and copied these grid varibles
one at a time. The associated accumulated API latencies
become an issue when the accompanying GPU task executes
in just a few milliseconds, as seen in Fig. 12.

A. Reducing GPU Allocation Latency

To address this issue, a straightforward method for utilizing
a contiguous buffer was implemented. For a given task,
Uintah’s runtime computes the total size of all Computes,
Requires, and halo data not yet in a memory location or the
in process of allocating or copying into that memory location
(see Section V) . A contiguous buffer was allocated in GPU
memory, then multiple host-to-GPU copies were invoked for
each Requires grid variable and halo cell staging variable
into the allocated buffer on the GPU. This approach yielded
improvements as shown in Fig. 13.

B. Attempts at Reducing GPU Copy Latency

We next investigated reducing the latency overhead when
data variables are copied host-to-GPU. We tested forming a
packed contiguous buffer in host memory with the goal of
performing only one host-to-GPU copy instead of several.
The larger difficulty here is that different tasks each require
a different set of simulation variables, only sharing some,
but not all, of a node’s simulation variables among them.
We allocated host buffers and filled them using host-to-host
copies of individual simulation variables. We then copied these
packed buffers to GPU memory. In all cases tested the cost
of host-to-host copies outweigh the latency of many host-to
GPU copies.

C. Contiguous Buffer Results

Table I gives a one node simulation for processing times
using the current GPU engine without contiguous allocations

TABLE I
EFFECT OF CONTIGUOUS BUFFERS ON WASATCH GPU TASKS

Wasatch Test Mesh
Size

Without
Contiguous

(ms)

With
Contiguous

(ms)

Speedup Due
to Reduced
Overhead

Test A -
Solving 10
transport
equations

163 13.36 10.56 1.27x
323 18.25 13.25 1.38x
643 57.99 33.88 1.71x

1283 124.51 100.09 1.24x
Test B -

Solving 30
transport
equations

163 41.70 26.61 1.57x
323 51.54 34.89 1.48x
643 173.46 86.62 2.00x

1283 374.922 276.22 1.36x

TABLE II
POISSON EQUATION SOLVER GPU VS. CPU SPEEDUP

Mesh
Size

CPU
only
(s)

Initial
GPU

Runtime
(s)

Current
GPU

Runtime
(s)

Speedup -
Current vs

Initial

Speedup -
Current vs

CPU

643 0.08 0.31 0.11 2.82x 0.73x
1283 0.31 1.33 0.38 3.50x 0.82x
1923 0.84 2.96 0.63 4.70x 1.33x
2563 1.93 6.09 1.13 5.39x 1.71x

and with contiguous allocations. The initial GPU runtime
system is not profiled here. The Wasatch tests profiled solve 10
and 30 transport equations, respectively. Computations were
performed on an Nvidia GTX680 GPU and an Intel Xeon
E5-2620 with CUDA 6.5. With all these improvements, we
observed speedups due to reduced overhead ranging from
1.27x to 2.00x for a variety of test cases.

The advantage in Uintah’s contiguous buffer approach com-
pared to similar runtime GPU buffer allocation schemes [34]
is the ability to use runtime temporal knowledge to optimize
these allocations. This work demonstrates that buffers yield
speedups in all tested scenarios. In future work Uintah can go
further and place all Old Data Warehouse simulation variables
in one block, and use a second block for New Data Warehouse
simulation variables. Uintah can preserve the second block
between time steps (when the New Data Warehouse becomes
the Old Data Warehouse) and reclaim the first block.

VIII. RESULTS

A. Poisson Equation Solver

A simple seven-point stencil for the Poisson equation in 3D
using a simple Jacobi iterative method highlights difficulties
of (1) little reuse of data and (2) a short-lived task with a
wall time on the order of milliseconds when patch sizes are
smaller. Runtime overhead becomes a substantial factor as the
timesteps are likewise short-lived.

Table II compares this problem on the initial and current
runtime system. Data for this table was computed using 50
iterations on a simulation grid using 12 patches. 12 CPU cores
were used for 12 CPU tasks. Speedups provided to show
reduction in runtime overhead in GPU tasks and highlight
when GPU tasks become feasible over CPU tasks. The profiled
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machine contained a Nvidia K20c GPU and an Intel Xeon E5-
2620 with CUDA 5.5. Within Uintah, the combined memory
feature (Section VII) was turned off to provide for an apples-
to-apples halo data comparison.

In all cases, the current GPU runtime performed signifi-
cantly better than the initial GPU runtime. As the grid sized
increased, more data movement was required over the PCIe
bus for the initial runtime, and total simulation time naturally
increased significantly. For the current runtime, this problem
was avoided and the speedup results can be seen by the profiled
times.

The 1923 and 2563 case demonstrates a major motivation
for these GPU runtime enhancements. Here, the initial GPU
runtime was 3.5x and 3.2x slower than the CPU task version,
respectively. Now the current GPU runtime computes this
problem 1.33x faster for 1923 and 1.71x faster for 2563

compared to the CPU task version. This result demonstrates
we can move more CPU tasks to the GPU to obtain speedups.
For smaller grid sizes for this problem, the CPU task overhead
is smaller than the GPU task overhead, and this results in faster
overall CPU times.

Detailed profiling of the 1923 case indicated that the previ-
ous GPU runtime had overhead between time steps of roughly
49 milliseconds. Under the current runtime, this overhead
has been reduced to roughly 2 to 3 milliseconds. The GPU
computation portion of this task used 10 milliseconds per time
step, indicating a much smaller but still significant portion
of the total simulation is spent in overhead. Profiling has
indicated that one-third to one-half of the remaining overhead
is comprised of GPU API calls such as mallocs, frees, and
stream creations. Future work is planned to utilize resource
pools so this overhead can be reduced further.

B. Wasatch

As mentioned in Section VII, Wasatch tasks are an ideal
case for the work described in this paper. The Wasatch tests we
profiled solved multiple partial differential equations (PDEs),
and used as many as 120 PDE related variables per time
step. Each task computes within milliseconds. Although these
tests only run on one patch, they utilize periodic boundary
conditions, meaning that each patch edge is logically con-
nected with the patch edge on the opposite side, and thus halo
data transfers still occur. Table III gives time to solutions for
two different Wasatch tests which solve 10 and 30 transport
PDEs, respectively. For the data in this table, the CPU thread
counts are managed by Wasatch tasks to maximize efficiency.
Speedups are provided to show reduction in runtime overhead
in GPU tasks and highlight when GPU tasks become feasible
over CPU tasks. Computations were performed on an NVidia
GTX680 GPU and an Intel Xeon E5-2620 with CUDA 6.5.

The key aim of this work is to allow Uintah’s GPU support
to be opened to broader class of computational tasks. As
Table III, the original runtime system processed GPU tasks
slower than CPU tasks in all tested Wasatch cases. The current
runtime system for the same GPU tasks now obtains significant
speedups in most cases. Only when patch sizes are small do
CPU tasks still perform fastest.

Fig. 14. In the original Uintah GPU engine, overlapping of RMCRT’s kernels
is infrequent as copying the GPU Data Warehouse prior to task execution is
done as a blocking operation to avoid concurrency problems.

Fig. 15. Because Task Data Warehouses were designed to avoid blocking op-
erations when copied into GPU memory, RMCRT kernel overlap is achieved.

C. Ray Tracing-based Radiation Model

This scaling study focuses on a reverse Monte Carlo ray
tracing (RMCRT) approach to radiation modeling that makes
novel use of Uintah’s AMR capabilities to achieve scalability.
This problem [35] uses a two-level AMR mesh, and is based
on the benchmark described by Burns and Christen [36].
This challenging problem exercises all of the main features
of the AMR support within Uintah as well as additional
radiation physics. This benchmark problem also requires use
of the concurrency improvements detailed in Section V. The
radiation portion of this calculation was run on the DOE Titan
system, using the single Nvidia K20x GPU available on each
node. A fine level halo region of four cells in each direction,
x, y, z was used. The AMR grid consisted of two levels with a
refinement ratio of four, the fine mesh being four times more
resolved than the coarse, radiation mesh.

For two separate cases, the total number of cells on the
highest resolved level was 1283 and 2563 (blue and red lines
respectively in Fig. 16), with 100 rays per cell in each case.
The total number of cells on the coarse level was 323 and 643.
In each of these strong scaling cases, a fixed patch size of 163

cells was used. Each data point represents a 2X increase in
the number of GPUs assigned to the computation.

The principal result illustrated in Fig. 16 is the near order
of magnitude speedup in mean time per timestep for each
problem. This improvement is largely due to the introduction
of non-blocking Task Data Warehouses as described in Section
IV, which allows for many smaller patches to execute simul-
taneously due to kernel overlapping (see Fig. 14 and Fig. 15).
Preliminary results from a much larger radiation calculation
(5123 cells on the fine mesh and 1283 cells on the coarse
radiation mesh) also show a 4-5X speedup at 16K GPUs on
Titan using the concurrency improvements achieved in this
work.
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TABLE III
WASATCH TASKS GPU VS. CPU SPEEDUP

Wasatch Test Mesh Size CPU Only (s) Initial GPU
Framework (s)

Current GPU
Framework (s)

Speedup - Current
vs Initial

Speedup - Current
vs CPU

Test A -
Solving 10
transport
equations

163 0.08 0.10 0.11 0.91x 0.72x
323 0.19 0.23 0.12 1.92x 1.58x
643 0.79 0.94 0.26 3.62x 3.03x

1283 4.75 5.21 1.22 4.27x 3.89x
Test B -

Solving 30
transport
equations

163 0.21 0.45 0.28 1.61x 0.75x
323 0.56 0.97 0.37 2.62x 1.51x
643 2.19 3.72 0.76 4.89x 2.88x

1283 13.56 20.79 3.64 5.71x 3.73x

Fig. 16. Strong scaling of the two-level benchmark RMCRT problem [36] on the DOE Titan system. L-1 (Level-1) is the fine, CFD mesh and L-0 (Level-0)
is the coarse, radiation mesh.

IX. RELATED WORK

Many other GPU-enabled asynchronous many-task runtimes
share similar features of data dependency management and
application developer interaction with the runtime. Legion [14]
requires application developers define data dependencies with
much more detail than Uintah. Developers must work with
task syntax that adheres to their Legion C++ programming
model or their Regent programming language [37]. Legion
leverages a parallel global address space (PGAS) approach
using GASNet for all internode communication. Charm++ [15]
uses a message passing system similar in nature to MPI, and
utilizing that Charm++ can perform well with load balancing.

The Charm++ runtime system does not automatically pass
messages to facilitate data transfer between neighbor nodes,
instead the programmer is responsible for implementing all
halo management. GPU kernels can be invoked from within
a Charm++ work unit, and the Charm++ GPU Manager helps
with task management and synchronization, overlapping of
data transfer with kernel computation, and API to notify
when a GPU kernel has completed. StarPU [16] manages data
copying and data coherency in different memory spaces using
a process very similar to cache coherency protocols. Halo
transfers must be accomplished through user defined tasks,
and some application developer interaction is required to aid
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StarPU in MPI transfers among nodes. PaRSEC [17] contains
many similarities with Uintah in that the runtime automates
data transfer both through MPI for internode communication
and between host and GPU memory for intranode commu-
nication. In PaRSEC, data coherence utilizes a simplified
version of the MOESI cache coherency protocol [38]. Data
dependencies are expressed by defining data flows among tasks
using their customized JDF Format to help generate PaRSEC’s
DAG. If MPI is used, the user provides nodal communication
information through a process patterned after MPI Datatypes.
Most of PaRSEC’s target problems focus on linear algebra
computations on mathematical matrices.

Uintah is perhaps the most specialized of these runtimes in
that Uintah provides a rich API interface and accompanying
runtime for application developers requiring uniform halo
requirements around simulation variables on adaptive mesh
refinement grids. Uintah focuses heavily on hiding runtime
system details from application developers while maintaining
both strong and weak scaling to full machine scale. Uintah
has been shown to scale to 16K nodes using GPUs on Titan
[18] and 768K cores on Mira [19]. In a search of literature,
we found that Legion has been demonstrated to scale to 8K
nodes on Titan [39], Charm++ to 512K cores on Mira [40],
StarPU to 256 nodes [41] on the Occigen cluster located at
CINES, France, and PaRSEC to 23868 cores [42] on Kraken.

X. CONCLUSIONS AND FUTURE WORK

In this paper we describe modifications to the Uintah
runtime system targeting problems with halo dependencies
allowing more computational problems to efficiently execute
on GPU/heterogenous architectures with minimal user interac-
tion with the runtime. In particular we targeted stencil-based
computations requiring local halo data (such as one layer
of halo cells) or computations with nearly global data (data
dependencies across the computational domain). We describe
an effective system to keep variable data resident in GPU
memory as well as in host memory and off-node, and how
halo cell transfers can be processed from any source memory
location to any destination memory location. We have also
described additional work queues to schedule a task during its
life cycle necessary for Uintah to process a heterogeneous mix
of tasks. We show that allocating one large GPU memory space
for all grid variables in a task provides substantial speedup
benefits over allocating memory for each individual GPU grid
variable. Results show these combined modifications reduced
overhead to allow GPU tasks to run up to 5.71x faster versus
the initial GPU runtime system, and up to 3.89x faster than
their CPU task counterparts.

Uintah now opens itself up to a much broader range of
computational problems on the GPU. With these successes,
we plan to improve and optimize the runtime system further
to aid portability and productivity. Effort is currently underway
to utilize Kokkos [24] enabling application developers to only
write task code once, instead of the current model where
separate CPU and CUDA code must be provided. Imple-
menting Kokkos requires more work merging the host and
GPU data stores and task queues into unified logic. For some

computational problems utilizing Uintah, data layout of grid
variables in memory (row-major, column-major, 2D tiled, 3D
tiled, etc.) is crucial for performance gains and Uintah must
support these layouts. Utilizing Kokkos for task code also
enables Uintah to target Xeon Phi architectures and work is
underway to modify the task scheduler to properly execute
these tasks with groups of CPU threads.
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