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Abstract

Due to the intricate nature of the equation governing light transport in participating media, accurately and effi-

ciently simulating radiative energy transfer remains very challenging in spite of its broad range of applications.

As an alternative to traditional numerical estimation methods such as ray-marching and volume-slicing, a few

analytical approaches to solving single scattering have been proposed but current techniques are limited to the

assumption of isotropy, rely on simplifying approximations and/or require substantial numerical precomputation

and storage. In this paper, we present the very first closed-form solution to the air-light integral in homogeneous

media for general 1-D anisotropic phase functions and punctual light sources. By addressing an open problem

in the overall light transport literature, this novel theoretical result enables the analytical computation of exact

solutions to complex scattering phenomena while achieving semi-interactive performance on graphics hardware

for several common scattering modes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

As they mathematically model radiative transfer in a vast
scope of natural elements, simulating light transport in par-
ticipating media has considerable scientific implications.
Numerous applications exist in the entertainment industry
where visually appealing and realistic rendering of underwa-
ter scenes, god rays and other atmospheric phenomena drive
the next generation of special effects in movies, animated
films and video-games. Reliable simulations are also cru-
cial in the automotive industry and architectural design when
conceiving car headlamps or stage lighting for instance, as
well as in safety-oriented research in order to assess the ef-
fectiveness of emergency exit signs in a smoke-filled room
or the visibility of traffic signs by foggy weather.

Unfortunately, the intricacy of the radiative transport
equation results in a formulation notoriously complex to
evaluate, making the efficient simulation of accurate light
transport in participating media very challenging. While nu-
merical methods such as volume-slicing and ray-marching
provide a generic means of converging towards the solutions
to radiative transfer problems, analytical approaches to solv-

ing single scattering have recently received attention in the
graphics community and were shown to be a very promis-
ing alternative to the former traditional rendering techniques.
However, current (semi-)analytical methods are limited to
the assumption of isotropy, rely on simplifying approxima-
tions and/or require substantial numerical precomputation
and storage of the sampled results.

In this paper, we present the first closed-form solution
to the air-light integral in homogeneous media for general
azimuthally symmetrical anisotropic phase functions and
punctual light sources. Assuming a generic representation
of angular distributions, we provide a mathematical formu-
lation of the problem and show how the latter may be effec-
tively reduced to the knowledge of a single indefinite inte-
gral. In order to determine the antiderivative of interest, we
then introduce a novel analytical derivation leading to the
formulation of a closed-form solution which, to the best of
our knowledge, has never appeared before in the literature.

This new theoretical result permits the analytical simula-
tion of complex scattering phenomena which, up until now,
still represented an open problem in the overall light trans-
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port literature. Unlike the many approximation methods pro-
posed over the last 30 years, the technique enables the ex-
act calculation of ground-truth solutions in a finite number
of computational steps while still achieving semi-interactive
performance on current-generation graphics hardware for
several common scattering modes.

After reviewing previous work relating to the topic of con-
cern, this document provides an overview of the theoretical
background on the air-light integral. The assumed generic
representation of angular distributions is then introduced fol-
lowed by a mathematical formulation of the problem and the
derivation of our closed-form solution. Finally, results evalu-
ating both the accuracy and the performance characteristics
of the method are presented before discussing future work
orientations.

2. Related Work

Participating media rendering has led to a wide vari-
ety of techniques within the computer graphics literature,
and those most related to our single scattering model are
summarized below while referring the interested reader
to [CPCP∗05] for a more complete survey. Following
the work of Max [Max86a], several methods based on
volume-slicing [DYN00, DYN02, IJTN07] or ray-marching
[NMN87, Mak08, ED10] have been developed. While these
numerical techniques are both general and simple, such es-
timation schemes are however inherently prone to under-
sampling artifacts due to the Riemann summation that they
rely on. On the other hand, the pioneering work of Blinn
[Bli82] was the precursor to several analytical methods un-
der the assumption of a directional light source [Max86b,
Wil87, HP02, HP03, REK∗04], while an image-based post-
processing technique was alternatively presented [Mit07].

Such an analytical approach was later proposed for
point light sources in homogeneous media by Lecocq et
al. [LMAK00] who reformulated the air-light integral un-
der an angular parameterization. The integration then re-
lies on a Taylor approximation of the integrand yield-
ing a semi-analytical solution for isotropic light sources
while anisotropic distributions require numerical precom-
putation. Subsequent extensions [BAM06] also took visibil-
ity/occlusion of the light source into account by limiting the
integration domain to illuminated segments along a ray us-
ing shadow-volumes.

Later, Sun et al. [SRNN05] simplified the angular for-
mulation further and proposed to tabulate sampled solu-
tions of the integral. Although real-time performance may
be achieved on graphics hardware, this simple and practi-
cal approach nevertheless entails several limitations. First,
the method relies on lengthy numerical precomputation and
storage of the solution for various discrete sample points in
the continuous 2-D domain. During rendering, the result is
then interpolated to recover missing data between the sam-
ples which leads to visible artifacts. Additionally, the data

may only be tabulated for a finite subset of the semi-infinite
2-D space, and it is therefore impossible to guarantee that the
range of parameters needed for an arbitrary application will
be covered. The technique is then constrained to resort to
extrapolation which yields further inaccuracies. Finally, the
method is limited to isotropic light sources, and its exten-
sion to anisotropic phase functions requires the precompu-
tation and storage of one additional table for each degree of
the phase function representation, therefore increasing pre-
computation cost and putting additional pressure on mem-
ory requirements. The approach was then hybridized with
ray-marching to render light-shafts [WR08] while Zhou et
al. [ZHG∗07] alternatively proposed an analytical approxi-
mation for inhomogeneous media but under the restriction
of isotropy.

More recently, Pegoraro and Parker [PP09] presented a
closed-form solution to the air-light integral for isotropic
phase functions and light sources. The approach was sub-
sequently extended to 1-D anisotropic functions by deriving
a dual-formulation of the air-light integral [PSP09a] which
was further optimized in [PSP09b]. The semi-analytical so-
lution however relies on a Taylor series expansion of an-
gular distributions in the integration space which induces
several limitations. First, the formulation of the recursive
derivatives requires a human intervention, and while this is
doable for the first few terms of simple functions such as a
spotlight, the process becomes truly prohibitive for complex
anisotropic distributions due to the rapidly increasing length
of the resulting expressions. Moreover, since physical phase
functions or light distributions can generally not be faithfully
represented by a polynomial in the integration domain, the
approximation is inherently prone to inaccuracies.

Although numerous methods have been proposed over the
last 3 decades, the problem of concern has until now solely
been approached by numerical or (semi-)analytical approx-
imations all exhibiting various inherent limitations, hence
justifying the ultimate need for a theoretically correct com-
putational model. Based on the concepts introduced by Pe-
goraro et al., this paper presents the very first closed-form
solution to single scattering for general rotationally symmet-
rical angular distributions.

3. Closed-Form Single Scattering

This section first provides an overview of the theoretical
background on the air-light integral in homogeneous partici-
pating media considering arbitrary phase functions and light
sources. The assumed generic representation of their angular
distributions is subsequently introduced before presenting a
mathematical formulation of the problem and the derivation
of our closed-form solution. As in previous analytical ap-
proaches [LMAK00, SRNN05, PSP09a], the analysis to fol-
low solely treats of fully-illuminated ray segments while re-
ferring the reader to the discussion section for an explanation
on how this restriction may be easily lifted.
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3.1. Air-Light Integral

The air-light integral describes the radiance L at position xa

along a ray of direction ~ω through a homogeneous medium
with background boundary at xb as

L(xa,~ω) = Lm(xa,xb,~ω)+Lr(xa,xb,~ω). (1)

Defining the extinction coefficient κt = κa + κs with κa

and κs being the absorption and scattering coefficient respec-
tively, the reduced radiance reads

Lr(xa,xb,~ω) = e
−κt (xb−xa)L(xb,~ω). (2)

If the medium has a phase function Φ and is solely illumi-
nated by a punctual light source of intensity I located at po-
sition ~pl and parameterized by the angle with the normalized
direction ~vl as recapitulated in table 1, then the formulation
of the medium radiance along the view ray of origin ~pe and
direction~ve reads [NMN87, PSP09a]

Lm(xa,xb,~ω) = κse
κt xa

Z xb

xa

e
−κt

(

x+
√

h2+(x−xh)2
)

h2 +(x− xh)2 (3)

Φ
(

arctan
(

x− xh

h

)

+
π

2

)

I

(

arccos

(

delx+dlel
√

h2 +(x− xh)2

))

dx

Table 1: Summary of the notation used in this document.

Symbol Description
Lm Medium radiance
Lr Reduced radiance
~pe Eye position
~ve Eye ray direction
~pl Light position
~vl Light ray direction
~vh Projection vector of ~pl onto the eye ray
xa Lower bound of the integration domain
xb Upper bound of the integration domain
xh Projection coordinate of ~pl onto the eye ray
h Distance from ~pl to the eye ray
κa Absorption coefficient
κs Scattering coefficient
κt Extinction coefficient
H Optical distance from ~pl to the eye ray
del Cosine angle between~ve and~vl

dlel Projection coordinate of ~pe onto the light ray
dc Cosine angle between~vh and~vl

Φ Phase function
I Light intensity distribution
θ Phase function parameter angle
ϑ Light distribution parameter angle

NΦ Number of phase function coefficients
cΦ Phase function coefficients
NI Number of light source coefficients
cI Light source coefficients

where del =~ve ·~vl and dlel = (~pe −~pl) ·~vl , and where h is
the distance from the light to the ray and xh the coordinate
of its projection onto it as illustrated in figure 1.

The medium radiance may then be simplified by substi-
tuting u = x−xh

h such that the integrand becomes a function
of only 4 parameters [PSP09a]

Lm(xa,xb,~ω) =
κs

h
e

κt (xa−xh)
Z ub

ua

e−H(u+
√

1+u2)

1+u2 (4)

Φ
(

arctan(u)+
π

2

)

I

(

arccos

(

delu+dc√
1+u2

))

du

where H = κth is the optical distance from the light to the

ray, dc = del xh+dlel

h =~vh ·~vl with~vh =
(~pe−~pl)+xh~ve

h being the
unit-length projection vector of the light onto the ray, and

ua =
xa − xh

h
ub =

xb − xh

h
. (5)

Defining Φc such that Φ(θ) = Φc(cos(θ)) and Ic such
that I(ϑ) = Ic(cos(ϑ)), the substitution v = u+

√
1+u2 then

yields [PSP09a]

Lm(xa,xb,~ω) =
κs

h
e

κt (xa−xh)2
Z vb

va

e−Hv

v2 +1
(6)

Φc

(

− v2 −1
v2 +1

)

Ic

(

del(v
2 −1)+2dcv

v2 +1

)

dv

where

va = ua +

√

1+u2
a vb = ub +

√

1+u2
b
. (7)

Since the focus of this work is the evaluation of the
medium radiance, extinction phenomena are assumed to pre-
vail in surface shading calculation. Defining β as the bidirec-

xa x xh xb

d
h

vl

ve

pl

pe θ

ϑ

Figure 1: Diagram illustrating the various quantities that

the air-light integral depends on.
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tional reflectance distribution function, the background radi-
ance then reads

L(xb,~ω) =
e−κt d(xb,~ω)

d(xb,~ω)2 β(~ω,~ωi,~nb) ~ωi ·~nb Ic(−~ωi ·~vl) (8)

where d(x,~ω) =
√

h2 +(x− xh)2 represents the distance
from the light source to a point x along the ray, ~ωi is a unit-
length vector directed towards the light source, and~nb is the
surface normal at xb.

Considering the above problem formulation from Pego-
raro et al. [PSP09a], the remainder of this document focuses
on addressing the evaluation of the medium radiance, and
this is precisely where our approach fundamentally differs
from theirs. The latter relies on an expansion of the phase
function and light distribution in the integration space, i.e.
on a representation as a polynomial of the variable v such
that Φc()Ic() = ∑

N−1
n=0 cnvn. While the assumption simplifies

the antiderivatives to be solved, actual angular distributions
are however typically not exactly expressible in such form,
therefore involving inherent approximations. On the other
hand, we consider a polynomial basis in the cosine space as
formulated in equations 9 and 10, which is the native repre-
sentation of most phase functions and many light distribu-
tions as discussed in section 3.2. Doing so results in rational
expressions in the integration space as illustrated in equa-
tion 20 which contrasts with the aforementioned polynomial
of the variable v assumed by Pegoraro et al. [PSP09a]. We
then analyze the whole formulation of the problem in section
3.3 and provide a significantly more general mathematical
solution to the resulting antiderivative enabling the air-light
integral to be solved in closed form as detailed in section 3.4.

3.2. Representing Angular Distributions

In order to accurately model a wide range of arbitrary phase
functions and light sources, we assume that the angular
distributions are expressible via a generic formulation. A
broadly used representation describes the phase function as
an NΦ-term polynomial of the cosine angle µ = cos(θ) as
follows

Φc(µ) =
NΦ−1

∑
n=0

cΦ(n)µn
. (9)

Most phase functions can be exactly represented under this
form including the isotropic, linear anisotropic (also called
Eddington), Rayleigh, hazy Mie and murky Mie phase func-
tions [SH81]. The representation also allows exact formu-
lations of implicitly energy-conserving phase functions ex-
pressed in terms of Legendre polynomials often used to
model complex distributions such as that of Mie scatter-
ing. On the other hand, a few rational formulations such as
the Henyey-Greenstein phase function are not exactly repre-
sentable in the chosen basis and may only be approximated
via an expansion into a series of Legendre polynomials or

into a Taylor series. In the latter case, the chosen representa-
tion is still of a practical nature as described in the following
subsections.

Due to the numerous advantages of the representation, we
make the same assumption regarding the light distribution of
order NI −1 and define ς = cos(ϑ) such that

Ic(ς) =
NI−1

∑
n=0

cI(n)ςn
. (10)

The resulting polynomial expression allows to exactly model
both simple spotlights via a single term and complex sources
with very few Legendre coefficients, and all the concepts
subsequently discussed with respect to the phase function
representation are equally applicable to the light source dis-
tribution.

The above expressions form the common formulation on
which our solution is based as detailed in section 3.3. Be-
sides discussing further the practical advantages of such rep-
resentation, the following subsections additionally provide 2
methodologies for computing its coefficients.

3.2.1. Legendre Polynomials

Legendre polynomials are widely acknowledged as a stan-
dard basis to represent general phase functions and they are
broadly used in light transport simulation [Cha60]. A phase
function may be expressed as a series of such polynomials
as follows

Φc(µ) =
1

4π

NΦ−1

∑
n=0

anPn(µ) (11)

where the coefficients are defined by

an =
2n+1

2

Z 1

−1
4πΦc(µ)Pn(µ)dµ. (12)

The first coefficient evaluates to the integral of the repre-
sentation over the whole spherical domain, and setting a0 =
1 consequently guarantees normalization of the phase func-
tion. Moreover, the second coefficient relates to the asymme-
try coefficient g as follows a1 = 3g. Several phase functions
may be expressed in this polynomial basis, either exactly
with a finite number of terms, or approximately via trunca-
tion of the expansion into an infinite series. Coefficients for
common scattering modes are reported in table 2 while ex-
pansions of the Mie phase function are provided in [CC55].

Table 2: Coefficients of Legendre polynomials for several

standard phase functions.

Phase Function Order Coefficients
Isotropic 0 a0 = 1

Linear Anisotropic 1 a0 = 1, −1 ≤ a1 ≤ 1
Rayleigh 2 a0 = 1, a1 = 0, a2 = 1

2
Henyey-Greenstein ∞ an = (2n+1)gn
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The coefficients cΦ(n) can then be computed in-place
from the coefficients an in order of increasing index n as
follows

cΦ(n) =
1

4π

≤NΦ−1

∑
k=n

k+=2

ak
(−1)

k−n
2

2k

(k +n)!
(

k−n
2

)

!
(

k+n
2

)

! n!
. (13)

3.2.2. Taylor Series

In case a given phase function cannot be exactly expressed
in the chosen polynomial basis, an alternative is to expand
its formulation into a Taylor series representation. The ex-
pansion in the initial cosine space however presents numer-
ous advantages over an expansion in the integration space as
done in [PSP09a].

First, the expression of the successive derivatives is gener-
ally much simpler to evaluate, hence greatly reducing human
burden, since the cosine parameter is considered as a single
entity rather than as being itself a convoluted function of the
variable of integration. In fact, the derivatives in the cosine
space may even be described analytically such that the func-
tion can be approximated to an arbitrary precision by taking
sufficiently many terms. For instance, we could easily derive
such analytical expression for the Henyey-Greenstein phase
function

Φ
(n)
HGc(µ) =

1
4π

1−g2

(

1+g2 −2gµ
)

3
2 +n

(

g

2

)n (2n+1)!
n!

. (14)

The derivatives yield the coefficients of the truncated
power series centered in µ0. The polynomial coefficients can
then be computed in-place from the latter in order of increas-
ing index n by use of the binomial theorem to finally yield
cΦ(n) as follows

cΦ(n) =
1
n!

NΦ−1−n

∑
k=0

Φ
(k+n)
c (µ0)

(−µ0)
k

k!
. (15)

Moreover, because a series is expressed in terms of pow-
ers of the variable, the expansion typically converges rapidly
whenever the magnitude of the latter is no greater than 1 and
slowly otherwise. Given that the space of the variable µ is in-
herently bounded to [−1,1], the formulation given in equa-
tion 9 consequently yields relatively quick convergence with
only a few terms. This single formulation therefore naturally
achieves the goal sought by the two complementary formu-
lations of Pegoraro et al. [PSP09a].

3.3. Formulating the Medium Radiance

Substituting the expression of the cosine angle from equa-
tion 6 into the chosen angular representation given in equa-
tion 9, expanding the numerator using the binomial theorem
and then rearranging the terms, the phase function formula-

tion in the integration space reads

Φc

(

− v2 −1
v2 +1

)

=
NΦ−1

∑
n=0

cΦ(n)
2n

∑
k=0

k+=2

dΦ(n,k)
vk

(v2 +1)n

(16)
where the coefficients are defined as

dΦ(n,k) = (−1)
k
2

(

n
k
2

)

. (17)

Similarly, the expression of the light distribution from
equation 10 becomes

Ic

(

del(v
2 −1)+2dcv

v2 +1

)

=
NI−1

∑
n=0

cI(n)
2n

∑
k=0

dI(n,k)
vk

(v2 +1)n

(18)
where the coefficients read instead

dI(n,k) =
n−|n−k|

∑
l=k mod 2

l+=2

(−1)n− k+l
2 (2dc)

l
d

n−l
el

(

n

l

)(

n− l
k−l

2

)

.

(19)

The product of the phase function and light distribution
may therefore be generally expressed under the form

Φc

(

− v2 −1
v2 +1

)

Ic

(

del(v
2 −1)+2dcv

v2 +1

)

=
N−1

∑
n=0

c(n)
2n

∑
k=0

d(n,k)
vk

(v2 +1)n
(20)

where N = NΦ +NI −1 and c(n) = 1 with

d(n,k) =
min{NΦ−1,n}

∑
m=max{0,n−NI+1}

cΦ(m)cI(n−m) (21)

min{2m,2⌊ k
2 ⌋}

∑
l=max{0,2⌈ k

2 ⌉−2(n−m)}
l+=2

dΦ(m, l)dI(n−m,k− l).

Substituting equation 20 into equation 6 finally yields

Lm(xa,xb,~ω) =
κs

h
e

κt (xa−xh)2 (22)

N−1

∑
n=0

c(n)
2n

∑
k=0

d(n,k)
Z vb

va

e−Hv

(v2 +1)n+1 v
kdv

and it consequently follows that the problem can be effec-
tively reduced to the knowledge of a single antiderivative.

3.4. Solving the Indefinite Integral

Unlike the general mechanisms available for derivatives,
systematic methods for determining the antiderivative of an
arbitrary function unfortunately don’t exist and each indefi-
nite integral must consequently be treated individually, typ-
ically via human intervention. Although the logical steps of
the analysis may be readily followed once a solution has
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been found for a given function, analyzing the problem and
determining the actual mathematical reasoning leading to
this solution is in general a rather non-trivial matter, and in-
stances of known results are carefully compiled into com-
prehensive tables of integrals such as [GR07].

Since the previous antiderivative however appeared in
none of the various compilations we consulted and is specu-
lated to be currently unknown, we were led to investigate
the problem on our own and the formulation of this new
theoretical result is one of the fundamental contributions of
our work. For n ∈ N and m ∈ N

∗, the antiderivative may
be rewritten by factorizing the denominator as the product
of terms of the imaginary entity ı2 = −1 using the identity
v2 +1 = v2 − ı2

Z

eav

(v2 +1)m
v

ndv =
Z

eav

(v+ ı)m(v− ı)m
v

ndv. (23)

Multiplying the numerator by ı
2

(

(v− ı)−(v+ ı)
)

= 1 and
simplifying subsequently yields

Z

eav

(v2 +1)m
v

ndv =
ı

2

(

Z

eav

(v+ ı)m(v− ı)m−1 v
ndv (24)

−
Z

eav

(v+ ı)m−1(v− ı)m
v

ndv

)

.

Repeating the above process m times simultaneously for
all summands then gives

Z

eav

(v2 +1)m
v

ndv =
(

ı

2

)m m

∑
k=0

(−1)k

(

m

k

)

(25)

Z

eav

(v+ ı)m−k(v− ı)k
v

ndv.

Recursively excluding from the process the terms whose
exponent of either v + ı or v− ı is zero in the denominator
while applying the previous factorization further to the re-
maining summands, and substituting j = m−k subsequently
leads to

Z

eav

(v2 +1)m
v

ndv =
m

∑
j=1

(

ı

2

)2m− j
(

2m−1− j

m−1

)

(26)

(

(−1)m− j
Z

eav

(v+ ı) j
v

ndv+(−1)m
Z

eav

(v− ı) j
v

ndv

)

.

Proceeding to a change of the variable of integration by
defining z = v + ı or z = v− ı in each of the above integrals
respectively, expanding the resulting nth-order polynomials
in the numerator using the binomial theorem, and rearrang-

ing the terms then yields

Z

eav

(v2 +1)m
v

ndv =
m

∑
j=1

(

ı

2

)2m− j
(

2m−1− j

m−1

)

n

∑
l=0

(

n

l

)

(

(−1)m− j(−ı)n−l
e
−ıa

Z v+ı eaz

z j
z

ldz (27)

+(−1)m
ı
n−l

e
ıa

Z v−ı eaz

z j
z

ldz

)

.

Splitting each of the above sums into 2 sub-sums contain-
ing only terms with either negative or positive exponents of
the variable z, and substituting k = j− l or k = l − j respec-
tively, subsequently leads to

Z

eav

(v2 +1)m
v

ndv =
m

∑
j=1

(

ı

2

)2m− j
(

2m−1− j

m−1

)(

(28)

j

∑
k=max{1, j−n}

(

n

j− k

)

(

(−1)m− j(−ı)n− j+k
e
−ıa

Z v+ı eaz

zk
dz

+(−1)m
ı
n− j+k

e
ıa

Z v−ı eaz

zk
dz

)

+
≤n− j

∑
k=0

(

n

j + k

)

(

(−1)m− j(−ı)n− j−k
e
−ıa

Z v+ı

e
az

z
kdz

+(−1)m
ı
n− j−k

e
ıa

Z v−ı

e
az

z
kdz

)

)

The above reformulation ultimately expresses the an-
tiderivative in terms of the following known indefinite in-
tegrals [GR07]
Z

e
av

v
ndv =

eav

a

n

∑
i=0

n!
(n− i)!

vn−i

(−a)i

Z

eav

vm
dv =

am−1

(m−1)!
Ei(av)−

m−2

∑
i=0

(m−2− i)!
(m−1)!

eavai

vm−1−i
.

Finally substituting the above formulations, multiplying
the denominator so as to remove the imaginary entity from
the latter and expanding the corresponding factor in the nu-
merator using the binomial theorem, the resulting expression
may then be rearranged and simplified to yield our solution
readily reported in equation 29 to follow, where the E func-
tion reads

E(a,v, j) =
1
2

(

ı j

eıa
Ei(av+ ıa)+

eıa

ı j
Ei(av− ıa)

)

= (−1)⌊
j

2 ⌋i(1−( j mod 2))(a,v) (30)

with Ei being the complex-valued exponential integral func-
tion [AS72] whose real ℜ and imaginary ℑ parts define

i0(a,v) = sin(a)ℜ(Ei(av+ ıa))− cos(a)ℑ(Ei(av+ ıa))

i1(a,v) = cos(a)ℜ(Ei(av+ ıa))+ sin(a)ℑ(Ei(av+ ıa)).
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4. Implementation

While the mathematics underlying the derivation might seem
daunting at first, implementing the method really only entails
literally converting the few relevant equations into code, and
figure 2 provides an algorithm outline in order to help identi-
fying those involved in that process. Although the exponen-
tial integral is part of the commonly employed Boost C++
libraries, we used instead the implementation provided in
[PSP09a] in our experiments to ease portability onto graph-
ics hardware.

With respect to efficiency, it is worth observing that re-
dundant computation may be easily avoided by evaluating
the terms i0 and i1 in equation 30 only once before enter-
ing the loops as both are independent of the value of the
iterators from equation 29. Similarly, the various power and
factorial terms as well as the binomial coefficients involved
can be incrementally computed via pre-iterative initializa-
tion of the variables which may then be updated in constant
time within the loops. While doing so, the second and third
lines of equation 29 might resort to basic manipulations of
the type ∑

m
j

j!
m! am− j = am

m! ∑
m
j

j!
a j allowing the external fac-

tor to be ultimately generated as a by-product of the iterative
process. Finally, although the following observation does not
hold true in arbitrary settings, our experiments have empiri-
cally shown that, when solving the air-light integral, the sum
on the third line of equation 29 systematically evaluates to
zero, which suggests additional potential for optimization.

ComputeEyeRadiance()

1. Compute Lm;
2. Compute bounds of integral as in equations 5 and 7;
3. Compute coefficients cΦ|I(n) as in equation 13 or 15;
4. Compute Lm as in equation 22;
5. Compute coefficient d(n,k) as in equation 17/19/21;
6. Compute integral using equations 29 and 30;
7. Compute Lr as in equations 2 and 8;
8. Compute L as in equation 1;

Figure 2: Algorithm outline summarizing the equations in-

volved in implementing the method.

5. Results

The accuracy of the method was first assessed via a CPU
implementation facilitating quality evaluation in comparison
to that of previous approaches. Figure 3 illustrates the re-
sults obtained over a wide range of ray trajectories using an
environment camera while rendering high/low-density haze
with a Rayleigh phase function. In such setting, Lecocq’s 3-
term expansion [BAM06] yields strong ghosting artifacts in
light-backfacing directions while overall inaccuracies may
be most easily noticed in the skyline. The latter directions
are also problematic for Sun’s 512×512 precomputed tables
which lead to visual artifacts (see insets) divulging bilinear
interpolation errors in addition to those most prominent in
high-density media caused by extrapolation. In contrast, our
closed-form solution faithfully matches the reference image
computed offline using Monte Carlo estimation, as empha-
sized in figure 5.

Figure 4 depicts the results obtained with relatively fo-
cused spotlight distributions. Using the first 4 terms of
the Taylor series as reported in [PSP09a], Pegoraro’s dual-
formulation leads to inaccuracies in the glows of the 2 left-
most light sources and to erroneous artifacts below the right-
most one where the approximation results in negative esti-
mates of the positive integral. Although the artifacts might
be reduced by hand-coding additional terms in the series
whose lengths here become quickly intractable, inaccuracies
still remain even with 6 terms in the Taylor expansions. On
the other hand, our results here again match the reference
solution exactly as highlighted in figure 5.

In addition, figure 6 shows a complex anisotropic light
source distribution easily modeled using only 2 Legendre co-
efficients. Using our method, the solution can be efficiently
rendered in closed-form, whereas none of the previous ap-
proaches could conceivably handle such a case even semi-
analytically. We also wish to emphasize that all the results
presented in this paper use exact representations of the vari-
ous angular distributions, and details about their expressions
may be found in table 3.

The performance characteristics of our closed-form solu-
tion compared to that of previous approaches were also eval-
uated via a Cg-based GPU implementation running on an
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Figure 3: An alley covered in respectively thick (left half)

and thin (right half) anisotropic haze lit by 4 colorful street-

lamps, rendered using (from top to bottom) Lecocq’s method,

Sun’s method, our closed-form solution, and offline Monte

Carlo estimation.

NVIDIA GeForce GTX 280 under Windows XP 64-bit. The
calculation was carried independently for each color chan-
nel so as to support chromatic effects, and while the com-
putational cost increases with the order of the integrand, in-
teractivity is still maintained for various common scattering
modes as illustrated in table 4 which reports the frame rates
benchmarked on a low-geometry scene so as to predomi-
nantly measure the cost of the air-light integration schemes.

Figure 4: An underwater scene illuminated by the spot-

lights of a submersible, rendered using (top-left) Pegoraro’s

method with 4 terms, (top-right) Pegoraro’s method with 6

terms, (bottom-left) our closed-form solution, and (bottom-

right) offline Monte Carlo estimation.

Table 3: Number and order of the terms constituting the ex-

act expressions of the various anisotropic functions used in

the respective figures.

Function Terms Orders Figure
Isotropic 1 0

Linear Anisotropic 2 0, 1
Rayleigh 2 0, 2 3
Spotlight 1 10 4
Light Ball 6 0, 2, 4, 6, 8, 10 6

Due to the simplifications that they rely on, we acknowl-
edge that previous approaches are admittedly more suited to
time-critical applications whenever visible artifacts are tol-
erable. Nevertheless, it is important to recall that unlike pre-
vious techniques which approximate the solution for fairly
limited cases such as isotropic light sources [SRNN05] or
low-frequency distributions [PSP09a], our result is the math-
ematical solution to an actually much broader set of configu-
rations including complex phase functions and light sources,
and it can therefore be used to effectively assess the quality
of the aforementioned inexact methods.

6. Discussion and Future Work

Thanks to their generality, numerical methods can most of-
ten implicitly account for visibility of the light sources along
view rays as part of the integrand, although doing so is inher-
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0 >89% 0 >1% 0 >305%

Figure 5: Color-coded visualization of the absolute error

of the results relative to the average image intensity (left)

from figure 3 for (from top to bottom) Lecocq’s method, Sun’s

method, and our closed-form solution, and (right) from fig-

ure 4 for (from top to bottom) Pegoraro’s method with 4 and

6 terms respectively, and our closed-form solution.

Figure 6: A concert stage lit by a high-frequency anisotropic

light ball rendered analytically using our closed-form solu-

tion (left) and compared against the reference image (right).

ently prone to under-sampling artifacts. In contrast, analyti-
cal approaches, including those from previous work as well
as the one presented in this paper, typically need to explicitly
handle the discontinuities due to volumetric shadows by par-
titioning the domain of integration so as to exclude occluded
intervals from the integral as done in [Jam03] or [BAM06].
Despite the extra computational cost entailed by the shadow-
volumes algorithm, coupling our integration scheme with the
latter would consequently provide a simple means of effec-
tively determining exact shadow boundaries.

Table 4: Frame rates achieved with our closed-form solution

on graphics hardware compared to that of previous approxi-

mate methods at a resolution of 768×768 for various chro-

matic scattering modes. Both anisotropic light distributions

are of order 4, and the performance for Pegoraro’s dual-

formulation is reported for 4 and 6 terms in the Taylor series

expansion respectively.

FPS Lecocq Sun Pegoraro Our method
Isotropic 932 998 315

Linear Anisotropic 984 80.7
Rayleigh 991 988 44.7
Spotlight 84.9/31.7 3.53
Light Ball 1.71

Moreover, the latter performance characteristics actu-
ally illustrate the main practical limitation of our solution,
namely, its computational cost which is a supra-linear func-
tion of the order of the angular distributions. While the ap-
proach performs reasonably well for several common scat-
tering modes, interactive frames rates may currently not be
achieved for high-order representations and future directions
of research could consequently investigate alternatives to
improve the efficiency of the evaluation scheme.

On the other hand, the technique does scale linearly in the
number of light sources, and area lights may be easily rep-
resented as a set of several anisotropic point sources. Also,
while almost all naturally occurring phase functions are rota-
tionally symmetrical about the incident direction, the 1-D as-
sumption does not hold when dealing with light sources pa-
rameterized by both polar and azimuthal angles. Generaliza-
tions of the method could therefore consider 2-dimensional
light distributions in order to make the solution applicable to
a broader range of configurations. Finally, our analytical ap-
proach opens an avenue to many extensions, including the
derivation of closed-form solutions for non-punctual light
sources and inhomogeneous media as well as higher-order
scattering events.

7. Conclusion

In this paper, we have presented the very first closed-form
solution to the air-light integral in homogeneous media for
general 1-D phase functions and punctual light sources. As-
suming a generic representation of angular distributions, we
have provided a mathematical formulation of the problem
and shown that the latter effectively reduces to the knowl-
edge of a single indefinite integral. In order to determine the
antiderivative of interest, we have then introduced a novel
analytical derivation leading to the formulation of a closed-
form solution which, to the best of our knowledge, has never
appeared before in the literature.

This new theoretical result enables the analytical com-
putation of exact solutions to complex scattering phenom-
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ena which, up until now, still represented an open prob-
lem in the overall light transport simulation community.
The technique makes the calculation of ground truth solu-
tions in a finite number of computational steps finally possi-
ble, and therefore the efficient generation of reference im-
ages to evaluate the quality of the many approximations
to the single-scattering model that have been proposed in
the past. Furthermore, it also allows high-quality results to
be achieved with semi-interactive performance on current-
generation graphics hardware for several common scatter-
ing modes. Finally, although the solution is currently bound
to the assumption of single scattering, homogeneity of the
medium and punctuality of the light sources, we believe that
it represents a major step forward towards deriving more
generic analytical solutions to light transport and hope it will
stimulate subsequent research in the field.
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