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ABSTRACT
The Uintah computational framework is used for the parallel solu-
tion of partial differential equations on adaptive mesh refinement
grids using modern supercomputers. Uintah is structured with an
application layer and a separate runtime system. The Uintah run-
time system is based on a distributed directed acyclic graph (DAG)
of computational tasks, with a task scheduler that efficiently sched-
ules and execute these tasks on both CPU cores and on-node ac-
celerators. The runtime system identifies task dependencies, cre-
ates a taskgraph prior to an iteration based on these dependencies,
prepares data for tasks, automatically generates MPI message tags,
and manages data after task computation. Managing tasks for ac-
celerators pose significant challenges over their CPU task counter-
parts due to supporting more memory regions, API call latency,
memory bandwidth concerns, and the added complexity of devel-
opment. These challenges are greatest when tasks compute within
a few milliseconds, especially those that have stencil based com-
putations that involve halo data, have little reuse of data, and/or
require many computational variables. Current and emerging het-
erogeneous architectures necessitate addressing these challenges
within Uintah. This work is not designed to improve performance
of existing tasks, but rather reduce runtime overhead to allow de-
velopers writing short-lived computational tasks to utilize Uintah
in a heterogeneous environment. This work analyzes an initial ap-
proach for managing accelerator tasks alongside existing CPU tasks
within Uintah. The principal contribution of this work is to identify
and address inefficiencies that arise when mapping tasks onto the
GPU, to implement new schemes to reduce runtime system over-
head, to introduce new features that allow for more tasks to lever-
age on-node accelerators, and to show overhead reduction results
from these improvements.
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1. INTRODUCTION
With energy efficiency being a key component in exascale initia-

tives, namely the 20 MW aspiration for exascale power consump-
tion set by entities like the DOE, supercomputers are now heavily
leveraging accelerator and coprocessor-based architectures to meet
these power requirements. These heterogeneous systems pose sig-
nificant challenges in terms of developing software for computa-
tional frameworks like the open-source Uintah framework [13], that
seek to utilize available accelerators such as graphics processing
units (GPUs).

The design of Uintah maintains a clear separation from the ap-
plications layer and its runtime system, allowing applications de-
velopers to only be concerned with solving the partial differential
equations on a local set of block-structured adaptive mesh patches,
without worrying about the runtime details such as automatic MPI
message generation, management of halo information (ghost cells)
and the life cycle of data variables, or indeed any details with the
multiple levels of parallelization inherent to these heterogeneous
systems. Further, the public API exposed to an application de-
veloper should remain simple, shielding them from the complex
details involved with the parallel programming required on these
systems.

Prior work shown in [5], describes an initial design for managing
GPU tasks alongside CPU tasks within Uintah. This implemen-
tation allowed specific tasks to leverage on-node GPUs, and em-
ployed existing runtime system functionality. For example, logic to
automatically handle ghost cells exchange within Uintah has been
researched and developed for over a decade. This logic allowed
the runtime system to distribute and collect ghost cells of simu-
lation variables either within host memory or off-node via MPI.
The initial Uintah GPU approach did not implement any new ghost
cell logic within the GPU, but rather moved simulation variables
from GPU memory to host memory to utilize the existing host-side
logic. This approach provides speedups for some tasks, such as
those where copying data is a fraction of the computation time. But
for tasks that compute within a few milliseconds, the overhead to



prepare the tasks is far larger than their time to compute. The focus
of this work is to significantly improve time to solution for simu-
lations containing these fast tasks, not by reducing task computa-
tion time, but by reducing runtime overhead. The Wasatch project
in particular has been a top motivation for these runtime improve-
ments (see section 7.2).

To extend the GPU approach in the initial design [5] requires
that data remain on the GPU for as long as possible to avoid data
movement across any data bus or network. This, in turn, requires
that some ghost cell management occur on the GPU, whether the
ghost cells arrive from 1.) other nodes, 2.) host memory, 3.) within
the GPU, or 4.) from another GPU on the same node. Similarly, if a
task requires high numbers of upcoming GPU memory allocations,
this should also be processed in as few API calls as possible. These
challenges must be balanced alongside CPU tasks, so that a mixture
of GPU and CPU tasks can be used for a computation, allowing
each type of task to process where it is most efficient.

This paper describes enhancements and optimizations to the Uin-
tah runtime system that go well beyond the initial support for GPU
tasks in the original design [5]. We provide results demonstrat-
ing significant reduction in GPU overhead, allowing tasks where
speedups over the CPU version were previously unattainable to
now outperform their CPU counterparts. In particular, five opti-
mizations are covered, 1.) persistence of GPU data, 2.) managing
multiple ghost cell scenarios, 3.) additional, GPU-specific work
queues needed within the task scheduler, 4.) eliminating contention
and reducing the size of Uintah’s GPU data store 5.) allocating
all data variables in one contiguous memory buffer instead of sev-
eral. These optimizations can use, but are not dependent on, CUDA
paged memory or specific tools such as CUDA Unified Memory or
CUDA aware MPI. These optimizations can be adapted to other
multi-tiered memory structures, such as those on Knights Corner
and Knights Landing Intel Xeon Phis, by providing a framework to
allow data to be managed in both high bandwidth memory closer
to processors and also in high capacity memory off-chip.

We begin by giving an overview of the Uintah framework in Sec-
tion 2. Section 3 details work done to enable persistence of simu-
lation data on GPUs and how this work has enabled management
of multiple, difficult ghost cell scenarios. In Section 4, changes to
the Uintah task scheduler are covered. Section 5 describes changes
for how GPU tasks obtain variable data from a data store. Our ap-
proach to minimizing GPU API call latency is covered in Section 6.
Nodal results from these improvements are shown in Section 7 and
the paper concludes in Section 8 with discussion on future work.

2. UINTAH OVERVIEW
The open source Uintah framework [2], [13] is used to solve

problems involving fluids, solids, combined fluid-structure inter-
action problems, and turbulent combustion on multi-core and ac-
celerator based supercomputer architectures. Problems are either
initially laid out on a structured grid as shown in [7] with the multi-
material ICE code for both low and high-speed compressible flows,
or by using particles on that grid as shown in [1] with the multi-
material, particle-based code MPM for structural mechanics. Uin-
tah also provides the combined fluid-structure interaction (FSI) al-
gorithm MPM-ICE [4], the ARCHES turbulent reacting CFD com-
ponent [6] designed for simulating turbulent reacting flows with
participating media radiation, and Wasatch, a general multiphysics
solver for turbulent reacting flows.

Simulation data is managed by a distributed data store known
as a Data Warehouse, an object containing metadata for simula-
tion variables. Actual variable data itself is not stored directly in a
Data Warehouse, it is instead stored in separate allocated memory

of which the Data Warehouse manages. The metadata indicates the
patches on which specific variable data resides, halo depth or num-
ber of ghost cell layers, a pointer to the actual data, and the data
type (node-centred, face-centered, etc.). Access to simulation data
in the Data Warehouse is through a simple get and put interface.
During a given time step, there are generally two Data Warehouses
available to the simulation, 1.) the Old Data Warehouse, which
contains all data from the previous time step, and 2.) the New Data
Warehouse, which maintains variables to be initially computed or
subsequently modified. At the end of a time step, the New Data
Warehouse is moved to the Old Data Warehouse, and another New
Data Warehouse is created.

With the availability of on-node GPUs, Data Warehouses spe-
cific to GPUs are used. Each GPU is assigned its own Old and New
Data Warehouse, analogous to the host-side’s Data Warehouses. A
GPU Data Warehouse contains a reduced set of metadata, and man-
ages only the variables the GPU task will need for a task compu-
tation. Through knowledge of the task graph, the Uintah runtime
system is able to prepare and stage the GPU Data Warehouses and
copy the metadata to the GPU prior to task execution.

Uintah task schedulers are responsible for scheduling and ex-
ecuting both CPU and GPU tasks, memory management of data
variables, and invoking MPI communication. There are several
task schedulers available within Uintah. In this work, we focus
on the Unified Scheduler [9], shown in Figure 1. This scheduler
uses a fully decentralized approach without a control thread. All
CPU threads are able to obtain work as well as process their own
MPI sends and receives. All CPU threads prepare, schedule, and
execute CPU and GPU tasks with an arbitrary number of CPU
cores and on-node GPUs. All aspects of a GPU task are pro-
cessed asynchronously, so that a CPU thread can process other
tasks while work is occurring on a GPU. Through moving from an
MPI-only approach to a nodal shared memory model [8] (a com-
bination of MPI and Pthreads) where each node has one MPI pro-
cess and threads execute individual tasks, the Uintah framework
has been made to efficiently scale to hundreds of thousands of cores
solving a broad class of complex engineering problems [10].

Parallelism within Uintah is achieved in three ways. First, by
using domain decomposition to assign each MPI rank its own re-
gion of the computational domain, e.g. a set of hexahedral patches,
usually with spatial contiguity. Secondly, by using task level paral-
lelism within an MPI rank to allow each task to run independently
on a CPU (or Xeon Phi) core or available GPU, and third, by uti-
lizing thread level parallelism within a GPU. Work toward thread-
level parallelism for the Xeon Phi is currently underway, and will
be based on the idea of a task worker pool, or group of CPU threads
that cooperatively execute a single task.

Uintah maintains a clear separation between applications code
and its runtime system and hence the details of the parallelism Uin-
tah provides through its runtime system are hidden from the devel-
oper and a task itself. A developer need only supply Uintah with
a description of the task as it would run serially on a single patch,
namely what variables it will compute, what variables it needs from
the previous time step, and how many layers of ghost cell data are
needed for a variable. The task developer must supply entry func-
tions to his or her task code, and writes serial C++ code for CPU
and Xeon Phi tasks and CUDA parallel code for GPU tasks. The
present model for GPU-enabled tasks currently requires that two
versions of the task code be maintained, one for CPU code and one
for GPU code. In this work, no new requirements were imposed
upon the task developer.

Many developers can utilize existing Uintah API tools if they
choose. An example of this is shown in Section 7, where we fo-



Figure 1: Uintah heterogeneous nodal runtime system and task scheduler. [9]

cus on a simple seven-point stencil for the Poisson equation in 3D.
In this task data is retrieved from and placed into Data Warehouse
objects using simple get and put methods. Other application de-
velopers will take existing computational programs originally not
written for Uintah, and create tasks with function pointers to their
existing code. An example of this is the Wasatch component, a
finite volume computational fluid dynamics code that is designed
to solve transient, turbulent, reacting flow problems. Wasatch em-
ploys a formalism of the DAG approach to generate runtime algo-
rithms [11], and an Embedded Domain Specific Language (EDSL)
called Nebo [3], [14]. Nebo allows Wasatch developers to write
high-level, Matlab-like syntax that can be executed on multiple ar-
chitectures such as CPUs and GPUs. Wasatch is still experimental
and under development. Uintah itself needs no knowledge of how
the Wasatch tasks work, other than the data variables used for each
task.

3. PERSISTENCE OF GPU DATA
AND MANAGING GHOST CELLS

In the application layer, a developer is responsible for provid-
ing task parameters to the runtime system. The developer lists all
variables that will be used in the task computation, and indicates
whether these variables come from the Old or New Data Ware-
house. Each variable is assigned as Computes, Modifies, or Re-
quires. Computes are variables to be allocated by the runtime sys-
tem to hold data computed by the task. Modifies are variables which
were previously computed and will be modified by the task. Re-
quires are read-only variables computed in the previous time step.
The number of needed ghost cells layers for any Requires is also
indicated. The programmer specifies whether the task is a GPU
task or a CPU task. From there, the application layer programmer

should not have to worry about the details of memory management.
That programmer can write task code assuming the runtime system
will have prepared all variables’ memory, including gathering ghost
cell data.

The original GPU support within Uintah did not make data per-
sistent on the GPU between time steps [5]. Any GPU task with
a variable listed as Requires would be copied from host-to-device
prior to task execution. After task execution task variables listed
as Computes would be copied device-to-host. This approach was
implemented for its simplicity in reusing the runtime system’s host-
side memory management logic. As described previously in Sec-
tion 1, for some tasks, this overhead is acceptable. For other tasks,
such as those profiled in Section 7, this overhead is inefficient.

In order to avoid unnecessary copies across the PCIe bus, the
runtime system now allows data to exist only in host-side memory,
or only GPU memory, or both. To start supporting this change, two
boolean flags were added to the variable’s metadata in the GPU
Data Warehouse, ValidOnCpu and ValidOnGpu. The purpose is
straightforward, if a boolean flag is set to true, it means the data in
that memory location is valid and ready to be accessed. Suppose
an upcoming GPU task is analyzed by the runtime system, and it
discovers a Requires variable only exists in host memory. The run-
time system then performs an asynchronous host-to-device copy.
When the scheduler verifies the copy has completed, that variable’s
ValidOnGpu flag is changed to true. As for any Computes variables,
they are allocated device-side prior to task execution. After task ex-
ecution, then Computes variables have their ValidOnGpu changed
to true. From here, Computes variables stay on the GPU. They are
only copied back into host memory if later CPU task lists that it
needs those variables.

The aforementioned design is relatively simple. It allows for
pointwise computations to make variable data persistent on GPUs.



Figure 2: Uintah’s initial runtime system to prepare CPU and
GPU task variables with ghost cells from adjacent variables.

Figure 3: Uintah’s current runtime system to prepare CPU and
GPU task variables with ghost cells from adjacent variables.

But it does not naturally work for stencil computations as it does
not provide any ghost cell management logic in GPUs. With the
previous runtime system, there were only three ghost cell copy sce-
narios (see Figure 2). All ghost cell management was handled in
host memory then copied back into GPUs. While functional and
simple, it heavily utilized the PCIe bus. For example, suppose each
MPI rank was assigned a 4 × 4 × 4 set of patches, and each patch
contained 64×64×64 cells. Also suppose this simulation has only
one variable for stencil computations, the data variable existed in
GPU memory, the variable held double values, and 1 layer of ghost
cells were required for all MPI rank neighbors. In this model, an
MPI rank can require 56 of the 64 patches to be copied to host,
and ghost cells sent out. Then the MPI rank would receive ghost
cell data for 56 patches, process them in host memory, and then
copy them into the GPU. Assuming a bus bandwidth of 8 GB/s,
the data transfer time alone for this one variable into host memory
would be roughly 14 ms and another 14 ms to copy it back into the
device. For many Uintah GPU tasks which compute within a few
milliseconds, this is impractical.

With data staying persistent in GPUs, more ghost cell scenar-
ios must be managed. Uintah must prepare variables for both CPU
tasks and GPU tasks by obtaining ghost cell data from variables in
adjacent patches (adjacent variables) in whatever memory location
they exist. These adjacent variables can exist in four memory loca-
tions, 1) host memory, 2) GPU memory, 3) another on-node GPU’s
memory, or 4) off-node. With four possible source locations and

Figure 4: Ghost cells moving from one memory location to an-
other are first copied into a contiguous staging array prior to
being copied to that memory location. Later a task on the des-
tination will process the staging array back into the variable.

four possible destination locations, there are 16 possible ghost cell
copy scenarios. Because a task does not manage ghost cells for
patches or nodes it is not assigned to, this number is reduced to 12
scenarios, as shown in Figure 3. While it is possible to reduce these
12 into fewer scenarios by employing more MPI ranks per physical
node, Uintah’s runtime system obtains its performance by allowing
a physical node to function in only one MPI rank. If NVLink [12]
is considered, the number of ghost cell copy scenarios will then
increase by needing to determine which data bus to use.

Instead of writing specific code for each of the 12 scenarios, the
process can be simplified by batching together all source/outgoing
ghost cell copies into a collection of staging variables, and then
later batching all destination/incoming ghost cell copies into an-
other collection of staging variables.

All needed ghost cell dependency logic can be gleaned from ana-
lyzing the task graph’s dependencies, and analyzing the Data Ware-
house’s knowledge in which memory locations variables exist and
are valid. If ghost cells do not need to be copied into another mem-
ory location, then the ghost cell copy can process internally within
that memory space. For example, two adjacent variables in GPU
memory can simply copy their ghost cells to each other. Other-
wise if the ghost cells need to go to another memory location, then
contiguous arrays are employed, as shown in Figure 4. By using
contiguous arrays to contain only the needed ghost cell data, far
less data moves across data buses or network connections, and tools
such as CUDA-aware MPI can be employed if needed.

In the prior runtime system example of a node containing a 4 ×
4 × 4 set of patches, a minimum of 14 ms was required simply
to transfer the data device-to-host over the PCIe bus. This new ap-
proach has been implemented in Uintah’s runtime system. Profiling
this particular problem results in combined transfer and processing
times of roughly 1 to 2 ms.

A benefit of this ghost cell approach is that this management sys-
tem has been merged with the scheduler code as described in Sec-
tion 4. So whether only ghost cells needs to be copied across the
PCIe bus, or a regular task variable without ghost cells also needs
to be copied, the scheduler treats both the same. Further, these can
all be processed in batches, rather than one at a time. If a GPU
task requires N variables each needing ghost cells, then all N can
be processed together. To illustrate this with an example, suppose
a 27-point stencil task requires that a particular GPU data variable
send its ghost cell data to its 26 neighbors, and then receive ghost
cell data from those same 26 neighbors. Of these 26 neighbors,
suppose 11 are found within that GPU, 6 are found within another
on-node GPU, and 9 are off-node. This data variable will then be
assigned a collection of 15 staging regions (6 for the on-node GPU
and 9 for off-node), each of which are contiguous arrays. A kernel
will be called to perform 15 ghost cell copies within that GPU. Af-



ter the kernel completes, the host runtime system identifies those 6
dependencies which belong to another GPU, and so 6 GPU peer-
to-peer copies are invoked. The host then identifies those 9 depen-
dencies that belong off-node, and MPI is used to send this data as
necessary. Once all data is sent out, it is the responsibility of future
tasks to gather these ghost cells back into data variables.

When a future task needs to use this same variable with ghost
cells, the runtime will recognize that it will need to gather together
the ghost cells from 26 neighbor patches. It will look in the node’s
own Data Warehouses and find that ghost cells for all 26 exist in
various memory locations on that node. It will then process these
in bulk and prepare the GPU data variable for GPU task execution.

There are many benefits to this model. While the prior example
demonstrated processing only one variable in stages, the runtime
system can process many variables belonging to many patches in
bulk, so that all outgoing ghost cell copies for a task can be pro-
cessed in one kernel. GPU tasks which need to use these ghost cells
will also be able to gather together all ghost cells in bulk. And this
model can include the ability to reduce the amount of memory allo-
cations and copies by packing individual staging arrays into larger
contiguous arrays.

A future enhancement awaiting implementation on the GPU is
the ability to store all variables in a contiguous space if those vari-
ables are already adjacent to each other in the computational grid.
This has already been implemented in host memory. This means
that if two adjacent variables are in host memory and require ghost
cells from each other, no ghost cell transfer or processing is needed
as both variables already exist in the same array. This reduces the
amount of internal ghost cell copies needed.

4. TASK SCHEDULER ENHANCEMENTS
There are a number of schedulers in Uintah. The scheduler cov-

ered in this section is the Unified Scheduler [9], shown in Figure
1. This scheduler functions by having all CPU threads indepen-
dently checking shared priority queues for available tasks to pro-
cess. Tasks can proceed through several queues during its execution
life cycle. A detailed description of this flow can be found in [5].
To facilitate the changes listed in the previous section, additional
scheduler queues are added.

In the prior runtime system, a GPU task proceeded through three
queues in its life cycle in the order listed. They were 1.) process all
MPI receives, 2.) manage ghost cells gathers, allocate space on the
GPU for all data variables, and copy all Requires to the GPU, and
3.) execute the task and copy all Computes back to host memory. In
the current runtime system, a GPU task must proceed through five
queues in the order listed. They are 1.) process all MPI receives,
2.) manage some ghost cell gathers in host memory, prepare meta
data for some ghost cell gathers in GPU memory, allocate space for
some GPU data variables, and copy some Requires to the GPU (see
Sect. 3), 3.) set ValidOnGpu to true for all Requires and manage
ghost cell gathers within a GPU, 4.) execute the task, and 5.) set
ValidOnGpu to true for all Computes. Previously a CPU task pro-
ceeded through only two queues, which were 1.) process all MPI
receives and 2.) execute the task. Now a CPU task must proceed
through three queues, 1.) process all MPI receives, 2.) copy some
variable data from GPU to host memory if needed, and 3.) set Vali-
dOnCpu to true for all Requires and execute the task.

The Unified Scheduler contains a function which accumulates a
collection of all variables and ghost cells to be created and pro-
cessed on the GPU prior to performing these actions. This has two
benefits. First, it allows for the creation of smaller GPU Data Ware-
houses specifically for a GPU task (Section 5), and it allows for
employing contiguous memory allocations (Section 6).

Figure 5: A profiled half millisecond range of an eight patch
simulation showing Data Warehouse copies. Before, the initial
runtime system had many large Data Warehouse copies (only
one shown in this figure). After, the new runtime system’s small
Task Data Warehouses copy into GPU memory quicker, allow-
ing GPU tasks to begin executing sooner (eight Data Warehouse
copies are shown in this figure).

5. GPU DATA WAREHOUSE
MODIFICATIONS

The original design of the GPU Data Warehouse contained three
problems which limited its potential and necessitated changes for
this current work. The problems were first, a GPU Data Ware-
house object only contained metadata for variables. With ghost
cell management happening within the GPU, it needed to contain
information on how to perform internal ghost cell copies. Second,
a GPU Data Warehouse memory footprint was becoming larger,
on the order of a few megabytes, due to needing larger fixed-sized
array buffers. For GPU tasks that computed within a few millisec-
onds, the time to copy the GPU Data Warehouse into the GPU was
unacceptably large. Third, every GPU task shared the GPU Data
Warehouse in GPU memory, and this resulted in contention and
coordination issues. For example, if one GPU task kernel was writ-
ing to the New GPU Data Warehouse object in GPU memory, and
another GPU task wished to perform a host-to-device update of
the New GPU Data Warehouse in GPU memory, the second task
must wait until the first kernel completed. Another issue is if one
task was copying a GPU Data Warehouse into GPU memory while
another was modifying it in host memory. Yet another issue is if
multiple tasks on multiple threads simultaneously recognized that
the Old and New GPU Data Warehouse were not yet copied into
GPU memory, all threads would simultaneously initiate a host to
device copy, resulting in many excessive and unnecessary copies.
This latter problem was frequently observed.

A solution to these problems was accomplished by creating small
Task Data Warehouses independent to each GPU task, gathering all
knowledge of a task’s GPU memory actions prior to creating and
copying data, and by redesigning the GPU Data Warehouse into a
compact serialized object.

Task Data Warehouses were created in order to avoid all issues
associated with all tasks sharing the same GPU Data Warehouse
in GPU memory. The driving concept of Task Data Warehouses is
that each GPU task receives its own self contained GPU Data Ware-
house objects, wholly independent and not used by other tasks, with
only the information it needs to manage ghost cell copies and vari-
ables for task computation. These small Task Data Warehouses in
GPU memory serve as read-only snapshots of the full GPU Data
Warehouse. A GPU task kernel will then have no knowledge or
capability to access variables or perform ghost cell copies unre-
lated to its own task. This eliminates coordination and contention



issues. This also results in having the full GPU Data Warehouse
only existing in host memory, as it is never copied in full into GPU
memory as one large object. A further consequence of this model
is that the Data Warehouse for host memory variables and the GPU
Data Warehouse will now only exist in host memory, which makes
it easier for future work to merge both data stores into one object.

In order to create these Task Data Warehouses, the runtime sys-
tem must know and gather together all upcoming variables and
ghost cell copies needed for that task to process. Three host-side
collections were created to gather this information. The first col-
lection manages all variable data that is required to be added into
the host-side GPU Data Warehouse. The second collection man-
ages all variable information needed in the Task Data Warehouse.
The third collection manages all upcoming ghost cell copies that
must occur within the GPU. These collections are vital to sizing
the arrays within the Task Data Warehouse.

The structure of a GPU Data Warehouse object required stream-
lining to more efficiently copy into GPU memory. Originally the
approach taken was to avoid deep copies by using fixed sized arrays
within the object. But as we discovered some GPU tasks required
far more variables than others, we likewise noticed the GPU Data
Warehouse’s memory footprint was becoming too large. Adding
an additional array containing ghost cell copy logic within a GPU
made this memory footprint even larger. While employing object
deep copies was tempting at this point, a more efficient approach
was found. Our solution merged both the array for data variables
and the array for ghost cell copy logic into one array, and defined in
code that it is a very large fixed size array. Doing so preserved the
serialized nature of the object in memory. Then use the three col-
lections described in the prior paragraph to count exactly how many
variables, staging array variables, and ghost cell copy entries will
be needed for this array. Then allocate an object on the host that
contains the minimum amount of memory space needed for these
items. Doing so means only a fraction of the large fixed sized array
is allocated. Then use the three collections to load the Task Data
Warehouse in host memory. This results in a compact Task Data
Warehouse object whose memory structure consists of a handful of
basic variables followed by one array. Because it is a serialized ob-
ject in memory, only one copy into GPU memory is required. The
end result of these all structural improvements is that each task no
longer requires copies of GPU Data Warehouse objects that were
megabytes in size. Now they are only a few kilobytes in size. Fig-
ure 5 shows the improvements of this approach, demonstrating how
more Data Warehouse objects can be copied into GPU memory in
less time.

6. EFFICIENT MEMORY MANAGEMENT
USING CONTIGUOUS BUFFERS

Moving memory from host-to-GPU is an expensive operation
because the PCIe bus to which the GPU is connected has low band-
width as compared to the GPU internal memory bus. Also, there
are significant latencies associated with the CUDA APIs for both
allocating and copying memory. The initial GPU runtime allocated
memory one variable at a time, which results in large accumulated
API latencies. These API latencies become an issue when the ac-
companying GPU task executes in just a few milliseconds, as seen
in Figure 6.

To address this issue, a straightforward method for utilizing a
contiguous buffer was implemented. Initially we tested a config-
uration of allocating two contiguous buffers, one on the host and
one on the GPU. The host buffer is sized to hold all Requires and
all needed ghost cell data for that task. The GPU buffer is sized

Figure 6: A profiled time step for a Wasatch task using the ini-
tial runtime system. Most of the Uintah overhead is dominated
by freeing and allocating many data variables.

Figure 7: A profiled time step for a Wasatch task using the new
runtime system. The runtime system determines the combined
size of all upcoming allocations, and performs one large alloca-
tion to reduce API latency overhead.

to hold Computes, Requires, and needed ghost cell data. The host
buffer is populated using host-to-host copies. The host buffer is
then copied into the first part of the GPU buffer, with the rest of
the GPU buffer set aside for Computes. The goal was to test the
assumption that the combination of multiple smaller host-to-host
copies and one single large host-to-device copy will be able to off-
set the cost of allocating and copying the variables separately. This
assumption was found to be false for all scenarios we tested.

We then tested an approach where a contiguous buffer was allo-
cated only in GPU memory instead of both GPU and host memory.
Then multiple host-to-device copies are invoked for each Requires
variable and ghost cell staging variable into the allocated buffer on
the GPU. This approach yielded improvements as shown in Figure
7.

Table 1 gives a one node simulation for processing times us-
ing the current GPU engine without contiguous allocations and
with contiguous allocations. The initial GPU runtime system is
not profiled here. The Wasatch tests profiled solve 10 and 30 trans-

Table 1: Wasatch GPU tasks profiled with and without contigu-
ous variable buffers.

Wasatch
Test

Mesh
Size

Without
Contiguous

(ms)

With
Contiguous

(ms)

Speedup Due
to Reduced
Overhead

Test A -
Solving 10
transport
equations

163 13.36 10.56 1.27x
323 18.25 13.25 1.38x
643 57.99 33.88 1.71x

1283 124.51 100.09 1.24x
Test B -

Solving 30
transport
equations

163 41.70 26.61 1.57x
323 51.54 34.89 1.48x
643 173.46 86.62 2.00x

1283 374.922 276.22 1.36x



Table 2: Poisson Equation Solver using 50 iterations on a sim-
ulation grid using 12 patches. 12 CPU cores were used for 12
CPU tasks. Speedups provided to show reduction in runtime
overhead in GPU tasks and highlight when GPU tasks become
feasible over CPU tasks. Profiled machine contained a NVidia
K20c GPU and an Intel Xeon E5-2620 with CUDA 5.5.

Mesh
Size

CPU
only
(s)

Initial
GPU

Runtime
(s)

Current
GPU

Runtime
(s)

Speedup -
Current
vs Initial

Speedup -
Current
vs CPU

643 0.08 0.31 0.11 2.82x 0.73x
1283 0.31 1.33 0.38 3.50x 0.82x
1923 0.84 2.96 0.63 4.70x 1.33x
2563 1.93 6.09 1.13 5.39x 1.71x

port equations, respectively. Computations were performed on an
NVidia GTX680 GPU and an Intel Xeon E5-2620 with CUDA 6.5.
With all these improvements, we observed speedups due to reduced
overhead ranging from 1.27 to 2.00 for a variety of test cases.

7. RESULTS

7.1 Poisson Equaition Solver
A simple seven-point stencil for the Poisson equation in 3D us-

ing a simple Jacobi iterative method highlights difficulties of 1.)
little reuse of data and 2.) a short-lived task due to it requiring only
a few lines of code. Each time step computes within a few mil-
liseconds, which means that overhead timings become substantial.
Such problems are naturally more difficult to achieve speedups.

Table 2 compares this problem on the initial and current runtime
system. Within Uintah, the combined memory feature was turned
off to provide for an apples-to-apples ghost cell comparison (see
the last paragraph in Section 3).

In all cases, the current GPU runtime performed significantly
better than the initial GPU runtime. As the grid sized increased,
more data movement was required over the PCIe bus for the initial
runtime, and total simulation time naturally increased significantly.
For the current runtime, this problem was avoided and the speedup
results can be seen by the profiled times.

The 192× 192× 192 case demonstrates a major motivation for
these GPU runtime enhancements. Here, the initial GPU runtime
was 3.5x slower than the CPU task version. Now the current GPU
runtime computes this problem 1.33x faster than the CPU task ver-
sion. This result demonstrates we can move more CPU tasks to the
GPU to obtain speedups. For smaller grid sizes for this problem,
the CPU task overhead is smaller than the GPU task overhead, and
this results in faster overall CPU times.

Detailed profiling of the 192×192×192 case indicated that the
previous GPU runtime had overhead between time steps of roughly
49 milliseconds. Under the current runtime, this overhead has been
reduced to roughly 2 to 3 milliseconds. The GPU computation por-
tion of this task used 10 milliseconds per time step, indicating a
much smaller but still significant portion of the total simulation is
spent in overhead. Profiling has indicated that one-third to one-half
of the remaining overhead is comprised of GPU API calls such as
mallocs, frees, and stream creations. Future work is planned to
utilize resource pools so this overhead can be reduced further.

7.2 Wasatch
As mentioned in Section 6, Wasatch tasks are an ideal case for

Figure 8: Speedups of Wasatch GPU tasks on the initial run-
time and current runtime vs. Wasatch CPU tasks.

the work described in this paper. The Wasatch tests we profiled
solved multiple partial differential equations (PDEs), and used as
many as 120 PDE related variables per time step. Each task com-
putes within milliseconds. Although these tests only run on one
patch, they utilize periodic boundary conditions, meaning that each
patch edge is logically connected with the patch edge on the oppo-
site side, and thus ghost cell transfers still occur. Table 3 gives time
to solutions for two different Wasatch tests which solve 10 and 30
transport PDEs, respectively.

The key aim of this work is to allow Uintah’s GPU support to
be opened to broader class of computational tasks. As Figure 8
illustrates, the original runtime system processed GPU tasks slower
than CPU tasks in all tested Wasatch cases. The current runtime
system for the same GPU tasks now obtains significant speedups in
most cases. Only when patch sizes are small does using CPU tasks
still perform fastest.

8. CONCLUSIONS AND FUTURE WORK
In this paper we describe modifications to the Uintah runtime

system which reduces overhead to allow more categories of com-
putational problems to be executed on a GPU within a heteroge-
neous architecture. In particular stencil-based computations whose
computation time steps are on the order of tens of milliseconds or
less and computations which contain many input and output vari-
ables now compute faster than their CPU task counterparts. We
describe an effective system to keep variable data resident in GPU
memory as well as in host memory and off-node, and how ghost
cell transfers can be processed from any source memory location
to any destination memory location. We have also described addi-
tional work queues to schedule a task during its life cycle necessary
for Uintah to process a heterogeneous mix of tasks. We show that
allocating one large GPU memory space for all variables in a task
provides substantial speedup benefits over allocating memory for
each individual GPU variable. Results show these combined mod-
ifications reduced overhead to allow GPU tasks to run up to 5.71x
faster versus the initial GPU runtime system, and up to 3.89x faster
than their CPU task counterparts.

With these successes, we plan to improve and optimize the run-
time system further. Uintah now opens itself up to a much broader
range of computational problems on the GPU, but other classes of
problems exist which are not yet efficiently managed. For exam-
ple, if a simulation problem requires each node to store data in
host memory greater than the capacity of GPU memory, then some
data must vacate GPU memory during a time step. Future strate-
gies are planned to manage this data movement efficiently. Also,
the new Uintah runtime system has implemented the capability to
work with multiple GPUs per node, however, more work remains
to restructure the logic to process ghost cells for these tasks effi-
ciently. Another optimization which can improve performance is



Table 3: Wasatch computations profiled with the GPU task on the initial GPU framework, the current GPU framwork, and the CPU
task. Wasatch tasks internally manages their own CPU thread counts to maximize efficiency. Speedups provided to show reduction
in runtime overhead in GPU tasks and highlight when GPU tasks become feasible over CPU tasks. Computations were performed
on an NVidia GTX680 GPU and an Intel Xeon E5-2620 with CUDA 6.5.

Wasatch
Test Mesh Size CPU Only (s) Initial GPU

Framework (s)
Current GPU

Framework (s)
Speedup -

Current vs Initial
Speedup -

Current vs CPU

Test A -
Solving 10
transport
equations

163 0.08 0.10 0.11 0.91x 0.72x
323 0.19 0.23 0.12 1.92x 1.58x
643 0.79 0.94 0.26 3.62x 3.03x

1283 4.75 5.21 1.22 4.27x 3.89x
Test B -

Solving 30
transport
equations

163 0.21 0.45 0.28 1.61x 0.75x
323 0.56 0.97 0.37 2.62x 1.51x
643 2.19 3.72 0.76 4.89x 2.88x

1283 13.56 20.79 3.64 5.71x 3.73x

to have Uintah collect all currently queued and ready GPU tasks,
and prepare and launch them in one group rather than processing
each task individually. Also, since most time steps tend to reuse
the same task graph, Uintah would benefit from a resource pool,
where an old time step’s resources can be reused in the current iter-
ation. Finally, for some computational problems utilizing Uintah,
data layout of variables in memory (row-major, column-major, 2D
tiled, 3D tiled, etc.) is crucial for performance gains. With the
full GPU Data Warehouse now existing solely in host-memory, it
can be merged in with the Data Warehouse managing host mem-
ory variables, and then the combined Data Warehouse can be more
easily refactored to allow for these memory layout changes.
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