
Multifidelity Modeling for Physics-Informed Neural
Networks (PINNs)

Michael Penwardena, Shandian Zheb, Akil Narayanc, Robert M. Kirbya

aSchool of Computing and Scientific Computing and Imaging Institute, University of Utah,
Salt Lake City, UT

bSchool of Computing, University of Utah, Salt Lake City, UT
cDepartment of Mathematics and Scientific Computing and Imaging Institute, University of

Utah, Salt Lake City, UT

Abstract

Multifidelity simulation methodologies are often used in an attempt to judi-

ciously combine low-fidelity and high-fidelity simulation results in an accuracy-

increasing, cost-saving way. Candidates for this approach are simulation method-

ologies for which there are fidelity differences connected with significant compu-

tational cost differences. Physics-informed Neural Networks (PINNs) are candi-

dates for these types of approaches due to the significant difference in training

times required when different fidelities (expressed in terms of architecture width

and depth as well as optimization criteria) are employed. In this paper, we pro-

pose a particular multifidelity approach applied to PINNs that exploits low-rank

structure. We demonstrate that width, depth, and optimization criteria can be

used as parameters related to model fidelity, and show numerical justification

of cost differences in training due to fidelity parameter choices. We test our

multifidelity scheme on various canonical forward PDE models that have been

presented in the emerging PINNs literature.

Keywords: Physics-Informed Neural Networks (PINNs), multifidelity,

surrogate modeling, reduced-order modeling

Email addresses: mpenwarden@sci.utah.edu. (Michael Penwarden), zhe@cs.utah.edu
(Shandian Zhe), akil@sci.utah.edu (Akil Narayan), kirby@cs.utah.edu (Robert M. Kirby)

Preprint submitted to Journal of Computational Physics June 28, 2021

ar
X

iv
:2

10
6.

13
36

1v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
5

Ju
n

20
21

1. Introduction

Engineering is replete with situations in which both low-fidelity (even “back

of the envelope”) models and high-fidelity models are available to aid in decision-

making. It is often the case that the discrepancy between low-fidelity and high-

fidelity is associated with a corresponding difference in computational cost: the

low-fidelity simulation is far cheaper to compute than a high-fidelity simulation.

These situations have motivated extensive research into multifidelity methods:

those methods that attempt to judiciously combine low-fidelity and high-fidelity

simulation results in an accuracy-increasing, cost-saving way. A comprehensive

review of recent advances and works in the area of multifidelity methods can be

found in the manuscript by Peherstorfer et al. [1].

Multifidelity construction of surrogate models for a diverse range of systems

have been successfully implemented and presented in the literature. In many

cases a well-established continuous relationship with respect to a discretization

parameter exists, describing the convergence of the low-fidelity model to high-

fidelity one. Hence, the notion of “fidelity” often represents a discrepancy of

the low-fidelity model relative to the high-fidelity one, and accounts for amount

of discretization coarsening, geometrical simplification, and underlying physical

model complexity. Time-step size with theoretical guarantees used for canon-

ical ODEs [2], time-step size in molecular dynamics simulation [3], quadratic

frequency modulation in frequency-modulated trigonometric functions [4], fi-

nite element mesh size in acoustic horn problems [5], finite element mesh size

in topological optimization problems [6, 7], finite volume discretization for heat

driven cavity flow [8], aerodynamic model simplification in the parametric study

of NACA airfoils [9] and amount of coarsening of the Eulerian and Lagrangian

resolutions for the study of irradiated particle-laden turbulence [10] are among

the examples of fidelity parameters used in the literature for the purpose of

multifidelity construction of surrogate models. In all these cases, both high-

and low-fidelity models attempt to model the same problem, and a direct rela-

tionship between the two can be perceived; the difference between the models

2

in these cases is often a numerical discretization parameter that is chosen dif-

ferently so that the low-fidelity model is less expensive, but also less accurate.

Thus, in most of these cases the convergence of the low-fidelity model to the

high-fidelity model can be proven analytically under refinement of discretiza-

tion parameters and often there is a hierarchical connection between low- and

high-fidelity models. For the cases of geometrical and physical simplifications,

e.g., the composite beam example in [8], the low-fidelity model is indeed a sim-

plified surrogate of the high-fidelity model, the latter of which includes more

assumptions about the underlying physics of the system. Furthermore, one can

even apply such methods when the fidelity is represented by the difference in

quantized model hierarchies within discrete systems [11].

It is against this backdrop that we consider the extension of the low-rank

parametric multifidelity approach of [4, 5] to Physics-informed Neural Networks

(PINNs) [12, 13, 14]. PINNs represent a new “meshfree” discretization method-

ology built upon deep neural networks (DNNs), and capitalize on machine learn-

ing technologies such as automatic backward differentiation and stochastic opti-

mization [15]. The marriage of computational modeling and machine learning is

predicted to transform the way we do science, engineering and clinical practice

[16].

In this paper, we adapt a multifidelity approach for parametric problems

to PINNs, using the width and depth of the network architecture (for fixed

activation functions) as well as optimization criteria as the means to determine

fidelity levels. We provide theoretical discussions and experiments to motivate

our width, depth and optimization criteria choices and their connection with

fidelity. We also discuss some possible pitfalls of this connection. In regards to

the connection between fidelity and computational cost: As the width and depth

of a DNN is increased, the training time may increase significantly [15]. Hence

we posit that PINNs is an admissible, if not ideal, candidate for multifidelity

approaches.

The paper is organized as follows: In Section 2, we provide an overview of our

low-rank multifidelity approach. In Section 3, we first review the original PINNs

3

collocation approach and provide a brief summary of current and ongoing PINNs

efforts within the field. Although we focus on the application of our multifidelity

approach to the collocation version of PINNs, nothing precludes the extension

of our work to other PINNs variants upon appropriate evaluation and minor

modifications. In Section 4, we present our multifidelity PINNs approach applied

to forward problems that have been presented in the emerging PINNs literature.

Furthermore, we discuss the limitations and assumptions within our approach

with present open theoretical and methodological challenges to the PINNs and

machine learning communities. We conclude in Section 5 with a summary of

our work and a discussion of current challenges and potential future avenues of

inquiry and expansion of the concepts presented in this work.

2. Overview of our Low-rank Multifidelity Approach

Consider a low-fidelity and a high-fidelity model denoted, respectively, as,

gL : D → Rm, gH : D → RM , (1)

where D ⊂ Rd is a d-dimensional parameter space. In the context of parame-

terized partial differential equations (PDEs), we view gL and gH as solvers or

emulators, mapping a common parameter space D to separate output spaces of

different dimensions (e.g., as in coarse/fine or multiscale solvers). We make no

assumptions, at this stage, on how m and M are related, but typically m�M .

For a given parameter p ∈ D, we also make no explicit assumption about the

physical meaning or interpretation of the model responses gL(p) versus gH(p);

in particular we do not make formal assumptions ensuring gL(p) ≈ gH(p). In

Section 3, we will provide some insights on how this setup can be realized in a

PINNs framework.

We are interested in developing a multifidelity framework for PINNs, where

gL and gH aim to model the same high-level system, but with different levels of

accuracy or fidelity. In particular we assume the ordered hierarchy that gH is a

more expensive, but also more trusted predictor compared to gL. For PINNs,

4

we will use the width and depth of the network as well as optimization criteria,

which are surrogates for expressivity and training optimality respectively, to

define fidelity. In order to tackle this situation, our proposal is to use the

methodology from [4], the use of which has subsequently been refined [5, 2, 17].

This procedure is relatively simple – containing the following high-level steps:

Step 1: Discretize parameter spaceD withK � 1 samplesDL := {p1, . . . , pK}.

Step 2: Evaluate gL on the K points DL, and use this to identify a subset

of k � K points DH = {pi1 , . . . , pik} ⊂ DL – the so-called “important”

points in [4].

Step 3: Evaluate gH at the k points in DH .

Step 4: Construct a multifidelity emulator using stored low and high fi-

delity information at the “important” points.

Once these steps are completed, one has an emulator for the high-fidelity model

constructed with the cost of dense sampling of the low-fidelity model and very

few (k) high-fidelity samples. The evaluation of the emulator at any given

parameter p costs a single low-fidelity model evaluation, but is an emulator for

the high-fidelity model gH . This is a low-rank procedure because the selection

of points in Step 2, and the constructions in Step 4, exploits low-rank structure

in certain matrices. We provide the details now.

The choice of DL is problem-dependent; for example, K values uniformly

sampled at random from the parameter space D is often used. Once the low-

fidelity model gL is evaluated at every point in DL, a K ×K Gram matrix GL

is constructed with the following entries,

(GL)i,j = 〈gL(pi), gL(pj)〉 i, j = 1, . . . ,K, (2)

where 〈·, ·〉 is often chosen as the standard Euclidean inner product on the

low-fidelity output space Rm, corresponding to a linear kernel on two input

features. Alternative inner product definitions, or choices of kernels, can be

used depending on the properties of the Gramian that are desired; Razi et al.

studied the impact of different kernels in comparison to the standard linear

kernel above [18].

5

Note that the above is identical to formation of GL via

GL = V T
L VL, VL :=

(
gL(p1) gL(p2) · · · gL(pK)

)
∈ Rm×K . (3)

The procedure by which the k “important” pointsDH are identified fromDL uti-

lizes the matrix GL (or, equivalently, VL). Selecting “important” rows/columns

from a matrix is a matrix subset selection problem that is related to low-rank

approximation.

There are a number of procedures that provides selection tools for most im-

portant k indices from a Gramian matrix. Among the most commonly used

selection approaches in the literature include linear algebraic strategies, such

as pivots chosen by a column-pivoted QR decomposition of VL [4], or equiva-

lently the pivoted Cholesky decomposition of the Gram matrix GL [5], the LU

factorization [19]; statistical strategies such as leverage score sampling meth-

ods [20, 21]; and sparsity-promoting group matching methods [22, 21]. In this

paper, we choose to use pivots identified from a pivoted Cholesky decompo-

sition for this purpose: The procedure is easy to understand, readily imple-

mented, available on many computational platforms, computationally efficient,

and in our experience performs competitively with alternative methods [21].

The Cholesky approach forms the following pivoted Cholesky decomposition

PTGLP = RTR, R =

R11 R12

0 0


where R11 is a square matrix, and P ∈ RK×K is a permutation matrix whose en-

tries identify column pivot indices in the decomposition process. We label these

indices as i1, . . . , iK , which are a permutation of the set (1, . . . ,K). Formally,

we have

(i1, . . . , iK)T = (1, 2, . . . ,K)TP,

where (i1, . . . , iK)T is a row vector of size K. If GL is positive semidenfinite of

rank s < K, the matrix R11 is an s × s upper-triangular matrix with positive

diagonal elements, and R12 is an s × (K − s) matrix. However, these matrices

6

are not crucial for our future discussion. It is well-known that the pivots chosen

in this way are equivalent to those produced from a column-pivoted QR decom-

position of VL [23]. We have framed this discussion in the context of storing the

full matrix GL and computing the superfluous R11 and R12 factors, but one can

construct algorithms that need not store the potentially large matrix GL, and

compute only the pivots in P ; see, e.g., [4].

The multifidelity procedure chooses DH from the pivots identified above:

DH = {pi1 , . . . , pik} .

The number k, representing the number of high-fidelity model evaluations that

must be run, is chosen based on the available computational budget for the high-

fidelity model. Because of the expense of the high-fidelity model, we frequently

have that k is O(10) in practice. Next, we compute the high-fidelity model

gH (pil) at these points; in situations of interest, this k-fold query of the high-

fidelity model is typically the most expensive step of the procedure. Finally, the

multifidelity approximation g̃H can be constructed from these simulations:

gH(p) ≈ g̃H(p) :=

k∑
l=1

gH (pil) cl(p), (4)

where {cl(p)}kl=1 are coefficients computed via a least-squares projection from

the low-fidelity model:
(GL)i1,i1 · · · (GL)i1,ik

...
. . .

...

(GL)ik,i1 · · · (GL)ik,ik




c1(p)
...

ck(p)

 =


〈gL(p), gL(p1)〉

...

〈gL(p), gL(pk)〉

 .

(5)

The coefficients cj(p) correspond to weights in a least-squares approximation

of gL(p) using the basis {gL(pij)}kj=1. The multifidelity technique therefore

computes least-squares coefficients from the low-fidelity model, and uses these

coefficients in the high-fidelity prediction. The coefficients {cl(p)}kl=1 can also

be computed directly from low-fidelity snapshots as,

c(p) = V †KgL(p) ∈ RK , VK := (gL(pi1), . . . , gL(piK)) ∈ Rm×K ,

7

where A† is the Moore-Penrose pseudoinverse of A [24]. An alternative to this

approach would use least-squares to project the full low-fidelity ensemble onto

the k important points, involving an (m× k) version of (5).

Because (5) is a square system, the approximation g̃H is interpolatory at the

important points: g̃H(p) = gH(p) for every p ∈ DH . The evaluation of g̃H can

be accomplished with a single evaluation of the low-fidelity model gL, which is

required to form the right-hand-side of (5).

The overall accuracy of this approach, i.e., the efficacy of (4), depends on

the discrepancy between GL and GH , but the actual model responses gL and gH

need not have similar outputs [4]. Thus snapshot proximity, i.e., gL(p) ≈ gH(p),

is not necessary for success of this procedure. Instead, we require a more subtle

condition that the parameter variation of gL is similar to that of gH . See [4] for

details and theoretical analysis. A practical procedure to estimate the error of

this approach is provided in [8], and in Section 3.3.1 we provide futher discussion

regarding the accuracy of (4).

3. Physics-Informed Neural Networks (PINNs)

In this section, we first present a review of Physics-Informed Neural Networks

(PINNs), with an emphasis on the original collocation PINNs approach which

we use in this work. We also provide a brief summary of current and ongoing

PINNs efforts within the field – many if not all of which might benefit from the

multifidelity approach presented herein. We then present the application of our

proposed multifidelity approach to PINNs. We first provide a summary of the

theoretical considerations upon which our work is built, and subsequently we

provide a summary of the implementation considerations that are required.

3.1. Review of Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) were originally proposed by

Karniadakis and co-workers [12, 13, 14] as a neural network based alternative

to traditional PDE discretizations. In the original PINNs work, when presented

8

with a PDE specified over a domain Ω with boundary conditions on ∂Ω and

initial conditions at t = 0 (in the case of time-dependent PDEs), the solution

is computed (i.e. the differential operator is satisfied) as in other mesh-free

methods like RBF-FD [25, 26] at a collection of collocation points. First, we

re-write our PDE system in residual form as R(u) = f −N (u) for an arbitrary

differential operator N (u) which may be a function of both space and time.

The PINNs formulation is expressed as follows: Let ũ(x, t; w) denote a neural

network predictor with inputs (x, t) and parameters/weights w that are the de-

grees of freedom of the network collected from its associated width and depth.

In this paper, we assume w is flattened and represented as a vector. Throughout

the discussion, the activation function of the network is given and fixed. The

network is trained based finding the weights w that minimize the loss function:

MSE = MSEu +MSER (6)

where

MSEu =
1

Nu

Nu∑
i=1

‖ũ(xiu, t
i
u; w)− ui‖2 (7a)

MSER =
1

NR

NR∑
i=1

‖R(ũ(xiR, t
i
R))‖2 (7b)

where {xiu, tiu, ui}
Nu
i=1 denote the initial and boundary training data on u(x, t)

and {xiR, tiR}
NR
i=1 specify the collocation points for evaluation of the collocating

residual term R(ũ). The loss MSEu corresponds to the initial and boundary

data while MSER enforces the structure imposed by the differential operator at

a finite set of collocation points. This loss-function modified minimization ap-

proach fits naturally into the traditional deep learning framework [15]. Various

optimization choices are available including stochastic gradient descent (SGD),

L-BFGS, etc. The result of applying this procedure is a neural network ũ(x, t; w)

that attempts to minimize through a balancing act the strong imposition of the

initial and boundary conditions against minimization of the PDE residual. Note

9

that this statement does not immediately connect to the approximation error

‖u(x, t)− ũ(x, t; w)‖; however, consistency and convergence are items of current

research (e.g. [27]).

Beyond the initial collocation version of PINNs expressed above, Karniadakis

and collaborators have extended these methods to conservative PINNs (cPINNs)

[28], variational PINNs (vPINNS) [29], parareal PINNs (pPINNs) [30], stochas-

tic PINNs (sPINNs) [31], fractional PINNs (fPINNs) [32], LesPINNs (LES

PINNs) [33], non-local PINNs (nPINNs) [34] and eXtended PINNs (xPINNs)

[35].

In this work, we will focus on application of the original collocation PINNs

approach; however, the work presented herein can be applied to many if not all

of these variants.

3.2. Expressivity of neural networks

PINNs are a special type of neural network (NN) formed from compositions

of affine maps and componentwise activation functions. The number of terms

in the composition is the depth of the network, each intermediate state in the

composition is a layer, and the number of outputs in each intermediate affine

map determines the width of each layer. A PINN regressor ũ attempts to emulate

the map (x, t) 7→ u(x, t). Solutions to nonlinear PDEs over large spatial and/or

time scales result in very complex behavior of u as a function of the inputs

(x, t), and the expressivity of a NN allows us to understand the NN’s theoretical

potential for faithfully predicting such complex behavior. When the activation

function of the NN is piecewise linear, such as with the ReLU activation function,

then the output ũ is a piecewise linear function of (x, t), and the expressivity of

an NN in this case is often measured as the number of (x, t) connected geometric

regions over which ũ is linear.

Consider a fully connected NN with L hidden layers each of width W . Many

recent studies have established that it is possible for the number of linear regions

in such an NN to grow proportionally to WL [36, 37]. I.e., growth is exponen-

tial in the depth and algebraic in the width. This implies that the NN can

10

theoretically express functions of exponentially growing complexity as the num-

ber of layers is increased, or of algebraically growing complexity by increasing

width. Futher refinements of this theme have gained traction in the NN lit-

erature, including results that articulate expressive limitations with increasing

depth [38, 39, 40, 41].

3.3. A multifidelity method for Physics-Informed Neural Networks

The theoretical expressivity of NN’s provides one way to understand an

accuracy-efficiency tradeoff with PINNs: NN architectures with larger width

and/or depth have the potential to capture more complex PDE solutions, but

this larger architecture is also more expensive to train through backpropagation

and can require larger NR and Nu in (7). Viewed in this light, a natural way

to define fidelity for PINNs is through the network architecture. High-fidelity

PINNs are those that have large width and/or depth, and low-fidelity PINNs

have smaller width and depth.

The above interpretation of the accuracy-efficiency tradeoff as a notion of

fidelity is based on theoretical insights about expressivity, but the practical reali-

ties surrounding expressivity are more complex: There is a large gap between the

theoretical expressive potential of NN’s and the realized expressivity of trained

NN’s in a practical setting. In particular, the exponentially expressive potential

of increasing-depth networks is not frequently observed in practice, and with

appropriate probabilistic models for weights of the network the average expres-

sivity behaves linearly with respect to network depth [42]. In this sense, those

network weight configurations that lead to exponentially increasing expressive

power appear to be pathological. This reveals that the numerical optimization

that leads to a trained PINN can also affect accuracy. Stricter optimization

criteria, such as smaller first-order optimality tolerances or larger maximum it-

eration counts, lead to a smaller MSE loss, and potentially to PINNs that are

trained better.

Acknowledging that a practical training procedure that ensures monotonic

accuracy with respect to NN width/depth and/or optimization criteria is not

11

yet readily available, we posit that PINNs that are low-fidelity have simpler (less

expressive) network architectures, and have looser optimization criteria. In con-

trast, high-fidelity PINNs have more complex architectures (higher expressivity)

and stricter optimization criteria.

In this way, we can form a bi-level fidelity hierarchy with PINNs emulators.

Let ũL(x, t; wL) denote a trained low-fidelity PINN, and let ũH(x, t; wH) de-

note a trained high-fidelity PINN, where wL and wH denote the weight vectors

associated to the high- and low-fidelity network architectures and optimization

criteria. The low-fidelity PINN has an architecture with a smaller number of

weights than the high-fidelity PINN, i.e., dim wL � dim wH . This is typically

realized by constructing the high-fidelity PINN to have to have a larger width

and/or depth than the low-fidelity PINN that also yields larger theoretical ex-

pressivity. Since ũL is less expressive than ũH , it requires less training time

but also suffers from limited predictive power. The low-fidelity PINN ũL is also

trained with looser optimization criteria than ũH . Despite the practical caveat

about tying architecture and optimization criteria to PINNs accuracy, we ob-

serve that increasing width and depth and strengthening optimization criteria

does deliver a more accurate PINNs emulator, see Table 1 in Section 4.5. The

particular choices of our network width, depth, and optimization criteria are

provided in sections 3.3.3 and 4.

In the parametric multifidelity problem of Section 2, in order to construct a

PINN for every parameter in the discretized parameter spaceDL = {p1, . . . , pK},

we must train K PINN’s solutions. This is perhaps feasible for ũL, whose ar-

chitecture is simpler and optimization criteria are looser, but not for the more

expensive uH . To address this difficult, we employ a multifidelity procedure.

Let Ξ ⊂ Ω × [0, T] denote the spatiotemporal domain of the PDE. (We

present the methodology in the general spatiotemporal case; for a stationary

PDE problem, we set Ξ = Ω.) We let Ξ̃ be a set of test points for the PINN,

i.e., a size-P discretization of Ω× [0, T] that are distinct from the PINN training

set (i.e. collocation points) in this paper. Then the parameter models gL and

gH are defined as the trained PINN at parameter values p evaluated on the grid

12

Ξ̃,

gL(p) := (ũL(xi, ti; wL(p)))
P
i=1 ∈ RP , gH(p) := (ũH(xi, ti; wH(p)))

P
i=1 ∈ RP ,

(8)

where wL(p) and wH(p) are the weights computed from training the low- and

high-fidelity PINN, respectively, and the points (xi, ti) are the spatiotemporal

points that comprise Ξ̃,

Ξ̃ = {(xi, ti)}Pi=1 . (9)

Note that in this context, gL(p) and gH(p) are both vectors in P -dimensional

space, so that in the notation of Section 2 we have m = M = P . While one

could choose different test grids for uL and uH , we typically take Ξ̃ to be a

relatively dense and equispaced grid so that with an appropriate normalization

the linear kernel/inner product produces an approximation to a continuous L2

inner product,

〈gL(p), gL(q)〉 ≈
∫

Ω×[0,T]

ũL(x, t; wL(p))ũL(x, t; wL(q))dxdt, (10)

and similarly for the high-fidelity model gH .

Given this multifidelity surrogate on weights in high-fidelity space, we gener-

ate a multifidelity PINN (which we call mfPINN) with high-fidelity expressivity

from the procedure in Section 2:

ûH(Ξ̃; p) := g̃H(p), (11)

which is an approximation to ũH(Ξ̃; wH(p)) that is produced without the need

to train wH(p). We recall that computing g̃H(p) requires the single low-fidelity

evaluation gL(p), i.e., a single training of ũL at parameter p. If the cost of train-

ing ũH is much larger than the cost of training ũL, then an accurate surrogate

ûH(p) can therefore be delivered with the training cost of only ũL.

Remark. The current state-of-the-art theory in DNNs provides a priori con-

sistency statements about PINN solutions. However, a complete convergence

13

theory remains as a topic of future work. Correspondingly, the results shown

in this paper do not imply that every increased combination of depth and/or

width of the network leads to improved accuracy of the DNN solution. The

interplay of fidelity (expressivity) and optimization choices is a current area of

research.

3.3.1. Theoretical Considerations

Theoretical analysis for the particular low-rank multifidelity surrogate of

Section 2 is developed in [4, 2, 8]. The core requirements are that (i) the

manifold of vectors
{
gH(p)

∣∣ p ∈ D} is low-rank, and (ii) that one has an inner

product proximity statement of the form,

〈gL(p), gL(q)〉 ≈ 〈gH(p), gH(q)〉 , (12)

where 〈·, ·〉 is the standard Euclidean inner product on vectors as in (2) and p and

q denote positions within the sampled parameter space. In particular, it is not

necessary that gL(p) be a good approximation to gH(p). Instead, one requires

similar parametric dependence in the maps p 7→ gL(p) and p 7→ gH(p). We recall

that with the dense grid Ξ̃, then the inner product acting on evaluations of gL

approximates the continuous L2(Ω× [0, T]) inner product, cf. (10). Under the

assumption that ũL and ũH are approximations of appropriate accuracy to the

true PDE solution u, then analysis can be carried out by exploiting (12) and

the relationship to continuous L2 norms (10) to conclude that the multifidelity

procedure converges. For example, such an analysis exploits small Kolmogorov

n width of the manifold induced by gH [4], and can utilize accuracy estimates

of ũL and ũH relative to u [2]. Many of the previously mentioned analysis

techniques are theoretical in nature and can be difficult to apply in complex

settings. Alternatively, the approach in [8] provides a computational strategy

that produces model-independent algorithmic bounds on quantities similar to

(12) that lead to estimates for error of g̃H .

14

3.3.2. Implementation Considerations

The multifidelity approach laid out in Section 2 contains four steps, sum-

marized as: (1) sample the parameter space; (2) evaluate the low-fidelity model

at the aforementioned samples and decide at which locations one should run

the more costly high-fidelity model; (3) evaluate the high-fidelity model on the

subset of “important” points; and lastly (4) use the set of low- and high-fidelity

simulations to construct a multifidelity emulator. This multifidelity emulator,

when queried at a new (not previously evaluated) location within the parameter

space requires the evaluation of only the low-fidelity model and the new loca-

tion combined with a computationally efficient manner of augmentation (which

is significantly cheaper than evaluation of the high-fidelity model outright) to

provide an updated fidelity response.

Based upon the theoretical considerations presented above, only Step (2) in

the multifidelity procedure requires systematic modification. Implicit in Step

(2) is the decision as to what fidelity means in the context of this approach

and how is it tuned. In the case of PINNs, we have selected width and depth

of the neural network architecture (with fixed activation functions) as the our

adaptable fidelity hyperparameters.

3.3.3. Algorithmic Complexity

To aid in evaluating the algorithmic complexity and reproducibility of our

approach, we provide Algorithm 1. For this algorithm we define the notation

for the centriod of domain D as pC . The main considerations when evaluating

the cost of our approach are the sizes K and k of the low and high fidelity

sample sets respectively, and the computational costs of evaluating gL and gH

associated with a PDE. Given that it is often the case that cost of gH is much

greater than the cost of gL), minimizing k provides the greatest cost savings in

our approach.

Remark. The optimization process for DNNs is high dependent on the ini-

tial state of the weight matrix that is used [15]. The non-convex nature of

15

Algorithm 1 Multifidelity PINNs Method

Given appropriate set-up information (i.e. domain discretization Ξ̃, low-

fidelity parameter space sampling DL, PDE initial and boundary conditions,

low & high-fidelity sample sizes K & k, PINN hyper-parameters (size and

optimization) for ũL & ũH etc.)

Assume ||u−ũL||2
||u||2 > ||u−ũH ||2

||u||2

Assume ũL training time < ũH training time

Store trained weights wL(pC) from ũL(Ξ̃;wL(pC))

for n = 1 to K do

Initialize ũL weights wL(pn) with wL(pC)

Store trained ũL(Ξ̃;wL(pn)) solutions

end for

Compute Gram matrix GL as defined in (2)

Set DH by selecting k points in DL identified from the first k pivots in the

pivoted Cholesky decomposition of GL as described in Section 2

Store trained weights wH(pC) from ũH(Ξ̃;wH(pC))

for n = 1 to k do

Initialize ũH weights wH(pin) with wH(pC)

Store trained ũH(Ξ̃;wH(pin)) solutions

end for

To use multifidelity method: solve ũL at any point p, then perform the multi-

fidelity procedure in (4) & (5) using the stored ũL & ũH solutions to construct

ûH(Ξ̃; p) which emulates ũH(Ξ̃;wH(p))

16

the optimization problem often leads to many local minima, all of which have

very similar loss function evaluations. In some applications like metalearning

of PINNs, smooth transitions in the weight matrices across parameterized runs

is desired [43]. In this work, we have initialized our weight matrices by first

computing a PINN solution at the midpoint of the parametric domain and then

using that weight matrix as initialization for all subsequent parametric point

evaluations.

In regards to optimization, all runs (both low and high) are initially opti-

mized with 500 epochs using the Adam version of stochastic gradient decent

(SGD) with a learning rate of 10−3. This is to help get in the vicinity of a

loss function minimum before using the more precise L-BFGS optimizer, which

has been shown to aid the consistency of optimizing DNNs as well as PINNs.

Without doing employing this strategy, we encountered more “bad” runs where

using only L-BFGS does not optimize well.

In the context of optimization criteria and in terms of L-BFGS, we specify

that for low-fidelity runs the maximal number of iterations per optimization step

is 5000, the termination tolerance on a first order optimality condition is 10−6,

and the termination tolerance on weight vector changes is 10−9. For high-fidelity

runs, these are 10, 000, 10−9, and 10−12 respectively. We found that this helps

increase the accuracy and time differences between low and high-fidelity which

give more distinct results. (We again emphasize that PINNs, and DNNs in

general, do not in practice always yield higher accuracy with a more expressive

architecture even with a very large amount of data.) As mentioned earlier, as

a pre-optimization step, we initialize the weights of the PINN with the final

weights of a PINN run at the center of the PDE hyper-parameter range for low

and high respectively.

4. Results and Discussion

In this section, we demonstrate the efficacy of our multifidelty approach on

four forward PDE problems in one and two spatial dimensions: 1D Burgers’

17

equation, a 1D nonlinear heat equation, the 2D nonlinear Allen-Cahn equation,

and a 2D nonlinear Diffusion-Reaction equation. These examples are extensions

of the test problems proposed in [12, 44]. For all the PINNs architectures

used below, we employ fully-connected feed-forward neural networks with tanh

activation functions. There are two types of snapshots spaces here: (i) the

Burgers’ and (nonlinear) Heat equations in which we have a spatial and temporal

dimension, and the (ii) Allen-Cahn and Diffusion-Reaction equations in which

we have two spatial dimensions. For the former, the test set of points Ξ̃ is a

uniform grid of size 256× 100 in space and time respectively. For the latter we

use a uniform grid of size 128 × 128. These test points are where we compare

between the exact solution and the PINN solution. To train the PINN we use

100 uniformly sampled boundary/initial value points for the MSEu portion of

the loss, and 10, 000 collocation points using Latin hypercube sampling (LHS)

for the MSER portion as described in Section 3.

4.1. 1D Burgers Equation

We consider the following 1D viscous Burgers equation:

∂u

∂t
+

1

2

∂

∂x

(
u2
)

= ν
∂2u

∂x2
(13)

on (x, t) ∈ Ξ = [−1, 1]× [0, 1] with the viscosity ν ∈ [0.005, 0.05] and initial con-

dition u(x, 0) = − sin(xπ). Our parameter in this example is the viscosity, i.e.,

p = ν. For evaluation of the error, we compute the exact solution derived using

Cole’s transformation computed with Hermite integration [45]. Our sampled pa-

rameter space DL is constructed with K = 50 LHS points, and the low-fidelity

PINN ũL has 2 hidden layers each of width 5. Based upon our multifidelity pro-

cedure, we evaluate k = 10 high-fidelity PINNs samples, chosen by the pivoted

Cholesky decomposition of the low-fidelity snapshot matrix. The high-fidelity

PINN ũH consists of 5 hidden layers of width 10. Using the collected low- and

high-fidelity ensembles, we can perform the multifidelity procedure on any fu-

ture low fidelity runs to evaluate the multifidelity emulator ûH . For this case

with one PDE parameter in the Burgers’ equation, we generate test points over

18

100 uniformly sampled points and compare to the exact solution to generate the

plot in Figure 13.

Figure 1: Line plot of the log (base 10) relative error between the exact solution and PINN

solution at a given parameter, in this case viscosity as defined in Equation 13. Note that the

multifidelity emulator error is sandwiched between the low and high fidelity runs, as would be

expected. This behavior is not guaranteed if the high-fidelity PINNs are inaccurate compared

to the low-fidelity ones, but this depends on the formulation of the problem attempted. If it

is a well posed problem with well chosen parameter ranges, low and high-fidelity DNN sizes,

etc. then this behavior is frequently observed.

The results in Figure 1 show that low fidelity accuracy can be enhanced

with this multifidelity procedure, if one invests in training a modest number of

higher-fidelity PINNs. We also observe that the relative error decreases with

increasing viscosity, which aligns with expectations that small viscosity corre-

sponds to regimes where shocks can form, which are generally more difficult

to approximate. The red and blue dots represent the k = 10 important pa-

rameters locations selected by the multifidelity procedure. We observe that the

pivoted Cholesky decomposition clusters points toward lower viscosity, which

again agrees with expectations since in that near-shock regime the parametric

variations are more complex. Lastly, the noisy fluctuations can be explained

19

since DNNs have substantial variance in their solutions due to randomness im-

parted during training (e.g., with Adam), so the accuracy of these solutions does

not vary smoothly with PDE parameter. We attempt to reduce these fluctua-

tions using previously described methods, such as running Adam before L-BFGS

and initializing the weights using a previous PINN solution at the parameters

center.

4.2. 1D nonlinear Heat Equation

We consider the following 1D nonlinear PDE:

∂u

∂t
− λ∂

2u

∂x2
+ k tanh(u) = f, x ∈ Ω (14)

where (x, t) ∈ Ξ = [−1, 1]× [0, 1] and where λ ∈ [1, π] and k ∈ [1, π] are positive

constants. Our parameter in this example will be the joint tuple p = (λ, k).

In order to compute errors, we employ the method of manufactured solutions,

specifying an exact solution of u(x, t;λ, k) = k sin(πx) exp(−λkx2) exp(−λt)

and derive the corresponding form of the forcing f . We choose DL as K = 50

LHS samples in parameter space. The low-fidelity PINNs have 2 hidden layers

each of width 5. Based upon our multifidelity procedure, we choose k = 10 im-

portant parameter locations and evaluate that many high-fidelity PINNs. The

high-fidelity PINN has an architecture of 5 hidden layers of width 10. For this

case with two-dimensional parameter space, we use an equidistant 20× 20 grid

as the set of test points. Results are shown in Figure 2, where the shown surface

plots correspond to a 100× 100 grid that is generated via cubic spline interpo-

lation from the 20× 20 test grid. Note that the cubic spline procedure visually

smooths out noisy fluctuations, cf. Figure 1. The multifidelity procedure clearly

improves accuracy in the parameter region chosen, and we can see the general

trend is that low k values and high λ values have higher errors for the low-fidelity

PINN. We observe that the multifidelity procedure ameliorates this inaccuracy.

20

Figure 2: Surface plot of the log (base 10) relative errors between the exact solution and PINN

solution at given parameters, in this case k and λ as defined in Equation 13. The black dots

represent the parameter locations at which the multifidelity procedure was constructed with

k = 10 high fidelity runs.

4.3. 2D nonlinear Allen-Cahn Equation

We consider the following 2D nonlinear Allen-Cahn equation, which is a

widely used model for multi-phase flows:

λ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ u

(
u2 − 1

)
= f, x, y ∈ Ω (15)

where Ξ = [−1, 1]2, with λ ∈ (0, π] the mobility, and u denotes the order

parameter, prescribing different phases. The parameter in this problem is p = λ.

We again use the method of manufactured solutions, specifying an exact solution

of u(x, y;λ) = exp(−λ(x + 0.7)) sin(πx) sin(πy) and derive the corresponding

form of the forcing f . Parameter space is discretized with K = 50 sampled

uniformly at random. The low-fidelity PINN has 5 hidden layers of width 5,

and the high-fidelity PINN has 8 hidden layers of width 10. We budget k = 10

high fidelity PINNs evaluations.

Remark: Both the low and high fidelity architectures are more complex

and expressive than the ones used in the previous Burgers’ and Heat equation

examples. It is likely that the nature of the PDE being solved will strongly influ-

21

ence what sizes are appropriate for each fidelity. These architectural parameters

were manually tuned to give reasonable results, and automatic procedures for

such hyperparameter selection is the topic of ongoing investigations.

Figure 3: Log (base 10) relative error between the exact solution and PINN solution at a given

parameter, in this case λ as defined in (15).

With this Allen-Cahn example, we observe the inverse relation between er-

ror and PDE parameter to that in Burgers. Here as λ increases, so does the

solution complexity and therefore the error. We also observe the clustering of

multifidelity “important points” in the region with the highest error.

4.4. 2D nonlinear Diffusion-Reaction Equation

We consider the following 2D nonlinear diffusion-reaction equation:

λ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ k

(
u2
)

= f, x, y ∈ Ω (16)

where (x, y) ∈ Ξ = [−1, 1]2. Here λ ∈ [1, π] represents the diffusion coefficient

and k ∈ [1, π] represents the reaction rate and f denotes the source term. Our

parameter p is the tuple (λ, k). We specify an exact solution as u(x, y;λ, k) =

k sin(πx) sin(πy) exp(−λ
√

(k x2 + y2)) and derive the corresponding form of

22

the forcing f . The low-fidelity PINN has 5 hidden layers of width 10, and

the high-fidelity PINN has 8 hidden layers of width 20. Parameter space is

discretized with K = 50 points drawn uniformly at random. Results of this

experiment are shown in Figure 4. Similar to the Heat equation example, we

observe that the multifidelity procedure improves accuracy compared to the

low-fidelity PINN.

Figure 4: Surface plot of the log (base 10) relative error between the exact solution and PINN

solution. The parameters are k and λ as defined in (16). The black dots show the k = 10

important points in parameter space selected by the pivoted Cholesky procedure.

4.5. Performance Metrics

We summarize numerical accuracy and cost measurements of the low-fidelity

and high-fidelity PINNs, and of the multifidelity emulator in Table 1. These

experiments were run on an Intel Core i7-5930K processor with the Windows

10 OS. PyTorch version 1.6.0 and Python version 3.8.5 were used to run the

PINNs. Average values and standard deviations of cost and error computed

over parameter space are reported.

23

Table 1: Metrics of performance taken for each of the four problems where ± indicates 1

standard deviation. For relative error the values presented are the mean of the PDE parameter

1D or 2D grids sampled as shown in the previous subsections. The computational time (in

seconds) corresponds to training time in the L-BFGS portion of the optimization for the

indicated PINNs.

PDE’s 1D Burgers 1D Heat 2D Allen-Cahn 2D Diffusion-Reaction

Low-Fidelity Error (10−2) 7.86± 5.77 1.24± 0.69 7.71± 5.61 1.82± 0.91

Multi-Fidelity Error (10−2) 1.82± 1.76 0.55± 0.25 1.39± 0.92 0.81± 0.51

High-Fidelity Error (10−2) 0.17± 0.09 0.46± 0.25 0.85± 0.41 0.75± 0.51

Low-Fidelity Time (s) 41± 19 63± 12 167± 32 212± 13

High-Fidelity Time (s) 137± 72 181± 64 403± 137 890± 207

The low and high-fidelity PINNs correspond to less and more accurate

solvers, respectively, and also correspond to less and more costly solvers, re-

spectively. Since the multifidelity emulator cost equals that of the low-fidelity

PINN, this demonstrates significant potential for savings in parametric multi-

query contexts. The high-fidelity solver is around twice as expensive for the

Allen-Cahn example, and around 4 times as costly for the Diffusion-Reaction

example. In every test problem, the mean error of the multifidelity offers sub-

stantial improvement over its low-fidelity counterpart.

5. Summary and Conclusions

In this paper, we have extended the low-rank multifidelity approach of [4, 5]

to Physics-informed Neural Networks (PINNs) [12, 13, 14]. Having summa-

rized the multifidelity approach, along with the collocation version of PINNs,

we construct a low-fidelity version of a PINN as one with a simpler (less ex-

pressive) architecture and with less stringent optimization termination criteria.

We demonstrate empirically that low-fidelity PINNs constructed in this way

indeed can be both less costly and less accurate than high-fidelity versions.

This motivates our proposed multifidelity approach whose computational re-

sults on several PDEs demonstrate that the multifidelity emulator can provide

an accuracy-increasing PINNs surrogate over a PDE-based parameter space at

significant savings in computational cost.

24

Future investigations will explore more quantitative connections between

PINNs architecture and accuracy/cost tradeoffs. In addition, the multifidelity

approach considered here is agnostic to the type of PDE solver employed. We

have used PINNs as both low and high-fidelity models, but one could, for ex-

ample, utilize PINNs for a low-fidelity model and more traditional numerical

solvers (such as finite element methods) for the high-fidelity model. Such com-

binations could be used to generate a multifidelity surrogate that combines the

advantages of different types of solvers.

Acknowledgements: The authors would like to acknowledge helpful discus-

sions with Professor George Karniadakis and his group (Brown University).

This work was funded under AFOSR MURI FA9550-20-1-0358. A. Narayan

was partialy supported by AFOSR FA9550-20-1-0338.

25

Bibliography

References

[1] B. Peherstorfer, K. Willcox, M. Gunzburger, Survey of multifidelity meth-

ods in uncertainty propagation, inference, and optimization, SIAM Review

60 (3) (2018) 550–591.

[2] V. Keshavarzzadeh, R. M. Kirby, A. Narayan, Convergence acceleration for

time-dependent parametric multifidelity models, SIAM Journal on Numer-

ical Analysis 57 (2019) 1344–1368.

[3] M. Razi, A. Narayan, K. R. M., D. Bedrov, Fast predictive models based

on multi-fidelity sampling of properties in molecular dynamics simulations,

Computational Material Science 152 (C) (2018) 125–133.

[4] A. Narayan, C. Gittelson, D. Xiu, A stochastic collocation algorithm with

multifidelity models, SIAM Journal on Scientific Computing 36 (2) (2014)

A495–A521.

[5] X. Zhu, A. Narayan, D. Xiu, Computational aspects of stochastic colloca-

tion with multifidelity models, SIAM/ASA Journal on Uncertainty Quan-

tification 2 (1) (2014) 444–463.

[6] V. Keshavarzzadeh, R. M. Kirby, A. Narayan, Parametric topology opti-

mization with multi-resolution finite element models, International Journal

on Numerical Methods in Engineering 119 (2019) 567–589.

[7] V. Keshavarzzadeh, M. Alirezaei, T. Tasdizen, R. M. Kirby, Image-based

multiresolution topology optimization using deep disjunctive normal shape

model, Computer-Aided Design 130 (2021) 102947.

[8] J. Hampton, H. R. Fairbanks, A. Narayan, A. Doostan, Practical error

bounds for a non-intrusive bi-fidelity approach to parametric/stochastic

model reduction, Journal of Computational Physics 368 (2018) 315–332.

26

[9] R. Skinner, A. Doostan, E. Peters, J. Evans, K. E. Jansen, An evaluation

of bi-fidelity modeling efficiency on a general family of NACA airfoils, in:

35th AIAA Applied Aerodynamics Conference, 2017, p. 3260.

[10] L. Jofre, G. Geraci, H. Fairbanks, A. Doostan, G. Iaccarino, Multi-fidelity

uncertainty quantification of irradiated particle-laden turbulence, arXiv

preprint arXiv:1801.06062 (2018).

[11] M. Razi, R. M. Kirby, A. Narayan, Fast predictive multi-fidelity prediction

with models of quantized fidelity levels, Journal of Computational Physics

376 (2019) 992–1008.

[12] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural net-

works: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, Journal of Computational

Physics 378 (2019) 686–707.

[13] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics informed deep learning

(part i): Data-driven solutions of nonlinear partial differential equations,

arXiv preprint arXiv:1711.10561 (2017).

[14] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics informed deep learning

(part ii): Data-driven discovery of nonlinear partial differential equations,

arXiv preprint arXiv:1711.10566 (2017).

[15] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press,

Cambridge, MA, USA, 2016.

[16] M. Alber, A. Buganza Tepole, W. R. Cannon, S. De, S. Dura-Bernal,

K. Garikipati, G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold,

E. Kuhl, Integrating machine learning and multiscale modeling: perspec-

tives, challenges, and opportunities in the biological, biomedical, and be-

havioral sciences, Nature: npg digital medicine 2 (115) 115.

[17] J. Hampton, H. R. Fairbanks, A. Narayan, A. Doostan, Practical error

bounds for a non-intrusive bi-fidelity approach to parametric/stochastic

27

http://www.sciencedirect.com/science/article/pii/S0021999118302298
http://www.sciencedirect.com/science/article/pii/S0021999118302298
http://www.sciencedirect.com/science/article/pii/S0021999118302298

model reduction, Journal of Computational Physics 368 (2018) 315–332,

arXiv: 1709.03661. doi:10.1016/j.jcp.2018.04.015.

URL http://www.sciencedirect.com/science/article/pii/

S0021999118302298

[18] M. Razi, R. M. Kirby, A. Narayan, Kernel optimization for low-rank multi-

fidelity algorithms, International Journal for Uncertainty Quantification 11

(2021) 31–54.

[19] D. Anderson, M. Gu, An efficient, sparsity-preserving, online algorithm for

low-rank approximation, in: International Conference on Machine Learn-

ing, 2017, pp. 156–165.

[20] D. J. Perry, R. T. Whitaker, Augmented leverage score sampling with

bounds, in: Joint European Conference on Machine Learning and Knowl-

edge Discovery in Databases, Springer, 2016, pp. 543–558.

[21] D. J. Perry, R. M. Kirby, A. Narayan, R. Whitaker, Allocation strategies

for high fidelity models in the multifidelity regime, SIAM Journal on Un-

certainty Quantification 7 (1) (2019) 203–231.

[22] A. Lozano, G. Swirszcz, N. Abe, Group orthogonal matching pursuit for

logistic regression, in: Proceedings of the Fourteenth International Confer-

ence on Artificial Intelligence and Statistics, 2011, pp. 452–460.

[23] G. H. Golub, C. F. V. Loan, Matrix Computations, 3rd Edition, The Johns

Hopkins University Press, 1996.

[24] D. Harville, The moore-penrose inverse, in: Matrix Algebra From a Statis-

tician’s Perspective, Springer, New York, NY., 1997, pp. 497–.

[25] V. Shankar, G. B. Wright, A. L. Fogelson, R. M. Kirby, A radial basis func-

tion (rbf)-finite difference method for the simulation of reaction-diffusion

equations on stationary platelets within the augmented forcing method,

International Journal for Numerical Methods in Fluids 75 (2014) 1–22.

28

http://www.sciencedirect.com/science/article/pii/S0021999118302298
http://www.sciencedirect.com/science/article/pii/S0021999118302298
https://doi.org/10.1016/j.jcp.2018.04.015
http://www.sciencedirect.com/science/article/pii/S0021999118302298
http://www.sciencedirect.com/science/article/pii/S0021999118302298

[26] V. Shankar, G. B. Wright, R. M. Kirby, A. L. Fogelson, A radial basis func-

tion (rbf)-finite difference (fd) method for diffusion and reaction-diffusion

equations on surfaces, Journal of Scientific Computing 63 (2014) 745–768.

[27] Y. Shin, J. Darbon, G. E. Karnaidakis, On the convergence of physics-

informed neural networks for linear second order elliptic and parabolic type

PDEs, Communications in Computational Physics 28 (2020) 2042.

[28] A. D. Jagtap, E. Kharazmi, G. E. Karniadakis, Conservative physics-

informed neural networks on discrete domains for conservation laws:

Applications to forward and inverse problems, Computer Meth-

ods in Applied Mechanics and Engineering 365 (2020) 113028.

doi:https://doi.org/10.1016/j.cma.2020.113028.

URL https://www.sciencedirect.com/science/article/pii/

S0045782520302127

[29] E. Kharazmi, Z. Zhang, G. E. Karniadakis, Variational physics-informed

neural networks for solving partial differential equations (2019). arXiv:

1912.00873.

[30] X. Meng, Z. Li, D. Zhang, G. E. Karniadakis, Ppinn: Parareal

physics-informed neural network for time-dependent pdes, Computer

Methods in Applied Mechanics and Engineering 370 (2020) 113250.

doi:https://doi.org/10.1016/j.cma.2020.113250.

URL https://www.sciencedirect.com/science/article/pii/

S0045782520304357

[31] D. Zhang, L. Lu, L. Guo, G. E. Karniadakis, Quantifying total uncertainty

in physics-informed neural networks for solving forward and inverse

stochastic problems, Journal of Computational Physics 397 (2019) 108850.

doi:https://doi.org/10.1016/j.jcp.2019.07.048.

URL https://www.sciencedirect.com/science/article/pii/

S0021999119305340

29

https://www.sciencedirect.com/science/article/pii/S0045782520302127
https://www.sciencedirect.com/science/article/pii/S0045782520302127
https://www.sciencedirect.com/science/article/pii/S0045782520302127
https://doi.org/https://doi.org/10.1016/j.cma.2020.113028
https://www.sciencedirect.com/science/article/pii/S0045782520302127
https://www.sciencedirect.com/science/article/pii/S0045782520302127
http://arxiv.org/abs/1912.00873
http://arxiv.org/abs/1912.00873
https://www.sciencedirect.com/science/article/pii/S0045782520304357
https://www.sciencedirect.com/science/article/pii/S0045782520304357
https://doi.org/https://doi.org/10.1016/j.cma.2020.113250
https://www.sciencedirect.com/science/article/pii/S0045782520304357
https://www.sciencedirect.com/science/article/pii/S0045782520304357
https://www.sciencedirect.com/science/article/pii/S0021999119305340
https://www.sciencedirect.com/science/article/pii/S0021999119305340
https://www.sciencedirect.com/science/article/pii/S0021999119305340
https://doi.org/https://doi.org/10.1016/j.jcp.2019.07.048
https://www.sciencedirect.com/science/article/pii/S0021999119305340
https://www.sciencedirect.com/science/article/pii/S0021999119305340

[32] G. Pang, L. Lu, G. E. Karniadakis, fpinns: Fractional physics-informed

neural networks (2018). arXiv:1811.08967.

[33] X. I. A. Yang, S. Zafar, J.-X. Wang, H. Xiao, Predictive large-eddy-

simulation wall modeling via physics-informed neural networks, Phys. Rev.

Fluids 4 (2019) 034602. doi:10.1103/PhysRevFluids.4.034602.

URL https://link.aps.org/doi/10.1103/PhysRevFluids.4.034602

[34] G. Pang, M. D’Elia, M. Parks, G. E. Karniadakis, npinns: nonlocal physics-

informed neural networks for a parametrized nonlocal universal laplacian

operator. algorithms and applications (2020). arXiv:2004.04276.

[35] A. Jagtap, G. Karniadakis, Extended physics-informed neural networks

(xpinns): A generalized space-time domain decomposition based deep

learning framework for nonlinear partial differential equations, Commu-

nications in Computational Physics 28 (2020) 2002–2041. doi:10.4208/

cicp.OA-2020-0164.

[36] R. Pascanu, G. Montufar, Y. Bengio, On the number of response re-

gions of deep feed forward networks with piece-wise linear activations,

arXiv:1312.6098 [cs]ArXiv: 1312.6098 (Feb. 2014).

URL http://arxiv.org/abs/1312.6098

[37] G. Montúfar, R. Pascanu, K. Cho, Y. Bengio, On the number of linear

regions of deep neural networks, in: Proceedings of the 27th International

Conference on Neural Information Processing Systems - Volume 2, NIPS’14,

MIT Press, Cambridge, MA, USA, 2014, pp. 2924–2932, arXiv: 1312.6098.

[38] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, J. Sohl-Dickstein, On the

Expressive Power of Deep Neural Networks, in: International Conference

on Machine Learning, PMLR, 2017, pp. 2847–2854, iSSN: 2640-3498.

URL http://proceedings.mlr.press/v70/raghu17a.html

[39] M. Telgarsky, Benefits of depth in neural networks, in: Conference on

30

http://arxiv.org/abs/1811.08967
https://link.aps.org/doi/10.1103/PhysRevFluids.4.034602
https://link.aps.org/doi/10.1103/PhysRevFluids.4.034602
https://doi.org/10.1103/PhysRevFluids.4.034602
https://link.aps.org/doi/10.1103/PhysRevFluids.4.034602
http://arxiv.org/abs/2004.04276
https://doi.org/10.4208/cicp.OA-2020-0164
https://doi.org/10.4208/cicp.OA-2020-0164
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1312.6098
http://proceedings.mlr.press/v70/raghu17a.html
http://proceedings.mlr.press/v70/raghu17a.html
http://proceedings.mlr.press/v70/raghu17a.html
http://proceedings.mlr.press/v49/telgarsky16.html

Learning Theory, PMLR, 2016, pp. 1517–1539, iSSN: 1938-7228.

URL http://proceedings.mlr.press/v49/telgarsky16.html

[40] M. Telgarsky, Representation Benefits of Deep Feedforward Networks,

arXiv:1509.08101 [cs]ArXiv: 1509.08101 (Sep. 2015).

URL http://arxiv.org/abs/1509.08101

[41] T. Serra, C. Tjandraatmadja, S. Ramalingam, Bounding and Counting

Linear Regions of Deep Neural Networks, arXiv:1711.02114 [cs, math,

stat]ArXiv: 1711.02114 (Sep. 2018).

URL http://arxiv.org/abs/1711.02114

[42] B. Hanin, D. Rolnick, Complexity of Linear Regions in Deep Networks,

arXiv:1901.09021 [cs, math, stat]ArXiv: 1901.09021 (Jun. 2019).

URL http://arxiv.org/abs/1901.09021

[43] M. Penwarden, S. Zhe, A. Narayan, R. M. Kirby, Physics-informed neural

networks for parameterized pdes: A metalearning approach, Journal of

Computational Physics Under Review (2021).

[44] L. Yang, X. Meng, G. E. Karniadakis, B-PINNs: Bayesian physics-informed

neural networks for forward and inverse problems with noisy data, Journal

of Computational Physics 425 (2021) 109913.

[45] C. Basdevant, M. Deville, P. Haldenwang, J. Lacroix, J. Ouazzani,

R. Peyret, P. Orlandi, A. Patera, Spectral and finite difference solutions on

the Burgers equation, Computers & Fluids 14 (1986) 23–41.

31

http://proceedings.mlr.press/v49/telgarsky16.html
http://arxiv.org/abs/1509.08101
http://arxiv.org/abs/1509.08101
http://arxiv.org/abs/1711.02114
http://arxiv.org/abs/1711.02114
http://arxiv.org/abs/1711.02114
http://arxiv.org/abs/1901.09021
http://arxiv.org/abs/1901.09021

	1 Introduction
	2 Overview of our Low-rank Multifidelity Approach
	3 Physics-Informed Neural Networks (PINNs)
	3.1 Review of Physics-Informed Neural Networks
	3.2 Expressivity of neural networks
	3.3 A multifidelity method for Physics-Informed Neural Networks
	3.3.1 Theoretical Considerations
	3.3.2 Implementation Considerations
	3.3.3 Algorithmic Complexity

	4 Results and Discussion
	4.1 1D Burgers Equation
	4.2 1D nonlinear Heat Equation
	4.3 2D nonlinear Allen-Cahn Equation
	4.4 2D nonlinear Diffusion-Reaction Equation
	4.5 Performance Metrics

	5 Summary and Conclusions

