
Demonstrating GPU Code Portability and Scalability
for Radiative Heat Transfer Computations

Brad Peterson, Alan Humphrey, John Holmen
Todd Harman, Martin Berzins

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

Dan Sunderland

Sandia National Laboratories
PO Box 5800 / MS 1418

Albuquerque, NM 87175 USA

H. Carter Edwards

NVIDIA
2788 San Tomas Expressway
Santa Clara, CA 95051 USA

Abstract

High performance computing frameworks utilizing CPUs, Nvidia GPUs, and/or Intel
Xeon Phis necessitate portable and scalable solutions for application developers. Nvidia
GPUs in particular present numerous portability challenges with a different programming
model, additional memory hierarchies, and partitioned execution units among streaming
multiprocessors. This work presents modifications to the Uintah asynchronous many-task
runtime and the Kokkos portability library to enable one single codebase for complex mul-
tiphysics applications to run across different architectures. Scalability and performance re-
sults are shown on multiple architectures for a globally coupled radiation heat transfer
simulation, ranging from a single node to 16384 Titan compute nodes.

Key words: Asynchronous many-task runtime; GPU; Scalability; Portability; Radiative
Heat Transfer

Preprint submitted to Elsevier 21 June 2018



1 Introduction

The need to solve larger and more complex simulation problems while at the same
time not incurring additional power costs has led to an increasing focus on GPU
and Intel Xeon Phi-based architectures. Many current and future high performance
computing (HPC) systems rely on such architectures. In the case of the DOE Titan
system, with a theoretical peak performance of 27 petaflops, over 90% of the com-
putational power come from its 18,688 GPUs. These heterogeneous systems pose
significant challenges in terms of programmability due to deep memory hierarchies,
vendor-specific language extensions and memory constraints, e.g. less device-side
memory compared to host memory per node. This paper focuses on scalability,
portability, and programmability of multiphysics applications. This work covers
1.) scalability improvements necessary to compute a radiation transport problem
on 16,384 GPUs on Titan using the Uintah asynchronous many-task runtime, and
2.) portability improvements necessary to utilize a single codebase capable of exe-
cution on nodes containing CPUs, GPUs, and/or Intel Xeon Phi processors. Nvidia
GPUs receive particular emphasis as they introduce four challenges distinct from
the CPU execution model: 1.) task asynchrony, 2.) multiple memory spaces, 3.) an
additional programming model (e.g. CUDA), and 4.) another level of parallelism
through partitioned execution units among streaming multiprocessors.

Uintah’s emphasis on scalability across a diverse set of HPC architectures is cur-
rently driven by the target problem of the University of Utah Carbon Capture Multi-
disciplinary Simulation Center (CCMSC), funded by the NNSA Predictive Science
Academic Alliance Program (PSAAP) II. The CCMSC aims to simulate, using
petascale/exascale computing, a 1000MWe oxy-fired clean coal boiler being de-
veloped by Alstom Power to deliver high efficiency electric power generation with
carbon capture. A primary CCMSC focus is on using extreme-scale computing for
reacting, large eddy simulation (LES)-based codes within the Uintah open source
framework, using machines like Titan and the upcoming Summit system in a scal-
able manner. The physical size of the CCMSC target boiler simulations and the
resolution required to resolve the dominant physical processes necessitates the use
of systems like DOE Titan at near-capacity.

Radiation is the dominant mode of heat transfer in these boiler simulations. A
principal challenge in modeling radiative heat transfer is the nonlocal nature of
it. Thermal energy propagates across the entire computational domain from any
point in space. Our radiation model, a reverse Monte Carlo ray tracing (RMCRT)
technique [1], described further in Section 3 requires an all-to-all communication
to replicate the radiative properties and boiler geometry on each node to facili-
tate local ray tracing. This challenge is addressed by leveraging Uintah’s adaptive
mesh refinement (AMR) capabilities, using Cartesian mesh patches to generate a
fine mesh that is only used locally (close to each grid point) and a successively
coarser mesh is used further away, via a level-upon-level approach. This approach
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is fundamental to the CCMSC target problem, where the entire computational do-
main needs to be resolved to adequately model the radiative heat flux. Using this
approach enabled excellent strong scaling to over 256K CPU cores on the DOE
Titan system for problem sizes that were previously intractable with a single fine
mesh (single-level) RMCRT approach due to on-node memory constraints [1]. This
scaling was consistent with the communication and computation model [1].

The challenges in moving from a CPU to a GPU-based multi-level RMCRT al-
gorithm using this mesh refinement approach have extended well beyond what a
typical GPU port of a CPU codebase might entail. A core Uintah design focuses on
insulating the application developer from the underlying runtime, which requires
more automation of runtime features. Uintah’s runtime requires that all host-to-
device and device-to-host data copies for computational task dependencies (inputs
and outputs), as well as device context management must be handled automati-
cally in the same way MPI messages are generated by the Uintah runtime sys-
tem [2–4]. Meeting these challenges required numerous runtime changes to support
the RMCRT problem on Titan’s GPUs.

This paper is an extended form of the workshop paper [5], which addressed scal-
ability and runtime improvements necessary to run this difficult globally-coupled,
all-to-all problem to 16,384 GPUs on the DOE Titan system. This extended pa-
per addresses the portability challenges of implementing RMCRT into one single
portable codebase using the Kokkos portability library and executing this code on
CPUs, GPUs, and Intel Xeon Phi Knights Landing (KNL) architectures.

Prior to this work, Uintah’s use of Kokkos has been limited to support for CPU and
Xeon Phi processors [6]. This work extends portability support to the GPU. Special
focus is given to GPU portability enabling Kokkos to now efficiently execute Uin-
tah’s fine-grained tasks on GPUs. In particular, modifications are made to Kokkos
itself to enable GPU asynchronous and performant execution of parallel work loops
with fewer iterations (i.e. an iteration range the low hundreds). This work also de-
scribes modifications for GPU portability that affected Xeon Phi performance and
describes how it was addressed to enable one portable codebase across three archi-
tectures. Intel Xeon Phi portable performance has been addressed in prior work [6],
and does not need to be extended here.

The contributions from the original paper [5] are:

(i) Leveraging Uintah’s AMR infrastructure in a novel way to reduce the volume
of communication sufficiently so as to allow scalability. Uintah’s AMR capabilities
are introduced in Section 2, along with an overview of Uintah.

(ii) Changing the way that AMR meshes are stored on the GPU to overcome the
limited available GPU global memory. This has entailed a significant extension of
the Uintah GPU DataWarehouse system [7] to support a mesh-level database,
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a repository for shared, per-mesh-level variables such as global radiative proper-
ties. This has allowed multiple mesh patches, each with associated GPU tasks, to
run concurrently on the GPU while sharing coarse, radiation mesh data. This ex-
tension of the GPU DataWarehouse is discussed in Section 3, which also gives
an overview on radiation transport and describes a GPU-based multi-level RMCRT
model.

(iii) The introduction of novel non-blocking, thread-scalable data structures for
managing asynchronous MPI communication requests, replacing previously prob-
lematic mutex-protected vectors of MPI communication records. To be non-blocking
a wait, failure, or resource allocation by one thread cannot block progress on any
other thread. Non-blocking data-structures are lock-free if at all steps at least one
thread is guaranteed to make progress, and are wait-free if at any step all threads are
guaranteed to make progress [8]. Section 4 describes these changes and their moti-
vation, and also shows speedups in local MPI communication times made possible
through these infrastructure improvements.

(iv) A vastly improved memory allocation strategy to reduce heap fragmentation is
covered in Section 4. This strategy allows running simulations at the edge of the
nodal memory footprint on machines like Titan.

(v) Determining optimal fine mesh patch sizes to yield GPU performance while
maintaining over-decomposition of the computational domain to hide latency. This
is covered in Section 5 with strong scaling results over a wide range of GPU counts
up to 16,384 GPUs, and also show the results of differing over-decomposition con-
figurations across this range of GPUs.

The four major extensions to this paper from the prior paper [5] are:

(vi) Using and modifying Kokkos to improve performance portability on GPUs.
Kokkos’s current GPU execution model is bulk synchronous, where a parallel loop
is partitioned into many CUDA blocks and the GPU distributes those blocks through-
out the GPU device. However, the Uintah asynchronous many-task runtime is de-
signed to asynchronously execute many overlapping finer-grained tasks, many of
which require only one CUDA block each. Section 6 describes modifications to
Kokkos’s GPU execution model so that it is no longer bulk synchronous and can
instead overlap many smaller asynchronous execution units.

(vii) Section 7 reviews prior Intel Xeon Phi performance portability work [6] for
Uintah and describes portability challenges relating to architecture specific iteration
patterns.

(viii) The integration of GPU portability into Kokkos and Uintah is given in Sec-
tion 8. The challenges here include using Uintah’s own memory management sys-
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tem within Kokkos, using Kokkos’s portable random number library, and supplying
task execution parameters for many architectures.

(ix) Results of running portable code on multiple architectures is given in Section 9.
In particular, the results compare three codebases: 1.) prior CPU code, 2.) prior
GPU code, and 3.) Kokkos-enabled code. Portability is demonstrated on CPUs,
GPUs, and Intel Xeon Phi KNLs. GPU portability is shown before and after Kokkos
modifications from Section 6.

An overview of related work is given in Section 10, and the paper concludes in
Section 11 with future work in this area.

2 The Uintah Code

The Uintah asynchronous many-task (AMT) runtime [2, 9] is open-source (MIT
License) software that has been widely ported and used for many different types
of problems involving fluids, solids, and fluid-structure interaction problems [9],
with the latest release in September 2017 [10]. Uintah consists of a set of parallel
software components and libraries that facilitate the solution of partial differential
equations on structured AMR grids. Uintah presently contains four main simu-
lation components: 1.) the multi-material ICE [11] code for compressible flows;
2.) the particle-based code MPM [12] for structural mechanics; 3.) the combined
fluid-structure interaction (FSI) algorithm MPM-ICE [13], and 4.) the ARCHES
turbulent reacting CFD component [14] that was designed for simulating turbulent
reacting flows with participating media radiation. Uintah is highly scalable [15],
and solves a broad class of PDE problems on many National Science Foundation
(NSF), Department of Energy (DOE) and Department of Defense (DOD) parallel
computers.

Uintah has a unique set of methods and uses a directed acyclic graph (DAG) ap-
proach as part of a production-strength code in a way that is coupled to a run-
time system. Uintah’s design maintains a clear partition between applications code
and its runtime system, making it possible to achieve great increases in scalability
through changes to the runtime system without changes to the applications them-
selves. An application developer creates tasks by indicating all needed simulation
variables for the task’s code, and then later writes task code using C++ or CUDA.
Within that task code the application developer requests all simulation variables
from Uintah’s data stores known as a DataWarehouse, which will have all sim-
ulation variables ready in the correct memory space, including all needed halo data.
The tasks themselves are assigned to a particular patch, which is a cuboid region
of cells on a structured grid. Uintah’s runtime is responsible for the proper data
preparation, scheduling, and execution of these tasks.
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Particular advances made in Uintah include highly scalable AMR using Cartesian
mesh patches [15]. A key factor in improving performance has been the reduction
in MPI wait time through the dynamic and even out-of-order execution of task-
graphs [16]. The need to reduce memory use in Uintah has led to the adoption of
a nodal shared memory model in which there is only one MPI process per multi-
core node, and tasks are executed serially on individual cores using Pthreads [17].
As a result, Uintah has demonstrated scalability to 768K cores on complex fluid-
structure interactions with AMR. Uintah’s thread-based runtime system [17] uses
decentralized execution of the task-graph, implemented by each CPU core request-
ing work itself and performing its own MPI. A lock-free shared memory abstraction
through Uintah’s DataWarehouse approach [17] was implemented using atomic
operations, allowing efficient access by all cores to the shared data on a node. Fi-
nally, the nodal architecture of Uintah has been extended to run tasks on one or
more on-node accelerators [18] by using a multi-stage queue architecture to orga-
nize work for CPU cores and GPUs in a dynamic way, and is the starting point for
this paper.

2.1 The ARCHES Combustion Simulation Component

ARCHES is the primary CCMSC simulation component within Uintah and was
designed for the simulation of turbulent reacting flows with participating media ra-
diation. It is a three-dimensional, Large Eddy Simulation (LES) code [19], which
solves the coupled mass, momentum, and energy conservation equations on a stag-
gered finite-volume mesh for the gas and solid phase with combustion [14, 20]. It
uses a low-Mach number (M < 0.3), variable density formulation to model heat,
mass, and momentum transport in reacting flows.

The discretized equations are integrated in time using an explicit, strong-stability
preserving second or third-order Runge-Kutta method [21]. Spatial discretization
is handled with central differencing where appropriate for energy conservation or
flux limiters (eg, scalar mixture fractions) to maintain numerical accuracy. The low-
mach, pressure projection formulation requires a solution of sparse linear system
at each timestep using the Hypre linear solver package [22]. The turbulent subgrid
velocity and species fluctuations [23] are modeled with the dynamic Smagorin-
sky closure model. The Discrete Ordinates Method for solving the radiation heat
transfer equation uses over a discrete set of ordinates and, like the pressure equa-
tion, is formulated as a linear system that is solved using Hypre. Research using
ARCHES has been done on radiative heat transfer using the parallel discrete ordi-
nates method [24] (DOM, a modeling method developed at Los Alamos National
Laboratory for neutron transport) and the P1 approximation to the radiative trans-
port equation [25]. Work done by Sun [26] and Hunsaker [27] has shown that Monte
Carlo ray tracing methods are potentially more efficient and offer an alternative to
DOM.
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3 RMCRT Model

Scalable radiation modeling plays a key computational role in applications such as
heat transfer in combustion simulations [19], neutron transport modeling [28] in
nuclear reactors, and astrophysics modeling. Generally, radiation modeling is con-
sidered one of the most challenging problems in large-scale computational science
and engineering due to the global nature of radiation. For heat transfer problems
such as the CCMSC boiler simulations, coupling combustion and radiation poses
several numerical challenges. The fluid mechanics of combustion are an inherently
local phenomena, wherein conservation laws may be applied over a finite volume.
Radiation however, is a long-distance phenomenon due to strong nonlocal effects.
Because of these nonlocal effects, conservation laws cannot be applied over an in-
finitesimal volume, but must be applied over the entire computational domain. This
global interdependency creates difficulties for domain decomposition due to the
need for nonlocal data.

3.1 Radiation Transport Models

A critical quantity of interest for all boiler simulations is the heat flux to the sur-
rounding walls, as the major mode of heat transfer in the coal-fired boiler is ra-
diation. In the context of the CCMSC, the design of new boiler facilities utilizing
ultra super critical air-combustion technology will require accurate radiative heat
flux estimates in environments with increased CO2 concentrations, higher temper-
atures and different radiative properties for new metal alloys. Thermal radiation in
the target boiler simulations is loosely coupled to the computational fluid dynamics
(CFD) due to time-scale separation. This section briefly describes three other com-
mon approaches for solving radiation heat transfer, namely the Discrete Ordinances
Method (DOM) [24], spatial transport sweeps [29], and forward Monte Carlo ray
tracing (MCRT) [26, 27], and then describes the reverse Monte Carlo ray tracing
(RMCRT) model in more detail. All of these approaches to radiative heat transfer
are currently implemented and available within Uintah.

ARCHES is designed to solve the mass, momentum, mixture fraction, and thermal
energy governing equations inherent to coupled turbulent reacting flows. ARCHES
has relied primarily on a DOM solver [24] to compute the radiative source term in
the energy equation shown by:

cv
dT

dt
= −∇ · (κ∇T )− p∇ · v + Φ +Q′′′ −∇ · qr (1)

where cv is the specific heat, T is the temperature field, p is the pressure, κ is
the thermal conductivity, v is the velocity vector, Φ is the dissipation function,
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Q′′′ is the heat generated within the medium, e.g. chemical reaction, and ∇ · qr is
the net radiative source [1]. A radiatively participating medium can emit, absorb
and scatter thermal radiation. The energy equation is then conventionally solved
by ARCHES (finite volume) and the temperature field, T is used to compute the
net radiative source term. This net radiative source term is then fed back into the
energy equation (for the ongoing CFD calculation) which is solved to update the
temperature field, T [1].

A particular limitation of DOM is false scattering. This is a due to spatial discretiza-
tion error, similar to numerical diffusion in CFD calculations. A ray that is traced
through the enclosure by DOM will gradually widen as it moves farther away from
its point of origin. False scattering can be addressed by using a finer mesh of control
volumes, but at greater computational cost [30].

Temporal sweeps [29] utilizes a four point stencil and a matrix back substitution
computation. The algorithm at its fundamental level is serial, where computations
directly affect the values in subsequent iterations of its loops. The resulting algo-
rithm is computationally lightweight, and some parallelization is possible if inde-
pendent ordinate directions and independent spectral frequencies are used. An im-
plementation of temporal sweeps into Uintah [31] using CPU cores demonstrated
fast wall time execution but is currently limited to scaling up to 128K cores due to
its high memory footprint.

Recent work has shown that Monte Carlo ray tracing (MCRT) methods are poten-
tially more efficient [26, 27]. Traditional forward MCRT approaches are inefficient
though, in that large numbers of traced rays may not reach the subdomain of inter-
est. Both DOM and MCRT methods aim to approximate the radiative transfer equa-
tion (2), the equation describing the interaction of absorption, emission and scatter-
ing for radiative heat transfer, which is an integro-differential equation with three
spatial variables and two angles that determine the direction of ŝ [32]. For MCRT
methods, a statistically significant number of rays (photon bundles) are traced from
a computational cell to the point of extinction, that is, until their radiative intensity
falls below a specified threshold. This method is then able to calculate energy gains
and losses for every element in the computational domain.

Reverse Monte Carlo ray tracing (RMCRT), the focus of this work, is an emission-
based reciprocity method, where rays are traced backwards from the detector, thus
eliminating the need to track ray bundles that never reach the detector [33]. Rather
than integrating the energy lost as a ray traverses the domain as in forward MCRT
approaches, RMCRT integrates the incoming intensity absorbed at the origin, where
the ray was emitted. RMCRT is more amenable to domain decomposition, and thus
Uintah’s parallelization scheme due to the backward nature of the process [26] and
the mutual exclusivity of the rays themselves. The process is considered reverse
through the Helmholtz Reciprocity Principle, e.g. incoming and outgoing intensity
can be considered as reversals of each other [34].
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dI(ŝ)

ds
= ŝ∇I(ŝ)

= kηI − βI(ŝ)

+
σs
4π

∫
4π
I(ŝ)Φ(ŝi, ŝ)dΩi,

(2)

In equation 2, kη is the absorption coefficient, σs is the scattering coefficient, de-
pendent on the incoming direction s. β is the extinction coefficient that describes
total loss in radiative intensity, I is the change in intensity of incoming radiation
from point s to point s + ds and is determined by summing the contributions from
emission, absorption and scattering from direction ŝ and scattering into the same
direction ŝ. Φ(ŝi, ŝ) is the phase function that describes the probability that a ray
coming from direction si will scatter into direction ŝ and integration is performed
over the entire solid angle Ωi [32, 33]. The currently implemented RMCRT algo-
rithm uses a mean absorption coefficient approximation σs and hence not resolving
spectral frequencies, e.g. η for wavelength. Adding spectral frequencies to RMCRT
would entail adding a loop over wavelengths, η and is part of future work.

3.2 RMCRT and Ray Tracing Overview

The principal motivation for the development of a GPU-based RMCRT radiation
calculation arises from the computational intensity of the radiation solve in the
CCMSC production runs, which consumes as much as 50% of the overall CPU time
per timestep when using DOM. Additionally this work is motivated by access to
large-scale GPU-based machines like DOE Titan, where over 90% of the available
FLOPS are on the GPUs. Many of the CCMSC target simulations will run on Titan
over its life span. Beyond this, utilization of the upcoming DOE Summit system is
planned.

RMCRT uses rays more efficiently than forward MCRT, but it is still an all-to-all
method, for which all of the geometric information and radiative properties for the
entire computational domain must be accessible by every ray [26]. These radia-
tive properties consist of; κ, the absorption coefficient, a property of the medium
the ray is traveling through, σT 4, a physical constant σ· temperature field, T 4 and,
cellType (boundary or flow cell), a property of each computational cell in the do-
main. For RMCRT, the boiler geometry is replicated on each node and ray tracing
takes place without the need to pass ray information across nodal boundaries (via
MPI) as rays traverse the computational domain. The RMCRT approach is afforded
the choice of replication due to the relative simplicity of the boiler geometry.

In order to address these communication challenges, a multi-level AMR approach
was developed for both CPU [1] and now GPU, in which a fine mesh is only used
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close to each grid point and a successively coarser mesh is used further away, sig-
nificantly reducing MPI message volume and nodal memory footprint. This algo-
rithm allows for the radiation computation to be performed with an appropriate
mesh resolution while still being coupled with other physics components. The LES
CFD, particle transport and particle reactions are solved on a different mesh reso-
lution appropriate to their physics and models. This balanced approach to coupling
multiphysics is made possible by Uintah’s AMR design. This design significantly
reduces the amount of data stored on every computational patch, and significantly
reduces computational overhead for successively finer computation.

3.3 Multi-Level GPU Implementation

Following the original proof-of-concept GPU task scheduler [18], a single-level
CPU and GPU RMCRT approach was initially considered. This approach was to
begin comparisons against the current DOM solver within the Uintah ARCHES
component, using the benchmark problem described by Burns and Christen [35].
Accuracy studies of this single-level RMCRT approach exist [27] for this bench-
mark, which examines the accuracy of the computed divergence of the heat flux
and shows expected Monte Carlo convergence when compared to the published
data [35]. In this approach, the quantity of interest, the divergence of the heat flux,
∇q is calculated for every cell in the computational domain. The entire domain was
replicated on every node (with all-to-all communication) for the radiative proper-
ties. This replication occurred on the single fine mesh, which for Ntotal mesh cells,
the amount of data communicated is O(N2

total).

Though this single, fine mesh approach was highly accurate and effective at lower
core and GPU counts, problem sizes beyond 2563 were intractable for highly re-
solved domains, especially on machines with less than 2GB of memory per core.
GPU scalability results were demonstrated up to 64 GPUs [18] to achieve basic
accelerator task scheduling and execution. Using a problem size of 1283, the vol-
ume of communication coupled with the PCIe transfers begins to dominate, and the
GPUs were starved for work with only a single patch per GPU. These difficulties
led to the use of an AMR approach that uses a mesh hierarchy to limit the amount
of communication on CPU architectures [1].

Figure 1 best illustrates this approach, depicting how a ray from a fine-level patch
(right) might be traced across a coarsened domain (left). In general, the data re-
quired by the multi-level RMCRT algorithm from the fine CFD mesh, is projected
to all coarse levels subject to a user-defined refinement ratio (typically 2 or 4),
where each coarse level spans the entire domain. The general multi-level RMCRT
ray marching process is described in detail in prior work [1], which includes a pre-
cise model of communication and computation.
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Fig. 1. RMCRT - 2D diagram of three-level mesh refinement scheme.

A significant challenge in moving to a GPU-based, multi-level RMCRT algorithm
is the limited amount of global memory available on the current generation of
GPUs found on Titan. These Nvidia K20X models have 6GB compared to 32GB
CPU host-side. Previously, Uintah automatically generates MPI messages and kept
multiple versions of simulation variables for out-of-order scheduling and execu-
tion [16]. This allows different tasks to require the same variable on the same neigh-
boring patch multiple times for differing halo cell requirements. In the context of
the multi-level RMCRT radiation model, this is a global halo requirement on all
coarse levels. Having multiple versions of simulation variables with global halos
presents problems for a limited memory footprint as on Titan’s K20X GPUs.

A solution to this problem has been to short-circuit the creation of these redundant
global copies of the radiative properties on the host and their subsequent transfer
across the PCIe bus to the GPU. This has been achieved by a significant extension
of the Uintah GPU DataWarehouse system [7] to support a level database that
stores a single copy of shared global radiative properties (per-mesh level based on
Uintah’s level-upon-level approach to AMR). This solution has minimized PCIe
transfers and allowed multiple mesh patches, each with GPU tasks, to run concur-
rently on the GPU while sharing data from the coarse radiation mesh. This design
leverages the two copy engines available on the K20X GPUs and also makes use of
support for running multiple, concurrent kernels. Using these features, Uintah can
copy data for multiple fine-mesh patches to the GPU, each sharing a global copy of
the coarsened radiative properties.

Data for these GPU tasks can be simultaneously copied to-and-from the device as
multiple RMCRT kernels run simultaneously. CUDA Streams, managed by the
Uintah infrastructure provide additional concurrency, as operations from different
streams can be interleaved.
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3.4 Complexity Analysis

Previous work [1] provided a complexity analysis for CPU-based single-level and
multi-level RMCRT implementations. The GPU-based RMCRT analysis adds two
additional terms for data copy cost between host memory and GPU memory. The
single-level RMCRT cost for a single patch is given by

T globalrmcrt = (th2d + td2h)n
3
mesh + C∗nraysn

3
mesh

4/3
, (3)

where td2h and th2d are the costs to copy one cell host-to-device or device-to-host,
n3
mesh is the total number of mesh cells, C∗ is a constant, and nrays is the number

of rays emitted per cell. If all tasks in a timestep compute on GPUs in a single-
node implementation, there is no need to copy data back into host memory, and
thus the th2d and td2h terms are zero. Complexity costs for a fine and coarse mesh
level implementation, including communication costs, are also given in previous
work [1].

4 Uintah Runtime Improvements

Uintah uses an “MPI + X” parallelism approach, using a combination of MPI +
(Pthreads + Nvidia CUDA). This mixed concurrency model has the potential for
problematic race conditions and deadlock scenarios, some of which only manifest
at larger scale in our experience. Significant infrastructure changes were necessary
to improve nodal throughput and to expose more concurrency while maintaining
correctness within this complex environment. In particular, choosing optimal data
structures and algorithms for management of all MPI communications was required
to efficiently expose concurrency, as well as to maintain critical sections around
legacy serial data structures. Furthermore, it was vital for Uintah to manage limited
resources such as nodal memory through the use of custom allocators that allow
frameworks like Uintah to choose more optimal allocation policies for different
objects to better utilize available resources and improve nodal throughput.

4.1 Multi-Threaded Processing of Asynchronous MPI

Uintah currently utilizes MPI_THREAD_MULTIPLE, which allows individual
threads to perform their own MPI sends and receives, as well as collectives. In our
experience, MPI_THREAD_MULTIPLE is rarely adopted by MPI users. Addition-
ally, Uintah previously utilized MPI_Testsome() to process groups of
MPI_Request objects. Initial attempts to run at large scale with accelerators in
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this environment exposed a subtle race condition which created memory leaks due
to unused MPI buffers.

Uintah uses a process where any arbitrary thread can post MPI receives for any
task prior to execution. The MPI_request objects associated with these receives
are then placed into a collection. Later during a timestep, any arbitrary thread may
check any MPI receives in this collection for completion, as MPI receives are not
necessarily bound to the thread that posted the MPI_request. Despite attempts to
ensure concurrency on accessing these MPI_Testsome() groups, we observed
multiple threads allocating buffers for the same MPI message, but only one actu-
ally processed the message and invoked a callback through Uintah to deallocate
its buffer. Other threads may have allocated buffers which were never released,
resulting in a severe memory leak in the Uintah infrastructure, causing the appli-
cation to quickly fail at large-scale due to out of memory errors on the compute
nodes. Though this scenario was present in other simulations, it was only evident at
large scale, and only significant within the RMCRT radiation model due to the high
volume and size of MPI messages. Despite this, the approach to multi-threaded
processing of asynchronous MPI within Uintah had worked seemingly well for all
cases until now.

A more coarse-grained critical section surrounding the code processing MPI mes-
sages was not feasible as it would have serialized a substantial portion of the algo-
rithm. The solution ultimately required a fundamental redesign in the data structure
and algorithm used to manage MPI communication records in a multi-threaded
environment. The new algorithm leverages a novel wait-free pool, which is thread-
scalable and contention-free, to store individual MPI requests. The wait-free pool
iterator is implemented as a unique, move-only object which toggles an atomic flag
to protect access to the referenced value to prevent data races, i.e. multiple threads
modifying the same value.

C++11 features were used (atomics, move constructor, move assignment, and dis-
abling copy construction and copy assignment) to implement a unique protected
iterator, that guarantees no two threads can have iterators which dereference to the
same object. Once an iterator claims an atomic flag, that iterator can then read,
modify, or erase that referenced item, and will release the atomic flag when the
iterator is destroyed or advanced to another open item. MPI_Test() is then used
on each request individually in contrast to the prior design which used
MPI_Testsome() to test a collection of requests. This solution, outlined in Al-
gorithm 1 results in much simpler code with fewer allocations, and eliminates the
complexity of managing the previously used locked vectors of MPI_Request ob-
jects and their related critical sections.
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Algorithm 1 Wait-free MPI_Request pool

1: RecvCommList& recv_list = m_recv_lists[id];
2: auto ready_request =
3: [](CommNode const& n)->bool{return n.test();};
4: iterator = recv_list.find_any(ready_request);
5: if (iterator){
6: MPI_Status status;
7: iterator->finishCommunication(m_comm, status);
8: recv_list.erease(iterator);
9: }

4.2 Memory Allocation and Management Strategy

After identifying and addressing the race condition described above in Section 4.1,
the RMCRT benchmark problem [35] still failed at scale due to memory-related
issues, though it ran longer before failure. Further investigation revealed that ex-
treme heap fragmentation was occurring when running the RMCRT benchmark
problem. Persistent small allocations mixed with transient large allocations frag-
mented the heap such that it grew continually, acting as though a significant mem-
ory leak still existed. Using Google’s tcmalloc [36], a highly scalable memory allo-
cator for multi-threaded applications, reduced heap fragmentation but the mixture
of persistent and transient allocations still resulted in unacceptable fragmentation.
Furthermore, frequent small allocations from multiple threads also caused a perfor-
mance degradation due to contention of shared resources. The performance of the
infrequent large allocations was not a factor in the overall performance.

4.2.1 Custom Allocators to Reduce Fragmentation

Developing and using custom allocator classes for Uintah’s MPI buffers and
GridVariables (simulation variables that reside on Uintah’s Cartesian mesh
patches at cell centers, nodes or faces x,y,z), allowed us to leverage our knowledge
of how a data structure would be used to distinguish between large/small and tran-
sient/persistent allocations. This greatly improved memory utilization and reduced
fragmentation.

To eliminate the observed heap fragmentation, allocators were developed to ad-
dress the range of allocation sizes causing the fragmentation. For large allocations,
the heap was completely avoided by implementing a specialized allocator that uses
mmap to allocate anonymous virtual memory. Though mmap is a system call and
can be slower than a standard malloc, it was more important to avoid fragmenting
the heap than to optimize the throughput of large allocations. Throughput was not a
concern for the performance of large allocations, but it is critical for frequent small
allocations. To manage our small transient objects, i.e. objects that are frequently
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created and destroyed, a lock-free memory pool was developed on top of our mmap
allocator to avoid the heap and maximize throughput. All other infrequent alloca-
tions are still managed using the heap.

Using these techniques, portions of Uintah infrastructure code related to communi-
cation were significantly simplified, and nodal throughput was improved by a factor
of 2-4X in processing local MPI communication (the time spent posting MPI mes-
sages for individual threads).
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Fig. 2. Comparison of the local communication time (sec) before and after infrastructure
improvements.

Figure 2 shows the time spent doing local communication, before and after our
infrastructure improvements for our CPU implementation of the Burns and Christen
[35] RMCRT benchmark on Titan. These runs were from 512 to 16,384 nodes, with
a 2-level problem with 136.31M cells, 5123 on the fine CFD mesh and 1283 on the
coarse radiation mesh. There were 262k total mesh patches in this problem. The
speedups of communication times ranged from 2.27x at 1024 nodes to 4.40x at 512
nodes.

5 Scaling Studies with CPU and GPU Codebases

This section demonstrates strong scalability results on the DOE Titan XK7 1 sys-
tem for the Burns and Christen [35] benchmark problem using the GPU imple-

1 Titan’s nodes host a 16-core AMD Opteron 6274 processor and 1 Nvidia Tesla K20x
GPU. The entire machine offers 299,008 CPU cores and 18,688 GPUs and over 710 TB of
RAM.
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mentation of the multi-level mesh refinement approach. Strong scaling is defined
as a decrease in execution time when a fixed size problem is solved on more cores,
and weak scaling as the change in execution time as the number of processors and
problem size vary proportionally to each other. Parallel efficiency, E, is defined as:

E =
Tserial

N ∗ Tparallel(N)
, (4)

where Tserial is the time to solution using 1 processing unit, N is the number of
processing units and Tparallel(N) is the time to solve the same problem with N
processing units.

Strong scaling is important in our case as the CCMSC seeks to solve a fixed target
problem in a tractable amount of time using more compute resources. To achieve
this, the CCMSC needs the whole of machines like Titan. Regarding weak scaling,
as the number of cells increase for future work, AMR will be employed to mitigate
the challenge of communicating to every MPI rank a copy of the entire domain’s
radiation data. On a single mesh level, a quadratic growth O(N2) (N is the num-
ber of communicating MPI ranks) of MPI messages and its associated data would
normally occur as the communication would be all-to-all. Using AMR and requir-
ing global halos only on the coarsest level, only the compute nodes owning those
coarsest level patches would communicate its radiation data to all other nodes, thus
becoming a some-to-all communication. For the results below, and for a recent
large coal boiler simulation on DOE Titan and ALCF Mira [4,31], two AMR levels
were employed.

Figures 3 and 4 each show the performance and scalability of the multi-level
RMCRT:GPU algorithm for three patch sizes. In each fine level cell in both prob-
lems, 100 rays per cell were used to compute the divergence of the heat flux. The
number of cells in a patch was varied, 163 (red), 323 (green), and 643 (blue). Each
of the simulations consisted of a grid with 2 levels, and used a refinement ratio of 4
between the levels. All simulations were run on the DOE Titan system, leveraging
the single GPU per node with Uintah’s hybrid, multi-threaded task scheduler and
runtime system originally designed and tested in [2,7] using 16 threads and 1 GPU
per node. This scheduler and runtime system has been heavily modified as outlined
in Section 4 to achieve the results shown here.

For the simulation results shown in Figure 3, the total number of cells in the domain
was 17.04 million. The fine level contained 2563 cells and the coarse level contained
643 cells. For the larger simulation results shown in Figure 4, the total number of
cells in the domain was 136.31 million. The fine level contained 5123 cells and the
coarse level contained 1283 cells. Using equation 4, the strong scaling efficiency of
the large benchmark problem (Figure 4) is 96% going from 4096 to 8192 GPUs,
and 89% going from 4096 to 16,384 GPUs.
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Fig. 3. GPU Strong scaling of the MEDIUM 2-level benchmark RMCRT problem for 3
patch sizes on the DOE Titan system. Refinement ratio of 4 between levels (RR:4). The
fine CFD mesh contains 2563 cells, coarse radiation mesh contains 643 cells. Different
patch sizes illustrate GPU speedup.
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Fig. 4. GPU Strong scaling of the LARGE 2-level benchmark RMCRT problem for 3 patch
sizes on the DOE Titan system. Refinement ratio of 4 between levels (RR:4). The fine CFD
mesh contains 5123 cells, coarse radiation mesh contains 1283 cells. Different patch sizes
illustrate GPU speedup.

The tests used for Figures 3 and 4 executed only one RMCRT task at a time on a
GPU. This execution model was done under the assumption that production runs
using RMCRT would fine-tune patch sizes to utilize all streaming multiprocessors
(SMs) of a GPU. A consequence of this approach is that when patches are smaller
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than the optimal size, they do not utilize all SMs, and thus total execution times
are slower. A different mechanism to efficiently fill all SMs of a GPU regardless of
a task’s patch size involves assigning an individual RMCRT task multiple CUDA
streams and splitting one task into even smaller work units [4]. This mechanism of
executing smaller RMCRT work units is used in the results for Section 9, and in
those results strong scaling is still observed.

These results show in general that 1.) the RMCRT algorithm strong scales on
16,384 GPUs when work is distributed to more compute nodes, and 2.) improve-
ments to the Uintah infrastructure outlined in this work enables this strong scaling.
These results also offer a promising and scalable approach to radiative heat transfer
calculations for the CCMSC target boiler problem on current and emerging hetero-
geneous architectures.

As the problem size grows for RMCRT, more levels of AMR are likely needed.
Work is ongoing to support RCMRT on as many as five AMR levels to greatly re-
duce the amount of MPI communication needed. The two major challenges here
are task graph analysis times [4] and data warehouse management of halo data [4].
For upcoming GPU based supercomputers such as OLCF Summit, Uintah itself can
supply enough patches and tasks for the increased capacities of these GPUs, and
our challenge will be working with this in the context of Kokkos as described in
Section 6 and Section 8, specifically managing a limitation based on GPU constant
cache memory. For CPU based supercomputers such as NERSC Cori and ALCF
Theta, prior and current work [6, 37] is focused using Kokkos with an OpenMP
based execution model allowing groups of CPU threads to simultaneously cooper-
ate within a task for faster execution compared to using one CPU thread per task.
Finally, results demonstrated here and on ALCF Mira [31] indicate that Uintah
compute node scalability is sufficient for upcoming machines.

6 Kokkos GPU Improvements

The need to make use of multiple large-scale parallel architectures both now and
in the future makes it desirable to have a single, portable codebase to avoid main-
taining multiple implementations. This work leverages Kokkos [38] to achieve a
CPU, GPU, and Intel Xeon Phi portable solution for the radiation heat transfer
target problem in large computational domains. A major portability challenge is
that the current Kokkos Nvidia GPU execution model was not initially designed
for the GPU execution models of many asynchronous many-task (AMT) runtimes,
including Uintah, that rely on executing finer-grained tasks. The problem lies in
Kokkos executing GPU parallel loops in a bulk synchronous manner. However,
finer-grained tasks usually cannot be distributed among all streaming multipro-
cessors of a GPU, resulting in a loss of performance due to unused GPU cores.
AMT runtimes avoid this problem by aiming to fully occupy GPU cores by asyn-
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chronously executing many concurrent fine-grained tasks. This section details mod-
ifications to Kokkos itself to facilitate an execution model compatible with AMT
runtimes like Uintah.

An overview of Kokkos is given in Section 6.1. Section 6.2 reviews the current
state of similar portability tools and briefly describes their strengths and limita-
tions, with particular emphasis given to GPU portability. Kokkos modifications
supporting overlapping concurrent parallel loops are described in Section 6.3, and
further parallel reduction work is covered in Section 6.4 to support RMCRT’s
parallel_reduce loops.

6.1 Kokkos Overview

Kokkos [38] provides a C++ programming model for both portability and per-
formance targeting CPUs, GPUs, and Intel MIC (Xeon Phi) platforms. Kokkos
currently supports OpenMP, Pthreads, and CUDA as backend programming mod-
els and supports GCC, Intel, Clang, IBM, and PGI compilers. Data management
abstractions are provided through Kokkos View objects which enables parallel
loop execution in an architecture-aware manner.

Kokkos uses functors and lambda expressions for both parallel and portable code.
An application developer places a single functor or lambda expression inside a
parallel_for, parallel_reduce, or parallel_scan construct. An ex-
ecution policy is also provided describing the loop’s iteration pattern. The example
code below demonstrates using a functor with a simple Kokkos loop iterating 100
times and writing data into a two-dimensional Kokkos View:

typedef Kokkos::View<double*[3]> view_type_2D;

struct Demonstration {
view_type_2D a;
Demonstration (view_type_2D a_) : a (a_) {}
KOKKOS_INLINE_FUNCTION
void operator() (const int i) const {
a(i,0) = i;
a(i,1) = i*i;
a(i,2) = i*i*i;

}
};

view_type_2D myView ("A demonstration view", 10);
Kokkos::parallel_for( Kokkos::RangePolicy(0,100),

Demonstration (myView));
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The above code is then compiled targeting the architecture specified in a prior
Kokkos configuration step. In the case of a heterogeneous compute node (e.g. a
node with CPU cores and an Nvidia GPU), the user may manually specify which
memory spaces are used for Views and which architecture executes a given parallel
loop.

The current Kokkos Nvidia GPU execution model is bulk synchronous in that
Kokkos does not use Nvidia CUDA streams (e.g. a sequence of operations that
execute on the GPU in the issued order from host code). Further, only one parallel
loop can execute on a GPU at any given time. Kokkos internally partitions parallel
loops into many CUDA blocks, and relies on the GPU to distribute those blocks
among its many streaming multiprocessors. For this reason, Kokkos is currently
most efficient when loops provide iteration ranges large enough to be partitioned
into many blocks and distributed uniformly.

6.2 Related Portability Tools

Portability through functors and lambda expressions is also provided by RAJA [39]
and Hemi [40]. RAJA is a Lawrence Livermore National Labs project which con-
tains many similarities to Kokkos in its parallel looping design patterns. RAJA
is not yet at version 1.0, and its feature set is perhaps not as mature with regard to
memory management and architecture-aware execution as Kokkos. The RAJA team
is actively developing CHAI [41] to help facilitate portable memory movement of
data variables, Sidre for data store management, and Umpire for portable mem-
ory allocation and querying. Hemi contains a smaller set of features compared to
Kokkos and RAJA. Hemi supports parallel_for loops iterating over a config-
urable range, and provides basic data containers for automatic allocation and data
movement between host and GPU memory, with its last release in 2015. Nvidia’s
Thrust [42] has the ability to provide portable lambda expressions, but most of its
feature set targets portable containers and high level algorithms which can oper-
ate under CUDA, Intel’s Threading Building Blocks (TBB), and OpenMP. Of the
three tools listed, Hemi and Thrust support supplying pre-existing CUDA streams
for kernel execution, while RAJA supports the default CUDA stream only. Kokkos
differs from each of these tools by allowing functor data to be placed in Nvidia
constant cache memory to reduce GPU register usage.

OpenACC [43] and OpenMP [44] utilize compiler oriented portability optimization
where loops are qualified with pragma directives. OpenACC targets a wide variety
of architectures, however, the commonly used PGI compiler for OpenACC does not
support Xeon Phi KNL AVX-512 bit vector instructions. OpenMP likewise targets
many architectures, and the latest specification targets GPUs [45], however, com-
pilers supporting Nvidia GPUs are still lacking in performance [46,47]. OpenACC
supports asynchronous execution through an async clause and supports up to 16
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streams. OpenMP provides a nowait clause but no ability to explicitly supply or
define a stream. OpenCL [48] contains many similarities with the CUDA program-
ming model while allowing for portable compilation. However, OpenCL’s perfor-
mance frequently lags behind CUDA code [49].

These tools take varied approaches for asynchronous parallel reductions. Kokkos
itself wraps both the functor and reduction logic inside a single kernel call to avoid
latencies of a second kernel invocation. RAJA is implementing stream support, but
at this time requires synchronization to retrieve a reduction value computed in an
asynchronous parallel reduction. Hemi has no support for parallel reductions. PGI’s
OpenACC GPU reduction implementation requires two CUDA kernels, one for the
loop and a second for the reduction. OpenACC requires a synchronization to ob-
tain the result of the reduction value. Implementing GPU reductions with OpenMP
resulted in significant performance losses when using the Clang compiler [47].

6.3 GPU Asynchrony with Kokkos Parallel_For

Kokkos is responsible for executing functors (or a lambda expression which effec-
tively are compiled into a functor) on the GPU. Kokkos does this by first copying
a functor’s data into GPU memory, then executing a CUDA kernel, and within the
kernel invoking the functor. The kernel itself can be partitioned into many CUDA
blocks to distribute the computation among a GPU’s streaming multiprocessors.

Supplying asynchrony for Kokkos functors requires more than simply attaching a
stream to the CUDA kernel. Kokkos can execute functors from two memory loca-
tions found within an Nvidia GPU: 1.) local memory or 2.) constant cache memory.
The local memory approach simply requires copying the functor data in to GPU
memory through a CUDA kernel parameter. The constant cache memory approach
requires an explicit copy call into that memory space. Constant cache memory is
beneficial as it acts like read-only registers as functor data is fetched in a single
clock cycle when read requests are made to the same memory location. In this man-
ner, a GPU’s registers are left free for normal code execution. The Kokkos team has
indicated that functors requiring less than 512 bytes are best executed through local
memory, while larger functors should utilize constant cache memory [50].

6.3.1 Asynchronous Functors in Constant Cache Memory

Constant cache memory is shared among all executing kernels and limited in size
(64K bytes on all recent CUDA capable GPUs). A diagram of the current constant
cache process for functor copies and functor execution is given in Figure 5. A single
functor generates two synchronization points, one for the copy, and another to wait
for the functor to complete so a subsequent functor can be placed into constant
cache memory.
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Fig. 5. Current Kokkos GPU execution model using constant cache memory.

Supporting asynchronous execution of kernels requires one mechanism to place
multiple functors into constant cache memory and another mechanism to determine
when execution completes. This marks the start of this work’s modifications of
Kokkos. A schematic diagram of the new implementation is shown in Figure 6 and
described in more detail below.

Fig. 6. Multiple functors can asynchronously be placed into GPU constant cache memory,
and CUDA events are used to track functor completion.

Within Kokkos a bitset is now used to represent blocks of constant cache mem-
ory. When a CPU thread initiates a Kokkos asynchronous parallel loop, Kokkos’s
engine determines how many data blocks that functor requires, then attempts to lo-
cate and atomically claim a contiguous bitset region which corresponds to constant
cache memory that can fit the functor data. Upon atomically claiming a region, the
functor data is asynchronously copied into constant cache memory, and the functor
is executed after supplying the correct offset. As an example, suppose a functor
requires 432 bytes, and constant cache memory is split into 128 byte data blocks.
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This functor requires 4 data blocks, and Kokkos will atomically attempt to set four
contiguous unclaimed bits in the bitset.

Kokkos must have knowledge of when an asynchronous functor completes so that
it can mark that region of constant cache memory as reusable. An initial (but ulti-
mately abandoned) approach attempted to use CUDA callback functions which in-
voke a CPU function upon GPU kernel completion. When callback functions were
used among many asynchronously queued streams, significant synchronization was
observed among CUDA kernels which increased wall time considerably.

The adopted solution utilizes CUDA events. Immediately after a kernel containing
a functor is invoked in a stream, a CUDA event is placed in the same stream (see
Figure 6) and Kokkos internally associates that functor with that stream. When the
streamed kernel completes, the streamed event is then triggered. Kokkos does not
search any events for completion unless the constant cache memory is full with no
room for an additional functor. At this point, Kokkos will search through all events
and atomically unset bits associated with completed functors. If reuse of functors
is desired for optimization, a reference counter could also be associated with each
functor. However, Uintah has no use case where functor reuse is possible, as each
Uintah task has a unique set of input arguments, and so this optimization was not
implemented.

6.3.2 Kokkos API Additions

In the prior Kokkos code example, an execution policy of
Kokkos::RangePolicy(0,100) indicated 100 total iterations of the parallel
loop. The API now supports an additional execution policy parameter for an object
containing a CUDA stream, as shown below:

Kokkos::Cuda myInstance("some instance description");
Kokkos::RangePolicy myRange(myInstance, 0, 100);
Kokkos::parallel_for(myRange, Demonstration(myView));

Kokkos will create a stream upon instantiation of this Kokkos::Cuda object,
and later reclaim the stream when the object goes out of scope. An application de-
veloper wishing to supply a pre-existing stream can do so by supplying it as the
argument rather than supplying a descriptive string name. During parallel loop in-
vocation, Kokkos checks if it received an object with a valid stream, and invokes the
loop asynchronously or synchronously accordingly. Finally, Kokkos’s DeepCopy
API method to transfer data into another memory space was also modified to sup-
port asynchronous copies by supplying a Kokkos::Cuda object. This enables
Kokkos to asynchronously copy the functor into constant cache memory on the
appropriate stream.
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6.3.3 Asynchronous Parallel_For Results

These additions were tested and profiled to measure two key items: 1.) any differ-
ence in execution times between native CUDA code and Kokkos parallel_for
code, and 2.) any increase in overhead either from Kokkos itself or from synchro-
nization occurring internally within the GPU. The test code computed simple ad-
dition operations on values in global memory and both codes were written using
identical logic. Each pair of codes was executed multiple times on 8 streams, with
the amount of iterations varying each invocation. The number of threads was de-
liberately kept low at 256 so as to keep all execution within one CUDA block to
simulate the kinds of task codes an AMT runtime may execute. Each kernel was
designed to execute between 3 to 25 milliseconds to again simulate short-lived task
code common within AMT runtimes. Further, Kokkos functors were executed both
in local memory and in constant cache memory. All tests were performed on an
Nvidia GPU GeForce GTX TITAN X with 12GB of RAM with CUDA version 7.5
and on a Intel Xeon E5-2660 CPU.

Fig. 7. Profile of executing many parallel_for loops on 8 streams and while varying
the location of functor data storage. Each block represents a loop. Using constant cache
memory requires explicit host-to-device copy calls, but does not significantly affect over-
head.

Figure 7 shows an Nvidia Visual Profiler output of a set of parallel_for loops
executed with the functors in local memory, and another set with the functors in
cache memory. These two approaches do an excellent job overlapping computa-
tions and avoiding synchronization. Detailed timing indicates the local memory
functors approach was only 0.1% to 1% slower than using native CUDA code.
The constant cache memory functors approach was roughly 2% slower, which is
somewhat expected as this approach requires an additional copy step and additional
Kokkos overhead. The average measured additional slowdown per parallel_for
loop in the constant cache approach is roughly 0.22 milliseconds compared to na-
tive CUDA code.

When the original version of Kokkos (prior without modifications) was used to test
the same set of parallel_for loops described at the start of this section, the
computation time was roughly 4.8x slower as these kernels could only be executed
serially. The reason this was not 8x slower for the 8 streams is likely due to a lack
of global memory bus contention.
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6.4 Parallel_Reduce Asynchrony

RMCRT utilizes Kokkos::parallel_reduce, and this section describes work
to make the corresponding GPU execution of this parallel pattern asynchronous.
Extending the Kokkos::parallel_for modifications to
Kokkos::parallel_reduce required addressing the challenge of copying a
reduction result in GPU memory to host memory while avoiding synchronization of
other kernels currently executing or queued for execution. Further, the Kokkos API
was modified to allow testing if a reduction value is ready without having to explic-
itly invoke a CUDA synchronization and lock a CPU thread. When implementing
these modifications, care was taken to allow future work where a reduction value
from a prior loop is used as input into an upcoming loop.

Most of the prior Kokkos parallel_for modifications carried forward into
parallel_reduce logic. Kokkos was further modified to asynchronously copy
the reduction value from device-to-host if a stream was used to invoked the reduc-
tion kernel. Using cudaMemcpyAsync to copy this data may incur a synchro-
nization point. The CUDA documentation explains that even though the function
call contains the Async suffix, “this [Async] is a misnomer as each function may
exhibit synchronous or asynchronous behavior depending on the arguments passed
to the function.” The documentation further states that when using asynchronous
copies to transfer “from device memory to pageable host memory, the function will
return only once the copy has completed.” [51] For this reason the buffer used to
receive the reduction value should be stored in pinned host memory.

Fig. 8. Profile of executing many parallel_reduce loops and their associated streams.
Reduction values in pageable host memory invoked repeated synchronization and caused
delays as shown by the gaps between executing kernels.

Test code similar to that used in Section 6.3.3 was used to measure many quickly
executing reduction loops operating on 8 streams. Figure 8 shows the synchro-
nization incurred by using non-pinned memory for the reduction value. Figure 9
demonstrates the desired overlapping by using pinned memory. Detailed timing in-
dicated minimal differences in using either GPU local memory or GPU constant
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Fig. 9. Profile of the same parallel reduction loops as Figure 8, but utilizing pinned host
memory for reduction value buffers. Synchronization is avoided even when pageable host
memory is used to copy the functor data host-to-device.

cache memory to store functor data, with the latter computing these test problems
roughly 2% slower and requiring an additional overhead of 0.21 milliseconds per
kernel compared to the local memory functor approach.

To determine if the reduction value is ready, the Kokkos::Cuda instance object
described in Section 6.3.2 now offers a getStatus() method which indicates if
all operations on the stream are ongoing or complete. In future work, the reduction
value can be encapsulated inside a specialized Kokkos View object capable of re-
ceiving future data. This approach would allow Kokkos to recognize whether the
reduction value can stay resident in GPU data if necessary, thus better facilitating
nested loops of reductions.

7 Intel Xeon Phis with Uintah and Kokkos

While the focus of this paper is on achieving portability to GPUs via Kokkos, it is
also important for this approach to work on Intel Xeon Phi processors. This section
reviews prior Uintah work targeting Kokkos portability and performance with the
Intel Xeon Phi, overviews Xeon Phi high bandwidth memory (e.g. MCDRAM)
and vectorization in the context of the RMCRT problem, and describes portability
challenges with iteration patterns for both GPUs and Xeon Phis.

7.1 Review of Prior Performance Work

Initial work [37] provided a foundational strategy to incrementally add Kokkos
loops to Uintah. Additionally, a simple mock runtime patterned after Uintah demon-
strated the viability of vectorization for a stencil computation on CPUs, GPUs,
and Xeon Phis. Follow-up work [6] implemented Kokkos into Uintah for the Xeon
Phi and demonstrated substantial speedups by allowing Kokkos to use its OpenMP
backend to run all available hardware threads in a task rather than the prior Uintah
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model [2] of only one thread per task.

7.2 MCDRAM and Vectorization

Xeon Phi performance is usually significantly degraded if the problem exceeds
MCDRAM capacity of 16 GB. The multi-level RMCRT approach [1] prevents the
problem of exceeding that limit, even if the problem were scaled to thousands of
nodes. For the single-level RMCRT computations in prior work [6] and in Sec-
tion 10, the problem size also does not exceed 16 GB and thus uses MCDRAM as a
cache throughout. Further, ray vectorization for the Intel MIC architecture has been
explored [52], but has not yet been implemented into this problem and may not be
viable due to the relatively low number of rays used in this RMCRT implementa-
tion.

7.3 Portable Challenges for Iteration Patterns

Extending the prior Kokkos RMCRT implementation for GPUs required main-
taining an iteration pattern that is viable across CPUs, GPUs, and Xeon Phis. In
particular, the prior CUDA implementation in Section 3.4 and later revised for a
full production run [4] requires keeping thread counts low (between 256 and 320
threads per kernel) so as to keep GPU register usage low. As a result, the CUDA
implementation had each GPU thread assigned to a region of many cells, rather
than the alternative method of assigning only one cell per thread. When this CUDA
code strategy was adopted into the portable Kokkos RMCRT implementation, re-
sults showed that it executed efficiently on CPUs but not efficiently for Xeon Phis.
The problem is that the Kokkos iteration range number doesn’t correspond with the
number of threads created across architectures. For example, suppose a range of 0
to 65,536 is supplied for a loop. The Kokkos OpenMP backend will generally cre-
ate enough worker threads equal to the number of cores or hyperthreads, while the
Kokkos CUDA backend will create 65,536 GPU threads, and 65,536 GPU threads
inefficiently utilizes far too many registers. As a result, our strategy changed to al-
low supplying different sets of range parameters depending on the architecture, and
also modifying the portable code to ensure it operated efficiently despite a differ-
ence in ranges.

8 Uintah GPU Integration with Kokkos

With Kokkos modifications in place, integrating Kokkos into Uintah to support
GPU portability for RMCRT task code required a few additional Uintah modifi-
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cations. The changes listed in this section were made while not affecting existing
Uintah tasks written using C++ or CUDA code.

8.1 Unmanaged Kokkos Views and Streams

Uintah’s DataWarehouse (see Section 2) has mechanisms supporting automatic
allocation of simulation variables and concurrent, asynchronous data movement of
these variables in both host and GPU memory [2–4]. Integrating the
DataWarehouse with Kokkos utilized Kokkos Unmanaged Views. This allows a
Kokkos View to encapsulate already allocated simulation variable data. Previously
Uintah’s host memory DataWarehouse [37] was modified to allow an applica-
tion developer to request a Kokkos View from a simulation variable. This work
modified the GPU DataWarehouse to do the same. From here a Kokkos View
can be passed into a functor in a portable manner.

In a similar fashion, Uintah manages the creation and reuse of CUDA streams. Like
Unmanaged Views, Uintah supplies these pre-existing streams to Kokkos::Cuda
instance objects. Uintah uses the streams themselves, and not a Kokkos::Cuda
instance object’s getStatus() method, to determine when GPU task execution
completes.

8.2 Random Number Portability

Uintah maintains a host random number API using C++11 libraries for CPU tasks,
and second random number API using CUDA random number libraries for GPU
tasks. These random number libraries take distinctly different approaches and are
not portable. Kokkos supplies its own portable random number library based on
Marsaglia’s xorshift generators [53], and this was implemented into the RMCRT
task code.

8.3 Invoking Portable Tasks

Invoking Kokkos parallel loops within Uintah required substantial refactoring to the
Uintah runtime codebase. Architecture specific branching logic required more com-
pile time decisions to ensure compilation for only the supported architectures. Fur-
ther, as Uintah mixes both CPU and GPU tasks, some of these tasks must support
only a Kokkos OpenMP implementation, while others must support both Kokkos
OpenMP and CUDA options.

The first major refactor came in the Uintah task declaration phase by allowing ap-
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plication developers to state all architectures that task supports. Here architecture
data types are first introduced to the compiler, and these data types are propagated
through the rest of Uintah at compile time by using template metaprogramming.
This process also utilized C++ macros for code generation to help create function
pointers for templated methods.

The second major refactor came by creating a Uintah parallel loop invocation layer
which in turn invokes Kokkos parallel statements. This Uintah invocation layer al-
lows the application developer to supply a range of cells within a patch, and Uintah
in turn maps these cells to threads. By using template metaprogramming and tem-
plate partial specialization, a different set of Kokkos execution parameters can be
supplied for each architecture. For example, we observed Kokkos portable tasks
executed through OpenMP for Intel Xeon Phi KNL architectures required more
threads for efficient execution compared to their CUDA counterparts. In another
example, RMCRT’s CUDA implementation is more efficient when using CUDA’s
__launch_bounds__ to manually restrict the total registers a kernel can use to
achieve better kernel occupancy in a GPU’s streaming multiprocessors. By creat-
ing this additional parallel loop layer, Uintah is able to avoid requiring the applica-
tion developer supply any architecture specific parameters, though these parameters
may be supplied if desired.

9 Portability Results

Uintah features three implementations of single-level RMCRT: 1.) RMCRT:CPU
which heavily utilizes STL libraries and serially executes using one thread per task;
2.) RMCRT:GPU which is written using CUDA code and executes in parallel us-
ing hundreds of CUDA threads; and 3.) RMCRT:Kokkos which uses portable code
throughout. The initial implementation of RMCRT:Kokkos was introduced previ-
ously [6] to overcome an Intel Xeon Phi scalability barrier attributed to the exe-
cution of serial tasks when using RMCRT:CPU on the Xeon Phi. As part of this
work, single-level RMCRT:Kokkos has been further refined to enable portability
for the GPU. This was accomplished by removing all remaining host system calls,
and implementing Kokkos’s portable random number library. This implementation
can now use either the Kokkos OpenMP backend or the Kokkos CUDA backend.
This refinement marks the consolidation of single-level RMCRT approaches into a
single codebase implementation.

9.1 Single-Node Experiments

This section shows single-node results using CPUs, GPUs, and Intel Xeon Phis for
the Burns and Christen [35] benchmark problem using all three RMCRT code im-
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plementations of the single-level approach (RMCRT:CPU, RMCRT:GPU,
RMCRT:Kokkos). Table 1 presents results comparing mean times per timestep for
two problem sizes (643 cells and 1283 cells). Tasks are each assigned to compute a
different region of 163 cells, which represents Uintah’s most common application
driven over-decomposition. The absorption coefficient was initialized according to
the benchmark [35] with a uniform temperature field and 100 rays per cell used to
compute the radiative-flux divergence for each cell. CPU-based results were gath-
ered on an Intel Xeon E5-2660 CPU @ 2.2 GHz with 2 sockets, 8 physical cores
per socket, and 2 hyperthreads per core. For RMCRT:CPU, Uintah’s scheduler uti-
lized 32 threads. GPU-based results were gathered on an Nvidia GPU GeForce
GTX TITAN X with 12GB of RAM with CUDA version 7.5. Xeon Phi KNL re-
sults were gathered on an Intel Xeon Phi 7230 Knights Landing processor @ 1.30
GHz with 64 physical cores and 4 hyperthreads per core. Xeon Phi KNL sim-
ulations were launched using 1 MPI process and 256 OpenMP threads with the
OMP_PLACES=threads and OMP_PROC_BIND=spread affinity settings.

Comparison in Mean Times per Timestep (s)

Problem Size

Processor/Accelerator Implementation 643 1283

CPU RMCRT:CPU 14.34 302.02

RMCRT:Kokkos 7.41 182.81

GPU RMCRT:GPU 5.94 76.31

RMCRT:Kokkos after Kokkos changes 3.71 64.72

RMCRT:Kokkos without Kokkos changes 16.82 274.57

Xeon Phi KNL RMCRT:Kokkos 4.84 106.89
Table 1
Single-node experiments demonstrating one codebase executed on the CPU, GPU, and Intel
Xeon Phi Knights Landing (KNL) processors. The pre-existing C++ and CUDA implemen-
tations are also given for comparison purposes.

The CPU speedups by using Kokkos are attributed to: 1.) Kokkos avoids code in-
direction when requesting simulation data through an (i,j,k) interface; 2.) The
workload per task is not uniform, and RMCRT:CPU occasionally has more idle
CPU cores as it assigns one thread per task, resulting in some CPU threads complet-
ing their task computation while other threads have not. RMCRT:Kokkos assigns
every thread to compute a task, avoiding the problem of idle CPU threads.

The speedup in GPU execution before and after the changes to Kokkos highlights
the work done in Section 6 to support executing finer-grained tasks. Each task was
assigned a region of 16x16x16 = 4096 cells, but these 4096 cells cannot be well-
distributed among all streaming multiprocessors on the GPU. Before this work,
Kokkos would synchronize between each parallel loop, and these finer-grained
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tasks left some GPU cores idle. Now Kokkos can asynchronously execute loops
to fill the entire GPU, thus dramatically improving the total wall time computation.

An additional test compared Kokkos GPU RMCRT execution of many finer-grained
asynchronous parallel loops against synchronous coarse-grained loops. This test
assigned an iteration range across the entire monolithic block of 643 and 1283

cells, respectively, and tested these problems on Kokkos prior to any changes. Here
Kokkos had enough work to distribute throughout the GPU, and the total timestep
execution times of synchronously executing on these monolithic blocks were simi-
lar to asynchronously executing on many smaller 163 cell blocks.

9.2 Scalability Studies with Kokkos Codebase

Having previously demonstrated full machine scalability to 16,384 GPUs in Sec-
tion 5, this section demonstrates that the portable codebase implementation can
execute on Nvidia GPUs on the DOE Titan XK7, and on Intel Xeon Phis on the
ALCF Theta XC40 2 . On both machines the Burns and Christen [35] benchmark
was used, with 100 rays per cell to compute the divergence of the heat flux, and
each task assigned a different 163 cell region to simulate the size of tasks used in
production runs.

Figure 10 shows Xeon Phi KNL-based performance and strong scalability of the
single-level RMCRT:Kokkos algorithm. These results show that the modifications
to the portable Kokkos code to support GPUs did not change the strong scaling on
the Xeon Phi. Future performance work is required here as over-decomposing this
problem into tasks operating on 163 cells yields times that are not on par with a
single large patch per node [6].

Figure 11 shows Nvidia GPU-based performance and strong scalability of the single-
level RMCRT:Kokkos algorithm. These results demonstrate that strong scalability
remains when running the portable Kokkos code.

The wall time performance has markedly improved between the original baseline
GPU implementation and the portable Kokkos implementation as the portable code
requires fewer GPU registers, enabling two kernels to fit per GPU streaming multi-
processor (SM), whereas the Uintah GPU baseline required one kernel per SM. Fur-
ther, the Nvidia K20X GPU used in Titan nodes have 14 SMs, and so the portable
Kokkos code implementation allows for 28 concurrently executing kernels. How-

2 Theta is a Cray XC40 system located at Argonne National Laboratory, where each node
hosts a 64-core Intel Xeon Phi 7230 Knights Landing process running at 1.3 GHz with 16
GB high-bandwidth MCDRAM and 192 GB DDR4 memory. Theta uses an Aries Dragon-
fly network with the entire machine offering 231,936 cores, 56 TB of MCDRAM, and 679
TB of DDR4 memory.
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ever, it should be noted that the problem is memory bounded (more specifically
latency bounded), and benchmarking has indicated this factor becomes dominant
after 14 concurrently executing kernels but before 28. The GPU used in Table 1
has 24 SMs, and here the memory bounded feature becomes dominant both in the
Uintah GPU baseline and the Kokkos implementation.

Another set of tests measured the Uintah RMCRT Kokkos implementation on Ti-
tan’s Nvidia K20X GPUs using both the original and modified Kokkos codebase as
outlined in Section 6. The same RMCRT test parameters as used for Figure 11 were
also used here. On 1, 2, and 4 Titan compute nodes, we observed the new Kokkos
enhancements yielded between a 3.13x to 4x speedup compared to the original
Kokkos implementation.

This Uintah and Kokkos execution model is expected to scale well to the upcoming
generation of GPUs with one exception, the limited resource of GPU constant cache
memory to supply functor parameters. The number of SMs per GPU increases from
14 in each Titan GPU to 84 in each Summit GPU. Uintah obtains fast task execution
by limiting finer-grained Kokkos loops to one GPU SM. However, the GPU’s 64KB
of constant cache memory is not enough to support 84 concurrently executing ker-
nels, one for each SM. This problem will likely be solved either through 1) Uintah
using coarser grained tasks with patches large enough to efficiently distribute work
among multiple streaming multiprocessors, or 2) a mechanism to avoid passing in
large amounts of parameter data through constant cache memory.

10 Related Work

Regarding scalability in the context of a radiation transport problem, other mod-
els can be found in computational astrophysics and cosmology, involving problems
such as neutron star merger, supernova, and high energy density plasma. This work
is in the context of codes like ARWIN, the AZEuS adaptive mesh refinement, mag-
netohydrodynamics fluid code, the more general AMR-based FLASH code [54],
based on oct-tree meshes and the physics AMR code Enzo, [55]. At the national
labs, radiation codes such as RAMSES and PARTISN [56] exist, but are not gen-
erally available. For target problems like neutron transport, CRASH [57] supplies
a block adaptive mesh code for multi-material radiation hydrodynamics. There are
also radiation transport problems that use CFD codes and AMR techniques [58,59].
Much of the available literature on GPU-based Monte Carlo ray tracing approaches
to radiation can be found in the Oncology community where GPUs are used for
radiation dose calculation [60]. There are overall very few cases of GPU usage at
the scale reported here. Gaburov, et al. [61] have published results on the evolution
of the Milky Way galaxy, a calculation done using 18,600 GPUs on DOE Titan.
Gray, et al. [62] were one of the first to take advantage of at least 8,192 GPUs in
parallel with their Ludwig soft matter physics application.
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Regarding portability in the context of an AMT runtime, the ACCEL framework [63]
addition to the Charm++ [64] runtime created a model that didn’t use functors but
did allow supplying a single region of code capable of being compiled for dif-
ferent architectures, including GPUs. ACCEL differs from the Kokkos approach
in that ACCEL focuses more on load balancing strategies and avoids providing
parallel_for or parallel_reduce constructs. The Legion [65] project is
developing the Regent language [66] with a goal to become architecture indepen-
dent, but at the moment it relies on the LLVM code translator, and recent work [67]
explains that the "LLVM code translator works well for host CPU code, but is not
sufficient for tasks that will be run on CUDA-capable processors". More generally,
runtimes like Legion, ParSEC [68], and StarPU [69] aid in automatic data move-
ment between CPU and GPU memory space, but leave portability decisions up to
the task’s code supplied by the application developer and do not integrate a porta-
bility library into the runtime.

Regarding portability in the context of software libraries or compiler directives,
refer to Section 6.2.

11 Conclusions and Future Work

This work has: (i) Demonstrated a scalable and portable solution for radiative
heat transfer problems through a combination of reverse Monte Carlo ray tracing
(RMCRT) techniques, adaptive mesh refinement, and adoption and modification of
the Kokkos portability library. (ii) Shown the necessity of choosing optimal data
structures and algorithms to efficiently expose concurrency. Furthermore, runtime
systems like Uintah allow management of limited memory through the use of cus-
tom allocators that allow us to choose better allocation policies for different objects
and to better utilize available resources, improving nodal throughput. (iii) Demon-
strated scalability to 16,384 nodes on a multi-level GPU implementation by dra-
matically reducing communication costs associated with global data dependencies
and reducing the memory footprint required to fit the problem in GPU memory.
(iv) Modified Kokkos to allow for GPU asynchronous and concurrent execution of
many finer-gained parallel loops. (v) Demonstrated efficiently executing one code-
base on CPUs, GPUs, and Intel Xeon Phi Knights Landing processors. The results
presented here offer a promising approach to code portability for future Uintah
projects, as well as Kokkos users needing finer-grained asynchronous GPU parallel
loop execution.

Implementation of RMCRT GPU portability in Uintah required far more work than
simply modifying loops to compile for different architectures. In particular, the
major changes made to support GPU portability are: (i) Enabling application de-
velopers to define which architectures a task supports, and then letting that archi-
tecture information propagate through Uintah using template metaprogramming.
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(ii) Having data stores and a task scheduler capable of automatically ensuring sim-
ulation variable data and its associated halos are prepared and present in the re-
quired memory space prior to execution. (iii) Modifying Kokkos itself to enable
asynchronous execution of Kokkos loops on CUDA streams, as well as modifying
Kokkos to asynchronously support multiple functors copying into GPU constant
cache memory. (iv) Allowing Uintah to compile for a mixture of Kokkos OpenMP
tasks and Kokkos CUDA tasks in the same build. (v) Implementing a portable ran-
dom number library into the RMCRT algorithm. (iv) Enabling application devel-
opers to launch parallel loops in a portable manner.

As part of future work, the Uintah data stores need to be reworked to support in-
creased portability. At the moment Uintah has two data stores to manage simulation
variables, one for host memory and another for GPU memory. These two data stores
use fundamentally different approaches and likewise have different API. The data
stores and API must be merged to allow an application developer to retrieve sim-
ulation variables in an architecture agnostic manner. Additional Uintah scheduler
work is actively ongoing for the Intel Xeon Phi to better distribute tasks among
the Xeon Phi cores. The end goal being to execute Uintah tasks on a subset of
Xeon Phi cores, instead of executing tasks serially with one core per task, or bulk
synchronously with all cores per task. Further, while Uintah has demonstrated mix-
ing heterogeneity of CPU and GPU tasks in a production problem at scale [4],
more work is needed to efficiently execute Kokkos parallel loops on both CPUs
and GPUs in the same build.
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