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Abstract

The persistence barcode is a topological descriptor of data that plays a fundamental role in
topological data analysis. Given a filtration of the space of data, a persistence barcode tracks
the evolution of its homological features. In this paper, we introduce a new type of barcode,
referred to as the canonical barcode of harmonic chains, or harmonic chain barcode for short,
which tracks the evolution of harmonic chains. As our main result, we show that the harmonic
chain barcode is stable and it captures both geometric and topological information of data.
Moreover, given a filtration of a simplicial complex of size n with m time steps, we can compute
its harmonic chain barcode in O(m2nω+mn3) time, where nω is the matrix multiplication time.
Consequently, a harmonic chain barcode can be utilized in applications in which a persistence
barcode is applicable, such as feature vectorization and machine learning. Our work provides
strong evidence in a growing list of literature that geometric (not just topological) information
can be recovered from a persistence filtration.

1 Introduction

There are two primary tasks in topological data analysis (TDA) [15, 18, 36]: reconstruction and
inference. In a typical TDA pipeline, the data is given as a point cloud in RN . A “geometric
shape” K in RN is reconstructed from the point cloud, usually as a simplicial complex, and K
is taken to represent the (unknown) space X from which the data is sampled. X is then studied
using K as a surrogate for properties that are invariant under invertible mappings (technically,
homeomorphisms). The deduced “topological shape” is not specific to the complex K or the space
X, but is a feature of the homeomorphism type of K or X. For example, a standard round circle
has the same topological shape as any closed loop such as a knot in the Euclidean space. Although
topological properties of X alone are not sufficient to reconstruct X exactly, they are among a few
global features of X that can be inferred from the data sampled from X.

A persistence barcode [3, 19] (or equivalently, a persistence diagram [6, 10, 17]) captures the
evolution of homological features in a filtration constructed from a simplicial complex K. It consists
of a multi-set of intervals in the extended real line, where the start and end points of an interval
(i.e., a bar) are the birth and death times of a homological feature in the filtration. Equivalently, a
persistence diagram is a multi-set of points in the extended plane, where a point in the persistence
diagram encodes the birth and death time of a homological feature. A main drawback of homological
features is that they ignore the geometric information in K, even though they are defined on a set
of simplicial chains with distinct geometric features.

In this paper, we aim to recover geometric information from a filtration. We introduce a type
of barcode, referred to as the canonical barcode of harmonic chains or harmonic chain barcode,
which tracks the evolution of harmonic chains in a filtration. A bar in a harmonic chain barcode is
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associated with a single geometric feature, namely, a harmonic chain, and a harmonic chain barcode
tracks its birth and death in a filtration. To achieve this association, we need less choices (in terms
of cycle representatives) than we need in ordinary persistence barcode. The main point of using
harmonic chains is that a homology class contains a unique harmonic chain. Consequently, the
homology class can be given the geometric shape of its harmonic chain without making a specific
choice, giving rise to an interpretable, geometric feature of the data.

A persistence barcode is stable [10], and this stability is crucial for data science applications.
The stability means that small changes in the data imply only small changes in the barcode. We
show that our canonical harmonic chain barcode is also stable.

Defining a canonical barcode of harmonic chains that is stable requires some care. To do so,
we start by reviewing the computation of a persistence barcode. Imagine that we are tracking the
homology of a filtration of K (with real coefficients R), constructed by adding simplices, one at
a time. At the filtration time t, we have maintained a set of homology basis, that is, a maximal
linearly independent set of homology cycles (of each dimension). Then a simplex σ is added at
time t + 1 that destroys a homology class, thus reducing the dimension of a homology group. In
other words, at time t + 1, a linear combination τ of our basis elements becomes homologous to
the boundary of the added simplex σ. The Elder Rule [18] says that at time t+ 1, we destroy the
youngest of the basis elements that appear in τ . Other bars persist in the filtration. Now, is it
possible to canonically assign specific cycles (representatives) to a bar in the persistence barcode?
Such an assignment is desirable, since then each bar would correspond to a unique geometric feature.
However, as the Elder Rule is applied, we need to know what simplex is going to be inserted in the
future to be able to choose a basis and a cycle that survives the insertion of simplices. Thus just
by looking into the past, we cannot define stable and persistent geometric features corresponding
to the persistence barcode.

There are two levels of choices to recover geometric features from a persistence barcode: first,
we choose a basis for persistent homology in a consistent way across the filtration; and second,
we choose a cycle inside a basis element of homology. Both levels of choices involve choosing
among significantly distinct geometric features of data to represent the same bar in the barcode.
A harmonic chain barcode is defined using harmonic cycles, and immediately removes the second
level of choices in a natural way, since there is always a unique harmonic cycle in a homology class.

Contributions. Our contributions are as follows:

• We present canonical harmonic chain barcode, a new type of barcode constructed from the same
filtration used by a persistence barcode. Unlike a persistence barcode, a harmonic chain barcode
is defined by utilizing a global analysis of the filtration w.r.t. time, and it captures geometric
(not just topological) information of data.

• We prove that the canonical harmonic chain barcode is stable in the same setting as the persis-
tence barcode.

• We introduce a harmonic interleaving distance for the stability proof, which is of independent
interest.

• We provide an algorithm for computing the harmonic chain barcode that runs in O(m2nω +
mn3) = O(m2n3) time, if the input complex is of size n, the filtration of the complex has m time
steps, and nω is the matrix multiplication time.

We expect a harmonic chain barcode to be used in applications in which a persistence barcode
is applicable, such as feature vectorization and machine learning. Our work also provides strong
evidence in a growing list of literature (e.g., [2, 4]) that geometric (not just topological) information
can be recovered from a persistence filtration.
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2 Related Work

Harmonic chains were first studied in the context of functions on graphs. They were identified
as the kernel of the Laplacian operator on graphs [24]. The graph Laplacian and its kernel are
important tools in studying graph properties, see [30, 32] for surveys. Eckmann [16] introduced the
higher-order Laplacian for simplicial complexes, and proved the isomorphism of harmonic chains
and homology. Guglielmi et al. [20] studied the stability of higher-order Laplacians. Horak and
Jost [22] defined a weighted Laplacian for simplicial complexes. Already their theoretical results
on Laplacian [22] anticipated the possibility of applications, as the harmonic chains are thought
to contain important geometric information. This has been validated by recent results that use
curves of eigenvalues of Laplacians in a filtration in data analysis [9, 35]. The Laplacian was applied
to improve the mapper algorithm [31], and for coarsening triangular meshes [23]. The persistent
Laplacian [29] and its stability [27] is an active research area. Due to the close relation of harmonic
chains and Laplacians, harmonic chains could find applications in areas that Laplacians have been
used.

Computing reasonable representative cycles for persistent homology is also an active area of
research. Here, usually an optimality criterion is imposed on cycles in a homology class to obtain a
unique representative. For a single homology class, a number of works [5, 8, 13] consider different
criteria for optimality of cycles. For persistent homology, Dey et al. [14] studied the hardness
of choosing optimal cycles for persistence bars. Volume-optimal cycles have been computed for
persistent homology [34]. The harmonic chains have been used as representative of homology
classes for studying the brain [25]. Furthermore, De Gregorio et al. [11] used harmonic cycles in a
persistent homology setting to compute the persistence barcode. Lieutier [26] studied the harmonic
chains in persistent homology classes, called persistent harmonic forms.

The most relevant work is the one by Basu and Cox [1]. They had a similar goal as we do,
namely, to associate geometric information to each bar in a persistence barcode in order to obtain
a more interpretable data feature. To that end, they introduced the notion of “harmonic persistent
barcode”, by associating a subspace of harmonic chains to each bar in the ordinary persistence bar-
code. Then, they proved stability for their harmonic persistent barcode, by considering subspaces
as points of a Grassmannian manifold and measuring distances in the Grassmannian. Their work
was used to study multi-omics data [21]. Different from the approach of Basu and Cox, we define a
distinct barcode from the persistence barcode, which is stable in the same sense as the persistence
barcode. That is, the bottleneck distances between a pair of harmonic chain barcodes is upper
bounded by the harmonic interleaving distance.

3 Background

In this section, we review standard notions of homology and cohomology with real coefficients and
harmonic chains. We include some basic algebraic definitions to draw an understanding that helps
with the rest of the paper.

3.1 Homology and Cohomology

Let K be a simplicial complex. We give the standard orientation to the simplices of K. That is, we
order the vertices of K and assign to any simplex σ ∈ K the ordering of its vertices induced from an
ordering of the vertices. This is also the ordering used in all our examples. From now on, we think
of a simplex σ to be supplied with the standard orientation. We write simplices as an ordered set
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of vertices, for instance, if s = v0v1 · · · vi, and σ = {v0, v1, . . . , vi} then by convention s = σ if the
sign of the ordering v0v1 · · · vi agrees with the sign of the standard orientation, otherwise s = −σ.

For any integer p ≥ 0, the p-dimensional chain group of K with coefficients in R, denoted
Cp(K), is an R-vector space generated by the set of p-dimensional (oriented) simplices of K. Let
Kp denote the set of p-simplices of K and np = |Kp|. By fixing an ordering of the set Kp, we can
identify any p-chain c ∈ Cp(K) with an ordered np-tuple with real entries. For each p, we fix an
ordering for the p-simplices (once and for all), and identify Cp(K) and Rnp . The standard basis
of Rnp corresponds (under the identification) to the basis of Cp(K) given by the simplices with
standard orientation.

The p-dimensional boundary matrix ∂p : Cp(K) → Cp−1(K) is defined on a simplex basis
element by the formula

∂(v0v1 · · · vp) =
p∑
j=0

(−1)q(v0 · · · vq−1vq+1 · · · vp).

In the right hand side above, in the q-th term vq is dropped. The formula guarantees the crucial
property of the boundary homomorphism: ∂p∂p+1 = 0. This simply means that the boundary of
a simplex has no boundary. The sequence Cp(K) together with the maps ∂p define the simplicial
chain complex of K with real coefficients, denoted C•(K). The group of p-dimensional cycles,
denoted Zp(K), is the kernel of ∂p. The group of p-dimensional boundaries, denoted Bp(K), is the
image of ∂p+1. The p-dimensional homology group of K, denoted Hp(K), is the quotient group
Zp(K)/Bp(K). As a set, this quotient is formally defined as {z + Bp(K) | z ∈ Zp(K)}. The
operations are inherited from the chain group. In words, the homology group is obtained from
Zp(K) by setting any two cycles which differ by a boundary to be equal. All these groups are
R-vector spaces.

Consider the space Rnp . The cycle group Zp(K) ⊂ Cp(K) = Rnp is a subspace, that is,
a hyperplane passing through the origin. Similarly, the boundary group Bp(K) is a subspace,
and is included in Zp(K). The homology group is the set of parallels of Bp(K) inside Zp(K).
Each such parallel hyperplane differs from Bp(K) by a translation given by some cycle z. These
parallel hyperplanes partition Zp(K). The homology group is then isomorphic to the subspace
perpendicular to Bp(K) inside Zp(K). The dimension of the p-dimensional homology group is
called the p-th R-Betti number, denoted βp(K).

Simplicial cohomology with coefficients in R is usually defined by the process of dualizing. This
means that we replace an i-chain by a linear functional Cp(K) → R, called a p-dimensional cochain.
The set of all such linear functions is a vector space isomorphic to Cp(K), called the cochain group,
denoted Cp(K), which is a dual vector space of Cp(K). For the purposes of defining harmonic
chains, we must fix an isomorphism. We take the isomorphism that sends each standard basis
element of Rnp , corresponding to σ, to a functional which assigns 1 to σ and 0 to other basis
elements, denoted σ̂ ∈ Cp(K). Any cochain γ ∈ Cp(K) can be written as a linear combination of
the σ̂. Therefore, it is also a vector in Rnp . The fixed isomorphism allows us to identify Cp with
Rnp , and hence to Cp. Therefore, any vector in Rnp is at the same time a chain and a cochain.

The coboundary matrix δp : Cp(K) → Cp+1(K) is the transpose of ∂p+1, δ
p = ∂Tp+1. It follows

that δp+1δp = 0, and we can form a cochain complex C•(K). The group of p-cocycles, denoted Zp

is the kernel of δp. The group of p-coboundary is the image of δp−1. The p-dimensional cohomology
group, denoted Hp(K) is defined as Hp(K) = Zp(K)/Bp(K). All of these groups are again vector
subspaces of Cp(K) and thus of Rnp . It is a standard fact that homology and cohomology groups
with real coefficients are isomorphic.
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3.2 Harmonic Cycles

Recall that we identify chains with cochains. Therefore, we can talk about the coboundary of the
cycles Zp(K). The harmonic p-cycles, denoted Hp(K) is the group of those cycles which are also
cocylces. Considered as subspaces of Rnp , we have Hp(K) = Zp(K) ∩ Zp(K).

Lemma 1 ([16]). Hp(K) is isomorphic to Hp(K). In other words, each homology class has a
unique harmonic cycle in it.

Harmonic cycles enjoy certain geometric properties. As an example we mention the following.
For a proof see [12, Proposition 3].

Proposition 1. Let α ∈ Cp(K) be a cochain. There is a unique solution ᾱ to the least-squares
minimization problem

argminᾱ{||ᾱ||2 | ∃γ ∈ Cp−1(K);α = ᾱ+ δγ}.
Moreover, ᾱ is characterised by the relation ∂ᾱ = 0.

In other words, the harmonic chain is the chain with the least squared-norm in a cohomology
class.

3.3 Persistent Homology

Persistent homology tracks the changes in homology over time (or any other parametrization). We
start with a filtration F of a simplicial complex K. A filtration assigns to each r ∈ R a subcomplex
Kr ⊂ K, in such a way that, if r ≤ s, then Kr ⊆ Ks. Since K is finite, there is a finite set of
values t1, . . . , tm ∈ R where the subcomplex Fti changes. Setting Ki = Kti , K0 = ∅, Ki ↪→ Ki+1

the inclusions, the filtration F can be written as

∅ = K0 ↪→ K1 ↪→ · · · ↪→ Km−1 ↪→ Km = K. (1)

Applying homology functor to Eqn. (1), we obtain a sequence of homology groups and connect-
ing homomorphisms (linear maps), forming a persistence module:

Hp(K0)
f
t0,t1
p−−−→ Hp(K1)

f
t1,t2
p−−−→ · · · f

tm−2,tm−1
p−−−−−−−→ Hp(Km−1)

f
tm−1,tm
p−−−−−−→ Hp(Km). (2)

In general, a persistence module M at dimension p is defined as assigning to each r ∈ R a vector
space Mr, and for each pair s < t, a homomorphism fs,tp : Ms −→ Mt. For all s < t < u, the
homomorphism are required to satisfy linearity, that is, f t,up ◦ fs,tp = fs,up .

A cycle z ∈ Zp(K) appears for the first time at some index b ∈ {t0, . . . , tm}, where it creates a
new homology class in Kb not previously existing. We say that the homology class is born at time
b. The homology class then lives for a while until it dies entering Kd, when it lies in the kernel of
the map induced on homology by the inclusion Kb ⊂ Kd. For s ≤ t, let fs,tp : Hp(Ks) → Hp(Kt)
denote the map induced on the p-dimensional homology by the inclusion Ks ⊂ Kt. The image of
this homomorphisms, fs,tp (Hp(Ks)) ⊂ Hp(Kt), is called the p-dimensional (s, t)-persistent homology
group, denoted Hs,t

p . The group Hs,t
p , which in our case is also a vector space, consists of classes

which exist in Ks and survive until Kt. The dimensions of these vector spaces are the persistent
Betti numbers, denoted βs,tp .

An interval module, denoted I = I(b, d), is a persistent module of the form

0 → · · · → 0 → R → R → 0 → · · · → 0.
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In the above, R is generated by a homology class and the maps connecting the Rs map generator
to generator. The first R appears at index b and the last appears at index d. For any b ≤ r < d,
Ir = R; and for other r, Ir = 0. Any persistence module can be decomposed into a collection of
interval modules in a unique way [28]. Consequently, a homology class that lives in time period
[b, d) can be written as a linear combination of intervals. Each interval module is determined by the
index of the first R, or the time it is born and the index of the last R where it dies, which can be
∞. The collection of [b, d) for all interval modules is called the persistence barcode. When plotted
as points in an extended plane, the result is the equivalent persistence diagram. The persistence
barcode therefore contains a summary of the homological changes in the filtration.

Interleaving and Stability. Let F and G be two filtrations over the complexes K and K ′

respectively, and let the maps connecting the complexes of filtration be fs,t and gs,t respectively,
for all s, t ∈ R, s ≤ t. Let C(F ) and C(G) be the corresponding filtrations of chain groups, and
H(F ) and H(G) the corresponding persistence modules. We denote the maps induced on chain
groups and homology groups also by f s,t and gs,t respectively, for all s, t ∈ R, s ≤ t.

Definition 1. Let F and G be two filtrations over the complexes K and K ′ respectively. An ε-
chain-interleaving between F and G (or an ε-interleaving at the chain level) is given by two sets of
homomorphisms {ϕα : C(Kα) −→ C(K ′

α+ε)} and {ψα : C(K ′
α) −→ C(Kα+ε)}, such that

1. {ϕα} and {ψα} commute with the maps of the filtration, that is, for all α, t ∈ R, gα+ε,α+ε+tϕα =
ϕα+tf

α,α+t and fα+ε,α+ε+tψα = ψα+tg
α,α+t;

2. The following diagrams commute:

C(Kα) C(Kα+ε) C(Kα+2ε)

C(K ′
α) C(K ′

α+ε) C(K ′
α+2ε).

fα,α+ε

ϕα

fα+ε,α+2ε

ϕα+ε

gα,α+ε

ψα

gα+ε,α+2ε

ψα+ε

(3)

The chain interleaving distance is defined to be

dCI(F,G) := inf{ε ≥ 0 | there exists an ε-chain interleaving between F and G}. (4)

The standard notion of ε-interleaving [7], denoted dI(F,G), is defined analogously to our defi-
nition above, however, it is defined on the persistence modules H(F ) and H(G) on the homology
level, rather than the filtration of chain groups. For our purposes, we require the existence of a
chain interleaving. In the application to sublevel set filtrations, which is the main setting in which
stability is proved [10], the chain interleaving exists, therefore, this strengthening of the interleaving
does not hurt the sublevel set stability arguments.

The stability of persistence barcode (or diagram) is a crucial property for applications. It
expresses the fact that small changes in data lead to small changes in persistence barcodes. The
interleaving distance provides the measure of change in data, and we measure the distance between
barcodes using the bottleneck distance. LetD = Dgm(F ) andD′ = Dgm(G) denote the persistence
barcodes (or diagrams) of filtrations F and G. Recall that the diagram is a multi-set of points and
contains all the diagonal points. The bottleneck distance is defined as

dB(D,D
′) = infγsupp∈D||p− γ(p)||∞,

where γ ranges over all bijections between D and D′ and || · ||∞ is the largest absolute value of the
difference of coordinates, or considered as bars, the largest distortion of an endpoint when matched
to the bar of D′. We refer to [7] for the proof of the following Theorem 1.

6



Theorem 1. Let F and G be filtrations defined over (finite) complexes K and K ′, respectively.
Then

dB(Dgm(F ), Dgm(G)) ≤ dI(F,G).

Please see [10, 7] for more on stability. We also mention that in the above theorem we can replace
dCI in place of dI , since existence of an ε-chain-interleaving implies existence of an ε-interleaving
on the homology level. The resulting theorem would be weaker.

Conventions. Since we work with chains and apply boundary and coboundary operators at
different times, we write δt(c) and ∂t(c) to mean the coboundary and boundary of the chain c at
time t, respectively, where we consider c to be a chain in the final complex K present at time t.
In this paper, we usually omit the subscript of a homology group; we always fix a dimension and
do not write it if there is no danger of ambiguity. Moreover, we use the words persistence barcode
and persistence diagram interchangeably. A persistence diagram contains all the diagonal points
[0, 0), and a persistence barcode contains infinite number of intervals of length 0. We use F and
G to denote two filtrations over the complexes K and K ′ respectively, and we denote the maps
connecting the complexes of filtration by fs,t and gs,t respectively, for all s, t ∈ R, s ≤ t. We denote
the maps induced on chain groups and homology groups also by fs,t and gs,t respectively, for all
s, t ∈ R, s ≤ t.

4 A First Attempt: Unstable Harmonic Chain Barcode

In this section, we discuss our first attempt at constructing a harmonic chain barcode from a
persistence barcode. Our approach is a natural one, however, we show that it does not lead to a
stable barcode of harmonic chains. Nevertheless, our first attempt sheds light on how we might
search for one that is stable, as discussed in Sec. 5.

To avoid confusions, we use the following notations. Ordinary persistent homology gives rise to
persistence barcodes. An interval belonging to a persistence barcode is referred to as a persistence
bar. In our setting, we introduce harmonic chain barcodes. An interval belonging to a harmonic
chain barcode is called a harmonic bar.

4.1 Constructing a Harmonic Chain Barcode from a Persistence Barcode

Starting from a persistence barcode, we assume there exists a choice of a homology class for each
persistence bar, such that at each time t, the classes of existing bars at time t form a basis of the
homology group of Kt. There are many such choices, one such choice is represented by a function
ϕ that maps persistence bars to homology classes as follows. Let B = [b, d) be a single interval
(persistence bar) in the persistence barcode. ϕ maps each persistence bar B to a chosen homology
class, denoted by ϕ(B). The start of the interval B is the birth of ϕ(B). Let zb be the harmonic
cycle in the homology class ϕ(B). Starting from b, we follow through time until a time s1 such
that δs1(zb) ̸= 0. This implies that δs1(zb) =

∑
ℓjσj , for some ℓj ∈ R, where σj are the simplices

inserted at time s1. At this point, the cycle zb dies entering s1, and there is a bar [b, s1) in the
harmonic chain barcode. If s1 ̸= d, there has to be another cycle z1 such that [z1] = [zb] at time
s1, and z1 is a cocycle in Ks1 . We therefore generate a new harmonic bar with a start time of s1,
and associate the cycle z1 to it, and so on. After processing all (finite filtration) times, we obtain
a harmonic chain barcode subordinate to ϕ.

The above algorithm decomposes the persistence bars into a type of harmonic bars. The de-
composition is guided by the choice of basis elements for each persistence bar by ϕ. Each harmonic
bar represents a unique harmonic cycle, hence, contains geometric information.
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4.2 Example

Fig. 1 presents an example where we compute the harmonic chain barcode starting with the cycles
for the persistence bars obtained with the standard matrix reduction algorithm for persistence
homology. The matrix reduction algorithm to obtain persistence barcodes runs in the worst case
O(n3), where n is the number of simplices [33]. We use the time stamps as the names of vertices
and edges (from 1 to 15), and ti as the names of triangles (t1 to t4). We give simplices the standard
orientation determined by the ordering of the vertices given by the insertion time. The procedure
we describe in Sec. 4.1 gives an algorithm that runs in O(n4) to extract a harmonic chain barcode
from the persistence barcode, since it makes a pass of the filtration in O(n) time with a persistence
barcode computed in O(n3) time.
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Figure 1: (a) A filtration of a simplicial complex, the time that a simplex is inserted is written next
to the simplex. For the four triangles we have times t1 < t2 < t3 < t4. We also use these time stamps
as names of the simplices. (b) A part of the boundary matrix of the complex which is relevant
to 1-dimensional homology. The boundary matrix is already reduced, therefore, the generators of
persistent homology computed by the standard matrix reduction algorithm are given by columns of
the matrix. (c) The 1-dimensional ordinary persistence barcode. (d) The 1-dimensional harmonic
chain barcode based on the cycles computed by the matrix reduction algorithm.

Following the filtration given in Fig. 1(a), the 1-dimensional persistence barcode tracks the births
and deaths of 1-cycles. After all vertices and edges have been inserted at time 15, the triangles
t1, t2, t3, and t4 destroy the 1-cycles created at time 15, 13, 11, and 9, respectively. This gives
rise to a persistence barcode (in black) that consists of intervals B1 = [15, t1), B2 = [13, t2), B3 =
[11, t3), B4 = [9, t4), respectively, shown in Fig. 1(c). After matrix reduction in Fig. 1(b), B1 is
represented by the 1-cycle z1 = 9+14−15, B2 is represented by z2 = 13−12+9, B3 is represented
by z3 = 9 + 10− 11, and B4 is represented z4 = 7 + 8− 9.
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To obtain harmonic bars (in purple) we sweep from left to write. Right before time t1, zi also
serve as the harmonic representatives. At time t1, all of the basis cycles zi get a coboundary from
the triangle t1. The homology class of z1 becomes trivial as it is destroyed by the triangle t1,
whereas other three homology classes remain non-trivial. As the first harmonic bar we observe,
B1

1 = [15, t1) is identical to the persistence bar B1 and it is represented by a harmonic 1-cycle
z11 = z1. Now, if we take the cycle representative z4, the homology class it represents remains non-
trivial at time t1, whereas the harmonic 1-cycle z14 = z4 has been destroyed creating a harmonic
bar B1

4 = [9, t1). We then need to find a new harmonic cycle in its homology class, by finding x
such that δ(z4 + ∂x) = 0 at time t1. This implies δ(z4) = −δ∂x. Since only triangle t1 exists at
this time, δ(z4) = δ(7 + 8 − 9) = δ(7) + δ(8) − δ(9) = 0 + 0 − t1 = −t1. We also have δ∂t1 =
δ(15 − 14 + 9) = δ(15) − δ(14) + δ(9) = t1 + t1 + t1 = 3t1. Therefore we can set x = 1

3(t1). Then
the new harmonic chain is z24 = z4+

1
3∂(t1). Similarly, persistence bars B2 and B3 are split at time

t1, giving rise to harmonic bars with representatives z22 = z2 − 1
3∂(t1) and z

2
3 = z3 − 1

3∂(t1).
At time t2, z

2
2 dies as it is destroyed by the triangle t2. z

2
4 gets a coboundary −t2 and δt1 gets

a coboundary t2, hence δ(z
2
4) = −2

3 t2. A new harmonic cycle is z34 = z4 +
1
4(∂t1 + ∂t2). Similarly,

z23 = z2 − 1
4(∂t1 + ∂t2). At time t3, the cycle z33 and its harmonic homologous cycles die. z34 also

becomes non-harmonic and will be replaced by another harmonic cycle that will die at t4.
Although in this example, each harmonic chain becomes non-harmonic after the insertion of a

simplex, this is not a general phenomenon. The harmonic bars can be longer than one time step.

4.3 Instability

In a harmonic chain barcode subordinate to some choice of basis element ϕ constructed above, the
harmonic bars can appear and disappear without much restrictions. Therefore, it is expected that
such harmonic chain barcodes are not stable. Here we demonstrate this instability by presenting
an example that shows when the basis elements are given by the standard reduction algorithm of
persistence homology, the resulting harmonic chain barcode is not stable.

Fig. 2 shows two filtrations whose only difference is the exchange of times when edges 12 and 23
are inserted. In this example, vertices are labeled 1 to 5, and higher-dimensional simplices (edges
and triangles) are labeled by ti (for some i). That is, edges appear at times t1 to t7, and triangles
appear at times t8, t9 and t10, respectively. The persistence barcodes are shown in black. The
unstable harmonic chain barcodes constructed from our first attempt using the basis given by the
standard matrix reduction algorithm are shown in purple.

In the left filtration, the matrix reduction algorithm for persistence homology gives the following
cycle representatives, z1 = −t1 + t2 + t4, z2 = −t3 + t4 + t5, and z3 = t4 − t6 + t7, for persistence
bars B1, B2, and B3, respectively. In contrast, the harmonic bars are shown in purple. Before
time t8, z

1
1 = z1, z

1
2 = z2 and z13 = z3 serve as harmonic cycle representatives. At time t8, z3 dies

as the triangle t8 enters the filtration. And the addition of triangle t8 causes z1 and z2 to have
coboundary. A new cycle homologous to z1 and harmonic at t8 can be found by finding a solution
to δ(z1 + ∂x) = 0. This means δ∂x = −δz1 = −t8. Since δ∂t8 = 3t8, we can take x = −1

3 t8. The
new harmonic cycle is then z21 = z1 − 1

3(∂t8). At time t9, z1 dies and clearly z21 also dies. At time
t8, z2 dies and similarly we get a new cycle z22 = z2 − 1

3(∂t8). This cycle dies at t9 and a new cycle
replacing it dies at t10.

In the right filtration, we again have cycles computed by the matrix reduction algorithm, from
top to bottom, z̄1 = t1− t2− t3+ t4, z̄2 = −t1+ t2+ t5 and z̄3 = t5− t6+ t7 serve as representatives
for B̄1, B̄1, and B̄3, respectively. The harmonic bars are obtained using these basis elements in a
similar fashion. At time t8, the cycle z̄1 remains harmonic since it is not incident to t8. As before,
z̄2 becomes non-harmonic at t8 and is replaced by a harmonic cycle that dies at t9. The cycle z̄3
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<latexit sha1_base64="ZsPxzj79s+oknHZeVJkGi6X/nN4=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHYxQY9ELx4xcYEENqRbutDQbTdt14Rs+A1ePGiMV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpapItQnkkvVDbGmnAnqG2Y47SaK4jjktBNO7uZ+54kqzaR4NNOEBjEeCRYxgo2V/Ort4Ko6KFfcmrsAWideTiqQozUof/WHkqQxFYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPUsFjqkOssWxM3RhlSGKpLIlDFqovycyHGs9jUPbGWMz1qveXPzP66UmugkyJpLUUEGWi6KUIyPR/HM0ZIoSw6eWYKKYvRWRMVaYGJtPyYbgrb68Ttr1mteoNR7qlWY1j6MIZ3AOl+DBNTThHlrgAwEGz/AKb45wXpx352PZWnDymVP4A+fzB262jbM=</latexit>

B3

<latexit sha1_base64="CbvdhuPaYWKg+j94s3gLfryVPTg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGIiHwmcZG8ZYMPe3mV3z4Rc+BE2Fhpj6++x89+4wBUKvmSSl/dmMjMviAXXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ShRDJssEpHqBFSj4BKbhhuBnVghDQOB7WByO/fbT6g0j+SDmcboh3Qk+ZAzaqzULt/0vUev3C+W3Iq7AFknXkZKkKHRL371BhFLQpSGCap113Nj46dUGc4Ezgq9RGNM2YSOsGuppCFqP12cOyMXVhmQYaRsSUMW6u+JlIZaT8PAdobUjPWqNxf/87qJGV77KZdxYlCy5aJhIoiJyPx3MuAKmRFTSyhT3N5K2JgqyoxNqGBD8FZfXietasWrVWr31VK9nMWRhzM4h0vw4ArqcAcNaAKDCTzDK7w5sfPivDsfy9ack82cwh84nz+RKo5U</latexit>

B1
1

<latexit sha1_base64="pHsGGfhedFKNsHOPn/Zzas92xjg=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGIiHwmcZG9ZYMPe3mV3zoRc+BE2Fhpj6++x89+4wBUKvmSSl/dmMjMviKUw6LrfTm5jc2t7J79b2Ns/ODwqHp+0TJRoxpsskpHuBNRwKRRvokDJO7HmNAwkbweT27nffuLaiEg94DTmfkhHSgwFo2ildvmmX330yv1iya24C5B14mWkBBka/eJXbxCxJOQKmaTGdD03Rj+lGgWTfFboJYbHlE3oiHctVTTkxk8X587IhVUGZBhpWwrJQv09kdLQmGkY2M6Q4tisenPxP6+b4PDaT4WKE+SKLRcNE0kwIvPfyUBozlBOLaFMC3srYWOqKUObUMGG4K2+vE5a1YpXq9Tuq6V6OYsjD2dwDpfgwRXU4Q4a0AQGE3iGV3hzYufFeXc+lq05J5s5hT9wPn8AkrGOVQ==</latexit>

B1
2

<latexit sha1_base64="ksk4i12wMD6eHVE7MgbrL88CELE=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkbsr0JJoY4mJfCRwkr1lDzbs7l1290zIhR9hY6Extv4eO/+NC1yh4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hYqVO9GfiPfnVQrrg1dwG0TrycVCBHc1D+6g9jkgoqDeFY657nJibIsDKMcDor9VNNE0wmeER7lkosqA6yxbkzdGGVIYpiZUsatFB/T2RYaD0Voe0U2Iz1qjcX//N6qYmug4zJJDVUkuWiKOXIxGj+OxoyRYnhU0swUczeisgYK0yMTahkQ/BWX14nbb/m1Wv1e7/SqOZxFOEMzuESPLiCBtxBE1pAYALP8ApvTuK8OO/Ox7K14OQzp/AHzucPlDaOVg==</latexit>

B2
2

<latexit sha1_base64="of1tVDzHVKwBS99JDbw1kZzudMc=">AAAB7nicbVDLTgJBEOz1ifhCPXqZCCaeyC4m6JHoxSMm8khgJbPDLEyYnd3M9JoQwkd48aAxXv0eb/6NA+xBwUo6qVR1p7srSKQw6Lrfztr6xubWdm4nv7u3f3BYODpumjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGtzO/9cS1EbF6wHHC/YgOlAgFo2ilVummd/nolXqFolt25yCrxMtIETLUe4Wvbj9macQVMkmN6Xhugv6EahRM8mm+mxqeUDaiA96xVNGIG38yP3dKzq3SJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMNrfyJUkiJXbLEoTCXBmMx+J32hOUM5toQyLeythA2ppgxtQnkbgrf88ippVspetVy9rxRrpSyOHJzCGVyAB1dQgzuoQwMYjOAZXuHNSZwX5935WLSuOdnMCfyB8/kDlDiOVg==</latexit>

B1
3

<latexit sha1_base64="GJwZKAfrO4DwOb6Pb3AftT1BVG4=">AAAB7nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGIiHwmcZG9ZYMPe3mV3zoRc+BE2Fhpj6++x89+4wBUKvmSSl/dmMjMviKUw6LrfTm5jc2t7J79b2Ns/ODwqHp+0TJRoxpsskpHuBNRwKRRvokDJO7HmNAwkbweT27nffuLaiEg94DTmfkhHSgwFo2ildvmm7z1Wy/1iya24C5B14mWkBBka/eJXbxCxJOQKmaTGdD03Rj+lGgWTfFboJYbHlE3oiHctVTTkxk8X587IhVUGZBhpWwrJQv09kdLQmGkY2M6Q4tisenPxP6+b4PDaT4WKE+SKLRcNE0kwIvPfyUBozlBOLaFMC3srYWOqKUObUMGG4K2+vE5a1YpXq9Tuq6V6OYsjD2dwDpfgwRXU4Q4a0AQGE3iGV3hzYufFeXc+lq05J5s5hT9wPn8Akq+OVQ==</latexit>

B2
1

<latexit sha1_base64="+QzTf+HW0T4WZI2PFgSgVQNpsWY=">AAAB7nicbVDLTgJBEOz1ifhCPXqZCCaeyC4m6JHoxSMm8khgJbNDAxNmZzczsyZkw0d48aAxXv0eb/6NA+xBwUo6qVR1p7sriAXXxnW/nbX1jc2t7dxOfndv/+CwcHTc1FGiGDZYJCLVDqhGwSU2DDcC27FCGgYCW8H4dua3nlBpHskHM4nRD+lQ8gFn1FipVbrpVR4vS71C0S27c5BV4mWkCBnqvcJXtx+xJERpmKBadzw3Nn5KleFM4DTfTTTGlI3pEDuWShqi9tP5uVNybpU+GUTKljRkrv6eSGmo9SQMbGdIzUgvezPxP6+TmMG1n3IZJwYlWywaJIKYiMx+J32ukBkxsYQyxe2thI2ooszYhPI2BG/55VXSrJS9arl6XynWSlkcOTiFM7gAD66gBndQhwYwGMMzvMKbEzsvzrvzsWhdc7KZE/gD5/MHlbuOVw==</latexit>

B3
2

<latexit sha1_base64="KMsXcckc6AGJAp0/y/KM7Z9XMn0=">AAAB8nicbVA9TwJBEJ3DL8Qv1NLmIphYkTsKtCTaWGIiSAIXsrfswYa93cvunAm58DNsLDTG1l9j579xgSsUfMkkL+/NZGZemAhu0PO+ncLG5tb2TnG3tLd/cHhUPj7pGJVqytpUCaW7ITFMcMnayFGwbqIZiUPBHsPJ7dx/fGLacCUfcJqwICYjySNOCVqpV+2HRGc3s4FfHZQrXs1bwF0nfk4qkKM1KH/1h4qmMZNIBTGm53sJBhnRyKlgs1I/NSwhdEJGrGepJDEzQbY4eeZeWGXoRkrbkugu1N8TGYmNmcah7YwJjs2qNxf/83opRtdBxmWSIpN0uShKhYvKnf/vDrlmFMXUEkI1t7e6dEw0oWhTKtkQ/NWX10mnXvMbtcZ9vdKs5nEU4QzO4RJ8uIIm3EEL2kBBwTO8wpuDzovz7nwsWwtOPnMKf+B8/gAx2JB2</latexit>

B̄1

<latexit sha1_base64="90VdWd8rWC9CFJ3T06z9oJK7q7s=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFvBU9mtUD0WvXisYD9gu5Rsmm1Ds8mSzApl6c/w4kERr/4ab/4b03YP2vpg4PHeDDPzwkRwA6777RQ2Nre2d4q7pb39g8Oj8vFJx6hUU9amSijdC4lhgkvWBg6C9RLNSBwK1g0nd3O/+8S04Uo+wjRhQUxGkkecErCSX+2HRGe3s8FVdVCuuDV3AbxOvJxUUI7WoPzVHyqaxkwCFcQY33MTCDKigVPBZqV+alhC6ISMmG+pJDEzQbY4eYYvrDLEkdK2JOCF+nsiI7Ex0zi0nTGBsVn15uJ/np9CdBNkXCYpMEmXi6JUYFB4/j8ecs0oiKklhGpub8V0TDShYFMq2RC81ZfXSade8xq1xkO90qzmcRTRGTpHl8hD16iJ7lELtRFFCj2jV/TmgPPivDsfy9aCk8+coj9wPn8ANOKQeA==</latexit>

B̄3

<latexit sha1_base64="oKTbFUy1w6MPX5i01MQNA9YOres=">AAAB8nicbVA9TwJBEJ3DL8Qv1NLmIphYkTsKtCTaWGIiSAIXsrfswYa93cvunAm58DNsLDTG1l9j579xgSsUfMkkL+/NZGZemAhu0PO+ncLG5tb2TnG3tLd/cHhUPj7pGJVqytpUCaW7ITFMcMnayFGwbqIZiUPBHsPJ7dx/fGLacCUfcJqwICYjySNOCVqpV+2HRGc3s0G9OihXvJq3gLtO/JxUIEdrUP7qDxVNYyaRCmJMz/cSDDKikVPBZqV+alhC6ISMWM9SSWJmgmxx8sy9sMrQjZS2JdFdqL8nMhIbM41D2xkTHJtVby7+5/VSjK6DjMskRSbpclGUCheVO//fHXLNKIqpJYRqbm916ZhoQtGmVLIh+Ksvr5NOveY3ao37eqVZzeMowhmcwyX4cAVNuIMWtIGCgmd4hTcHnRfn3flYthacfOYU/sD5/AEzXZB3</latexit>

B̄2

<latexit sha1_base64="eCuaZjwujAEmwbYRDdr0VVNZgsA=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGIiHwmcZG/Zgw27e+fuHgm58DtsLDTG1h9j579xgSsUfMkkL+/NZGZeEHOmjet+O7mNza3tnfxuYW//4PCoeHzS0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY38799oQqzSL5YKYx9QUeShYygo2V/HIvwCq9mfW9R6/cL5bcirsAWideRkqQodEvfvUGEUkElYZwrHXXc2Pjp1gZRjidFXqJpjEmYzykXUslFlT76eLoGbqwygCFkbIlDVqovydSLLSeisB2CmxGetWbi/953cSE137KZJwYKslyUZhwZCI0TwANmKLE8KklmChmb0VkhBUmxuZUsCF4qy+vk1a14tUqtftqqV7O4sjDGZzDJXhwBXW4gwY0gcATPMMrvDkT58V5dz6WrTknmzmFP3A+fwBcgJEZ</latexit>

B̄1
1

<latexit sha1_base64="ZnraPe6qQo1FoWGWq5xCiWamAyo=">AAAB9HicbVA9TwJBEJ3FL8Qv1NJmI5hYkTsKtCTaWGIiHwmcZG/Zgw17e+fuHgm58DtsLDTG1h9j579xgSsUfMkkL+/NZGaeHwuujeN8o9zG5tb2Tn63sLd/cHhUPD5p6ShRlDVpJCLV8YlmgkvWNNwI1okVI6EvWNsf38799oQpzSP5YKYx80IylDzglBgreeWeT1R6M+u7j9Vyv1hyKs4CeJ24GSlBhka/+NUbRDQJmTRUEK27rhMbLyXKcCrYrNBLNIsJHZMh61oqSci0ly6OnuELqwxwEClb0uCF+nsiJaHW09C3nSExI73qzcX/vG5igmsv5TJODJN0uShIBDYRnieAB1wxasTUEkIVt7diOiKKUGNzKtgQ3NWX10mrWnFrldp9tVQvZ3Hk4QzO4RJcuII63EEDmkDhCZ7hFd7QBL2gd/SxbM2hbOYU/gB9/gBeBZEa</latexit>

B̄2
1

<latexit sha1_base64="Un4gwiYQUf0DlWytXdQwFRQp/0g=">AAAB9HicbVA9TwJBEJ3FL8Qv1NJmI5hYkTsKtCTaWGIiHwmcZG/Zgw17e+fuHgm58DtsLDTG1h9j579xgSsUfMkkL+/NZGaeHwuujeN8o9zG5tb2Tn63sLd/cHhUPD5p6ShRlDVpJCLV8YlmgkvWNNwI1okVI6EvWNsf38799oQpzSP5YKYx80IylDzglBgreeWeT1R6M+tXH91yv1hyKs4CeJ24GSlBhka/+NUbRDQJmTRUEK27rhMbLyXKcCrYrNBLNIsJHZMh61oqSci0ly6OnuELqwxwEClb0uCF+nsiJaHW09C3nSExI73qzcX/vG5igmsv5TJODJN0uShIBDYRnieAB1wxasTUEkIVt7diOiKKUGNzKtgQ3NWX10mrWnFrldp9tVQvZ3Hk4QzO4RJcuII63EEDmkDhCZ7hFd7QBL2gd/SxbM2hbOYU/gB9/gBeB5Ea</latexit>

B̄1
2

<latexit sha1_base64="gO5JkLJzH8CxseVYdHdevPMn9Yw=">AAAB9HicbVBNT8JAEJ3iF+JX1aOXjWDiibQ9oEeiF4+YyEcClWyXLWzYbuvuloQ0/A4vHjTGqz/Gm//GBXpQ8CWTvLw3k5l5QcKZ0o7zbRU2Nre2d4q7pb39g8Mj+/ikpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gfDv32xMqFYvFg54m1I/wULCQEayN5Fd6AZbZzazvPXqVvl12qs4CaJ24OSlDjkbf/uoNYpJGVGjCsVJd10m0n2GpGeF0VuqliiaYjPGQdg0VOKLKzxZHz9CFUQYojKUpodFC/T2R4UipaRSYzgjrkVr15uJ/XjfV4bWfMZGkmgqyXBSmHOkYzRNAAyYp0XxqCCaSmVsRGWGJiTY5lUwI7urL66TlVd1atXbvleuVPI4inME5XIILV1CHO2hAEwg8wTO8wps1sV6sd+tj2Vqw8plT+APr8wdfjJEb</latexit>

B̄2
2

<latexit sha1_base64="UzlLnFccFF2QGuDeYPksUISFMm0=">AAAB9HicbVBNTwIxEJ36ifiFevTSCCaeyC4m6JHoxSMm8pHASrqlCw3d7tp2SciG3+HFg8Z49cd4899YYA8KvmSSl/dmMjPPjwXXxnG+0dr6xubWdm4nv7u3f3BYODpu6ihRlDVoJCLV9olmgkvWMNwI1o4VI6EvWMsf3c781pgpzSP5YCYx80IykDzglBgreaWuT1R6M+1dPrqlXqHolJ058CpxM1KEDPVe4avbj2gSMmmoIFp3XCc2XkqU4VSwab6baBYTOiID1rFUkpBpL50fPcXnVunjIFK2pMFz9fdESkKtJ6FvO0NihnrZm4n/eZ3EBNdeymWcGCbpYlGQCGwiPEsA97li1IiJJYQqbm/FdEgUocbmlLchuMsvr5JmpexWy9X7SrFWyuLIwSmcwQW4cAU1uIM6NIDCEzzDK7yhMXpB7+hj0bqGspkT+AP0+QNfjpEb</latexit>

B̄1
3

Figure 2: Changing the order of two simplices might effect an arbitrary large change in the harmonic
barcode. The filtration differ by exchange of two edges. The ordinary persistence barcode is in
black, whereas the harmonic chain barcode is in purple (constructed using the basis given by the
standard matrix reduction algorithm).

dies also at t8.
A matching provided by the stability of the persistence diagram needs to match B̄2 with B1,

and B̄1 with B2. Now, even if z̄11 = z̄1 dies immediate at t9, its bar will have a surplus of length
of at least t9 − t8 and this can be made arbitrarily large compared to t5 − t4. Hence it cannot be
matched to any bar on the left harmonic chain barcode without incurring an arbitrary high cost
to the matching. In summary, our first attempt at constructing harmonic chain barcodes leads to
unstable ones; more constraints need to be imposed to construct stable harmonic chain barcodes,
which is discussed in Sec. 5.

5 Canonical Harmonic Chain Barcode and Stability

Fix a homological dimension p and consider a filtration F and a homology class h ∈ Hp(Kb) born
at time b which dies at time d when entering Kd. The rank (dimension) of p-th homology group
increases at time b. The class h contains a unique harmonic cycle z. We say that the harmonic
cycle z is born at time b. When a persistent homology class dies (i.e., becomes a boundary), then
clearly the corresponding harmonic cycle also dies. Contrary to the ordinary persistent homology,
this is not the only situation where a harmonic cycle dies. In brief, a harmonic cycle dies whenever
it bounds a chain or gets a non-zero coboundary. A crucial property, which is not hard to verify, is
that when a cycle is no longer a cocycle, it could never become a cocycle in the future. Moreover,
when a harmonic cycle dies, it is because a relation is introduced in homology (i.e. a homology

10



class dies); the classes then change their harmonic representatives.
Recall that the space of harmonic p-cycles at time t, which we denote Hp(Kt), is isomorphic

with the p-th homology Hp(Kt). A cycle might be a harmonic cycle when it is first created, and
then it might fail to be harmonic at a later time: for example, it might get a non-zero coboundary,
or become a boundary. Alternatively, it may remain harmonic up to infinity. When working with
cycles, we usually fix a dimension p and suppress the dimension in the notation H := Hp, Z := Zp,
etc. Moreover, for simplicity of exposition, we treat ∞ as a fixed large number, so that all our
interval lengths can be compared to each other.

Definition 2. For a cycle z ∈ Z(K), its harmonic span, denoted span(z), is an interval of the form
[s, t) in the filtration during which z is a (non-trivial) harmonic cycle. If a cycle is non-harmonic
at birth, its span is empty and has length 0. If a cycle is harmonic in K, its span has length ∞.
The length of a span is denoted by |span(z)|.

Definition 2 assigns an interval to each cycle of the final complex K. This would be an assign-
ment of an interval to each vector in a R-valued vector space. When talking about independence
of cycles, we always consider them as vectors in the cycle space Z(K).

Definition 3. Let
(
zi
)
:= z1, z2, . . . ∈ Z(K) be a (finite) sequence of cycles. We say

(
zi
)
is a

sequence of independent cycles if, for each i > 1, zi does not belong to the subspace generated
by z1, . . . , zi−1 in Z(K). If

(
zi
)
is a sequence of independent cycles, the sequence

(
span(zi)

)
:=

span(z1), span(z2), . . . is called a sequence of independent spans, and the sequence
(
|span(zi)|

)
:=

|span(z1)|, |span(z2)|, . . . is called a sequence of independent span-lengths. The set of spans forming
a sequence of independent spans is called a set of independent spans.

The number of cycles in a sequence of independent cycles equals the dimension of Z(K). A
sequence of independent span-lengths is a sequence of real numbers. We can compare any two
sequences using the lexicographic ordering, starting from the first number in the sequence. That
is, if S1 =

(
|span(zi)|

)
and S2 =

(
|span(yi)|

)
are two sequences of independent span-lengths, we

say S1 > S2 if and only if there is an index k such that for all j < k, |span(zi)| = |span(yi)|, and
|span(zk)| > |span(yk)|.

Theorem 2. Let
(
λi
)
= λ1, λ2, . . . be the sequence of independent span lengths which is lexico-

graphical maximal. Then there is a unique set of independent spans {J1, J2, . . .} whose sequence of
lengths equals

(
λi
)
.

Proof. We prove a stronger claim below by induction on the dimension of the subspaces of Z(K):

• For each subspace A ⊂ Z(K), there is a unique set of independent spans of cycles of A realizing
a lexicographical maximal (lex.-maximal) sequence of span lengths of cycles of A.

The base case for the induction is to prove the theorem for any subspace A ⊂ Z(K) of dimension
1. A is generated by any of its non-zero elements z. If δ(z) ̸= 0, then δ(cz) ̸= 0 for all c ̸= 0.
Moreover, if ∂(d) = z, ∂(cd) = cz. Therefore, all of A either die at the same time or survive until
the end. In each case, the spans of all cycles are equal, and there is exactly one span.

Assume the statement is true for all subspaces of dimension at most m, and we consider a
subspace A ⊂ Z(K) of dimension m+ 1. For the sake of contradiction, let I1, I2, . . . and J1, J2, . . .
be two different sequences of independent spans realizing λ1, λ2, . . . which is the lex.-maximal
sequence of independent span lengths of cycles in A.

Let k be the first index such that Ik ̸= Jk. Let λl1 , . . . , λls be all the λi such that λlj = λk (for
j = 1, . . . , s). If the two sets of spans {Ili , i = 1, . . . , s} and {Jli , i = 1, . . . , s} are equal, then, as

11



sets, the two sequences would not differ at spans of length λk. We can therefore assume that these
two sets {Ili} and {Jli} are distinct. For each k, let Ik be the span of a cycle xk and Jk be the span
of a cycle yk.

(
xk

)
and

(
yk
)
are sequences of independent cycles by definition.

We divide the argument into three cases:

• Case (1) ls is less than dim(A). This means that there are independent intervals with length
smaller than λk. The subspace Sx ⊂ A generated by x1, . . . , xls and Sy ⊂ A generated y1, . . . , yls
are of dimension at most m. Since the sets {Ili , i = 1, . . . , s} and {Jli , i = 1, . . . , s} are dis-
tinct, and these are the only ones of length λk in the two sequences, the sets {x1, . . . , xls} and
{y1, . . . , yls} are distinct. The induction hypothesis implies that Sx and Sy are distinct subspaces
of equal dimensions. It follows that at least one of y1, y2, . . . , yls is not in Sx. Let y be such
a cycle. Adding y to sequence x1, . . . , xls certainly creates a larger lexicographic sequence of
lengths of independent cycles. This is a contradiction.

• Case (2) ls equals dim(A) and k > 1. In this case, let subspace Sx ⊂ A be generated by
x1, . . . , xl1−1 and Sy ⊂ A be generated y1, . . . , yl1−1. If Sx and Sy are distinct subspaces, then at
least one of y1, . . . , yl1−1, say y, would not be in Sx. Adding length of span of y to the maximal
sequence of independent span lengths will make it larger. It follows that Sx = Sy. Therefore, all
the spans of length less than λk in (Ii) and (Ji) are equal as sets. Let T = {span(z)|z ∈ A, z /∈ Sx}.
By our assumption, the sets {Il1 , . . . , Ils} and {Jl1 , . . . , Jls} are two distinct subsets of T . If
they generate the same subspace, the subspace would be of dimension at most m, and they
have to be equal, by the induction hypothesis, since they realize the same maximal span-length
sequence, namely ls copies of λk. Hence, they generate distinct subspaces which again leads to a
contradiction similar to Case (1).

• Case (3) ls equals dim(A) and k = 1. The spans of length λk create all of A and all the λi’s are
equal. The two sequences

(
xk

)
and

(
yk
)
give two sets of basis elements for A, all having equal

span-lengths. Let x be a cycle with smallest birth time whose interval is not among
(
Ji
)
. Let t

be the time x is generated. If no yk is generated at t, then x is independent of all yk which is
a contradiction. Therefore some yk, say y, is generated at time t. Since span(x) has the same
length as span(y), it follows that span(x) = span(y), and we reach a contradiction with the
choice of x.

Theorem 2 allows us to define the canonical barcode of harmonic chains unambiguously as follows.

Definition 4. Given a filtration F , the set of spans realizing the lexicographical maximal sequence
of independent span lengths is called the canonical barcode of harmonic chains (equivalently, the
canonical diagram of harmonic chains), denoted as CHD(F ).

Given any filtration F , Definition 4 associates a unique barcode to F . And this barcode is, in
general, distinct from a persistence barcode. For now on, canonical harmonic chain barcode (or
simply, harmonic chain barcode) means canonical barcode of harmonic chains.

5.1 Example 1

Fig. 3 depicts a 1-dimensional canonical barcode of harmonic chains, from the example in Fig. 1.
At time 9, the first cycle r1 = 7 + 8 − 9 is created. This event creates a harmonic bar that ends
at t1 when r1 gets a coboundary. At time 11, a second cycle r2 is created, leading to an increase
in the dimension of Z(K11). To compute a cycle that survives the longest, we start from t = +∞
and compute the largest t such that Z(K11) ∩ H(Kt) = Z(K11) ∩ ker(δt) ̸= {0}. Take the cycle
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Figure 3: The canonical harmonic chain barcode (in blue) for the filtration in Fig. 1.

r2 = 7+ 8 + 10− 11. r2 is harmonic, and it survives up until t3. One can check that if a cycle has
non-zero coefficient for 9, it has to die earlier; therefore, r2 represents the longest bar generated
at 11, namely, [11, t3). At time 13, similar to time 11, we obtain a cycle r3 which represents a
bar [13, t2). Now, at time 15, we have all possible edges so there has to be a harmonic chain that
survives up to t4. We take r4 = 3r1 − ∂(t1 + t2 + t3). One checks easily that δt∂(rj) = δt(9), for
j = 2, 3, 4. Therefore, δt(r4) = 3δt(9)− 3δt(9) = 0 for 15 ≤ t < t4.

5.2 Example 2

We provide a second example which sheds more light on the nature of the canonical harmonic chain
barcode. In this example, we have two filtrations F1 and F2 of the same underlying complex K. We
are only interested in the 1-dimensional homology. In F1, two independent 1-dimensional homology
classes are born early in the filtration, then cycles of low persistence are created and immediately
killed. At the end, the two independent cycles created at the start are also killed.

The first filtration F1 is shown in Fig. 4. Its ordinary persistence barcode is shown in (c), and its
canonical harmonic chain barcode is shown in (d). We see that, in the ordinary persistence barcode
in (c), the two 1-dimensional homology classes that are created at the beginning give rise to two
long bars, whereas other cycles create short bars. Contrary to the ordinary persistence barcode,
we see that all the harmonic bars in the canonical harmonic chain barcode (d) are rather short.

In Fig. 5, we consider a second filtration F2. In this filtration, first all the edges are inserted and
then all the triangles. The canonical harmonic chain barcode is justified since at the time when the
last edge is inserted, already all the harmonic chains are present, and at the insertion of a triangle,
the dimension of harmonic chains decreases by 1. Therefore, one can find harmonic chains that
survive the insertion of triangles.
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Figure 4: The ordinary persistence barcode and the canonical barcode of harmonic chains for the
filtration F1. (a) The insertion times of of edges and triangles. (b) The 2-dimensional boundary
matrix, the matrices of different times steps are marked. (c) The ordinary persistence barcode (in
black). (d) The canonical barcode of harmonic chains (in blue).

5.3 Comparison: Persistence Barcode vs. Canonical Harmonic Chain Barcode

In the filtration F1, we see that the canonical barcode of harmonic chains contains short bars whereas
the ordinary persistence barcode has long bars. Our suggestion of taking canonical harmonic chain
barcode does not lead to salient cycle features for this example. This reflects the fact that the
status of cycles, as being harmonic or not, in the first filtration F1 does not provide us with a
feature that spans a long time interval.

We observe that the canonical harmonic chain barcode for F2 reflects the existence of geometric
features that survive the insertion of many triangles, whereas, the ordinary persistence barcode
captures only two long features, if the shorter bars in the persistence barcode of Fig. 5 are counted
as noise. Therefore, we see that the canonical harmonic chain barcode can differentiate these two
situations, whereas the ordinary persistence barcode cannot (again, if we consider the shorter bars
in the ordinary persistence barcode as noise).
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5.4 Computing Canonical Barcode of Harmonic Chains

To compute the canonical barcode of harmonic chains, we make use of the following algorithm. Let
F be a filtration and H(Ki) be the harmonic chain group of the complex Kti .

For i = 0, 1, 2, . . . ,m, let CHDi−1 be the part of the barcode computed up to time step i, with
CHD(−1) = ∅. For each j = i+1, i+2, . . . compute rij := dim(f i,j(H(Kti))∩H(Ktj )), where here
we write again f for the induced map on cycles. If there are already mi bars of CHDi−1 alive at
time i, and hi = dim(H(Kti), we add max{hi −mi, 0} new bars to CHDi−1 starting at i. These
bars will die when rij decreases as j increases. If at an index j, rij − rij−1 > 0, we kill rij − rij−1

many harmonic bars which started at i. The bars we do not kill survive to +∞. This concludes
the description of the algorithm.

This computation can be done easily by first computing for each i, the Laplacian and a basis
for the nullity of the Laplacian. Then for each j > i, we compute the matrix of images Hi,j :=
f i,j(H(Kti)) simply by appending 0’s to the end of a matrix of basis of H(Kti) to make the number
of rows equal to that of the matrix at time j. We then compute rij = dim(f i,j(H(Ki))∩H(Kj)) by
computing the rank of [Hj ,Hi,j ] (i.e., the concatenation of two matrices) as an intermediate step.

If n is the number of simplices in the complex, and m is the number of time steps, then all of
these matrix operations can be done in time O(m2nω+mn3), where nω is the matrix multiplication
time. In the algorithm, we compute the Laplacian and a basis for its kernel in with n3 time in each
time step, which is O(mn3) for all time steps. Then we need for each pair i < j, to compute the
rank of [Hj ,Hi,j ], which is possible in m2nω time. In total, we have O(m2nω+mn3). It is plausible
that the runtime can be further improved. Providing the most efficient algorithm to compute the
canonical harmonic chain barcode is left for future work. We also prove that this algorithm is
correct, see App. A for details.

Theorem 3. Given a filtration of a complex of size n, with m time-steps, we can compute the
canonical barcode of harmonic chains in O(m2nω +mn3) time.

5.5 Stability

We express the stability of the canonical barcode by considering the typical setting in which the
two filtrations F and G are sub-level set filtrations for two simplex-wise linear functions f̂ and ĝ,
respectively, defined on the same complex K. This is the same setting as the seminal stability
result of [10]. However, we prove, as an intermediate step, a more general result. The proofs are
inspired by the overall approach of [10]. Similar to [10], our stability result can be extended to
functions on topological spaces, however, we limit our scope of discussion to simplicial complexes.

We start by defining the notion of harmonic interleaving distance. Then we show that the
bottleneck distance between canonical harmonic chain barcodes is upper bounded by the harmonic
interleaving distance between the two filtrations; see Fig. 6. Eventually we show that bottleneck
distance is upper bounded by ||f̂ − ĝ||∞.

Definition 5. Let {ϕα},{ψα}, ϕα : Fα −→ Gα+ε, ψα : Gα −→ Fα+ε be a family of chain maps
defining an ε-chain interleaving between F and G. We say that the pair of families {ϕα}, {ψα} are
harmonic-preserving if

• For any harmonic chain c ∈ F , for all α and ρ ≥ ε, if δ(fα,α+ρ(c)) = 0 then δϕα(c) = 0.
• For any harmonic chain c′ ∈ G, for all α and ρ ≥ ε, if δ(gα,α+ρ(c′)) = 0 then δψα(c

′) = 0.

The harmonic interleaving distance dHI is defined analogously to the chain interleaving distance,
however, we allow only harmonic-preserving maps.
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Figure 5: The ordinary persistence barcode and the canonical barcode of harmonic chains. (a) The
insertion times of edges and triangles for the filtration F2. (b) The 2-dimensional boundary matrix,
the matrices of different times steps are marked. (c) The ordinary persistence barcode (in black).
(d) The canonical barcode of harmonic chains (in blue). The persistence reduction of the boundary
matrix remains the same since the matrix is unchanged. The basis for ordinary persistence barcode
therefore remains the same chains as our first ordering, however, the insertion times of simplices
are changed, resulting in different bars.

The following lemma is analogous to the Box Lemma in [10].

Lemma 2. Let F and G be filtrations of complexes K and K ′, respectively, defined using inclusion
maps, and let ε > 0 be such that there are {ϕt} and {ψt} realizing a harmonic-preserving ε-
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Figure 6: Harmonic interleaving at the chain level. If zα is still harmonic at time α+ ρ, then ϕ(z)
is harmonic.

interleaving (at the chain level). Let z ∈ Z(K) be a cycle with span(z) = [α, β) such that α−β > ε.
Then, writing [α′, β′) for span((ϕ(z))) we have α− ε ≤ α′ ≤ α+ ε, and β − ε ≤ β′ ≤ β + ε.

Proof. In the following argument by a chain ct we mean the chain c of K considered as a chain
of Kt. Fig. 7 helps the argument. Consider the chain z′ = ϕα(z). z

′ is clearly a cycle and since
the maps are harmonic preserving, and fα,α+2ε(z) ∈ Zα+2ε(K) is still a cocycle, by the harmonic
preserving property z′ is a cocycle and hence harmonic. We now consider the span of z′ in G, let
it be denoted by [α′, β′).

We have seen already that α′ − α ≤ ε. Assume, for the sake of contradiction, that α− α′ > ε.
Then z′ exists at time α−ε−η for small η. We consider y = ψα−ε−η(z

′
α−ε−η) ∈ Fα−η. We suppress

the x in fx,y in the coming calculations, it can be deduced from the argument. We also suppress
the subscripts of ϕt, ψt.

We have

f2ε+η(y) = fηψϕ(y) = ψgηϕ(y) = ψgηϕψ(z′α−ε−η) = ψg2ε+η(z′α−ε−η) = ψ(z′α+ε) = zα+2ε.

Since f is the inclusion, it follows that y = zα−η which is a contradiction since z does not exist at
α− η. It follows that α− α′ ≤ ε.

If β′ − β > ε, then |span(z′)| > ε by the argument on starting points of span(z′) above. We
can deduce that ψ(z′β′−ε) = zβ′ is harmonic by the harmonic preserving property of ψ. This is a
contradiction since the interval of z = ψ(z′) = ψϕ(z) ends at β < β′ − ε. Therefore, β′ − β ≤ ε.

Assume β − β′ > ε. Then for small η > 0, β − ε− η > β′. It follows that ϕ(zβ−ε−η) = z′β−η is
harmonic which is a contradiction, since z′β′ is not harmonic and the maps are inclusions.

For a filtration F , let δ(F ) = min{ti+1− ti, i = 1, . . . ,m− 1}. We say that F is very close to G
if dHI(F,G) < min{δ(F )/4, δ(G)/4}. Observe that δ(F ) is the minimum possible distance between
any two endpoints of intervals or interval lengths.

Lemma 3. If F is very close to G then

dB(CHD(F ),CHD(G)) ≤ dHI(F,G).

Proof. Let I1, I2, . . . , IpF be the sequence of the intervals of F in the canonical harmonic chain
barcode, and J1, J2, . . . , JpG be those of G. Moreover, let d1, d2, . . . , dqF be distinct lengths of the
intervals Ii, and l1, l2, . . . , lqF be the lengths for G, in order. Let {ϕt}, {ψt} define a harmonic-
preserving ε-interleaving between F and G, where ε is arbitrarily close to dHI(F,G).

Let the subspace Λj ⊂ Z(K) be generated by cycles zi associated to Ii with |Ii| ≤ dj . Similarly,
let Λ′

j ⊂ Z(K ′) be the subspace generated by cycles yi associated to Ji with |Ji| ≤ lj . We claim
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Figure 7: A schematic for the proof of Lemma 2.

that for all j, if dj > 2ε or lj > 2ε then ϕ(Λj) = Λ′
j and we can match intervals of length at least

dj to those of at least lj .
In the following for any cycle z ∈ Z(K), by ϕ(z) we mean ϕα(z) where α is the time that

z is born. We extend this convention to subspaces of cycles in the natural way. We first prove
the claim for j = 1. Without loss of generality, assume d1 ≥ l1. Consider a generator z of Λ1

associated to an interval with length d1. If ϕ(z) /∈ Λ′
1, then, Lemma 2 implies that we can add

one more independent span length of length at least d1 − 2ε ≥ l1 − 2ε ≥ l1 − δ(G)/2 > l2 to
the lex-maximal independent span length sequence of G. This is a contradiction. It follows that
ϕ(Λ1) ⊂ Λ′

1. To show that Λ′
1 ⊂ ϕ(Λ1), it is enough to argue that the generators of Λ′

1 are in the
image. Since ϕ(Λ1) ⊂ Λ′

1 we have d1 ≥ l1 − 2ε. If one such generator y is not in the image ϕ(Λ1),
then |span(ψ(y))| ≥ l1 − 4ε > d2, hence ψ(y) ∈ Λ1. Thus y = ϕψ(y) ∈ Λ′

1. This contradicts our
assumption on y. It follows that λ′1 ⊂ ϕ(Λ1) and thus Λ′

1 = ϕ(Λ1).
We now show that each interval Ii in the barcode of F with |Ii| = d1, has to be mapped by

ϕ to an interval with length l1 in the barcode of G. Let an interval I be generated by z. Since
ϕ(z) ∈ Λ′

1, ϕ(z) can be written as a combination of generators y1, . . . , yn1 of intervals of the barcode
of G. ϕ(z) has to be born at the time when one of the yi is born. It follows that span(ϕ(z)) agrees
with interval of yi, since the start and end of the next nearest interval differs by at least δ(G) > ε
from start and end of interval of ϕ(z).

Assume we have matched the intervals of length less than dk to those of length less than lk and
such that the endpoints of matched intervals are within ε. We consider the intervals of length dk
and lk. Without loss of generality assume dk > lk. Let z be a generator of length dk. Since ϕ is
injective ϕ(z) is independent of Λ′

k−1. If dk > lk+2ε then the lex-maximal sequence of span lengths
of G can be improved by adding ϕ(z). Therefore, ϕ(Λk) ⊂ Λ′

k and dk ≤ lk + 2ε and lk ≥ dk − 2ε.
If there is a y /∈ ϕ(Λ′

k) which is a generator of an interval Ji of length lk, then span(ψ(y)) is of
length at least lk − 2ε ≥ dk − 4ε = dk − δ(F ). The next span length is at most dk − δ. Therefore,
|span(ψ(z))| = dk and ψ(y) needs to be in Λk, and we reach a contradiction as before. It follows
that ϕ(Λk) = Λ′

k.
We now show that each interval Ii in the barcode of F with |Ii| = dk, has to be mapped by ϕ
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to an interval with length lk in the barcode of G. Let intervals I1, . . . , Im of length dk be generated
by z1, . . . , zm. For each i, since ϕ(zi) ∈ Λ′

k, ϕ(zi) can be written as a combination of generators
y1, . . . , ynk

of intervals of the barcode of G of length up to dk. ϕ(zi) has to be born at the starting
point of some yji in the combination, say at time ti. By induction hypothesis, all intervals of length
longer than lk born at ti are already matched, so at time t an interval of length at most lk is
generated for each i = 1, . . . ,m, otherwise, some of ϕ(zi) would be in Λ′

k−1. Since lk+1 − lk > δ, it
follows that an interval of length lk is generated at time ti, and we can match span(zi) with some
interval of length lk in the barcode of G with a cost of ε.

The above argument can be repeated as long as both dk and lk are present, and min dk, lk > ε
so that we can use the harmonic-preserving property of the interleaving maps. By Lemma 2, if
max{dk, lk} > 2ε, then min{lk, dk} > ε. So the argument can be repeated as long as max{dk, lk} >
2ε. If max{dk, lk} ≤ 2ε we match the interval to the nearest point of the diagonal. This is possible
again with a cost of ε.

The following is analogous to the Interpolation Lemma from [10].

Theorem 4. Let f̂ and ĝ be two real-valued simplex-wise linear functions defined on a simplicial
complex K. Let F and G be the sub-level-set filtrations of f̂ and ĝ. Then

dB(CHD(F ),CHD(G)) ≤ ||f̂ − ĝ||∞.
Proof. The proof is based on the argument of [10] with some modifications. Let c = ||f̂ − ĝ||∞. We
define a 1-parameter family of convex combinations hλ = (1−λ)f̂ +λĝ, λ ∈ [0, 1]. These functions
interpolate f̂ and ĝ. Since K is finite, the images f̂(K) and ĝ(K) are bounded. Without loss of
generality, we assume that values are at least 1 and f̂(x), ĝ(x) < M for all x.

Given a convex combination of the form hλ = (1− λ)f̂ + λĝ, δ(λ) := δ(hλ) is positive, and we

have hλ < M . The set C of open intervals Jλ =
(

λ−δ(λ)
(1+M)4c , λ+ δ(λ)

(1+M)4c

)
forms an open cover of

[0, 1]. Since [0, 1] is compact, C has a finite sub-cover defined using λ1 < λ2 < . . . < λn such that
each two consecutive intervals Jλi and Jλi+1

intersect. Then,

λi+1 − λi ≤
(δ(λi) + δ(λi+1))

(1 +M)4c

≤ min{δ(λi), δ(λi+1)}(1 +M)

(1 +M)4c

≤ min{δ(λi), δ(λi+1)}
4c

.

(5)

Since c = ||f̂ − ĝ||∞, ||hλi − hλi+1
||∞ = c(λi+1 − λi) =: cλ. It follows that ||hλi − hλi+1

||∞ ≤
min{δ(λi), δ(λi+1)}/4.

Let F (λi) denote the sublevel set filtration of hλi . Since the filtrations are sublevel set filtrations
of the same complex, we have that F (λi)α ⊂ F (λi+1)α+cλ , and F (λi+1)α ⊂ F (λi)α+cλ . Since the
inclusion is harmonic-preserving, we deduce

dHI(F (λi+1), F (λi)) ≤ ||hλi − hλi+1
||∞ = c(λi+1 − λi) ≤

min{δ(λi), δ(λi+1)}
4c

.

It follows from Lemma 3 that

dB(CHD(Fλi),CHD(Fλi+1
)) ≤ dHI(F (λi), F (λi+1)) ≤ ||hλi − hλi+1

||∞.
The concatenation of these inequalities follows the proof of Interpolation Lemma in [10] verbatim

leading to the statement of the theorem.
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Figure 8: The canonical barcodes of harmonic chains (in blue) are stable.

5.6 Stability Example

We consider the same example we presented for instability, see Fig. 8. For the left filtration, at
time t4, the cycle z1 = t4 + t2 − t1 is created and represents the top bar. At time t5 the dimension
of the harmonic chains increases, and one can see that the cycle z2 = t2 − t1 + t3 − t5 is harmonic
at t5 and survives up to t9. Among the cycles that exist at t5, a 1-dimensional subspace survives
t8, this space is generated by z2. At t7, all edges are present, therefore there has to be a cycle
that survives until t10. We see that z3 = ∂(t10)− 1/2∂(t8 − t9) has this property and serves as the
harmonic representative.

For the right filtration, at time t4, the cycle z̄1 = −t1 + t2 + t4 − t3 is created and survives up
to t9. At time t5, z̄2 = t5 + t4 − t3 is created and survives up to t8. Finally, at time t7, z̄3 = z3 is
created and survives up to t10.

We observe that the first bar on top on the left can be matched to the second bar on the right,
and the second bar in the left can be matched to the first bar on the right. The bottom bar is
unchanged in both barcodes.

6 Future Work

We introduce a canonical barcode of harmonic chains as a novel barcode from a persistence filtration
that captures geometric and topology information of data. In the future, such a barcode can be
utilized in place of or alongside the persistence barcode. We will perform experiments comparing
our new harmonic chain barcode with the persistence barcode in applications, such as topology-
based feature vectorization and classification. We also hope to perform in-depth investigation of
its interpretability.
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A Algorithmic Correctness for Computing Canonical Harmonic
Chain Barcode

In this section, we prove that the algorithm for computing the canonical harmonic chain barcode
in Sec. 5.4 is correct. We assume that in a given filtration F , we add one simplex at a time. Under
this assumption, we compute the canonical harmonic chain barcode by sweeping time from −∞ to
∞. At any time t, we maintain a set of cycles R(t) satisfying the invariant that:

• The set R(t) contains cycles realizing a lexicographical maximal (lex-maximal) sequence of inde-
pendent span length for Z(Kt) ⊂ Z(K).

The following Lemma describes the change from R(ti) to R(ti+1).

Lemma 4. Assume that the harmonic representatives R(ti) satisfy the invariant at time ti. Then,
at time ti+1, if the dimension of the harmonic chains increases, to obtain R(ti+1) satisfying the
invariant, it is enough to add to R(ti) the lex-maximal set of independent spans born at ti.

Proof. Let σ be the simplex inserted at time ti+1. If σ is not d- or (d+1)-dimensional then the set
of d-cycles and harmonic d-cycles do not change. We then can set R(ti+1) = R(ti).

Suppose σ is d-dimensional. Then it might create new harmonic cycles. If this does not happen,
we can set R(ti+1) = R(ti). A new harmonic cycle is created if and only if a new d-homology class
is born. In this case, the dimension of harmonic cycles increases. Note that H(Kti) ⊂ H(Kti+1) is
a subspace of codimension 1.

Let N be the maximum death time of all harmonic cycles generated at time ti+1. N − ti+1 is
the maximum span length of these cycles and their span is determined by their death time. Let
τ ∈ H(Kti+1) be a cycle that realizes the span [ti+1, N). Set R′ = R(ti) ∪ {τ}. We claim that R′

satisfies the invariant at time ti+1.
To prove the claim, we consider how the maximum span length sequence of Z(Kti+1), denoted

as ρ1 ≥ ρ2 ≥ · · · , is constructed. Recall that we first take a cycle with the maximum span length.
If this cycle is in Z(Kti), then this span length will appear as span interval with maximum length
in R(ti) ⊂ R′ by the induction hypothesis. This will be again true for the second number, etc. Let
ρj be the first appearance of a number that is not in the maximum span length sequence for Z(Kti)
(note that it can be that ρj = ρj−1, in this case, ρj is one more repetition of the same number).
A realizing cycle is in Z(Kti+1)− Z(Kti) and it has to have the maximum span length in this set.
Therefore, ρj = N − ti+1 and τ realizes this span length. Now we claim that the rest of the cycles
in a sequence realizing the maximum span length sequence for Z(Kti+1) must come from Z(Kti)
and hence their span lengths must appear among spans of R(ti) ⊂ R′.

To prove the claim, let us assume for the sake of contradiction that a second cycle appearing in
order of span lengths τ ′ ∈ Z(Kti+1) − Z(Kti) has a span length in the sequence, and |span(τ ′)| ≤
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|span(τ)|. τ ′ must have a non-zero coefficient for σ, say β. Let α ̸= 0 be the coefficient of σ in τ .
We can form the cycle χ = α/βτ ′ − τ ∈ Z(Kti). When χ becomes non-harmonic, i.e., at the first
t such that δt(χ) ̸= 0, at least one of τ ′ and τ must also become non-harmonic. Since the death
time of τ is equal or larger than τ ′, the death time of χ is at least that of τ ′. Since χ already exists
at time ti it must be that |span(χ)| > |span(τ ′)|. This contradicts the selection of τ ′ as it is in a
space generated by cycles of larger span length τ and χ. This finishes the argument.

If σ is (d+1)-dimensional, the set of d-cycles Z(Kt) does not change and we can set R(ti+1) =
R(ti).

Now we consider an arbitrary filtration F . Let Σi be the set of simplices inserted at time i.
We can simulate F using a filtration which inserts Σ one simplex at a time ti,j = ti,j′ . In other
words, we apply Lemma 4 one simplex at a time, and the difference betrween times is 0. We need,
however, to consider all the possible orderings for insertions. For any fixed ordering, Lemma 4
applies. We need to take the ordering which leads eventually to the lex-maximal sequence of spans
added at time ti+1. We can obtain this sequence by computing the new harmonic chain space
A = H(Kti+1) − H(Kti). All these chains are born at ti+1. We need to choose first the longest
such span, then the next independent largest span, and so on. Since the span lengths in A are
determined by death times, this is what the algorithm of Sec. 5.4 computes.
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