

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. NUMER. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 46, No. 4, pp. 2112–2132

INEXACT NEWTON DOGLEG METHODS∗

ROGER P. PAWLOWSKI† , JOSEPH P. SIMONIS‡ , HOMER F. WALKER‡ , AND

JOHN N. SHADID†

Abstract. The dogleg method is a classical trust-region technique for globalizing Newton’s
method. While it is widely used in optimization, including large-scale optimization via truncated-
Newton approaches, its implementation in general inexact Newton methods for systems of nonlinear
equations can be problematic. In this paper, we first outline a very general dogleg method suitable
for the general inexact Newton context and provide a global convergence analysis for it. We then
discuss certain issues that may arise with the standard dogleg implementational strategy and propose
modified strategies that address them. Newton–Krylov methods have provided important motivation
for this work, and we conclude with a report on numerical experiments involving a Newton–GMRES
dogleg method applied to benchmark CFD problems.

Key words. dogleg methods, trust-region methods, inexact Newton methods, Newton’s method,
Newton iterative methods, Newton–Krylov methods, Newton–GMRES methods, truncated-Newton
methods, globalized Newton methods, fully-coupled solution methods, Navier–Stokes equations

AMS subject classifications. 65H10, 65F10

DOI. 10.1137/050632166

1. Introduction. The problem of interest is a system of nonlinear equations

F (x) = 0,(1.1)

where F : IRn → IRn is continuously differentiable. A classical algorithm for solving
(1.1) is Newton’s method, which generates a sequence of iterates {xk} through steps
sk = xk+1 − xk that satisfy the linear Newton equation

F ′(xk)sk = −F (xk).(1.2)

An inexact Newton method, defined in [9], is an extension of Newton’s method
having the following basic form:

Algorithm IN. Inexact newton method [9]

Let x0 be given.
For k = 0, 1, . . . (until convergence) do:

Choose ηk ∈ [0, 1) and sIN
k such that

(1.3) ‖F (xk) + F ′(xk) s
IN
k ‖ ≤ ηk‖F (xk)‖.

Set xk+1 = xk + sIN
k .

∗Received by the editors May 24, 2005; accepted for publication (in revised form) August 2, 2007;
published electronically May 2, 2008.

http://www.siam.org/journals/sinum/46-4/63216.html
†Department of Computational Sciences, Sandia National Laboratories, MS 0316, P.O. Box 5800,

Albuquerque, NM 87185-0316 (rppawlo@sandia.gov, jnshadi@sandia.gov). The work of these authors
was partially supported by the US DOE ASC program and the US DOE Office of Science MICS
program at Sandia National Laboratories under contract DE-AC04-94AL85000.

‡Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609-
2280 (jpsimoni@wpi.edu, walker@wpi.edu). The work of these authors was supported in part by
Sandia National Laboratories under the ASC program and in part by the Sandia National Laborato-
ries Computer Science Research Institute (contract 16099 with WPI). The third author’s work was
also supported in part by NSF grant DMS-0540684 with Worcester Polytechnic Institute and by the
Center for Simulation of Accidental Fires and Explosions funded at the University of Utah by the
U.S. Department of Energy under contracts LLNL B341493 and B524196.

2112

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2113

The inexact Newton condition (1.3) is a relaxation of (1.2) that expresses the defining
property of an inexact Newton method. The usual point of view is that, for each k,
the inexact Newton step sIN

k is chosen to reduce the norm of F (xk) + F ′(xk)s, the
local linear model of F at xk, to an extent specified by ηk. Viewed in this way, ηk is
often called a forcing term (cf. [13]).

While there is no restriction in Algorithm IN on how sIN
k satisfying (1.3) is deter-

mined, inexact Newton methods are often implemented as Newton iterative methods,
in which sIN

k is found by applying an iterative linear algebra method to (1.2) until
(1.3) holds for a specified ηk. For most large-scale applications, the most robust and
efficient such methods are Newton–Krylov methods, in which the iterative linear al-
gebra methods are Krylov subspace methods.1 Newton–Krylov methods, which have
provided considerable motivation for this paper, can enable the efficient solution of
(1.2) on large-scale distributed architectures and may also allow “matrix-free” imple-
mentations (see [25]) that do not require the evaluation or storage of F ′. The term
“Newton–Krylov” appears to have originated in [3], but these methods date back at
least to the truncated Newton method for optimization introduced in [10] (see also
[28] and [46], which anticipated some algorithmic features), in which the Krylov sub-
space method is the preconditioned conjugate-gradient (PCG) method or its Lanczos
variant. A Newton–Krylov method that uses a specific Krylov subspace method is
often designated by appending the name of the Krylov solver to “Newton,” as in
the Newton–GMRES method, which uses the generalized minimal residual (GMRES)
method [38]. For recent general references on Newton–Krylov methods, see [24], [25],
and [30].

Inexact Newton methods, like all Newton-like methods, must usually be globalized,
i.e., augmented with certain auxiliary procedures (globalizations) that increase the
likelihood of convergence to a solution when good initial approximate solutions are
not available. Globalizations are typically constructed to test whether a trial step gives
satisfactory progress toward a solution and, if necessary, to modify it in some way to
obtain a step that does give satisfactory progress. There are two major categories of
globalizations: backtracking (linesearch, damping) methods, in which step lengths are
adjusted (usually shortened) to obtain satisfactory steps; and trust-region methods,
in which a step is ideally chosen to minimize the norm of the local linear model of
F within a specified “trust region.”2 (More specifically, the trust-region step from
an approximate solution xk is ideally arg min‖s‖≤δ‖F (xk) + F ′(xk)s‖, where δ > 0
is a given trust-region radius and ‖ · ‖ is a norm of interest.) Both backtracking
and trust-region methods have strong theoretical support; see, e.g., [11], [7], and [12]
and the references therein. Backtracking methods are relatively easy to implement;
however, each step direction is restricted to be that of the initial trial step. While
this step is normally constructed to be a descent direction for ‖F‖, and is always a
descent direction for ‖F‖ if the step satisfies (1.3) [4, Prop. 3.3], [12, Lem. 7.1], it may
be only a weak descent direction, especially if the Jacobian is ill-conditioned [42].
Since trust-region steps are increasingly nearly in the steepest-descent direction as
the trust-region radius decreases, trust-region methods have the potential advantage
of producing modified steps that may be stronger descent directions than the initial
trial step; however, their implementation in practical methods may be problematic.

1An introduction to Krylov subspace methods is beyond the scope of this paper; we refer the
reader to the surveys [16] and [20] and the books [19], [37], and [48].

2See [11, Ch. 6] for a general discussion of classical globalizations and [7] for a more recent and
very extensive treatment of trust-region methods.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2114 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

A fundamental issue is that it is often not feasible to compute the ideal trust-region
step with much accuracy (see, e.g., [11, Ch. 6] and [7, Ch. 7]), and various ways of
approximating it have been devised.

The dogleg method [33], [32] provides perhaps the most popular way of approxi-
mating the trust-region step. In the traditional dogleg method for solving (1.1), given
an approximate solution xk, one defines the dogleg curve ΓDL

k to be the piecewise-
linear curve joining 0, the Cauchy point sCP

k (defined to be the minimizer of ‖F (xk)+
F ′(xk)s‖ in the steepest-descent direction, provided ‖ · ‖ is an inner-product norm),3

and the Newton step sN
k ≡ −F ′(xk)

−1F (xk). Then, given a trust-region radius
δ > 0, the dogleg step sk is defined as follows: If ‖sN

k ‖ ≤ δ, then sk = sN
k ; oth-

erwise, sk is chosen on ΓDL
k such that ‖sk‖ = δ. It can be shown (see, e.g., [11,

Ch. 6]) that, as a point s traverses ΓDL
k from 0 to sN

k , ‖s‖ is monotone increasing
and ‖F (xk) + F ′(xk)s‖ is monotone decreasing. Thus, the dogleg step sk is uniquely
defined, and sk = arg mins∈ΓDL

k , ‖s‖≤δ‖F (xk)+F ′(xk)s‖. Moreover, if δ is sufficiently

small (specifically, if δ ≤ ‖sCP
k ‖), then sk is a short step in the steepest-descent direc-

tion.

One can extend the dogleg method to the inexact Newton context in a straight-
forward way by substituting sIN

k for sN
k in the definition of ΓDL

k . The resulting dogleg
curve retains the appealing property of offering a continuum of steps ranging from sIN

k

to short steps in the steepest-descent direction. However, some desirable properties
are lost. First, for any ηk > 0, no matter how small, the local linear model norm
may not decrease monotonically along ΓDL

k between sCP
k and sIN

k . For example, this
will be the case if sN

k is nearly on and interior to the line segment joining sCP
k and

sIN
k , as illustrated on the left in Figure 1.1. Note that, in this illustration, the point

on ΓDL
k having norm δ does not minimize the local linear model norm along ΓDL

k

within the trust region. Second, unless ηk is sufficiently small, ‖s‖ may not increase
monotonically as s traverses ΓDL

k from sCP
k to sIN

k ; as a consequence, ΓDL
k may have

more than one point of intersection with the trust-region boundary, as illustrated on
the right in Figure 1.1. (If, in this illustration, sIN

k were moved to the right along
the same contour to a point slightly outside the trust-region boundary, then ΓDL

k

would have three points of intersection with the trust-region boundary.) Thus, with
this straightforward extension, the dogleg step cannot be reliably characterized as the
unique point on ΓDL

k having norm δ; neither can we always expect a point on ΓDL
k

having norm δ to minimize the local linear model norm along ΓDL
k within the trust

region.

Remark. These issues do not arise in the case of a truncated Newton method for
minimizing f : IRn → IR1. In this case, PCG is applied to (1.2) with F (xk) = ∇f(xk)
and F ′(xk) = ∇2f(xk) until either a specified inexact-Newton condition holds, a
PCG iterate falls outside of the trust region, or a nonpositive eigenvalue of ∇2f(xk)
is detected. In this context, the model of interest is the local quadratic model of f ,
rather than the local linear model of F = ∇f . One can show [44, Th. 2.1], [7, section
7.5] that, in an appropriate norm ‖·‖, the first PCG iterate is the Cauchy point for the
local quadratic model and, with the minimizing properties of the PCG iterates, that
the model is monotone decreasing along the dogleg curve joining 0, the Cauchy point,
and any subsequent PCG iterate. Moreover, the PCG iterate norms are monotone

3Our definition of the Cauchy point follows that in [11, Ch. 6]. In [7], the Cauchy point is defined
to be the minimizer in the steepest-descent direction within the trust region. In section 2 below, we
recall the definition of the steepest-descent direction with respect to an inner-product norm of interest
and discuss potential difficulties in evaluating it.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2115

IN
ks

k

0

CP
s

0

IN
k

sCP
k

s

Fig. 1.1. Illustrative inexact Newton dogleg curves in IR2. The ellipses represent level curves
of the local linear model norm. The solid ellipses represent {s ∈ IRn : ‖F (xk) + F ′(xk)s‖ =
ηk‖F (xk)‖}. The circular arcs represent trust-region boundaries.

increasing [44, Th. 2.1], [7, Th. 7.5.1], and it follows that ‖s‖ is monotone increasing
as s traverses the dogleg curve from 0 to the final PCG iterate.

With these issues in mind, our goal in this paper is to develop an understanding
of dogleg methods in the general inexact Newton context that will place them on a
firm footing, both theoretically and practically. In section 2, we outline a very general
inexact Newton dogleg method and provide a convergence analysis for it. Since com-
puting exact Cauchy points may be undesirably expensive or infeasible, as discussed
further in section 2, the method allows approximations of these points in addition
to inexact Newton steps in defining the dogleg curves.4 The method also allows a
great deal of flexibility in determining steps along the dogleg curves in order to ac-
commodate a variety of strategies for selecting steps. In section 3, we address specific
step-selection strategies, noting possible shortcomings of the traditional strategy and
suggesting certain alternatives and enhancements. In section 4, we discuss implemen-
tational details and report on numerical experiments with Newton–GMRES dogleg
methods applied to benchmark problems involving the steady-state Navier–Stokes
equations.5 We conclude with summary observations in section 5.

2. The general method. We assume throughout that 〈·, ·〉 is an inner product
of interest and that ‖ · ‖ is the associated norm. We use 〈·, ·〉2 and ‖ · ‖2 to denote
the Euclidean inner product and norm, and recall that there is a unique symmetric
positive-definite D ∈ IRn×n such that 〈u, v〉 = 〈u,Dv〉2 for all u, v ∈ IRn. (In practice,
D is likely to be explicitly available, but this is not assumed here.) We define the
merit function

f(x) ≡ 1

2
‖F (x)‖2

4The use of approximate Cauchy points is particularly relevant in the context of interest here.
In order to keep the focus on the issues of major interest, we do not consider inaccuracy from other
sources. See [6] for a general discussion of inaccuracy in inexact Newton methods and [2] and [5] for
a treatment of the effects of particular sources of inaccuracy in Jacobian-vector products.

5Globalization is usually less critical for time-dependent problems, since time-steps are usually
sufficiently small to maintain convergence of inexact Newton iterates in implicit time-stepping meth-
ods. However, globalization has been used to advantage in some cases; for example, it has been
observed in groundwater flow simulations that globalization appears necessary (and a linesearch
globalization is sufficient) to achieve desirably long time steps [49].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2116 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

and note that f is continuously differentiable since F is, with ∇f(x) = F ′(x)TDF (x).
One has that ∇f(x)T s = 〈∇f(x), s〉2 = 〈D−1∇f(x), s〉; hence, the steepest-descent
direction for f with respect to 〈·, ·〉 is

d(x) ≡ −D−1∇f(x) = −D−1F ′(x)TDF (x).(2.1)

Accurately evaluating d(x) may be problematic in practice for at least two rea-
sons: first, solving systems with D may be undesirable, even if D is available; sec-
ond, multiplication by F ′(x)T may be infeasible, e.g., in applications of “matrix-free”
Newton–Krylov methods in which F ′(x) is unavailable. However, useful approxima-
tions of d(x) may be available in many circumstances. If F ′(x)T -products can be
evaluated, then −∇f(x) may be an acceptable substitute for d(x); see Remark 2 after
Theorem 2.1. If accurate F ′(x)T -products are not available, then one may be able
to approximate them using approximations of F ′(x) that can be readily computed,
e.g., by omitting terms in F ′(x) that cannot be easily evaluated or that lie outside a
desirable sparsity pattern. Additionally, in the Newton–Krylov context, certain ap-
proximations of d(x) may be available at little cost, as explained further at the end of
this section. Thus, in outlining our general inexact Newton dogleg method, we allow
at each iterate xk an approximate steepest-descent direction d̂k ≈ d(xk) and prescribe
in Theorem 2.1 how good this approximation must be in order to ensure desirable
convergence properties of the method.

With each d̂k, we have an approximate Cauchy point

ŝCP
k ≡ arg min{‖F (xk) + F ′(xk)s‖ : s = λd̂k,−∞ < λ < ∞}.

(Here, and in the following, we use “̂ ” to designate approximations derived from d̂k.)
Then, given an inexact Newton step sIN

k , we define an approximate dogleg curve Γ̂DL
k

to be the piecewise-linear curve connecting 0, ŝCP
k , and sIN

k . Our general method
allows great latitude in selecting trial steps on this approximate dogleg curve within
the trust region, imposing only very mild minimum-length requirements.

Our test for accepting a step is based on a comparison of the actual reduction
of ‖F‖ and the reduction “predicted” by the local linear model, defined at the kth
iteration by, respectively,

aredk ≡ ‖F (xk)‖ − ‖F (xk + sk)‖,

predk ≡ ‖F (xk)‖ − ‖F (xk) + F ′(xk) sk‖.
(2.2)

Specifically, our test requires aredk ≥ t · predk > 0 for each k, where t ∈ (0, 1) is
independent of k. Tests of this type have been used by a number of others; see, e.g.,
[14], [15], [34], and [12] for such tests applied to systems of nonlinear equations and
[27], [43], and [7] for analogous tests applied to unconstrained minimization.

The following is our general inexact Newton dogleg method. See section 4 for the
specific parameter values and ancillary procedures used in our test implementation.

Algorithm INDL. Inexact newton dogleg method

Let x0, ηmax ∈ [0, 1), t ∈ (0, 1), θmax ∈ (0, 1), δmin > 0 and
δ ≥ δmin be given.

For k = 0, 1, . . . (until convergence) do:
Choose ηk ∈ [0, ηmax] and sIN

k such that

‖F (xk) + F ′(xk) s
IN
k ‖ ≤ ηk‖F (xk)‖.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2117

Determine d̂k and evaluate ŝCP
k .

Determine sk ∈ Γ̂DL
k with min{δmin, ‖sIN

k ‖} ≤ ‖sk‖ ≤ δ.
While aredk < t · predk do:

If δ = δmin, stop; else choose θ ∈ (0, θmax].
Update δ ← max{θδ, δmin}.
Redetermine sk ∈ Γ̂DL

k with min{δmin, ‖sIN
k ‖} ≤ ‖sk‖ ≤ δ.

Set xk+1 = xk + sk and update δ in [δmin,∞).

As it is stated, Algorithm INDL requires determining both sIN
k and ŝCP

k before

determining the initial sk ∈ Γ̂DL
k . In a practical implementation, only one of these

may be needed; see section 3.1.
The algorithm employs δmin > 0 that serves as a lower bound on allowable trust-

region radii and is also used in determining a lower bound on admissible dogleg step
lengths. This δmin is used in the proof of Theorem 2.1. Such a δmin is likely to be
a part of any practical algorithm and, in practice, can be related to a step-length
stopping tolerance or taken so small that it does not undesirably restrict choices of
the trust-region radii or the dogleg steps.

It is easily verified that the while-loop cannot continue indefinitely; that is, once
an initial sk has been obtained, either an acceptable sk is determined or the algorithm
terminates with δ = δmin after at most a finite number of iterations of the while-loop.
For the purposes of Theorem 2.1, there is complete freedom in choosing θ ∈ (0, θmax].
In particular, because of the constrained update δ ← max{θδ, δmin}, it is not necessary
to impose a positive lower bound on θ, although one may well do this in practice.
(There are a number of practical possibilities for choosing θ; see, in particular, [11]
for choices based on minimizing interpolating polynomials over a fixed subinterval
[θmin, θmax] ⊂ (0, 1).) Similarly, for the purposes of Theorem 2.1, there is complete
freedom in updating δ in [δmin,∞) following the while-loop. Of course, one would
want to do this judiciously in practice; see, e.g., [11] and [7] for practically effective
procedures.

Our global convergence result for Algorithm INDL is given in Theorem 2.1 below.
For this, we recall that x ∈ IRn is a stationary point of ‖F‖ if ‖F (x)‖ ≤ ‖F (x) +
F ′(x) s‖ for every s ∈ IRn. In the present context, x is a stationary point if and only
if ∇f(x) = 0.

Theorem 2.1. Assume that F is continuously differentiable. Suppose that {xk}
is produced by Algorithm INDL and that, for d defined in (2.1) and some ε > 0,

〈d̂k, d(xk)〉
‖d̂k‖‖d(xk)‖

≥ ε(2.3)

for every k. If x∗ is a limit point of {xk}, then x∗ is a stationary point of ‖F‖. If,
additionally, F ′(x∗) is nonsingular, then F (x∗) = 0 and xk → x∗. Moreover, for all
sufficiently large k, the initial sk is accepted without modification in the while-loop,
and sk = sIN

k is an admissible step.

Remark 1. In Theorem 2.1, we implicitly assume that F (xk), d̂k, and d(xk) are
nonzero for every k.

Remark 2. Inequality (2.3) states that the vectors d̂k are uniformly bounded
away from orthogonality with the vectors d(xk). Note that

〈−∇f(xk), d(xk)〉
‖ − ∇f(xk)‖‖d(xk)‖

=
‖∇f(xk)‖2

2

〈∇f(xk), D∇f(xk)〉1/22 〈∇f(xk), D−1∇f(xk)〉1/22

≥ ε

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2118 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

for 0 < ε ≤ κ2(D)−1/2, where κ2(D) = ‖D‖2‖D−1‖2. Thus (2.3) holds for some ε > 0

if d̂k is −∇f(xk) or a sufficiently accurate approximation of it.
Remark 3. If xk → x∗ with F (x∗) = 0 and F ′(x∗) nonsingular and if sk = sIN

k

for all sufficiently large k, then the convergence is ultimately governed by the choices
of the forcing terms ηk as in the local convergence theory of [9] and [13].

Proof. Let {xk} be produced by Algorithm INDL and suppose that (2.3) holds

for every k. Since 〈F ′(xk)d̂k, F (xk)〉 = −〈d̂k, d(xk)〉 �= 0 by (2.3), we have that

F ′(xk)d̂k �= 0 for every k. Then a straightforward calculation yields

‖ŝCP
k ‖ =

|〈F (xk), F
′(xk)d̂k〉|

‖F ′(xk)d̂k‖2
‖d̂k‖,(2.4)

η̂CP
k ≡ ‖F (xk) + F ′(xk)ŝ

CP
k ‖

‖F (xk)‖
=

√
1 − 〈F (xk), F ′(xk)d̂k〉2

‖F (xk)‖2‖F ′(xk)d̂k‖2
.(2.5)

Our plan is to build on (2.4)–(2.5) to obtain upper bounds on ‖ŝCP
k ‖ and η̂CP

k

at points of interest that will allow us to use results from [12], which are stated as
Theorem 2.2 following the proof. Equation (2.4) immediately gives

‖ŝCP
k ‖ ≤ ‖F (xk)‖ ‖d̂k‖

‖F ′(xk)d̂k‖
.(2.6)

Also, from (2.3), we obtain

ε ≤ 〈d̂k, d(xk)〉
‖d̂k‖ ‖d(xk)‖

= −〈d̂k, F ′(xk)
TDF (xk)〉2

‖d̂k‖ ‖d(xk)‖

= −〈F ′(xk)d̂k, F (xk)〉
‖d̂k‖ ‖d(xk)‖

≤ ‖F ′(xk)d̂k‖
‖d̂k‖

· ‖F (xk)‖
‖d(xk)‖

,

whence

‖d̂k‖
‖F ′(xk)d̂k‖

≤ ‖F (xk)‖
ε‖d(xk)‖

.

Then (2.6) yields

‖ŝCP
k ‖ ≤ ‖F (xk)‖2

ε‖d(xk)‖
.(2.7)

From (2.3), we also have

− 〈F (xk), F
′(xk)d̂k〉

‖F (xk)‖ ‖F ′(xk)d̂k‖
=

〈d̂k, d(xk)〉
‖d̂k‖ ‖d(xk)‖

· ‖d̂k‖ ‖d(xk)‖
‖F (xk)‖ ‖F ′(xk)d̂k‖

≥ ε · ‖d̂k‖
‖F ′(xk)d̂k‖

· ‖d(xk)‖
‖F (xk)‖

≥ ε

‖F ′(xk)‖
· ‖d(xk)‖
‖F (xk)‖

,

and it follows from (2.5) that

η̂CP
k ≤

√
1 − ε2

‖F ′(xk)‖2
· ‖d(xk)‖2

‖F (xk)‖2
.(2.8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2119

Let x∗ be a limit point of {xk}, and suppose that x∗ is not a stationary point
of ‖F‖. Then F (x∗) �= 0. Additionally, d(x∗) = −D−1∇f(x∗) �= 0 since x∗ is not
a stationary point of ‖F‖. Then, by continuity, there is a neighborhood N∗ of x∗
such that 0 < infx∈N∗ ‖F (x)‖ ≤ supx∈N∗ ‖F (x)‖ < ∞, 0 < infx∈N∗ ‖d(x)‖, and
0 < infx∈N∗ ‖F ′(x)‖ ≤ supx∈N∗ ‖F ′(x)‖ < ∞. Then one sees from (2.7)–(2.8) that
there are bounds M and ηCP

max < 1 such that ‖ŝCP
k ‖ ≤ M and η̂CP

k ≤ ηCP
max whenever

xk ∈ N∗.
Suppose that xk ∈ N∗ and sk is determined by Algorithm INDL. If sk lies on Γ̂DL

k

between ŝCP
k and sIN

k , then it follows from norm convexity that

‖F (xk) + F ′(xk) sk‖ ≤ max{η̂CP
k , ηk}‖F (xk)‖ ≤ max{ηCP

max, ηmax}‖F (xk)‖.(2.9)

If sk lies on Γ̂DL
k between 0 and ŝCP

k , then min{δmin, ‖sIN
k ‖} ≤ ‖sk‖ ≤ ‖ŝCP

k ‖. We have

‖F (xk)‖ − ‖F ′(xk)s
IN
k ‖ ≤ ‖F (xk) + F ′(xk)s

IN
k ‖ ≤ ηk‖F (xk)‖ ≤ ηmax‖F (xk)‖,

which implies

‖sIN
k ‖ ≥ (1 − ηmax)

‖F ′(xk)‖
‖F (xk)‖.(2.10)

The right-hand side of (2.10) is bounded away from zero for xk ∈ N∗; thus, there is a
δ̄ > 0 such that δ̄ ≤ min{δmin, ‖sIN

k ‖} whenever xk ∈ N∗. Since the local linear model

norm is monotone decreasing along the segment of Γ̂DL
k between 0 and ŝCP

k , we have,
again using norm convexity, that

‖F (xk) + F ′(xk) sk‖ ≤
∥∥∥∥F (xk) + F ′(xk)

(
δ̄

‖ŝCP
k ‖ ŝ

CP
k

)∥∥∥∥
≤

(
1 − δ̄

‖ŝCP
k ‖

)
‖F (xk)‖ +

δ̄

‖ŝCP
k ‖‖F (xk) + F ′(xk) ŝ

CP
k ‖

≤
[
1 − δ̄

‖ŝCP
k ‖ (1 − η̂CP

k)

]
‖F (xk)‖

≤
[
1 − δ̄

M
(1 − ηCP

max)

]
‖F (xk)‖.

(2.11)

From (2.9) and (2.11), one concludes that whenever xk ∈ N∗, we have ‖F (xk) +
F ′(xk) sk‖ ≤ η̄‖F (xk)‖, where

η̄ ≡ max

{
ηCP
max, ηmax, 1 − δ̄

M
(1 − ηCP

max)

}
< 1;

therefore, with predk defined as in (2.2),

predk

‖F (xk)‖
=

‖F (xk)‖ − ‖F (xk) + F ′(xk) sk‖
‖F (xk)‖

≥ (1 − η̄) > 0.(2.12)

Since xk ∈ N∗ for infinitely many values of k, (2.12) implies that
∑∞

k=0 predk/‖F (xk)‖
diverges, and it follows from Theorem 2.2 that F (x∗) = 0. This is a contradiction;
therefore, x∗ must be a stationary point of ‖F‖.

Suppose now that x∗ is a limit point of {xk} and that F ′(x∗) is nonsingular. Then
x∗ must be a stationary point of ‖F‖, and, since F ′(x∗) is nonsingular, we must have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2120 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

F (x∗) = 0. Additionally, we can let N∗ be a neighborhood of x∗ such that F ′(x) is
invertible for x ∈ N∗ and supx∈N∗{‖F (x)‖, ‖F ′(x)‖, ‖F ′(x)−1‖} < ∞. Noting that

‖F (xk)‖
‖d(xk)‖

≤ ‖
[
D−1F ′(xk)

TD
]−1 ‖,(2.13)

we have from (2.7) that, for xk ∈ N∗,

‖ŝCP
k ‖ ≤ 1

ε
‖
[
D−1F ′(xk)

TD
]−1 ‖ ‖F (xk)‖.(2.14)

One concludes that there is again a bound M such that ‖ŝCP
k ‖ ≤ M whenever xk ∈ N∗.

Moreover, it follows from (2.13) and (2.8) that, for xk ∈ N∗,

η̂CP
k ≤

√
1 − ε2

‖F ′(xk)‖2 ‖ [D−1F ′(xk)TD]
−1 ‖2

.

Consequently, there is again a bound ηCP
max < 1 such that η̂CP

k ≤ ηCP
max whenever

xk ∈ N∗.
Suppose that xk ∈ N∗ and sk is determined by Algorithm INDL. If sk lies on Γ̂DL

k

between ŝCP
k and sIN

k , then (2.9) holds as before. If sk lies on Γ̂DL
k between 0 and ŝCP

k ,
then we again have min{δmin, ‖sIN

k ‖} ≤ ‖sk‖ ≤ ‖ŝCP
k ‖. Reasoning as before, we have

that

‖F (xk) + F ′(xk) sk‖ ≤
∥∥∥∥F (xk) + F ′(xk)

(
min{δmin, ‖sIN

k ‖}
‖ŝCP

k ‖ ŝCP
k

)∥∥∥∥
≤

(
1 − min{δmin, ‖sIN

k ‖}
‖ŝCP

k ‖

)
‖F (xk)‖

+
min{δmin, ‖sIN

k ‖}
‖ŝCP

k ‖ ‖F (xk) + F ′(xk) ŝ
CP
k ‖

≤
[
1 − min{δmin, ‖sIN

k ‖}
‖ŝCP

k ‖ (1 − η̂CP
k)

]
‖F (xk)‖

≤
[
1 − min

{
δmin

M
,
‖sIN

k ‖
‖ŝCP

k ‖

}
(1 − ηCP

max)

]
‖F (xk)‖.

(2.15)

Inequality (2.10) again holds, and (2.10) and (2.14) yield

‖sIN
k ‖

‖ŝCP
k ‖ ≥ ε(1 − ηmax)

‖F ′(xk)‖ ‖ [D−1F ′(xk)TD]
−1 ‖

≥ inf
x∈N∗

ε(1 − ηmax)

‖F ′(x)‖ ‖ [D−1F ′(x)TD]
−1 ‖

> 0.

It follows that there is a δ̄ > 0 independent of k such that

δ̄ ≤ min

{
δmin

M
,
‖sIN

k ‖
‖ŝCP

k ‖

}
,

and we have from (2.15) that

‖F (xk) + F ′(xk) sk‖ ≤
[
1 − δ̄(1 − ηCP

max)
]
‖F (xk)‖.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2121

As before, one concludes that (2.12) holds whenever xk ∈ N∗, with η̄ now given
by

η̄ ≡ max{ηCP
max, ηmax, 1 − δ̄(1 − ηCP

max)} < 1,

and we again have that
∑∞

k=0 predk/‖F (xk)‖ diverges. Since F ′(x∗) is nonsingular,
it follows from Theorem 2.2 below that xk → x∗.

To complete the proof, we note that, since xk → x∗ as k → ∞ with F (x∗) = 0
and F ′(x∗) nonsingular, it follows from (2.14) that ŝCP

k → 0 as k → ∞. Additionally,
writing F ′(xk) sk = −F (xk) + rk with ‖rk‖ ≤ ηk‖F (xk)‖, we have that

‖sIN
k ‖ = ‖F ′(xk)

−1[−F (xk) + rk]‖ ≤ ‖F ′(xk)
−1‖ (1 + ηk) ‖F (xk)‖

≤ 2 ‖F ′(xk)
−1‖ ‖F (xk)‖.

Consequently, sIN
k → 0 as k → ∞. One easily verifies that, for all sufficiently large k,

every admissible sk ∈ Γ̂DL
k must be sufficiently small that aredk ≥ t ·predk holds; thus,

for all sufficiently large k, the initial sk is accepted without modification. Finally, for
all sufficiently large k, one has ‖sIN

k ‖ ≤ δmin ≤ δ, and sk = sIN
k is admissible.

The following is the result from [12] used in the proof of Theorem 2.1.
Theorem 2.2 (see [12, Cor. 3.6]). Let F : IRn → IRn be continuously differen-

tiable and assume that {xk} ⊂ IRn is such that predk ≥ 0 and aredk ≥ t · predk for
each k, where t ∈ (0, 1) is independent of k and aredk and predk are given by (2.2)
with sk ≡ xk+1 − xk. If

∑
k≥0 predk/‖F (xk)‖ is divergent, then F (xk) → 0. If, in

addition, x∗ is a limit point of {xk} such that F ′(x∗) is invertible, then F (x∗) = 0
and xk → x∗.

Applications to Newton–GMRES and Newton–Arnoldi methods. It follows from
observations in [3, section 4] that if either GMRES or the Arnoldi method [35] is used
(without restarting) to solve (1.2), then the orthogonal projection of d(xk) determined
by (2.1) onto each Krylov subspace generated by the method is available at very little
cost. Using results from [4], we show how Theorem 2.1 can be applied when these
projections are used in Algorithm INDL to approximate the vectors d(xk), provided
that the condition numbers κ(F ′(xk)) ≡ ‖F ′(xk)‖ ‖F ′(xk)

−1‖ are bounded uniformly
in k. In the spirit of [4], we show this for orthogonal projections onto subspaces that
are not necessarily Krylov subspaces.

Suppose that x ∈ IRn, K is a subspace of IRn, and s ∈ K is such that ‖F (x) +

F ′(x)s‖ ≤ η‖F (x)‖ for some η ∈ [0, 1). Let d̂ denote the orthogonal projection onto
K of d(x) given by (2.1). A straightforward extension of [4, Cor. 3.5] to the context
of a general inner-product norm gives

‖d̂‖ ≥ 1 − η

(1 + η)κ(F ′(x))
‖d(x)‖.

Since 〈d̂, d(x)〉 = ‖d̂‖2, it follows that

|〈d̂, d(x)〉|
‖d̂‖ ‖d(x)‖

=
‖d̂‖
‖d‖ ≥ 1 − η

(1 + η)κ(F ′(x))
.(2.16)

This immediately gives the following corollary of Theorem 2.1.
Corollary 2.3. Assume that F is continuously differentiable and that {xk} is

produced by Algorithm INDL. For each k, suppose that there is a subspace Kk ⊆ IRn

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2122 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

such that sIN
k ∈ Kk, and let d̂k denote the orthogonal projection onto Kk of d(xk)

determined by (2.1). If {κ(F ′(xk))} is bounded and if x∗ is a limit point of {xk},
then F (x∗) = 0 and xk → x∗. Moreover, for all sufficiently large k, the initial sk is
accepted without modification in the while-loop, and sk = sIN

k is an admissible step.
Proof. Let M be such that κ(F ′(xk)) ≤ M for all k. Then, since ηk ∈ [0, ηmax],

(2.16) implies that

|〈d̂k, d(xk)〉|
‖d̂k‖ ‖d(xk)‖

≥ 1 − ηmax

(1 + ηmax)M

for each k, and (2.3) holds with ε = 1−ηmax

(1+ηmax)M . The result follows from Theorem
2.1.

3. Step selection strategies. Algorithm INDL allows great flexibility in deter-
mining each step sk ∈ Γ̂DL

k , and particular choices of the steps may strongly affect the
behavior of the algorithm. In this section, we discuss specific strategies for selecting
admissible steps, first recalling the traditional strategy and then suggesting an alter-
native that may have advantages. We conclude by outlining certain refinements with
which these strategies can be augmented.

3.1. Two strategies. The traditional strategy outlined in the following is a
straightforward adaptation of the usual procedure for determining dogleg steps in the
exact-Newton context (see, e.g., [11]).

Procedure 3.1. Traditional strategy

If ‖sIN
k ‖ ≤ δ, set sk = sIN

k .
Else,

If ‖ŝCP
k ‖ ≥ δ, set sk = (δ/‖ŝCP

k ‖)ŝCP
k .

Else, set sk = (1 − γ)ŝCP
k + γsIN

k for γ ∈ (0, 1)
such that ‖sk‖ = δ.

This procedure always determines sk uniquely, notwithstanding that, as noted
in section 1, the usual exact-Newton characterization of the dogleg step may fail to
do so. However, there are still issues that may be of concern. As seen in the left
illustration in Figure 1.1, for any ηk > 0, no matter how small, sk determined by
Procedure 3.1 may not minimize the local linear model norm along Γ̂DL

k within the
trust region. Perhaps of greater concern is that, if ηk is not small, then, as seen in the
right illustration in Figure 1.1, the procedure may specify sk = sIN

k without taking
ŝCP
k into account, even though there are steps in the ŝCP

k -direction, or biased toward

it, that give significantly greater reduction of the local linear model norm along Γ̂DL
k

within the trust region.
As a step toward addressing these concerns, we offer the following.

Procedure 3.2. Alternative strategy

If ‖ŝCP
k ‖ ≥ δ, set sk = (δ/‖ŝCP

k ‖)ŝCP
k .

Else,
If ‖F (xk) + F ′(xk) ŝ

CP
k ‖ ≤ ηk‖F (xk)‖, set sk = ŝCP

k .
Else,

If ‖sIN
k ‖ ≤ δ, set sk = sIN

k .

Else, set sk = (1 − γ)ŝCP
k + γsIN

k for γ ∈ (0, 1)
such that ‖sk‖ = δ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2123

In Procedure 3.2, ŝCP
k is examined first. If it lies outside the trust region, then,

as in the traditional strategy in the exact-Newton context, sk is a step in the ŝCP
k -

direction and scaled to lie on the trust-region boundary. If ŝCP
k lies within the trust

region and also satisfies the prescribed inexact Newton condition, then ŝCP
k achieves

the desired linear model norm reduction, and we take sk = ŝCP
k . If ŝCP

k does not
satisfy the inexact Newton condition, then sIN

k is examined, and sk is taken to be
either sIN

k , if it lies within the trust region, or, otherwise, the unique point between

ŝCP
k and sIN

k at which Γ̂DL
k intersects the trust-region boundary, as in the traditional

strategy in the exact-Newton context.

Note that, in a practical implementation within Algorithm INDL, Procedure 3.2
would require computing ŝCP

k for each k but would require computing sIN
k only when

ŝCP
k lies within the trust region and does not satisfy the inexact Newton condition. In

contrast, Procedure 3.1 would require computing sIN
k for each k but would require com-

puting ŝCP
k only when sIN

k lies outside the trust region. Also, in the Newton-iterative
context, Procedure 3.2 offers the possibility of using ŝCP

k as the initial approximate
solution in the iterative solver when it is necessary to compute sIN

k , thereby allowing
advantage to be taken of the linear model norm reduction already achieved by ŝCP

k .

3.2. Further refinements. As noted in section 1 and seen in the left illustration
in Figure 1.1, the local linear model norm may not be monotone decreasing along the
dogleg curve and, indeed, may not be minimized at the intersection of the dogleg
curve and the trust-region boundary. Note that, in this illustration, this intersection
would be the dogleg step determined by both Procedure 3.1 and Procedure 3.2. We
reproduce this illustration on the left in Figure 3.1 and include the point smin at
which the local linear model norm is minimized along the dogleg curve within the
trust region. As we show in the following, minimizers such as smin can be readily
computed; thus smin is likely to be the preferred dogleg step.

To show further possibilities, we include the illustration on the right in Figure 3.1,
in which the minimizer of the local linear model norm within the trust region along the
line joining sCP

k and sIN
k (again denoted by smin) occurs beyond the end of the dogleg

curve. In this illustration, both Procedure 3.1 and Procedure 3.2 would determine
the dogleg step to be sIN

k . (In practice, Procedure 3.1 would do so without computing
sCP
k , while Procedure 3.2 would compute both sCP

k and sIN
k .) Since smin satisfies the

inexact Newton condition satisfied by sIN
k , we can regard it as an admissible dogleg

step simply by replacing sIN
k by smin in determining the dogleg curve. Since this smin

can also be readily computed, it is likely to be the preferred dogleg step in this case.

In the following, we formulate refinements of Procedures 3.1 and 3.2 that deter-
mine dogleg steps to be local linear model norm minimizers such as those illustrated
in Figure 3.1. In these refinements, we modify the procedures to minimize explicitly
only along the line joining ŝCP

k and sIN
k in the final steps, when both ŝCP

k and sIN
k

would have been computed in a practical implementation. Minimizing along the line
joining zero and ŝCP

k is already ensured by the definition of ŝCP
k and the convexity

of the local linear model norm along that line. Additionally, it seems unlikely to be
worthwhile to compute either ŝCP

k or sIN
k only for the purposes of minimization when

the procedures do not otherwise require them. For example, in the illustration on
the right in Figure 1.1, computing both ŝCP

k (which is just sCP
k in this case) and sIN

k

would, in fact, allow one to determine the minimizer along the entire dogleg curve
within the trust region; however, not much would be gained over the scaled step in
the sCP

k -direction determined by Procedure 3.2. In any event, it would be easy to
further modify the procedures to perform this additional minimization, if desired.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2124 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

0

min

sCP
k

s IN
k

s

0

min

CPsk s IN
k

s

Fig. 3.1. Illustrative local linear model norm minimizers in IR2. The ellipses represent level
curves of the local linear model norm. The solid ellipses represent {s ∈ IRn : ‖F (xk) + F ′(xk)s‖ =
ηk‖F (xk)‖}. The circular arcs represent trust-region boundaries. Each point smin is the minimizer
of the local linear model norm along the line joining sCP

k and sINk .

We begin with two elementary propositions, the proofs of which are left to the
reader. These are included primarily to show what might be involved in computing
minimizing steps. In these, we define

s(γ) ≡ (1 − γ)ŝCP
k + γsIN

k .

Proposition 3.3. If F ′(xk)(ŝ
CP
k − sIN

k) �= 0, then ‖F (xk) + F ′(xk)s(γ)‖ is
minimized at γ = γmin, given by

γmin ≡ 〈F (xk) + F ′(xk)ŝ
CP
k , F ′(xk)(ŝ

CP
k − sIN

k)〉
‖F ′(xk)(ŝCP

k − sIN
k)‖2

=
〈r̂CP

k , r̂CP
k − rIN

k 〉
‖r̂CP

k − rIN
k ‖2

,(3.1)

where r̂CP
k ≡ F (xk) + F ′(xk)ŝ

CP
k and rIN

k ≡ F (xk) + F ′(xk)s
IN
k .

One sees from (3.1) that, if r̂CP
k and rIN

k are already available, then γmin can be
determined with only a modest amount of arithmetic. If these are not available, then
one or, at most, two Jacobian-vector products may be required in addition to some
arithmetic.

Proposition 3.4. If ‖ŝCP
k ‖ < δ and sIN

k �= ŝCP
k , then ‖s(γ)‖ = δ for exactly two

values γ = γ+
δ and γ = γ−

δ , given by

γ±
δ =

〈ŝCP
k , ŝCP

k − sIN
k 〉 ±

√
〈ŝCP

k , ŝCP
k − sIN

k 〉2 + (δ2 − ‖ŝCP
k ‖2)‖ŝCP

k − sIN
k ‖2

‖ŝCP
k − sIN

k ‖2
.(3.2)

One sees from (3.2) that γ±
δ can be computed with a modest amount of arithmetic.

Also, we have that γ−
δ < 0 < γ+

δ . Additionally, in the context of interest, viz., the final
steps of Procedures 3.1 and 3.2, the assumption that ‖ŝCP

k ‖ < δ and sIN
k �= ŝCP

k always
holds. Indeed, in this context, we have ‖ŝCP

k ‖ < δ < ‖sIN
k ‖ in Procedure 3.1 and both

‖ŝCP
k ‖ < δ and ‖F (xk) + F ′(xk)s

IN
k ‖ ≤ ηk < ‖F (xk) + F ′(xk)ŝ

CP
k ‖ in Procedure 3.2.

Note that the first pair of inequalities implies that γ+
δ < 1, and it follows from the

final pair that γmin > 0.
The following are our refinements of Procedures 3.1 and 3.2. In these, γmin and

γ±
δ are defined by (3.1) and (3.2), respectively. In Procedure 3.6, some simplification

is allowed in the last step by the fact that γmin > 0 there, as noted above.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2125

Procedure 3.5. Traditional strategy with model norm minimization

If ‖sIN
k ‖ ≤ δ, set sk = sIN

k .
Else,

If ‖ŝCP
k ‖ ≥ δ, set sk = (δ/‖ŝCP

k ‖)ŝCP
k .

Else, set sk = (1 − γ)ŝCP
k + γsIN

k for γ = max{γ−
δ ,min{γmin, γ

+
δ }}.

Procedure 3.6. Alternative strategy with model norm minimization

If ‖ŝCP
k ‖ ≥ δ, set sk = (δ/‖ŝCP

k ‖)ŝCP
k .

Else,
If ‖F (xk) + F ′(xk) ŝ

CP
k ‖ ≤ ηk‖F (xk)‖, set sk = ŝCP

k .

Else, set sk = (1 − γ)ŝCP
k + γsIN

k for γ = min{γmin, γ
+
δ }.

Note that, in the circumstance illustrated on the left in Figure 3.1, both Proce-
dure 3.5 and Procedure 3.6 would yield sk = smin . However, in the circumstance
illustrated on the right, Procedure 3.6 would produce sk = smin , but Procedure 3.5
would result in sk = sIN

k because sCP
k would not be computed in this case.

It is observed in section 3.1 that, in a Newton-iterative implementation of Pro-
cedure 3.2, it may be advantageous to use ŝCP

k as the initial approximate solution
in the iterative solver when it is necessary to compute sIN

k . If this is done and if
the iterative method is unrestarted GMRES or a mathematically equivalent method,
then the minimization of Procedure 3.6 would be unneccesary. Indeed, Procedure 3.2
would produce the same step as Procedure 3.6, since the GMRES step from ŝCP

k to
sIN
k already minimizes the local linear model norm over the Krylov subspace in which

it lies and, in particular, minimizes it along the line joining ŝCP
k and sIN

k .
We also note an additional possibility with Procedures 3.2 and 3.6: If ‖ŝCP

k ‖ < δ
and ‖F (xk) + F ′(xk) ŝ

CP
k ‖ ≤ ηk‖F (xk)‖, then, rather than take sk = ŝCP

k , one can
reduce ηk so that ηk < ‖F (xk) + F ′(xk) ŝ

CP
k ‖ and compute sIN

k for the reduced ηk.
With this sIN

k , the final steps of Procedures 3.2 and 3.6 should yield steps that further
reduce the local linear model norm within the trust region.

4. Numerical experiments. In this section, we report on numerical exper-
iments in which a Newton–GMRES implementation of Algorithm INDL employing
step-selection strategies from section 3 and certain other options was applied to several
well-known benchmark problems involving the steady-state Navier–Stokes equations.
In the following, we outline details of the implementation and the overall computa-
tional environment, describe the test problems, and give the results of the experiments.
These experiments involve challenging large-scale problems and advanced computing
platforms but are somewhat limited in scope. Our primary goal is to demonstrate
the basic effectiveness of Algorithm INDL with the selected strategies and options
on these test problems, and not to provide a definitive comparison of all algorithmic
possibilities on a broad variety of applications.

4.1. The implementation and the computational environment. In our
implementation of Algorithm INDL, each inexact Newton step sIN

k was determined
using restarted GMRES with a restart value of 200. Up to three restarts (600 total
GMRES iterations) were allowed for each k. The preconditioner was an additive
Schwarz preconditioner with an ILUT [36] factorization and solve on each subdomain.
With this preconditioner, GMRES almost never restarted in our experiments. For
each k, the initial approximate solution in GMRES was either zero or, optionally,
the approximate Cauchy point ŝCP

k determined by d̂k = −∇f(xk), which could be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2126 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

evaluated analytically by our codes and for which condition (2.3) of Theorem 2.1
holds for 0 < ε ≤ κ2(D)−1/2 (see Remark 2 following Theorem 2.1). Products of the
Jacobian with vectors needed by GMRES were also evaluated analytically.

We used two choices for each forcing term ηk in our experiments: a small constant
choice ηk = 10−4, which should result in fast linear convergence in a neighborhood of
a solution; and an adaptive choice from [13], called “Choice 1” there and given by

ηk = min

⎧⎨
⎩ηmax,

∣∣∣‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1) sk−1‖
∣∣∣

‖F (xk−1)‖

⎫⎬
⎭ , k = 1, 2, . . . ,(4.1)

which should yield a certain superlinear convergence near a solution [13, Th. 2.2]. As
in [13], (4.1) was followed with the safeguard

ηk ← max{ηk, η(1+
√

5)/2
k−1 } whenever η

(1+
√

5)/2
k−1 > 0.1

to prevent the forcing terms from becoming too small too quickly away from a solution.
In our implementation, we used η0 = .01 and ηmax = .9.

Dogleg steps were selected using the standard and alternative strategies described
in Procedures 3.1 and 3.2, respectively. Since, as noted previously, GMRES rarely
restarted, Procedure 3.6 almost always produced the same steps as Procedure 3.2
when GMRES was started from the approximate Cauchy point. Thus there seemed
to be no significant advantage in using Procedure 3.6 rather than Procedure 3.2 in this
case. For consistency, then, we used Procedures 3.1 and 3.2 rather than Procedures 3.5
and 3.6 throughout.

In the test aredk < t · predk at the top of the while-loop, we took t = 10−4,
so that even very modest agreement would result in accepting the step. Within the
while-loop, we used the fixed choice θ = .25 for each update δ ← max{θδ, δmin}.
In updating δ in [δmin,∞) following the while-loop, we used a procedure similar to
that outlined in [11], in which the trust region is shrunk (subject to the constraint
δ ≥ δmin) if ‖F (xk +sk)‖ and ‖F (xk)+F ′(xk) sk‖ do not agree well, expanded if they
agree especially well, and left unchanged otherwise. The specific procedure, in which
0 < ρs < ρe < 1, 0 < βs < 1 < βe, and δmax > δmin, is as follows:

Procedure 4.1.

If aredk/predk < ρs,
If ‖sIN

k ‖ < δ, update δ ← max{‖sIN
k ‖, δmin}.

Else, update δ ← max{βsδ, δmin}.
Else,

If aredk/predk > ρe and ‖sk‖ = δ, update δ ← min{βeδ, δmax}.
In our implementation, we took ρs = 0.1, ρe = 0.75, βs = .25, βe = 4.0, δmin =

10−6, and δmax = 1010. The initial δ was determined after the computation of sIN
0 as

follows: If ‖sIN
0 ‖ < δmin, then δ = 2δmin; otherwise, δ = ‖sIN

0 ‖.
Our implementation of Algorithm INDL was done within the NOX nonlinear

solver package [26], a C++ object-oriented library developed at Sandia National Lab-
oratories for the efficient solution of systems of nonlinear equations. The GMRES
implementation and preconditioners were provided by the AztecOO package [22],
an extension of the Aztec library [47], which provides an extensive suite of Krylov
solvers and preconditioners for the parallel solution of linear systems. The par-
allel finite-element reacting-flow code MPSalsa [40] was used to set up the finite-
element discretization of the test problems described in section 4.2 and also to invoke

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2127

the solvers. MPSalsa uses Chaco [21], a general graph partitioning tool, to partition
the FE mesh into subdomains and assign subdomains to processors. Successful ter-
mination of the nonlinear solution algorithm was declared if both of the following
held: (1) 1

n‖Wsk‖ < 1, where n is the total number of unknowns and W is a diagonal

weighting matrix with entries Wii = 1/(εr|x(i)
k | + εa), in which x

(i)
k is the ith compo-

nent of xk (see [1]); (2) ‖F (xk)‖ ≤ εF ‖F (x0)‖. In our tests, εr = 10−3, εa = 10−8, and
εF = 10−2. The first criterion is employed by MPSalsa and, in our experiments, was
typically more stringent than the second and necessary to ensure that finer physical
details of solutions are adequately resolved.

Our experiments were performed on an IBM cluster at Sandia National Laborato-
ries having 16 nodes, with each node containing two one-GHz Pentium III processors
with one GB of RAM each. Tests on the 2D problems were done using four nodes
(eight processors); tests on the 3D problems were done using 15 nodes (30 processors).

4.2. The test problems. The three benchmark problems considered here have
been widely studied. We describe these in only qualitative terms and refer the reader
to [30] and [41] for more specific descriptions of the governing partial differential
equations, boundary conditions, and discretizations used in these experiments.

The problems are flow problems involving the steady-state Navier–Stokes equa-
tions for low-speed, incompressible flow, specifically the equations for momentum
transport, total mass conservation, and, in one case, thermal energy transport. The
unknowns are the fluid velocity vector, the hydrodynamic pressure, and, in the one
case, the temperature. See [30] for precise formulations of the equations and the
boundary conditions in each case. In each of our experiments, an algebraic system of
the form (1.1) was obtained from the PDEs using a stabilized finite-element formula-
tion following [23] and [45]. The Jacobian of the system is nonsymmetric and, when
needed, was evaluated analytically in our tests.

Our first test problem is the thermal-convection problem [8]. This involves mod-
elling the flow of fluid in a differentially heated square box in the presence of gravity.
The PDEs are the equations for momentum and thermal energy transport and for
mass conservation. The unknowns include the temperature as well as the fluid veloc-
ity and pressure. The temperature is held fixed at different values on two opposite
faces of the box, with zero heat flux imposed on the remaining sides. The fluid veloc-
ity is zero on all sides. When suitably nondimensionalized, the equations involve two
parameters: the Rayleigh number Ra and the Prandtl number Pr. As Ra increases
for fixed Pr, the nonlinear effects of the convection terms increase and the solution
becomes increasingly difficult to obtain. In our experiments, we took Pr = 1 and
varied Ra. We considered 2D and 3D forms of this problem. The 2D problem was
discretized on a 100 × 100 equally spaced mesh, which resulted in 40,804 unknowns
for the discretized problem. In 3D, the discretization was on a 32 × 32 × 32 equally
spaced mesh, resulting in 179,685 unknowns.

Our second test problem is the lid-driven cavity problem [18], [39]. This requires
simulating flow in the unit square in IR2 or the unit cube in IR3 driven by a moving
upper boundary. The PDEs are the momentum transport and mass conservation
equations; the unknowns are the fluid velocity and pressure. The fluid velocity on the
top side is fixed at a nonzero value in the x-axis direction and held at zero on all other
sides. An appropriately nondimensionalized form of the PDEs leads to the Reynolds
number Re, a nondimensional parameter expressing the ratio of convective to diffusive
momentum transport. As Re increases, the nonlinear components of the equations

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2128 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

become more dominant and the problem becomes more difficult. We considered this
problem in both 2D and 3D. The 2D computations were done on a 100× 100 equally
spaced grid, which led to 30,603 unknowns for the discretized problem. In 3D, the
discretization was a 32 × 32 × 32 equally spaced grid, yielding 143,748 unknowns.

Our third test problem is the backward-facing step problem [17]. This involves
the simulation of flow through a rectangular channel that is initially constricted and
subsequently expands over a reentrant backward-facing step. As above, the PDEs
are those for momentum transport and mass conservation, and the unknowns are
the fluid velocity and pressure. The nondimensionalized form of the equations is
again parametrized by the Reynolds number Re, with problem difficulty increasing as
Re increases. We considered this problem only in 2D. The flow was computed only
in the expanded portion of the channel; flow entering from the constricted portion
was simulated by imposing a parabolic velocity profile in the upper half of the inlet
boundary and zero velocity on the lower half. See [30] for further details of the domain
and boundary conditions. The problem was discretized on a 20×400 unequally spaced
mesh (with a finer mesh near the step), which resulted in 25,263 unknowns.

4.3. The test results. In our experiments, we first conducted a robustness
study. In this, we applied our implementation of Algorithm INDL with the algorithmic
options described in section 4.1 to the test problems in section 4.2 and tabulated the
numbers of failures with different options as problem parameters varied. The specific
parameter values considered are as follows:

2D and 3D Thermal Convection Ra = 103, 104, 105, 106,

2D Lid-Driven Cavity Re = 1, 000, 2, 000, . . . , 10, 000,

3D Lid-Driven Cavity Re = 100, 200, . . . , 1, 000,

2D Backward-Facing Step Re = 100, 200, . . . , 700, 750, 800.

The results of the robustness study are given in Table 4.1. For comparison, the
table also includes results for NOX Newton–GMRES implementations with no global-
ization and with a backtracking globalization from [12] (see also [41], [31], [30]); these
results were obtained in an earlier study involving identical test conditions (see [29,
Tables 2–3]). Table 4.1 shows that both the dogleg and backtracking globalizations
significantly improved robustness in these experiments, reducing the total numbers
of failures with both forcing terms by 69% to 77%, compared to the method without
globalization. Improvement was especially pronounced when adaptive forcing terms
were used, a result consistent with other studies of globalized Newton–GMRES meth-
ods [31], [41], [30]. As also observed elsewhere [3], [41, section 5], [30], the dogleg
and backtracking globalizations performed fairly comparably overall on these test
problems, although there were some differences in the numbers of failures and where
failures occurred. In view of the limited scope of these tests, we feel that further
testing is needed to assess more fully the comparative robustness of these methods.

We next conducted an efficiency study of the dogleg methods, in which we com-
piled run times and other statistics for Algorithm INDL with different options on
a selected set of test problem cases. This set included all cases considered in the
robustness study in which all of the dogleg methods succeeded. Additionally, since
all dogleg methods using the small constant forcing terms failed on the 2D lid-driven
cavity problem for each value of Re above 1, 000, we included cases of this problem
with 100 ≤ Re ≤ 1, 000. The specific cases considered are as follows:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2129

Table 4.1

Robustness study: For each method, the upper and lower rows to the right show the numbers of
failures with, respectively, the adaptive and small constant forcing terms. “TC,” “LDC,” and “BFS”
denote, respectively, the thermal-convection, lid-driven cavity, and backward-facing step problems.
∗GMRES solves starting from zero. ∗∗GMRES solves starting from the approximate Cauchy point.

2D problems 3D problems
Failure

Method
TC LDC BFS TC LDC

totals

Algorithm INDL, 0 0 0 0 0 0
10

Procedure 3.1 1 9 0 0 0 10

Algorithm INDL, 0 2 0 0 0 2
12

Procedure 3.2∗ 0 9 0 0 1 10

Algorithm INDL, 0 0 0 0 0 0
9

Procedure 3.2∗∗ 0 9 0 0 0 9

Backtracking 0 0 0 0 0 0
10

globalization 0 9 1 0 0 10

No globalization
1 9 5 1 0 16

39
1 10 7 1 4 23

2D Thermal Convection Ra = 103, 104, 105,

3D Thermal Convection Ra = 103, 104, 105, 106,

2D Lid-Driven Cavity Re = 100, 200, . . . , 1, 000,

3D Lid-Driven Cavity Re = 100, 200, . . . , 900,

2D Backward-Facing Step Re = 100, 200, . . . , 700, 750, 800.

The results of the efficiency study are given in Table 4.2.6 One sees that, as
before, the forcing terms significantly influenced the performance of the methods.
The adaptive forcing terms resulted in more inexact Newton steps on average than
the more aggressive small constant forcing terms; however, the adaptive forcing terms
led to significantly fewer GMRES iterations, both overall and per inexact Newton step.
In the balance, the adaptive forcing terms yielded smaller run times. For a particular
choice of forcing terms (adaptive or small constant), the methods performed fairly
similarly, although when small constant forcing terms were used, the methods with
Procedure 3.2 were somewhat less efficient in all statistics.

5. Concluding summary. In the preceding, we provide a theoretical frame-
work and practical strategies for implementing dogleg globalizations of general inexact
Newton methods for solving a nonlinear system (1.1).

In section 2, we outline a very general inexact Newton dogleg method. In this, the
dogleg curves are defined using general inexact Newton steps together with approx-
imate steepest-descent directions and Cauchy points. To be admissible, trial steps
along these curves must satisfy only mild minimum-length requirements in addition
to being within trust regions. A convergence theorem for this method is given; this
asserts that if the approximate steepest-descent directions are bounded away from

6See [30, Table 5.2] for a similar study comparing Algorithm INDL using Procedure 3.1 with
backtracking and linesearch globalizations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2130 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

Table 4.2

Efficiency study: For each method, the upper and lower rows to the right show results with the
adaptive and small constant forcing terms, respectively. All statistics are geometric means. Times
are relative to that of Algorithm INDL with Procedure 3.1 and small constant forcing terms. “INS”
stands for “Inexact Newton Steps.”
∗GMRES solves starting from zero. ∗∗GMRES solves starting from the approximate Cauchy point.

Inexact GMRES
Method Newton Function GMRES iterations Normalized

steps evaluations iterations per INS time

Algorithm INDL, 18.82 21.11 1160 61.65 0.87

Procedure 3.1 10.30 12.45 1330 129.2 1.00

Algorithm INDL, 16.62 18.87 1200 72.21 0.92

Procedure 3.2∗ 11.27 13.71 1650 146.4 1.21

Algorithm INDL, 18.40 20.57 1122 60.99 0.88

Procedure 3.2∗∗ 11.15 13.55 1634 146.6 1.23

orthogonality with the exact steepest-descent directions, then every limit point of a
sequence of iterates generated by the method is a stationary point of ‖F‖. Moreover,
if there is a limit point at which the Jacobian of F is nonsingular, then that point must
be a solution of (1.1) and the iterates must converge to it. In this case, initial trial
steps are ultimately accepted without modification by the method, and the inexact
Newton steps are ultimately admissible trial steps.

In section 3, we discuss strategies for selecting trial steps along the dogleg curves.
It is noted that the step-selection strategy traditionally used in the exact-Newton
case may exhibit certain shortcomings, principally that, when the forcing term is not
small, this strategy may select the inexact Newton step even though a step biased
toward the approximate Cauchy point may give significantly greater linear model
norm reduction within the trust region. An alternative strategy is proposed that
avoids this shortcoming. As a refinement of these strategies, simple modifications are
introduced that further determine each dogleg step to minimize the local linear model
norm along the dogleg curve within the trust region, provided both the approximate
Cauchy point and the inexact Newton step have been computed.

In section 4, we report on numerical experiments in which a Newton–GMRES
implementation of the general inexact Newton dogleg method in section 2 using the
step-selection strategies in section 3 was applied to several two- and three-dimensional
benchmark problems involving the steady-state Navier–Stokes equations. Although
somewhat limited in scope, these experiments demonstrate the robustness of the
method with these step-selection strategies and other algorithmic options on these
challenging problems. They also provide an indication of the relative efficiency of
these strategies and options. The use of adaptive forcing terms resulted in significantly
greater robustness and some improvement in efficiency compared to the constant forc-
ing term strategy; these results are consistent with previous studies of globalized inex-
act Newton methods. Otherwise, these experiments do not show dramatic differences
in performance among the strategies and options that we tested. We feel that this
may reflect the particular nature of the limited test set and also the rather modest
problem sizes; there may be more pronounced differences in performance on other,
broader test sets and higher-resolution problems. A more comprehensive numerical
study will be the subject of future work.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON DOGLEG METHODS 2131

Acknowledgment. The authors thank the anonymous referees for their thought-
ful reviews, which led to significant improvements in this paper.

REFERENCES

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-value
problems in differential-algebraic equations, Classics Appl. Math. 14, SIAM, Philadelphia,
1996.

[2] P. N. Brown, A local convergence theory for combined inexact-Newton/finite-difference pro-
jection methods, SIAM J. Numer. Anal., 24 (1987), pp. 407–434.

[3] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 450–481.

[4] P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton–Krylov algorithms, SIAM
J. Optim., 4 (1994), pp. 297–330.

[5] P. N. Brown, H. F. Walker, R. Wasyk, and C. S. Woodward, On using approximate finite
differences in matrix-free Newton–Krylov methods, SIAM J. Numer. Anal., 46 (2008), pp.
1892–1911.

[6] E. Catinas, Inexact perturbed Newton methods and applications to a class of Krylov solvers,
J. Optim. Theory Appl., 108 (2001), pp. 543–570.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, MPS-SIAM Ser.
Optim., SIAM, Philadelphia, 2000.

[8] G. De Vahl Davis and C. P. Jones, Natural convection in a square cavity: A comparison
exercise, Int. J. Numer. Methods Fluids, 3 (1983), pp. 227–248.

[9] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408.

[10] R. S. Dembo and T. Steihaug, Truncated Newton algorithms for large-scale optimization,
Math. Programming, 26 (1983), pp. 190–212.

[11] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice Hall Ser. Comput. Math., Prentice-Hall, Englewood
Cliffs, NJ, 1983.

[12] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J.
Optim., 4 (1994), pp. 393–422.

[13] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), pp. 16–32.

[14] M. El Hallabi, A Global Convergence Theory for Arbitrary Norm Trust-Region Methods for
Nonlinear Equations, Ph.D. thesis, Department of Mathematical Sciences, Rice University,
Houston, TX, 1987.

[15] M. El Hallabi and R. A. Tapia, A Global Convergence Theory for Arbitrary Norm Trust-
Region Methods for Nonlinear Equations, Technical report TR87-25, Department of Math-
ematical Sciences, Rice University, Houston, TX, 1987, revised 1989.

[16] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems,
Acta Numer., 1 (1992), pp. 57–100.

[17] D. K. Gartling, A test problem for outflow boundary conditions–flow over a backward facing
step, Internat. J. Numer. Methods Fluids, 11 (1990), pp. 953–967.

[18] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the
Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), pp. 387–411.

[19] G. H. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, 1996.

[20] M. H. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta
Numer., 6 (1997), pp. 271–397.

[21] B. Hendrickson and R. Leland, The Chaco User’s Guide–Version 1.0, Technical report
Sand93-2339, Sandia National Laboratories, Albuquerque NM, 1993.

[22] M. Heroux, AztecOO: Object-Oriented Aztec Linear Solver Package, available online at
http://software.sandia.gov/trilinos/packages/aztecoo/index.html.

[23] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation
for computational fluid dynamics: VII. The Galerkin/least-squares method for advective-
diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), pp. 173–189.

[24] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, Fundam. Algorithms,
SIAM, Philadelphia, 2003.

[25] D. A. Knoll and D. E. Keyes, Jacobian-free Newton–Krylov methods: A survey of approaches

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2132 R. PAWLOWSKI, J. SIMONIS, H. WALKER, AND J. SHADID

and applications, J. Comput. Phys., 193 (2004), pp. 357–397.
[26] T. G. Kolda and R. P. Pawlowski, NOX Nonlinear Solver Project, available online at http://

software.sandia.gov/nox.
[27] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,

4 (1983), pp. 553–572.
[28] S. G. Nash, Truncated Newton Methods, Ph.D. thesis, Computer Science Department, Stanford

University, Palo Alto, CA, 1982.
[29] R. P. Pawlowski, J. N. Shadid, J. P. Simonis, and H. F. Walker, Globalization Tech-

niques for Newton–Krylov Methods and Applications to the Fully-Coupled Solution of the
Navier–Stokes Equations, Technical report Sand2004-1777, Sandia National Laboratories,
Albuquerque NM, 2004.

[30] R. P. Pawlowski, J. N. Shadid, J. P. Simonis, and H. F. Walker, Globalization techniques
for Newton–Krylov methods and applications to the fully-coupled solution of the Navier–
Stokes equations, SIAM Rev., 48 (2006), pp. 700–721.

[31] M. Pernice and H. F. Walker, NITSOL: A Newton iterative solver for nonlinear systems,
SIAM J. Sci. Comput., 19 (1998), pp. 302–318.

[32] M. J. D. Powell, A FORTRAN Subroutine for Unconstrained Minimization, Requiring First
Derivatives of the Objective Function, Technical report AERE-R. 6469, Mathematics
Branch, A.E.R.E. Harwell, Berkshire, England, 1970.

[33] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for Nonlin-
ear Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, London, 1970, pp. 87–114.

[34] M. J. D. Powell, General algorithms for discrete nonlinear approximation calculations, in
Approximation Theory IV, C. K. Chui, L. L. Schumaker, and J. D. Ward, eds., Academic
Press, New York, 1983, pp. 187–218.

[35] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp.,
37 (1981), pp. 105–126.

[36] Y. Saad, ILUT: A dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

[37] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,
1996.

[38] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual method for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[39] R. Schreiber and H. B. Keller, Driven cavity flows by efficient numerical techniques, J.
Comput. Phys., 49 (1983), pp. 310–333.

[40] J. N. Shadid, H. K. Moffat, S. A. Hutchinson, G. L. Hennigan, K. D. Devine, and A. G.

Salinger, MPSalsa: A Finite Element Computer Program for Reacting Flow Problems
Part 1: Theoretical Development, Technical report Sand95-2752, Sandia National Labora-
tories, Albuquerque NM, 1996.

[41] J. N. Shadid, R. S. Tuminaro, and H. F. Walker, An inexact Newton method for fully
coupled solution of the Navier–Stokes equations with heat and mass transport, J. Comput.
Phys., 137 (1997), pp. 155–185.

[42] J. N. Shadid, R. S. Tuminaro, and H. F. Walker, On backtracking failure in Newton–
GMRES methods with a demonstration for the Navier–Stokes equations, J. Comput. Phys.,
180 (2002), pp. 549–558.

[43] G. A. Shultz, R. B. Schnabel, and R. H. Byrd, A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties, SIAM J. Numer.
Anal., 22 (1985), pp. 47–67.

[44] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[45] T. E. Tezduyar, Stabilized finite element formulations for incompressible flow computations,
Adv. App. Mech., 28 (1992), pp. 1–44.

[46] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, New York, 1981, pp. 57–87.

[47] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid, Aztec User’s Guide–
Version 2.1, Technical report Sand99-8801J, Sandia National Laboratories, Albuquerque
NM, 1999.

[48] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monogr.
Appl. Comput. Math. 13, Cambridge University Press, Cambridge, 2003.

[49] C. S. Woodward, private communication, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

