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Abstract

Physics-informed neural networks (PINNs) as a means of solving partial differential equations (PDE)
have garnered much attention in the Computational Science and Engineering (CS&E) world. However,
a recent topic of interest is exploring various training (i.e., optimization) challenges – in particular,
arriving at poor local minima in the optimization landscape results in a PINN approximation giving
an inferior, and sometimes trivial, solution when solving forward time-dependent PDEs with no data.
This problem is also found in, and in some sense more difficult, with domain decomposition strategies
such as temporal decomposition using XPINNs. To address this problem, we first enable a general
categorization for previous causality methods, from which we identify a gap (e.g., opportunity) in the
previous approaches. We then furnish examples and explanations for different training challenges, their
cause, and how they relate to information propagation and temporal decomposition. We propose a
solution to fill this gap by reframing these causality concepts into a generalized information propagation
framework in which any prior method or combination of methods can be described. This framework
is easily modifiable via user parameters in the open-source code accompanying this paper. Our unified
framework moves toward reducing the number of PINN methods to consider and the reimplementation
and retuning cost for thorough comparisons rather than increasing it. Using the idea of information
propagation, we propose a new stacked-decomposition method that bridges the gap between time-
marching PINNs and XPINNs. We also introduce significant computational speed-ups by using transfer
learning concepts to initialize subnetworks in the domain and loss tolerance-based propagation for
the subdomains. Finally, we formulate a new time-sweeping collocation point algorithm inspired
by the previous PINNs causality literature, which our framework can still describe, and provides a
significant computational speed-up via reduced-cost collocation point segmentation. The proposed
methods overcome training challenges in PINNs and XPINNs for time-dependent PDEs by respecting
the causality in multiple forms and improving scalability by limiting the computation required per
optimization iteration. Finally, we provide numerical results for these methods on baseline PDE
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problems for which unmodified PINNs and XPINNs struggle to train.

Keywords: Physics-Informed Neural Networks (PINNs), causality, domain decomposition, transfer
learning

1. Introduction

Physics-informed neural networks (PINNs) have emerged as a popular framework for solving partial
differential equations (PDEs). The most ubiquitously used PINN implementation at present is the
meshless, continuous-time approach in [1]. This approach is often selected due to its flexibility in
discretization and has been shown to be successful across a wide class of application domains [2, 3,
4, 5, 6, 7, 8]. However, the users community has observed that the continuous-time approach suffers
from various training challenges not experienced by the discrete-time approach. In this work, we are
motivated to keep as much discretization flexibility as the continuous-time approaches allow while
benefiting from the properties of the discrete-time approach. We will return to this trade-off when
proposing our new time-sweeping collocation point algorithm. As continuous-time PINNs have become
the default form, future mentions of PINNs will refer to this approach unless explicitly stated otherwise.

Training (i.e., optimization) remains the primary challenge when using the continuous-time ap-
proach for forward problems. A significant amount of the research on PINNs revolves around im-
proving the ease of training in some way [9, 10, 11, 12]. However, PINNs for inverse problems have
shown great success on a range of applications and do not pose the same training issues as forward
problems [13, 14, 15, 16, 17, 18, 19]. We, therefore, focus solely on forward problems in this paper,
as they are often a principal building block in solving inverse problems and also the more challenging
direction when training. Information propagation drives many training challenges in forward PINN
problems, and in the inverse form, this is a quite different problem entirely for which forward methods
might not be applicable. However, the development of forward problems for PINNs will also help drive
improvements for solving inverse problems as we gain a better understanding of PINNs in general, and
is something to be studied in future work.

The strategies to enhance PINN training include diverse approaches such as adaptive sampling
[20, 21, 22], adaptive weighting [23, 24], adaptive activation functions [25, 26], additional loss terms [27],
domain decomposition [28, 29, 30, 31], and network architecture modification to obey characteristics
[12, 32]. A thorough summary of PINN training challenges and their proposed solutions is provided
in [12]. Recently, [33] proposed the mathematical foundation of PINNs for linear partial differential
equations, whereas [34] presented an estimate on the generalization error of the PINN methodology.
The first comprehensive theoretical analysis of PINNs, as well as extended PINNs (XPINNs) for a
prototypical nonlinear PDE, the Navier-Stokes equations have been presented in [35]. The optimization
process of PINNs not only limits the lower bound accuracy but also causes the network to be unable
to learn over the entire domain in some cases. Training difficulties in PINNs can happen for various
reasons, some of the most common being poor sampling, unequal loss term weights, or using a poor
optimization scheme. Even with a well-tuned PINN, “stiff” PDEs with sharp transitions [36], multi-
scale problems [37], or highly nonlinear time-varying PDEs [38] can still pose problems for the standard
PINN.

Our first contribution is an experimental study and classification of training challenges in PINNs
and their root cause. Furthermore, we relate these training challenges to information propagation
during training as well as their manifestation in temporal domain decomposition strategies such as
XPINNs. In doing this, we put forward a new form of training challenge for XPINNs. Our next
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contribution is the introduction of a new unified framework to address some of these challenges and
highlight the current methodological gaps in PINN time-causality enforcement. PINNs and their
variants are numerous and ever-increasing. Setting aside the myriad of PINN topics, time-causality
considerations alone have several different approaches. A central concern facing the PINN community
is the rapid development of new methods without a supporting framework between them. It is time-
consuming to reimplement and retune the dozens of PINN variants (e.g., the “alphabet” of PINN
variants, cPINNs, hpPINNs, bcPINNs, etc.) and other PINN approaches for any specific problem or
in use as baselines. Therefore, our approach is backward compatible with all prior methods in this
regime and can easily incorporate new variants in the future. In this framework, we also bridge the
gap between methods such as time-marching and XPINNs and incorporate ideas to speed up existing
methods. This is done by partitioning the subdomain into collocation point sets, requiring no or small
computational cost, as well as incorporating transfer learning concepts.

The paper is organized as follows: In Section 2, we first summarize PINNs and related work to
time-causality, which can be similarly described. We introduce a classification to these prior works
and discuss the current gap in methodology. In Section 3, we analyze different types of training chal-
lenges and their relation to information propagation and decomposition. We then propose, in Section
4, a unified framework for causality-enforcing methods. Two new methods are proposed, stacked-
decomposition and window-sweeping, to be used in combination with each other. These methods
describe the current work covered as well as new variants. In Section 5, we provide computational
performance results on PDE problems with known training difficulties. We summarize and conclude
our results in Section 6.

2. Background

2.1. Physics-Informed Neural Networks (PINNs)

Physics-Informed Neural Networks (PINNs) were originally proposed in [1, 39, 40] as a neural-
network-based alternative to traditional PDE discretizations. In the original PINNs work, when pre-
sented with a PDE specified over a domain Ω with boundary conditions on ∂Ω and initial conditions at
t = 0 (in the case of time-dependent PDEs), the solution is computed (i.e., the differential operator is
satisfied) at a collection of collocation points. First, we rewrite our PDE system in a residual form as
R(u) = S− ∂

∂tu−F(u), where S is the source term/function and F is a nonlinear operator. The PINN
formulation is expressed as follows: Given a neural network function uθ(x, t) with specified activation
functions and a weight matrix θ denoting the degrees of freedom derived from the width and depth of
the network, find θ that minimizes the loss function:

MSE = MSEu +MSEr (2.1)

where

MSEu =
1

Nu

Nu∑
i=1

‖uθ(xiu, t
i
u)− ui‖2 (2.2)

MSEr =
1

Nr

Nr∑
i=1

‖R(uθ(xir, t
i
r)‖2 (2.3)

where {xiu, tiu, ui}
Nu
i=1 denote the initial and boundary training data on u(x, t) and {xir, tir}

Nr
i=1 specify the

collocation points for evaluation of the collocating residual term R(uθ). The loss MSEu corresponds
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to the initial and boundary data, whereas MSEr enforces the structure imposed by the differential
operator at a finite set of collocation points. For periodic boundary conditions, an exact enforcement
can be used that encodes the spatial input as Fourier features [41], in which case MSEu represents
only the initial condition loss. Additional terms can be added for PINN variants, such as interface
terms in the case of domain-decomposition [28, 29]. Often, term-wise or point-wise weights are added
to Equation 2.1 to provide improved training [24, 42]. This loss-function minimization approach
fits naturally into the traditional deep learning framework [43]. Various optimization procedures are
available, including Adam [44], L-BFGS [45], etc. The procedure produces a neural network uθ(x, t)
that attempts to minimize the weak imposition of the initial and boundary conditions while satisfying
the PDE residual through a balancing act.

2.2. Related work

Previous works have attempted to address training issues in a variety of ways. In this section, we
review relevant work that will be used as the foundation for our hypotheses and new training methods.

Figure 1: Illustrations of related models with time represented along the horizontal direction for which it
progresses left to right. (A) Adaptive time-sampling. (B) Backward-compatibility. (C) Time-marching. (D)
XPINNs.

Adaptive time-sampling: In [10], a strategy is proposed that splits the domain into equally sized
“time-slabs”. For a single network, the collocation points form the sequential union of the subsets in
each time-slab on which the network is continuously being trained, as seen in Figure 1 (A). This method
is essentially a start-up procedure because it is equivalent to a standard PINN when all slab subsets
have been added. This method is shown to improve training accuracy and may provide a computational
speedup since only a subset of the entire spatiotemporal sampling is active in the training phase until
the final slab is added. Unnecessary collocation points are expensive to add, particularly for long-time
integration and higher order derivatives, because PDE residuals must be calculated for each one.

Time-marching: In [10] and more recently [9] and [46], a training procedure is proposed in which
the time-slabs are trained sequentially with the prior slab’s end-time predictions used as the next initial
conditions as seen in Figure 1 (C). Although the method’s name differs between the three papers, we
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will refer to it here as time-marching. Since prior subnetworks stop training once a new slab is added,
this enforces causality on the scale of the size of the time-slab. Internally, for each time-slab, causality
is not enforced.

bc-PINN: In [38], a different sequential model is proposed that, while also broken up into time-
slabs, uses only one network for the entire domain. Similar to adaptive time-sampling in [10], the
difference here is that for prior time-slabs, the prediction of the converged network is taken as a data
term and forms the loss with future network predictions, as seen in Figure 1 (B). This is termed
“backward-compatibility (bc)” since it ensures the network does not change its prediction for prior
times and is the means by which the method enforces causality. As in the time-marching scheme, this
causality is enforced only on the scale of the time-slabs. Additionally, although not touched upon in
the paper, this approach reduces the computational cost on a per-iteration basis since prior collocation
point residuals do not need to be continually computed.

Causal weights: In [23], conforming to causality is directly confronted and put forward as a
leading contributor to successful PINN training. Similar to bc-PINNs, this approach is proposed for
a single network, although it is later combined with time-marching for the final numerical results on
difficult chaotic problems. Unlike the previous two methods, time-slabs are not used, and instead,
causality is enforced by a clever weighting mask over all collocation points. This mask is inversely
exponentially proportional to the magnitude of cumulative residual losses from prior times, as shown
in Equation 2.4. One drawback is that the results are sensitive to the new causality hyperparameter
ε, so an annealing strategy for training with ε is used. However, this requires multiple passes over the
entire domain with different ε, significantly increasing the computational cost and not guaranteeing
convergence. Despite this, its application is shown to be successful on challenging problems.

Lr (θ) =
1

Nt

Nt∑
i=1

exp

(
−ε

i−1∑
k−1

Lr (tk,θ)

)
Lr (ti,θ) . (2.4)

XPINN: In [28], a generalized domain decomposition framework is proposed that allows for mul-
tiple subnetworks over different spatiotemporal subdomains to be stitched together and trained in
parallel, as shown in Figure 1 (D). This method is not causal and suffers from similar training prob-
lems as standard PINNs. These problems, in some cases, become more prevalent as the interfaces
and separate networks make for a more difficult optimization problem, specifically with respect to
information propagation. While the idea of stitching together subdomains in time is made possible
by XPINNs, time-marching and stitching together subdomains are not mutually exclusive. Time-
marching is sequential, but the networks are stitched together by the hard constraint of the final
end-time prediction of the prior network used as the following initial condition. We will refer to this
as the solution continuity interface condition for first-order in time problems. More precisely, it would
be MSE(u1 − u2), or in the case of XPINNs, discontinuous enforcement by way of MSE(uavg − u1)
+ MSE(uavg − u2) where uavg = u1+u2

2 . This is extendable to second-order in time problems by
adding the same forms for ut and so on for higher order in time derivative terms. While XPINNs
also constrain residual continuity, this constraint is unnecessary for well-posedness when decomposing
into time-slabs, such as in the prior methods discussed. In this case, the stitching between XPINNs
and time-marching is the same, the difference being that the subnetworks in XPINNs are trained in
parallel, and the subnetworks in time-marching are trained sequentially [47].

2.3. Causality classification

Given these prior works, we seek to find a generalization between all possible methods to categorize
them. We, therefore, propose the idea of hard causality and soft causality. Hard causality is a method
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that cannot be violated, whether continuously or discretely. Soft causality is, therefore, a method that
is possible to violate; however, the network is predisposed toward obeying it in some way. This will
most commonly fall under the fact that, through optimization, a network has been guided to local
minima, which loosely obeys causality. A perturbation in the optimization may cause the network to
find different minima, which violates this proposition, but is unlikely. We, therefore, categorize the
previously described methods in Table 1.

Table 1: A classification of PINN causality enforcement methods
Soft Causality Hard Causality Soft + Hard Causality non-Causal

Time-slab scale Adaptive time-sampling [10] Time-marching [10, 9, 46] XPINN [28]
bc-PINN [38]

Sampling scale Causal weights [23]

Notice that hard causality methods are defined only in terms of time-slabs, whereas causal weighting
is a continuous form of causality. However, in the continuous case, current methods must still compute
residuals for the entire domain in which they are used. There is a gap in methodology for enforcing
hard causality on the sampling scale as well as for methods that combine the two. We will take
inspiration from this classification to propose stacked-decomposition, which will fill the gap and form
a smooth connection between a standard XPINN and time-marching, allowing for what we call causal
XPINNs that overcome training issues present in their standard form. Additionally, we will use ideas
from transfer learning to greatly speed up training with time-slab schemes. We will also propose a
window-sweeping collocation point algorithm that will combine hard and soft causality constraints to
not only speed up training by limiting the number of collocation residuals in the domain that need to be
calculated, such as in adaptive time-sampling and bc-PINNs, but also enforce causality continuously.
Finally, these methods can be combined to not only provide very accurate solutions, such as in [23],
which combines time-marching and causal weights to solve previously out-of-reach forward PINN, but
also to greatly reduce the computational cost even when causality is not needed to address training
challenges.

3. Training Challenges: PINNs and their temporal decompositions

3.1. Information Propagation

In this work, we attempt to bridge the gap between many prior works and approaches to improving
PINN training. Many of these approaches are predicated on conforming to causality. Although PINNs
are technically well-posed when training over the entire spatiotemporal domain represented by the set
of collocation points (when properly set up), the information must still propagate from the sources of
information such as initial conditions (IC) and boundary conditions (BC). We will split this discussion
into two parts: first, classifying training difficulties, also called “failure modes” in [9, 21, 36], which up
until now have been homogeneously grouped together; second, analyzing training difficulties relating
to temporal decomposition given the prior classification.

3.1.1. Types of Training Challenges

Let us consider two forward PDE problems. First, consider the convection problem posed in [9]
with enough collocation points that a standard PINN can solve it well. Second, consider the commonly
used Allen-Cahn problem, which PINNs struggle to solve well without modification [1, 10, 38, 23]. In
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Figure 2, PINN results for three distinct types of challenges are shown in comparison to the time-
marching PINN method that results in a near approximation to the exact solution and are discussed
as follows:

Figure 2: Training challenges for unmodified PINNs and the comparative accurate solution with time-marching
(A) Convection problem with extended temporal domain on T = [0, 5]. (B) Convection problem with fewer
collocation points on T = [0, 1]. (C) Allen-Cahn problem on T = [0, 1].

Zero-solution: The zero-solution mode is reproducible using the long-time convection problem,
which extends the temporal domain to T = [0, 5] shown in Figure 2 (A). The number of residual col-
location points is proportionally increased so as not to influence the result. Given periodic conditions,
there is no information later in time, which results in the PINN converging to a zero-solution. This
challange occurs because the zero-solution minimizes the loss due to the PDE residual containing only
derivative terms (i.e., any constant function is in the null-space of the operator). We can see that the
initial condition, the only source of information, propagates in the direction of its characteristic curve.
However, due to the periodic conditions, the information must travel far before being “completed”
in the sense that it reaches some end-point such as Dirichlet boundary conditions or the end of the
time domain. When this happens, the solution can be refined. Until this happens, the propagation of
information must overcome the zero-solution in the sense that the network resists the introduction of
information from the initial condition.
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Figure 3: (Left) Plot of loss as a function of training epochs. (Right) The full domain PDE residual at the end
of training. (Top) PINN on the convection problem with Tend = 1. (Bottom) PINN on the convection problem
with Tend = 5.

In terms of the loss landscape, the zero-solution skews it making it shallow, such that information
propagates infinitesimally slowly once far enough away from the initial condition. This is shown in
Figure 3 where the loss and PDE residual of a trained PINN on convection Tend = 1 is shown on
the top compared to Tend = 5 on the bottom. Both models are run with a termination tolerance of
10−7 measuring the change in loss per iteration. In the loss for the converged PINN, the drastic drop
in the loss at around 7, 500 iterations is when the “front” of propagation from the initial condition
reaches the end of the time domain. Then, the solution refines and converges to the correct solution,
minimizing the PDE residual in the domain. For a long-time problem, we can see that the residual at
later times is exactly zero and therefore resists the information being propagated. Additionally, despite
the variation of magnitude in the prediction, the gradients, and therefore residual, are quite uniform
where the feature exists. That is to say: there is no directionality in the residual minimization at this
point. Therefore, the model tries to maintain a trade-off between the loss resulting from the initial
condition and its nearby collocation point residuals not being obeyed, along with the zero-solution later
in time. This results in the solution petering out to zero, never converging as it gets stuck between
these two effects. Finally, as seen by the time-marching solution to this problem, enforcing causality
can help alleviate this issue since it does not allow the network to converge to the zero-solution later
in time, for which the solution will not be unique until all information needed for the true solution has
reached it.

Remark 1. Some causal enforcement methods that still allow residual minimization later in time,
such as the Lagrangian network reformulation [12], may improve but not fully overcome this problem
for an arbitrarily long enough temporal domain as the zero-solution would still be allowed.

No Propagation: This problem is reproducible by using too few residual collocation points in
the convection problem shown in Figure 2 (B). Thisissue is the same as the one observed in [9] for this
problem. In Figure 2 (B), 2, 500 collocation points are used, whereas, in the rest of the paper, 10, 000
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are used for every nondimensionalized length of one in the temporal domain. When a larger number
of points is used, we find we can consistently solve this problem with a standard PINN. Therefore,
we classify this training challengeby its apparent failure to propagate any information as the initial
condition features abruptly stop, indicating the point density is too small. Overcoming this challenge
through increased and adaptive sampling is investigated in more detail in [21]. This allows for a con-
stant solution to prevail in the rest of the domain.

Incorrect Propagation: Incorrect propagation is reproducible by trying to solve the Allen-Cahn
problem with a PINN, regardless of standard model tuning, as seen in Figure 2 (C). This challenge
arise when strong enforcement of causality is needed, such as in chaotic problems shown in [23], and
by not enforcing it, the PINN converges to an incorrect solution. It is distinct from the zero-solution
challenge since a solution is arrived at quickly, but not the correct one.

Remark 2. Interestingly, the training challenge for long-time solution of the KdV problem is incorrect
propagation instead of the zero-solution, such as in long-time convection. This result is described in
Appendix B.4.

3.1.2. Temporal Decomposition Challenges

Let us now consider the convection problem with Tend = 1. In Figure 4, this PDE problem is
run with a PINN (A), an XPINN (B), and an XPINN (more accurately, a multi-domain PINN [48])
using only solution continuity conditions at the interfaces (C). All models contain the same point sets,
loss term weights, etc., with the addition of interface sets in the decomposition models. Unless stated
otherwise, exact periodic boundary enforcement is used with M = 1, as described in Appendix C,
where M is the order of the Fourier feature encoding.
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Figure 4: Convection problem on T = [0, 1]. (A) PINN. (B) XPINN. (C) XPINN with only the solution
continuity interface [48]. (1) 500 Adam + 2,500 L-BFGS. (2) 500 Adam + 10,000 L-BFGS. (3) 500 Adam +
2,500 L-BFGS + Dirichlet BC. (4) 500 Adam + Dirichlet BC. (5) 500 Adam + 2,500 L-BFGS + Weak BC.
(6) 500 Adam + 2,500 L-BFGS + Dirichlet & Weak BC.

In Figure 2 (A.1), due to periodic boundary conditions, the solution propagates from the initial
condition, whereas the rest of the domain converges to the zero-solution because it must satisfy the PDE
residual but has no unique information. The collocation points inside the domain where information
has not yet propagated provide no benefit despite taking computational time to compute the PDE
residual, which can be crippling if the problem has high sampling density, is high dimensional, or is a
long-time problem since the number of point-wise predictions and gradients is ever increasing. In the
case of domain decomposition approaches like XPINNs and cPINNs, where all networks are trained at
once, this can, in fact, cause training challenges where there were none with a standard PINN, even
though parallelization can help alleviate the training cost. To highlight this, in (A.2), the PINN is run
for more L-BFGS iterations and converges appropriately.

In Figure 2 (B.1) & (C.1), the solution struggles to propagate information through the first interface
(in this case, at dt = 0.1). Since all networks are trained in concurrently from the start, the ones at
later times become stuck in the local minima of the trivial zero-solution. This problem is intuitive to
understand and is the same issue discussed in Section 3.1.1 with respect to the long-time convection
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problem for a PINN. However, the issue is exacerbated here since, later in time, networks do not have
direct access to the initial condition information; only through the interfaces, once the information has
reached them, is a unique solution defined. In (B.2) and (C.2), little has changed with the addition of
more training iterations. The models will not overcome this challenge with more training. Causality
enforcement must be introduced to alleviate this issue.

A standard XPINN (B), which has a residual continuity term, further intensifies training issues
because the interface also has a zero-solution challenge. We claim that for temporal decomposition, Cp
continuity should be used instead of the standard XPINN continuity conditions, which perform worse
in all scenarios of our study. This effect worsens when using periodic conditions because it allows for
the zero-solution more readily. Furthermore, it is the boundary condition most papers use that focuses
on PINN “failure mode” problems [9, 23] despite not identifying it as a contributing factor. In (C.3),
applying Dirichlet boundary conditions to the domain decomposed model with solution continuity
allows for the correct solution to be obtained, whereas in (B.3), the XPINN interface conditions still
cause propagation issues. To a lesser extent, it is also the case for PINNs that Dirichlet instead of
periodic boundary conditions are easier to train, as seen in (A.3) which converges while (A.1) has not,
despite equivalent training iterations.

Finally, in (5) and (6), setups are repeated using weakly imposed, instead of exact (by way of Fourier
feature encoding), periodic boundary conditions. Weakly imposed boundary conditions result in the
same set of correct and incorrect solutions as before. Previous work implies that exact enforcement of
periodic conditions may alleviate training issues, but we find that regardless of the enforcement, the
problems can persist. Only different boundary conditions, such as Dirichlet, change the result.

For these reasons, time-marching, with the same amount and density of collocation points, helps
alleviate the trivial zero-solution trivial for temporal decomposition and can be described under the
lens of information propagation. Time-marching, in effect, removes the collocation points later in time
from optimization, not allowing the model to train itself into a trivial solution later in time, even
though multiple subnetworks are similarly used in XPINNs. The resistance to propagate information
is an optimization and uniqueness issue, as the null-space is an acceptable solution to the optimization
problem. Despite the PDE being violated in between the true and zero-solution, it does not train out
of the local minima. In the case of domain decomposition, the interface is an ideal location to violate
the PDE and stop information from propagating. Whereas for a PINN on the long-time convection
problem, this violation happens over a large time span as the feature gradually weakens.

Remark 3. Information propagation is not fully understood and depends on multiple PINN aspects,
such as the optimizer, sampling method, etc., which are not all studied here. For example, in the 3D
Euler equation, characteristic information is complicated, making methods such as LPINN [12] and
CINN [32], difficult.

4. Unified Causality-enforcing Framework

To address these decomposition challenges and unify previous causal strategies, we propose two
new methods to cover all aspects of causality enforcement shown in Table 2. Combined, these two
methods impose soft and hard constraints on both the time-slab and sampling scale. We also introduce
ways to improve temporal decomposition, such as transfer learning.

Table 2: A classification of PINN causality enforcement methods with our proposed stacked-decomposition and
window-sweeping methods.
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Soft Causality Hard Causality Soft + Hard Causality non-Causal
Time-slab scale Adaptive time-sampling [10] Time-marching [10, 9, 46] Stacked-decomposition XPINN [28]

bc-PINN [38]
Sampling scale Causal weights[23] Window-sweeping

4.1. Stacked-decomposition

Figure 5: Illustration of the proposed stacked-decomposition method compared with the existing time-marching
and XPINN methods.

As seen in Figure 5, stacked-decomposition is parameterized by n and dS. The length that a
subdomain spans in time is then inferred from the total time domain for each problem and the number
of partitions n. For dS = 1, stacked-decomposition is equivalent to time-marching. For dS = n with
XPINN interface conditions and all domains active at the start of training, stacked-decomposition is
equivalent to the traditional XPINN approach. An additional term we define is causal dS: which
describes if the amount of networks dS represents should all be trainable at the start or if a warm-
up procedure is used (starting at one and increasing to dS). When used with dS = n, we refer to
this model as a “causal XPINN”. In this configuration, later time-slabs are added as the prior slab
reaches convergence, and the entire set of subnetworks continues to train. A causal XPINN arrives at
the standard XPINN configuration once all subnetworks have been added. However, because of the
warm-up procedure, it avoids the training challenge described in Section 3.1. This is because future
networks do not train to the zero-solution and are only added once the information in the previous
slab has propagated to the final time in the subdomain. A main benefit of XPINNs is that they
can be parallelized and, therefore, handle large-scale problems. In this regard, as subnetworks are
added to causal XPINNs, they can be parallelized, introducing no limitation or cost. This contrasts
time-marching, in which all prior networks must conclude training and run in sequence. Therefore,
stacked-decomposition can describe an ideal middle ground in which we benefit from the causality of
time-marching to avoid possible training difficulties and the parallel training of XPINNs. The method
also describes a new set of models when 1 < dS < n, which may be useful for large-scale problems with
time-history effects where training the full domain at once is expensive, but the information in prior
domains is still useful. In the future, adaptive methods for determining n a priori or during training
will be considered since time scale correlation or local complexity may change with time.

4.1.1. Interface Conditions

Attempting to bridge the gap between temporal decomposition strategies, we must explain the
differences in interface conditions in the loss term. Time-marching schemes use the final time prediction
of the previous time-slab as the initial condition of the next time-slab. For first-order time problems,
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this condition is simply the solution continuity given by

Li(θ−,θ+) =
1

Ni

Ni∑
i=1

|uθ−(xi, t)− uθ+(xi, t)|2. (4.1)

We generalize this and refer to it as the Cp continuity where p is the order in time minus one. For
problems considered in this paper, it will be C0 and, as such, equivalent to the solution continuity. Tra-
ditional XPINNs use interface conditions of discontinuous solution continuity and residual continuity
given by the following loss terms:

Liavg
(θ−,θ+) =

1

Ni

(
Ni∑
i=1

(
|uavg(xi, t)− uθ+(xi, t)|2 + |uavg(xi, t)− uθ−(xi, t)|2

))

≡ Liavg
(θ−,θ+) =

1

2Ni

Ni∑
i=1

|uθ−(xi, t)− uθ+(xi, t)|2 ← uavg =
uθ− + uθ+

2

(4.2)

LiR(θ−,θ+) =
1

Ni

Ni∑
i=1

|R (uθ−(xi, t))−R (uθ+(xi, t)) |2. (4.3)

However, the discontinuous continuity reduces to the continuous continuity with a constant, and given
that tuning loss terms and weights have been extensively studied and are part of the XPINN framework
[42, 28], we will make no distinction between these two terms as loss term weighting will override the
factor of one half difference. Finally, since we are decomposing in time, there is no complex geometry
with which we must compute the normal, such as in cPINNs [29]. Therefore, residual continuity is not
necessary in time since we can use the solution continuity, which is equivalent to the initial conditions
for a new domain and makes the problem well-posed. Gradient-based interface terms may also become
prohibitively expensive as the number of concurrently trained subdomains increases. However, it may
be helpful in training to include multiple interface terms as studied in [48], so it is left up to the user
and the problem to define which terms to include, such as residual continuity, so long as they are
well-posed.

Remark 4. Straight lines for time-slabs are used for convenience since it is common for time-marching
schemes. However, if an irregular shape is used, the same Cp continuity can be used and is still well-
posed without any modification.

4.1.2. Transfer learning

Transfer learning fits naturally into our framework when multiple networks are stacked sequentially
in time. A variation of this application was used in [46] for time-marching. However, it was only briefly
touched upon and not thoroughly studied as we do here. We further state there is no need to retrain
the network from scratch when a network that already obeys the initial or interface condition is
known. In terms of stacked-decomposition, it is easy to see that regardless of dS = 1, in which case
there are initial conditions, or dS > 1, in which case there are interface conditions, initializing the
following network with the prior network will result in this term being exactly zero when added. This
aspect goes beyond simply having a good starting point for optimization since we are transferring to
a new domain that shares predictions with the model being transferred. Residual loss terms beyond
the starting subdomain time will not be zero, as this region will be an extrapolation of the prior
subdomain. However, it will be closer to convergence than randomizing the weights.
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In this framework, we allow the flexibility of transferring any combination of layers and holding
constant any combination of transferred layers. More precisely, we define the terms “transfer learn-
ing” and “fine tuning” to aid in this explanation. Traditionally, transfer learning refers not only to
initializing the learnable parameters of one network with another but also to holding some number
of the layers constant, which reduces the per-iteration cost. On the other hand, we will refer to fine
tuning as the initialization of learnable parameters while still allowing the full network to be trainable.
We claim this is an important distinction given this application because scales and solution dynamics
may change over time, meaning that holding some layers constant may inhibit the expressibility of the
network and its ability to accurately fit the true solution. Let us take the final linear combination of
the network as basis functions and consider the nonlinear Allen-Cahn problem in [1]. For the time-
marching model, it can be seen that the basis sharpens from the first to the final subdomain in Figure
6.

Figure 6: Spatial basis at the center of the time-slab given by the final layer of the PINN with time-marching on
the Allen-Cahn problem in [1]. The basis changes considerably between the first and last time-slabs, indicating
true transfer learning would not work as the scales change in time for this problem. The distribution of
learnable parameters is also shown not to change significantly despite the change in basis.

The overall network parameter distribution for each layering stays close to constant despite the
drastic change in output basis, meaning this alone is not a good indicator of what is being learned.
While fine tuning can still improve training in this case, transfer learning would inhibit it as we need
earlier layers in the network to change so that the final basis can more accurately fit the smaller scales
that form as time goes on in this problem.

4.2. Window-sweeping collocation points

As seen in Figure 7, a soft causality window is moved through time, which acts as a weight mask on
the collocation points. Unlike stacked decomposition, this method is defined by a set of point weights
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moving forward in time in a single PINN. We find this view can describe many previous and new
methods.

Figure 7: (A) Illustration of window-sweeping method and its corresponding collocation point subsets. (B)
Window-sweep propagation over training time. (B.1) Error function kernel with a steep transition. (B.2)
Error function kernel with a smooth transition.

Inspired by causal weighting in [23], this transition can be defined in many ways, which we will
colloquially call the kernel. One option is to define it using the causal weighting scheme but to add
upper and lower bound cutoffs to move those points into the prior time set of backward-compatibility
points and the future set of points that have not yet been included in the training. The backward-
compatibility set acts as a hard causality constraint in addition to the computational benefit of not
requiring the expensive PDE residual. Causal weights have shown great performance on difficult PDE
problems; however, they set future collocation point weights to zero until prior residuals have been
satisfied, wasting time predicting and computing gradients for points that contribute negligibly to the
overall loss landscape and, therefore, optimization. The inclusion of the null-set bound removes this
inefficiency until the points are useful. In the user algorithm, the addition or absence of these sets
is variable so that the causal weights method can be recovered. Since causal weights are explicitly
based on prior residuals, this cutoff on the upper bound would be known without having to perform
any operations on future points and therefore incur no additional cost. Other kernels considered in
this paper are shown in Table 3. Depending on the problem and hardware capacity, larger or smaller
weighted domains can be considered, as shown in Figure 7 (B) with the error function kernel. Using
the uniform weight kernel, bc-PINNs can be recovered when width is set to dt. Future work will
consider modifying this method to solve second-order time problems with initial and final conditions
on u that require information to propagate in both directions.

Table 3: Window-sweeping kernel hyperparameters. The dt tolerance, similar to the tolerance in stacked-
decomposition, is a bound on the change in loss required for the point-set bounds to move in time by the
defined dt. This is analogous to wave speed but for information propagation as a function of PINN training.

Kernel Hyperparameters
Uniform [width, dt, dt tolerance, scale]
Linear [width, dt, dt tolerance, scale]

Error Function [steepness, dt, dt tolerance, scale, cutoff tolerance]
Causal Weights [ε, cutoff tolerance]

4.3. User Algorithm
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Algorithm 1 Order of operations for proposed temporal propagation strategies for PINNs

1. Choose stacked-decomposition parameters [n, dS, causal dS, tolerance]
1.1 Choose interface conditions [residual continuity, Cp continuity, other]
1.2 Choose transfer learning parameters [number of layers, trainability of layers]

2. Choose window-sweeping parameters [bc-set, null-set, weighting kernel, kernel hyperpa-
rameters]
Run Model

With this user algorithm, we attempt to capture as many temporal PINN training techniques as
possible as a subset of the options. Additionally, the algorithm allows for a full range of variants,
combinations, and improvements. To highlight this fact, we will define the existing models listed
in Section 2.2 in terms of Algorithm 1 choices. A subtle but large improvement is in the addition
of a tolerance to stacked-decomposition, which the user sets to define the change in loss before a
new subdomain is added. This minimizes the cost of unnecessary training time used in the original
papers for time-marching, bc-PINNs, etc., that evaluated a fixed number of iterations before moving
to the next time-slab. Using a tolerance also reduces hyperparameter tuning, as an underestimate of
iterations may lead to an incorrect solution and an overestimate is expensive.

Remark 5. Other methods such as adaptive weighting and sampling techniques (self-adaptive weights,
RAR, Evo, and self-supervision adaptive sampling [24, 20, 21, 22]), or reformulating the network ar-
chitecture to obey characteristics (LPINN, CINN [12, 32]) can be used along with this framework, but
do not fall into our unification of like methods.

Table 4: Existing PINN methods and their corresponding recovered settings described under Algorithm 1

Existing Method Step 1. Step 1.1 Step 1.2 Step 2.
PINN [1, 1, off, Any] [None] [None] [None]

Adaptive time-sampling [1, 1, off, Any] [None] [None] [off, on, uniform, width = dt, scale = 1]
Time-Marching [n, 1, off, Any] [Cp] [None] [None]

bc-PINN [1, 1, off, Any] [None] [None] [on, on, uniform, width = dt, scale = 1]
Causal weights [1, 1, off, Any] [None] [None] [off, off, causal weights, ε]

XPINN [n, n, off, Any] [Residual, uavg] [None] [None]

Additionally, a code package is included with this paper, which allows for easy configuration of
options for new and existing problems using PyTorch for first-order in time PDEs. 1

5. Numerical Experiments

In this section, we demonstrate the efficacy of our proposed framework on various forward PDE
problems. With these results, we seek to highlight the flexibility and variability of our framework in
easy-to-define models with simple user settings. We do not advocate for one method over another in
terms of accuracy or runtime but rather provide a thorough comparison of a subset of all possible
choices. Ground truth solutions are generated using the Chebfun package [49] with a spectral Fourier

1The code and data accompanying this manuscript will be made publicly available at https://github.com/

mpenwarden/dtPINN after publication.
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discretization with 512 modes and a fourth-order stiff time-stepping scheme (ETDRK4) [50] with time-
step size 10−5. The training set is composed of 10, 000 residual collocation points (Nr) using Latin
hypercube sampling (LHS) and 200 uniformly spaced boundary points (Nb) for every nondimension-
alized length of one in the temporal domain. Each neural network is comprised of 50 neurons and 4
hidden layers. The collocation set is chosen using Latin-hypercube sampling. The initial condition
and each interface consist of 200 uniformly spaced points (Nic & Ni). All models use Fourier feature
encoding, described in Appendix C unless weak boundary conditions are stated. If Fourier feature
encoding is not used, the spatiotemporal input is normalized between [−1, 1]. Casual dS is used for
all stacked-decomposition models unless otherwise stated. The total loss for any given model can be
written as

MSE = λrMSEr + λBCMSEBC + λICMSEIC + λbcMSEbc + λiMSEi (5.1)

where MSE# is 0 if unused, and λr = 1, λBC = λIC = λbc = λi = 100 unless stated otherwise. These
experiments were run on an Intel Core i7-5930K processor with Windows 10 OS. The test performance
is reported in relative L2 error given by

||u− uθ||2
||u||2

(5.2)

as well as wall-clock training time.

Remark 6. For both stacked-decomposition and window-sweeping methods, loss tolerances can be
decreased to potentially gain accuracy at the cost of additional training time. The parameter choices
made provide a reasonable trade-off. As with all machine learning methods, the choice of tunable
hyperparameters will depend on the intended use, and the results reported cannot be completely
exhaustive of all training possibilities. Our goal is to make overarching insights, not tell the user the
correct settings in each scenario.

5.1. Convection equation
Let us consider the following convection problem

∂u

∂t
+ 30

∂u

∂x
= 0, (t, x) ∈ [0, 1]× [0, 2π] (5.3)

subject to periodic boundary conditions and an initial condition u(0, x) = sin(x). The exact solution
and point sets are shown in Figure 8.

Figure 8: (Left) Exact solution. (Right) Plot of 10 subdomains delineating the individual initial condition,
boundary condition, interface, and subdomain collocation point sets.
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Table 5: Table of L2 relative error and training time for different stacked-decomposition settings. M = 1 unless
weak boundary conditions are used. Note stacked-decomposition is abbreviated s-d, interface condition as ic,
residual continuity as rc, fine tuning as FT, and transfer learning as TL.

Model settings Relative L2 Error Training time (sec)
PINN 8.28× 10−3 1,020
PINN + weak BC 2.94× 10−2 780
s-d PINN (n = 10, dS = 1, ic = Cp) 1.23× 10−2 1,141
s-d PINN (n = 10, dS = 3, ic = Cp) 4.47× 10−3 4,240
s-d PINN (n = 10, dS = 1, ic = Cp) + weak BC 7.69× 10−2 547
s-d PINN (n = 10, dS = n, ic = uavg + rc) + FT 3.90× 10−2 21,443
s-d PINN (n = 10, dS = 1, ic = Cp) + FT 7.43× 10−3 703
s-d PINN (n = 10, dS = 3, ic = Cp) + FT 5.13× 10−3 2,261
s-d PINN (n = 10, dS = n, ic = Cp) + FT 4.11× 10−3 5,066
s-d PINN (n = 10, dS = 1, ic = Cp) + FT + weak BC 3.44× 10−2 420
s-d PINN (n = 10, dS = 1, ic = Cp) + TL 1.96× 10−2 1,342
s-d PINN (n = 10, dS = 1, ic = Cp) + TL + weak BC 1.62× 10−2 490

In Table 5, many variations of stacked-decomposition are run for the convection problem. First, a
standard PINN is able to solve the problem with relatively good accuracy and cost. We also observe
that, unlike all results for the standard XPINN in Section 4, the causal XPINN with fine tuning (Table
line 6) can converge to the correct solution, albeit with great computational cost. Therefore, we have
demonstrated that even with the most unfavorable conditions, such as periodic boundaries and XPINN
interfaces, causal enforcement and transfer learning are able to overcome the zero-solution issue.

Another result is that, dS = 1 to dS = n acts as a spectrum of trade-off between accuracy and
cost. Looking at the results with fine tuning applied, dS = 1, which is equivalent to time-marching,
converged the fastest since only one network is training at once, lowering the cost. As dS increases
to three and then n, the cost increases, but the accuracy improves as training networks concurrently
allows them to better resolve the solution and any discrepancies at the interfaces. Distributed parallel
training [47] can reduce this additional cost while retaining improved accuracy.

We observe that weak boundary condition enforcement takes less time to reach convergence and is
significantly less accurate. We also observe that true transfer learning is not appropriate for temporal
decomposition, but fine tuning is. This issue is described in more detail in Appendix B.1. In summary,
stacked-decomposition, particularly with dS = 1 and fine tuning, can outperform the standard PINN
in accuracy and cost. This is significant as even for problems in which the unmodified PINN does
not fail, the framework improves scalability in PINNs and yields improvement even on a short-time
problem with relatively small amounts of points and training.
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Figure 9: Relative L2 error in 16 subdomains for various numbers of decomposition partitions. (Left) Adam
optimizer only until convergence. (Right) 500 Adam warm-up iterations, then L-BFGS optimization until
convergence.

To investigate the effect of increasing the number of subdomains in causal, temporal decomposition,
we systematically compare the relative L2 error over subdomain sets for various settings. Starting with
the single domain (PINN), we decompose the domain into n = 2, 4, 8, 10, 14, and 16 subdomains
uniformly in time and report the relative L2 error for each in 16 uniform subdomains. The temporal
decomposition strategy is s-d PINN (n = #, dS = 1, ic = Cp) + FT. Distinct from other experiments
performed, we also consider optimizer choice in this study to provide insight into a main point of
contention in PINNs training, Adam vs. L-BFGS. In Figure 9 (Left), it is clear that for a single-domain
PINN with only Adam optimization, the loss function gets stuck in a suboptimal local minima. As we
introduce more subdomains, the relative L2 error decreases. Eventually, the relative error converges,
i.e., there is no improvement in predictive accuracy even after further decomposing the subdomain.
Therefore, we observe that causal, temporal decomposition can overcome training challenges due to
poor optimizer choice, as well as previously discussed ones in Section 3.1.

Figure 9 (Right) uses a warm-up of 500 Adam iterations before switching to L-BFGS. This warm-
up is known to reduce the failure of L-BFGS in the early stage of training. In contrast to Adam
only optimization, the error is relatively constant throughout the number of subdomains. We report
training times in this case because all methods converge. Training times are not reported for Adam
only training since it is misleading to analyze when some cases fail, and some do not. We can see that
even when training challenges are not present, causal, temporal decomposition can improve training
time and, therefore, the scalability of PINNs in larger and more expensive problems. However, there
appears to be an ideal subdomain number, which will be problem specific, and going beyond what is
necessary increases run time with no benefit here. This is likely due to the interplay between the cost
of refined learning of the network when the loss changes slowly, which must happen in all subnetworks,
versus the benefit of convergence speed for smaller domains.

5.2. Allen-Cahn equation

Let us consider the following Allen-Cahn problem

∂u

∂t
− 0.0001

∂2u

∂x2
+ 5u

(
u2 − 1

)
= 0, (t, x) ∈ [0, 1]× [−1, 1] (5.4)

subject to periodic boundary conditions and an initial condition u(0, x) = x2cos(πx). In Figure 10
shows the exact solution and (normalized) singular value spectra of temporal snapshots for different
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data sets representative of decomposition and point weighting schemes. The lens of Kolomogrov n-
widths, approximated by the rate of decay of these singular values, is proposed as an a priori PINNs
convergence estimate in [12]. We use this lens to view the Allen-Cahn problem with different time-
slab sizes in addition to the window-sweeping weighting scheme with the error function kernel. As
described in [12], a faster decay rate of the singular values of a set of snapshots should correlate to
an increase in the rate of training convergence. We observe that smaller time-slabs have faster decay,
which empirically aligns with faster training, potentially leading to reduced training times. The smooth
error function kernel corresponds with zero-valued weights past t = 0.1. Therefore, compared to the
decay t ∈ [0, 0.1], which has no weightings over this region, the window-sweeping method has a faster
drop-off, indicating it is even easier to train.

Remark 7. Although a smaller subdomain or weighting scheme considering fewer points may converge
faster, the overall training time of the domain does not exactly extrapolate from this. This is due to
the “overhead” cost of achieving the lower loss tolerances many more times, which increases as the
convergence rate increases, creating a trade-off.

Figure 10: (Left) Exact solution. (Right) Study of (normalized) singular value spectra of temporal snapshots
(formalized by [12]) for the Allen-Cahn problem.

Table 6: Table of L2 relative error and training time for different window-sweeping settings. All methods
use M = 10 unless otherwise stated. The loss tolerance used to propagate all methods is 10−7. Note that
window-sweeping is abbreviated w-s. a(bc-set = on, null-set = on) b(bc-set = off, null-set = on).

Model settings Relative L2 Error Training time
PINN 5.11× 10−1 3,421
s-d PINN (n = 10, dS = 1, ic = Cp) + FT 2.77× 10−2 798
w-s PINN (kernel = uniform, width = dt = 0.1)b 6.57× 10−2 875
w-s PINN (kernel = uniform, width = dt = 0.1)a: M = 1 2.25× 10−2 448
w-s PINN (kernel = uniform, width = dt = 0.1)a 1.73× 10−2 466
w-s PINN (kernel = uniform, width = 2dt = 0.1)b 3.33× 10−2 1,053
w-s PINN (kernel = uniform, width = 2dt = 0.1)a 1.58× 10−2 574
w-s PINN (kernel = linear, width = 4dt = 0.1)a 3.45× 10−2 994
w-s PINN (kernel = error function, steep, dt = 0.0125)a 3.62× 10−2 534
w-s PINN (kernel = error function, smooth, dt = 0.0125)a 4.29× 10−2 564
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In Table 6, many variations of window-sweeping are run for the Allen-Cahn problem. Unlike the
convection problem considered, an unmodified PINN does not sufficiently solve this. The third row
setting recovers adaptive time-sampling and the fifth row recovers bc-PINNs as described in Table
4. First, we find that all methods are able to overcome the training challenge encountered by the
unmodified PINN. We also find that by adding the backward compatibility set instead of continuously
training on prior point sets vastly decreases the training time with no adverse effect on the accuracy.

Uniform weights perform well compared to soft causality enforcement via weighting schemes used
by methods such as causal weights [23] and extended to the unified window-sweeping method by way
of kernels linear, error function, and an equivalent causal weighting scheme. Under the loss tolerance
setting of 10−7 used, the causal weights kernel reaches this tolerance without sufficient training. Due
to the sensitivity of its tunable causality parameter (ε), as noted in the original paper, we present self-
contained results for this kernel in Appendix B.3. We extend the method to non-grid sampling and
reduce training time using the null-set segmentation of window-sweeping. We also find that for uniform
weights, reducing the dt size such that new sets overlap with prior slightly improves accuracy with
increased cost. The primary motivation for the model settings reported is to showcase how simple it is
to modify the proposed framework to produce new models, not to conclude which method is the “best”
since different settings may be ideal for different problems. We also note the improved scalability of
this approach, particularly in the application of the change in loss tolerances to propagate the methods.
As a comparison, in bc-PINNs [38], the authors use 50,000 Adam iterations per segment and then L-
BFGS iterations until tolerance termination, leading to hundreds of thousands of iterations. We report
almost identical relative L2 errors and use a total of around 12,000 iterations. This modification, used
in both stacked-decomposition and window-sweeping, allows us to achieve more accurate solutions
than unmodified PINNs in less time.

Figure 11: Point-wise error of w-s PINN (kernel = uniform, width = dt = 0.1)c reported in Table 6 (Left) M
= 10 (Right) M = 1.

To investigate the effect of Fourier feature encoding frequency, we run the window-sweeping model
with equivalent settings to recover bc-PINNs using an encoding of M = 1 and M = 10 shown in Figure
11. This encoding is used in the paper introducing causal weights [23] with M = 10. We find that a
higher order encoding can better resolve sharper features, similar to adaptive activation functions [25],
the error manifests itself elsewhere at this fidelity of training. As seen on the left side of the figure,
the discontinuities that begin to form at the end of time around ±0.5 have low point-wise error for
M = 10, although the error manifests itself in the relatively smooth x = 0 region. This is opposed to
M = 1, which struggles at the discontinuities. For higher levels of training, the higher order encoding
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will help resolve smaller scales in the solution space. However, at these stopping tolerances, we report
similar accuracies for both encoding choices.

5.3. Korteweg–de Vries equation

Let us consider the following Korteweg–de Vries (KdV) problem

∂u

∂t
+ u

∂u

∂x
+ 0.0025

∂3u

∂x3
= 0, (t, x) ∈ [0, T ]× [−1, 1] (5.5)

subject to periodic boundary conditions and an initial condition u(0, x) = cos(πx). The exact solution
for a short and long-time domain is shown in Figure 12.

Figure 12: Exact solution of Korteweg–de Vries delimiting the respective T = [0, 1] and T = [0, 5] problems.

Table 7: Table of L2 relative error and training time for a combination of stacked-decomposition and window-
sweeping. A change in loss tolerance of 10−7 is used for all methods, with the condition in the combined form
that w-s must finish propagating before s-d propagates, ensuring each subdomain is sufficiently trained given
the equivalent tolerances on both methods. a(bc-set = on, null-set = on), †(width = dt = 0.02), ‡(width = dt
= 0.1).

Model settings Relative L2 Error Training time

T ∈ [0, 1]

PINN 5.40× 10−2 2,030
s-d PINN (n = 10, dS = 1, ic = Cp) + FT 1.43× 10−2 780
w-s PINN (kernel = uniform, width = dt = 0.1)a 1.84× 10−2 1,287
s-d + w-s† PINN 2.37× 10−2 1,806

T ∈ [0, 5]

PINN 9.85× 10−1 15,224
s-d PINN (n = 10, dS = 1, ic = Cp) + FT 1.84× 10−1 3,566
w-s PINN (kernel = uniform, width = dt = 0.5)a 8.12× 10−2 16,262
s-d + w-s‡ PINN 5.15× 10−2 7,493

In Table 7, the results for an instance of stacked-decomposition and window-sweeping are reported
separately and in conjunction with one another. We observe that unmodified PINNs train well for the
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short time domain but encounter training difficulties, shown in Appendix B.4. Although the baseline
PINN trains for T = [0, 1], an improvement in accuracy is still achieved from s-d and w-s PINNs with
well-performing settings. We also note reduced training time in all configurations over unmodified
PINNs. However, we do not observe any benefit in the combination of s-d + w-s for this domain, likely
due to the lower accuracy bound for the network size and tolerances already being achieved by the
methods separately. An increase in training time, therefore, follows as there is more “overhead” cost
by using smaller window-sweeping time steps inside of stacked-decomposition subnetworks.

In contrast, for the more difficult long-time problem, the methods on their own struggle to solve
the problem well, along with unmodified PINNs. While s-d on this large domain is fast, the accuracy is
poor, and w-s alone takes longer to train due to the change in loss tolerance. However, combining both
yields an increase in accuracy while keeping the training time low relative to an unmodified PINN.
For the w-s PINN alone, since the width and dt are large, the L-BFGS optimizer is likely to fail and
cause NaNs. This is similar to why Adam is done at early training for any PINN before L-BFGS;
if the domain change is too large, the optimizer is unstable. In this case, to keep the steps taken
to a consistent 10, the dt = 0.5 is too large and causes optimization issues. Therefore, we perform
500 Adam iterations every time the window-sweeping scheme is propagated to ensure the stability of
L-BFGS optimizer. This additional step also adds training time to the method. This is not necessary
or performed for the w-s‡ setting. Figure 13 shows the point-wise error of the three methods used in
the long-time problem. Aside from overall accuracy differences that can be inferred from the reported
table values, all methods yield the highest errors at the latest time. This shows how important strongly
respecting causality is, as any early deviation will lead to greater deviations later in time, regardless
of the method. As the domain of a problem or the number of collocation points is increases, our
framework yields greater improvements.

Figure 13: Point-wise error for T = [0, 5] reported in Table 7 (A) s-d PINN (B) w-s PINN (C) s-d + w-s‡ PINN

6. Summary

We have introduced a unified framework to describe existing and new causality-enforcing PINN
methods. We have showcased examples in which PINNs and their temporal decompositions can struggle
to train well without modification and how settings under the proposed framework overcome these
issues. Additionally, we introduce adaptive propagation strategies based on a change in loss tolerance,
compared to previous versions of the methods, which use fixed optimization iterations. We achieve
a reduction in training time and therefore improve scalability over an unmodified PINN on problems
without training challenges. We also investigate many nuanced model decisions, such as the transferring
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layer parameters or enforcing boundary conditions, among others, to help guide decision-making. In
future work, we will consider second-order in time problems such as the wave and Boussinesq equations,
which have separate considerations when decomposing. In addition, we hope to adapt our strategies to
second-order problems with only zeroth-order information at the initial and final time. This contrasts
the standard setup of zero and first-order information at the initial condition. This case poses unique
information propagation considerations as the standard causality approach to move forward in time
would not apply.

Acknowledgements: This work was funded under AFOSR MURI FA9550-20-1-0358.

Appendix A. Symbols and Notations

Table A.8: Symbols and Notations

u(·) PDE solution
θ PINN learnable parameters
uθ(·) PINN PDE prediction
R(·) PDE residual
s-d Stacked-decomposition
w-s Window-sweeping
Ni Number of interface points
Nr Number of residual collocation points
Nic Number of initial condition points
Nb Number of boundary points
M Order of Fourier feature encoding
dS Number of sub-networks training at once
n Total number of time-slabs
Ω Spatial domain of interest
T Temporal domain of interest
x Spatial value, x ∈ Ω
t Temporal value, t ∈ T
FT Fine tuning
TL Transfer learning
BC Boundary Conditions
bc Backward-compatibility
IC Initial condition
ic Interface condition

Appendix B. Auxiliary Results

Appendix B.1. Convection: Fine Tuning vs. Transfer Learning

Figure B.14 shows the learnable parameter distributions of each layer in the final time-slab network
for the results reported in Table 5. The respective models in the Table are s-d PINN (n = 10, dS =
1, ic = Cp) + FT and s-d PINN (n = 10, dS = 1, ic = Cp) + TL. We observe that when we freeze
the first two layers in the network during transfer learning, the final three layers must over-adjust to
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compensate for the reduced expressively of the network. This can be seen in the distribution plots
as the model parameter using fine tuning stays around [−1, 1] while the transfer learning increases to
[−4, 4]. In turn, this leads to longer training times for transfer learning compared to fine tuning as
the model with greater expressivity more quickly converges to the solution. In contrast, the model
with frozen layers must go to more extreme parameter values to satisfy the solution. Note that this
observation is only in regard to temporal decomposition with PINNs and in no way is commenting on
the trade-off between fine tuning and transfer learning for other applications.

Figure B.14: s-d PINN (n = 10, dS = 1, ic = Cp) learnable parameter distributions at the end of training for
the final time-slab for results reported in Table 5.

Appendix B.2. Allen-Cahn: Training Dynamics of Stacked-Decomposition & Window-Sweeping

In Figure B.15, the training dynamics are reported for stacked-decomposition and window-sweeping
using settings that recover models of time-marching with fine tuning and bc-PINNs, respectively.
The loss in both jumps as either a new subdomain or subnetwork is added in time-marching or as the
residual subdomain moves forward, leaving the prior subdomain to be considered backward compatible
in bc-PINNs. The differences are that for stacked-decomposition, unless n = dS, the initial conditions
will eventually not be considered in the loss minimization. The information is purely stored and
propagated through later-in-time subdomains and interfaces. With respect to window-sweeping, the
initial condition will always be included during optimization. Conversely, backward-compatibility,
if used, does not occur until after the initial training near the starting time, as seen in the plots.
Since only one network is used in window-sweeping, the residual and, therefore, the prediction will be
continuous, whereas stacked-decomposition will have visible discontinuities at the interfaces. However,
multiple networks have more expressivity than a single one as long as training challenges do not occur
and interfaces are well respected, leading to smaller residuals. This is particularly true at the end of
time, as the residuals here contribute minimally to a global network but significantly to a local one.
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Figure B.15: Plots of loss as a function of training epochs and the full domain PDE residual at the end of
training for results reported in Table 6 (Top) s-d PINN (n = 10, dS = 1, ic = Cp) + FT on the Allen-Cahn
problem. (Bottom) w-s PINN (kernel = “uniform”, width = dt = 0.1)c on the Allen-Cahn problem.

Appendix B.3. Allen-Cahn: Causal Weights

A loss tolerance was used to propagate all stacked-decomposition and window-sweeping methods that
eliminate the fixed epoch conditions and vastly reduce computational cost. To fairly compare accuracies
and training times, the loss tolerance is consistent between settings. A value of 10−7 is used for Allen-
Cahn, for which a lower tolerance increases training time with no improvement to accuracy. A higher
tolerance decreases accuracy, since this trade-off is discussed throughout the manuscript. We find that
for higher causality parameters such as ε = (10, 100) described in the original paper, the change in
loss reaches below 10−8 within a few hundred iterations. For smaller values, the method does not
strongly enforce causality enough to overcome the training challenge. This sensitivity is addressed in
the original paper by using a cascading ε with increasing steepness. In effect, this sweeps across the
domain five times instead of once, which is not in the scope of our study, although our window-sweeping
method can be used for multiple sweeps in the same way.
Therefore, we provide self-contained results for this setting, so the reported values are not misinter-
preted as advocating for or against a setting. The main contribution of the paper is to provide a
unified framework in which many methods can be described, improve scalability, and generally over-
come unmodified PINNs training challenges. To this end, the change in loss tolerance is removed, and
a termination condition of miniwi > δ = 0.95 is used.
Although causal weights appear continuous, due to its implementation in [23], the scheme is also
broken up into time snapshots like any other kernel in our window-sweeping method. This is due to
the loss being formed by the mean of the mean squared error for each snapshot, unlike the standard
PINN residual loss, which is the mean squared error of all points in the domain. Therefore, this
formulation acts differently than the weight masks we employ in the linear and error function kernels
of window-sweeping, where all the points are considered separately.
For non-grid sampling, we have attempted to run the original implementation; however, when weighting
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without snapshots, spatial correlation is broken, making the method fail. Therefore, we adapt the
method to non-grid sampling, in this case, Latin Hypercube sampling (LHS), by treating it similarly
to a grid in terms of the algorithm. Given a 100× 100 grid on T = [0, 1], a sequence of 100 weights is
generated, representing an equidistant sampling of 100 spatial points at every 0.01 increment in time.
For LHS, we simply order the set of 10,000 points in time and separate them into 100-point sets of size
100 in time. This gives a similar weighting scheme to grid sampling since the mean over each of the
100 weights is used, whereas before, there were individual weights for each point. This modification is
not restricted to grids and still has spatial correlation if the sampling is dense enough.
In Table B.9, window-sweeping with causal weights kernel is used to solve the Allen-Cahn problem for
a single pass of ε = 10. The modification made to alleviate the grid sampling restriction has not had
any adverse effect on the method’s performance. Additionally, by utilizing the null-set segmentation,
which has been applied by only adding future sets (out of 100) when miniwi > 0.05, we have reduced
the training time by not predicting the residual of points with negligible weights later in time. This can
be extended to using the bc-set segmentation to further improve training time, as shown for the other
window-sweeping kernels. Under these settings, we do not achieve the 10−3 relative L2 errors reported
in the original paper due to several factors. First, we use a less restrictive termination condition on
δ such that the training time is in the same realm as the other kernels, which use the change in loss
tolerance. We find that the difference in training time between δ = 0.95 and 0.99 is great. The success,
in terms of accuracy, not cost, of the causal weights reported for Allen-Cahn in [23] is likely largely
due to the 10-100× increase in iterations 10-100× increase in network parameters θ as well as other
modifications. All window-sweeping kernels reported achieving comparable results under the setting
chosen. We do not make any assertion as to which method performs the best in the extreme training
limit in terms of accuracy or cost, as that is not within the scope of this study.

Table B.9: Table of L2 relative error and training time for different window-sweeping settings. All methods use
M = 10 unless otherwise stated. Note that window-sweeping is abbreviated w-s. a(bc-set = off, null-set = off),
b(bc-set = off, null-set = on)

Model settings Relative L2 Error Training time
w-s PINN (kernel = causal weights, ε = 10)a + Grid sample 3.72× 10−2 1,495
w-s PINN (kernel = causal weights, ε = 10)a 3.37× 10−2 1,452
w-s PINN (kernel = causal weights, ε = 10)b 4.03× 10−2 967

Appendix B.4. KdV (long-time) PINN Prediction

In Figure B.16, while the PINN solves the KdV problem for T = [0, 1], it fails for T = [0, 5]. In-
terestingly, the issue is not one of the zero-solution as in the long-time Convection problem but is in
fact the incorrect propagation challenge such as in the Allen-Cahn problem. This is likely due to the
traveling wave in the convection problem being extended due to the periodic conditions. While that
feature is not present in the KdV problem, the increased training difficulty of a larger temporal domain
manifests itself with incorrect information propagation instead.
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Figure B.16: PINN prediction for the long-time KdV problem in Section 5.3, representative of the incorrect
propagation training challenge.

Appendix C. Fourier Feature encoding (C∞ periodic conditions)

Following the work from [41, 23], we can exactly enforce C∞ periodic boundary conditions by applying
a Fourier feature encoding to the spatial input of the network. The spatial encoding is

v(x) = {1, cos(ωx), sin(ωx), ..., cos(Mωx), sin(Mωx)} (C.1)

where ω = 2π
L , L = xmax−xmin, and M is a non-negative integer representing the sinusoidal frequency

of the input. A higher M leads to even higher frequency components in the output after passing
through nonlinear activation functions, which may be helpful in PDE problems with high-frequency
solution components such as the Allen-Cahn problem considered here. All choices of M are shown to
be C∞ periodic in Lemma 2.1 of [41].
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