
Eurographics Conference on Visualization (EuroVis) 2016
K.-L. Ma, G. Santucci, and J. van Wijk
(Guest Editors)

Volume 35 (2016), Number 3

Pathfinder: Visual Analysis of Paths in Graphs

C. Partl1, S. Gratzl2, M. Streit2, A. M. Wassermann3, H. Pfister4, D. Schmalstieg1, and A.Lex5

1Graz University of Technology, Austria
2Johannes Kepler University Linz, Austria

3Pfizer, USA
4Harvard University, USA
5University of Utah, USA

Figure 1: Pathfinder visualizes multiple paths of a coauthor graph connecting Hanspeter Pfister and Ben Shneiderman. The paths are shown
in a ranked list together with associated sets and attributes on the left (path list view). To its right, a node-link diagram shows the topology
of the paths (path topology view). The path statistics view on the far right shows an overview of the properties of the paths.

Abstract
The analysis of paths in graphs is highly relevant in many domains. Typically, path-related tasks are performed in node-link
layouts. Unfortunately, graph layouts often do not scale to the size of many real world networks. Also, many networks are
multivariate, i.e., contain rich attribute sets associated with the nodes and edges. These attributes are often critical in judging
paths, but directly visualizing attributes in a graph layout exacerbates the scalability problem. In this paper, we present visual
analysis solutions dedicated to path-related tasks in large and highly multivariate graphs. We show that by focusing on paths,
we can address the scalability problem of multivariate graph visualization, equipping analysts with a powerful tool to explore
large graphs. We introduce Pathfinder, a technique that provides visual methods to query paths, while considering various
constraints. The resulting set of paths is visualized in both a ranked list and as a node-link diagram. For the paths in the list,
we display rich attribute data associated with nodes and edges, and the node-link diagram provides topological context. The
paths can be ranked based on topological properties, such as path length or average node degree, and scores derived from
attribute data. Pathfinder is designed to scale to graphs with tens of thousands of nodes and edges by employing strategies such
as incremental query results. We demonstrate Pathfinder’s fitness for use in scenarios with data from a coauthor network and
biological pathways.

Categories and Subject Descriptors (according to ACM CCS):
H.5.2 [Information Systems]: Information Interfaces and Presentation—User Interfaces–Graphical user interfaces
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1. Introduction

Graphs capture relationships between items, for example, friend-
ships between people in social networks, interactions of genes in
biological networks, or researchers coauthoring scientific papers in
collaboration networks. Graph analysis and visualization have al-
ways been important for scientific discovery and decision-making,
but their role and ubiquity have increased in the last decade. It is
now common to encounter networks that cannot be sensibly drawn
due to both computational and perceptual constraints. The analysis
of graphs of nontrivial size depends on a combination of algorith-
mic, statistical, and visual approaches [vLKS∗11]. Also, interac-
tion, for example, through queries, plays a critical role in tackling
scalability problems.

Graphs are also increasingly associated with rich node and edge
attributes. In many cases, only the combined analysis of attributes
and topology can lead to meaningful insights. However, the visual-
ization and analysis of these rich attributes present additional chal-
lenges [KPW14], as there is a trade-off between optimizing a lay-
out for conveying topology and attributes. As more data is collected
and the graphs become bigger, scalable methods to extract knowl-
edge and reason about them become more important. Many tasks
on such large graphs cannot be addressed by showing all nodes and
links, even if a layout could be drawn.

An important class of tasks for graph analysis is concerned with
paths. Learning about how two suspects are connected in a crimi-
nal case or understanding why two genes are co-regulated are ex-
amples of important domain tasks that can be abstracted to path
analysis tasks. For small networks, these path analysis tasks can be
solved by visually finding paths, for example, in a node-link layout.
In larger networks, however, queries are essential to enable these
tasks. In this paper, we introduce methods to comprehensively ad-
dress path analysis tasks.

Our primary contribution is Pathfinder, a technique for the visual
analysis of paths queried from large and multivariate networks. We
introduce methods to (a) interactively query for paths and dynam-
ically refine queries, (b) visualize the resulting paths and their re-
lationships, (c) investigate the attributes associated with the paths,
and (d) rank and compare paths. We also have developed a list of
requirements for path analysis that we use to justify and evaluate
our design and analyze related techniques.

We realize and test our technique in a prototypical implemen-
tation. We pay particular attention to scalability, so that we can
handle tens of thousands of nodes and edges interactively. We em-
ploy strategies to deliver fast and progressive results [FPDs12], i.e.,
paths are added to the visualization as soon as they are found. These
immediate results can be used to evaluate and refine queries, even
before a complete and comprehensive answer is available. A demo
version of Pathfinder is available at http://demo.caleydo.
org/pathfinder/.

We show in a use case that our methods and the Pathfinder tool
can help answer important questions about gene regulatory net-
works, when analyzing the networks in the context of rich experi-
mental measurements.

2. Tasks and Requirements

We introduce a set of requirements for a query-based path visual-
ization technique. In our requirement analysis, we focus on static
networks that are highly multivariate, i.e., the nodes are associated
with rich attributes and additional sets. Our assumptions on datasets
are described in detail in Section 4. We use these requirements
to evaluate the related work, to analyze our Pathfinder technique,
and to identify areas of future work. Our choice of requirements is
based on discussions with potential end-users, our analysis of the
literature on path visualization, and the task taxonomy for general
graph visualization by Lee et al. [LPP∗06b]. Lee at al. distinguish
topology-based tasks and attribute-based task, as well as brows-
ing and overview tasks. The browsing tasks are related to topology
(follow path and revisit) and the overview task is concerned with
analyzing general properties of the graph, such as estimating the
overall size. For our requirements, we assume an underlying fun-
damental task of exploring paths. Some of the tasks introduced by
Lee et al., especially regarding connectivity (identifying clusters,
connected components, bridges, and articulation points), cannot be
addressed with a pure path-based approach. Hence, we envision
Pathfinder to be part of a larger graph-visualization system to ad-
dress those tasks in the future.

R I: Query for paths. Users should be able to easily query for
paths that adhere to some criteria. A simple query searches for the
paths connecting two nodes. Other criteria, such as querying based
on sets (find short paths that connect node A with any node in set S)
or topological restrictions (find short paths from A to C that do not
go through B), must also be supported. It should be easy to refine
an existing query, as analysts often can identify restrictions once
they see results matching their initial query.
R II: Visualize attributes. Many networks contain rich and het-
erogeneous attributes for nodes and edges. Understanding these at-
tributes is often critical for judging paths. In a gene regulatory net-
work, for example, low values for associated experimental data can
tell analysts that the path is inactive for the given samples.
R III: Visualize group structures in paths. Group structures,
such as set relationships and clusters, provide additional infor-
mation about relationships between nodes. For example, they are
important when judging the relevance of an edge in a path. If two
connected genes occur in many pathways, for example, it is likely
that their relationship is important.
R IV: Rank paths. A common goal of users querying for paths
is to find “good” paths, according to some criteria. These criteria
sometimes are as simple as finding the shortest path, but can also
involve a more intricate combination of topological features and
attributes. A path visualization technique should allow its users to
dynamically define these criteria and rank paths according to them.
R V: Visualize topology context. The relevance of a path for an
analysis can be influenced by its surrounding topology properties.
For example, in a gene-regulatory network, feedback cycles are
common, and it is important to know whether a path is involved
in one of these cycles.
R VI: Compare paths. Comparing paths is important to evaluate
similarity or dissimilarity between paths. As for path ranking, com-
parison can be based on many criteria, such as shared nodes, com-
mon set relationships, or similar attribute values. These similarities
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and differences are often not easy to spot, so a path visualization
technique should make this comparison easier.
R VII: Group paths. It is common that many paths match a spe-
cific query, but multiple paths will be only slight variations of each
other. Ideally, a system should convey which groups of paths are
similar and provide an overview of the main path classes, as this
can reveal important paths that do not rank at the very top based on
other criteria.

In addition to these specific requirements, a path visualization
system must be scalable, as the costs of using and learning a sophis-
ticated path visualization technique mainly pay off for large graphs.
Finally, the system also should follow best practices of conven-
tional graph visualization, such as overview (e.g., graph statistics)
and details on demand (e.g., full information about sets or nodes).

3. Related Work

The two principal ways to visualize graphs are node-link diagrams
and matrices. Node-link diagrams are generally regarded to be ad-
vantageous for topology-based tasks, whereas matrix diagrams are
considered to be beneficial for tasks on the edge sets, e.g., when
visualizing dense networks with edge weights.

Visualizing all nodes and edges, in either node-link or matrix
layouts, does not scale to large graphs. There are two strategies
to address scale: top-down and bottom-up approaches. Top-down
approaches start by showing an overview using aggregation and
sampling methods, and support drilling down into regions of inter-
est. Luger et al. [LSG∗15], for example, employ hierarchical and
motif-based aggregation in data provenance graphs. In bottom-up
approaches, the exploration starts with a small subset of a graph that
can then be expanded. For example, in Treeplus [LPP∗06a] a graph
can be continuously expanded in a flexible tree layout, starting from
a seed node. Ham and Perer [vHP09], Abello et al. [AHSS13], and
Luger et al. [LSG∗15] use more sophisticated methods to select and
expand graph subsets based on degree of interest functions.

Our approach belongs to the bottom-up approaches. We start
by querying a large network for paths and visualize the result set,
which can then be either further expanded or filtered. Most graph
libraries and databases support path-queries. The GUESS language
by Adar [Ada06], Orion by Heer and Perer [HP14], or the Neo4j
database are prominent examples of systems that support such
queries. Here, however, we focus on the visual analysis of paths.
Figure 2 shows four ways of visualizing paths in networks, where
(a)-(c) are variations of a node-link diagram, and (d) makes use of
the matrix layout.

Path highlighting in node-link diagrams, as shown in Fig-
ure 2 (a), is supported by many graph visualization frameworks and
their plugins. Typically, these tools support highlighting a shortest
path between two nodes. Examples are the two popular graph vi-
sualization tools Cytoscape [SOR∗11] and Gephi [BHJ09]. Several
tools also show multiple short paths in a node-link diagram, such
as TimeArcTrees [GBD09], which presents the shortest paths for
each view in a small multiples arrangement of networks, or en-
Route [PLS∗13], which highlights all paths between two nodes
with bubble sets on top of a network.
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Figure 2: Four ways of visualizing paths in a graph, connecting
the nodes A and D: (a) highlighting in a node-link diagram, (b)
drawing only the subset of the graph connecting node A and D, (c)
drawing a path list, (d) enumerating edges in a matrix.

These approaches are very limited in terms of scalability, but
they support topology-based tasks (R V, R VI) for smaller net-
works. They typically do not support rich queries (R I), but rather
rely on manually selecting two nodes, for which the path is cal-
culated. General purpose node-link diagrams are also not ideal for
visualizing rich attributes [PLS∗13] (R II) and have limited scala-
bility with respect to visualizing group structures [VBW15] (R III).

Rendering paths as node-link diagrams, as shown in Fig-
ure 2 (b), is similar to the approach described above, with the crit-
ical difference that only nodes and edges of the paths are rendered.
As a consequence, this approach scales to much larger networks,
yet makes judging the topology context (R V) harder.

Most examples given in this and the next section are for semantic
web networks, which capture relationships between many types of
entities. A typical example is to search for relationships between
people, e.g., to visualize how Albert Einstein and Kurt Gödel are
connected. These networks are highly heterogeneous, containing a
multitude of node and edge types. For such networks, attribute and
set relationships are of only limited interest, and consequently, few
of the techniques support them (R II, R III).

RelFinder [HHL∗09] is an example of such a technique for se-
mantic web networks. It supports both queries and dynamic query
refinement (R I). RelFinder, however, has no means to rank paths
(R IV) and does not provide dedicated methods to compare paths
(R VI). Tekusova and Kohlhammer [TK08] show paths connecting
two nodes (companies in that case), but in contrast to many other
approaches, they also show important nodes that are not part of the
paths (R V).

Path lists (Figure 2 (c)) are also mostly based on queries, but in-
stead of visualizing each node only once in a node-link diagram,
each path is visualized in a separate row as part of a list. Nodes
that occur in multiple paths are duplicated. Two examples that
use this list-based approach to visualize semantic web data and
also support rankings of paths (R IV) are the work by Aleman
et al. [AMHWA∗05] and SemRank [AMS05]. The former ranks
path as a combination of static attributes, such as path length and
trust, whereas the latter computes a semantic score. Neither of those
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rankings is interactive, and neither of the tools supports require-
ments beyond ranking and querying. Two semantic web tools sup-
port aggregation of paths into classes (R VII). Explass [CZQ14]
aggregates on a single level, whereas RelClus [ZCQ13] uses hi-
erarchical aggregation. Both tools also support the refinement of
queries (R I) based on facets, but do not address other requirements.

enRoute [PLS∗13] uses a hybrid path list/path highlighting ap-
proach. In addition to visualizing the path in the node-link layout,
users can select a single path, which is shown in a linear layout in
a separate view for the purpose of multivariate data visualization
(R II). Entourage [LPK∗13], an extension of enRoute, also shows
basic set relationships. enRoute does not support advanced queries
(R I) and is limited to the analysis of single paths. However, we
adopt its approach to attribute visualization and extend it to the
general case of multiple paths.

Matrices without extensions are considered ill-suited for
topology-based tasks and, consequently, are rarely used to visual-
ize paths. There is, however, an extension by Henry and Fekete,
Matlink [HF07], that supplements a matrix with explicit links
between the rows and columns, respectively. MatLink also auto-
matically calculates the shortest paths between two selected nodes.
The paper compares path finding tasks in MatLink with a node-link
diagram and a matrix that uses highlighting for shortest paths as
shown in Figure 2 (d). The authors found that users performed best
on shortest path tasks with MatLink. Shen and Ma introduce an
augmentation for matrices that visualizes multiple paths as links
on top of a matrix [SM07], with the goal of combining the benefits
of matrix layouts with good path-finding performance. However,
their approach works well for only a limited number of paths.

The specific examples discussed here do not support complex
queries (R I), but matrices could be used in combination with
queries, just as node-link diagrams. However, they are ill-suited for
a larger number of attribute rich paths (R II).

4. Dataset Characteristics and Examples

We consider static graphs where both nodes and edges can be as-
sociated with attributes. These attributes can be sets, categories, or
numerical data. There can be different types of nodes and edges.
For example, a network can contain nodes of types “places” and
“people”. These types commonly define what attributes are asso-
ciated with them. In this example, all “places” could be associated
with coordinates, whereas all “people” have an age.

Node and edge attributes can be very rich. In many biological
networks, nodes of a particular type can be associated with rows
or columns of large matrices, containing, for example, gene ex-
pression data. These matrices typically contain samples taken from
patients or cell lines. The samples can be grouped to compare, for
example, different types of cell lines.

Sets can be defined on the level of both nodes or edges, but
they are more commonly associated with nodes. We distinguish
sets from categories, because they explicitly define additional re-
lationships within a network.

A path through a graph connects two nodes by a sequence of

edges and nodes. The length of a path is defined by the number
of hops between its start and end nodes. Many applications require
identifying short (or cheap) paths between two nodes. The shortest
paths connecting two nodes can be computed with, for example,
breadth-first search (BFS) or, when considering edge weights, with
Dijkstra’s algorithm. In practice, however, the shortest path might
not be the “best” path, as other factors such as node or edge at-
tributes or contextual knowledge play a role in identifying an im-
portant path. In many cases, defining a cost-function to find the
cheapest path is not straightforward and requires human judgment.
Thus, exploring a number of “candidate” short paths is important.
Such paths can be computed with k-shortest path algorithms.

In this paper, we use two networks to illustrate Pathfinder. The
first is a coauthor network that we created from extracting all ACM
CHI and IEEE TVCG papers from the DBLP computer science li-
brary (http://dblp.uni-trier.de/). We treat authors as
nodes and add an edge if two authors have coauthored a publica-
tion. We also consider individual papers as sets, i.e., a paper is a set
that contains all its authors. As attributes in this network, we pro-
vide node degrees, paper counts for each venue, and the number of
citations to the visualization papers, which we extracted from the
Visualization Publication Dataset [IHK∗15]. This network contains
about 34k nodes, 45k edges, and 13k sets.

The second network is extracted from the KEGG pathway
database. Nodes in KEGG are primarily of two types: genes (pro-
teins) and metabolites (intermediate chemical compounds). Edges
describe various kinds of interactions. Genes, for example, can
work in signaling cascades that influence each other based on acti-
vation levels (gene expression), which in turn can trigger a process,
such as cell death. The most important nodes and edges associated
with a specific function or disease are summarized in pathways. We
treat these pathways as sets of nodes. We supplement this network
data with gene expression and copy number data from the CCLE
dataset [Bc12]. This dataset contains values for both gene expres-
sion and copy numbers for most genes (nodes) for 479 cell lines
taken from 23 cancer tissues (originating, e.g., from lung, stomach,
thyroid). Gene expression measures how active a gene is, whereas
copy number measures how many copies of a gene a specific sam-
ple has. Typically, a healthy sample has two copies of each gene,
but deletions (0 or 1 copies) or amplifications are possible. In to-
tal, this network contains about 11k nodes, 71k edges, and 300 sets
(pathways).

5. Method

Our goal was to develop a method for path analysis that is very scal-
able and addresses the requirements introduced in Section 2. The
key to achieve scalability is path queries: we introduce a rich query
interface that can cover a wide range of questions relevant to path
analysis (R I). The visual representation of the graph is manifested
in the path list view, the path topology view, and the path statis-
tics view. These views are part of a multiple coordinated view setup
that supports linking and brushing of paths and their elements. The
path list is ideally suited to visualize attributes and sets (R II, R III)
due to the linear layout of the individual paths, which allows us
to juxtapose the nodes and edges with plots of the attributes. It is
also a perfect match to dynamically rank paths and explore those
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Figure 3: The advanced interface showing a query where the start
node is either Hanspeter Pfister or Jarke van Wijk, the paths must
not contain Jean-Daniel Fekete, and the last node is Ben Shneider-
man or an author of the NodeTrix paper.

rankings [GLG∗13] (R IV). Additionally, the path list can be used
to compare paths (R VI), especially with respect to attributes and
sets. The shortcomings of the path list are addressed by the path
topology view, which provides the topological context (R V) and
covers the aspects of comparison with respect to topology (R VI).
Also, the topology view is beneficial for an overview and for ini-
tial orientation. In the following sections, we introduce the various
components of Pathfinder in detail.

5.1. Path Queries

As queries are at the heart of our technique, we introduce a so-
phisticated graphical interface for querying, paired with choices of
algorithms, technologies, and concepts that make the analysis and
querying process efficient. The simplest queries are for individual
nodes and their neighbors, or for the paths connecting two nodes. In
fact, our collaborators mainly used queries of this simple type. To
make this simple use case as smooth as possible our default query
interface consists of two fields only: one for the start, and one for
the end node.

Once such a query is triggered, we run a k-shortest path algo-
rithm based on breadth-first search (BFS) to retrieve the shortest
paths between two nodes. While BFS cannot consider edge weights
which, for example, Dijkstra’s algorithm can, BFS is faster in prac-
tice and response time is critical for interactive analysis systems.
BFS has a runtime complexity of O(|N|+ |E|), whereas Dijkstra’s
algorithm has a complexity of O(|N|log(|N|)+ |E|), where |N| de-
notes the number of nodes and |E| the number of edges. Also, we
can consider weights later in the analysis process through interac-
tive rankings on the resulting set of paths.

Another method to improve scalability is incremental results. In-
cremental and approximate results have been shown to accelerate
and open up the query process [FPDs12]. Consequently, we visual-
ize each path and all its attributes, as soon as it becomes available,
even if the search process is still ongoing.

We retrieve new paths until we reach a fixed threshold of k paths.
Once we have passed this number, we continue to fetch all paths
that are of equal length l to the last path fetched. Using this ap-
proach, we can guarantee that we consider all paths of length l in
the subsequent analysis. However, in rare cases, the resulting num-
ber of paths can be very large. To avoid excessive computation, we
also define a maximum threshold on the number of paths, which is
significantly larger than k. The fields to the right of the query in-
terface (see Figure 1 top) give an overview of how many paths of
which length are in the current result set.

We also support queries between sets of start and end nodes,

which can be useful, for example, to find out how an author is con-
nected to the authors of a paper of interest. In addition to the simple
query interface, Pathfinder also provides an advanced interface for
specifying more complex queries that consider topological restric-
tions, logical combinations of nodes, and node and edge properties.
Topological restrictions can be used to consider, for example, only
paths that go through a certain node, or contain a sequence of cer-
tain nodes. Logical restrictions can combine nodes and sets through
Boolean operations (AND, OR, NOT ). Also, Pathfinder can treat set
relationships as edges, if desired. Figure 3 shows a complex query
example for a coauthor network, with an OR combination at both
the start and the end node and a topological restriction to exclude
all paths that go through the node between them.

Queries can be expressed either in the query interface or by in-
teracting with elements in any of the views. For example, a user can
exclude all paths through a certain node via its context menu in the
path list view, which simplifies query refinement (R I).

Any change to the query acts as an immediate filter for the cur-
rent set of paths, which guarantees rapid feedback. This is often suf-
ficient for queries that restrict the result set, but queries that expand
or change the result set have to be run against the whole network to
produce reliable results.

5.2. Path List View

Pathfinder’s main view displays all paths that match a query in a
ranked and paginated list of paths (see Figure 1). Each path is dis-
played as a sequence of nodes and edges. For example, Figure 4
shows the path from Jean-Daniel Fekete to Ben Shneiderman in
the coauthor network. A key benefit of this linear layout is that it
allows us to easily show attributes associated with the nodes and
edges (R II) and sets connecting the nodes below the path (R III).
Compared to nonlinear layouts, this arrangements allows us to dis-
play multiple plots for each node. Attributes and sets can be hidden
on demand, which allows analysts to focus on the paths exclusively.

Set-memberships of a node are indicated by a circle below the
node. If two successive nodes are within the same set, the circles
are connected by a line. As shown in red in Figure 4, tracing set

Aggregated SetsExpanded Sets

Node Attributes
Figure 4: A path from the coauthor network connecting Jean-
Daniel Fekete and Ben Shneiderman. The coauthored papers are
treated as sets and visualized below the path. The CHI papers are
aggregated—only the strength of the connection can be estimated.
We see that Catherine Plaisant is highly connected with Ben Shnei-
derman. The TVCG papers show details: We can see who has coau-
thored which papers. Below the sets, numerical attributes, such as
the number of publications in each venue, are shown for each node.
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Reference Path

Rank-Columns

Figure 5: Path comparison and ranking. The second path (violet) is the reference path. Icons next to the nodes and sets in all paths indicate
whether they are shared with the reference path. For example, the third path shares two CHI papers, one TVCG paper, and four authors. The
rank columns show different scores by which the paths are ranked. Their order indicates score priority: First, paths are ranked by whether
they contain Krzysztof Z. Gajos, second, by length, and third, by the average node degree.

relationships, such as common publications of authors in a coauthor
network, is easy. To save space, the sets can be aggregated by type.
These aggregated relationships are scaled according to the number
of represented sets: Thicker lines and larger circles represent more
sets. Figure 4, for example, shows that Enrico Bertini coauthored
only a few CHI publications (blue) with Catherine Plaisant, but
she coauthored many papers with Ben Shneiderman. By default,
we show only sets that connect nodes; however, all available sets
can be shown on demand.

When visualizing attributes, we can show either bar charts (Fig-
ure 4) or box plots (Figure 8), but other representations, depending
on the data type, the number, and the structure of the associated
data, are equally conceivable. Attributes can be aggregated hierar-
chically. The box plots in Figure 8, for example, summarize hun-
dreds of mRNA and copy number data values.

By default, we assign colors to set types and attribute types, in
order to facilitate identification across different views. However,
coloring can be disabled on demand.

Taken together, the visual encodings that are made possible by
the linear representation allow us to efficiently visualize group
structures and attributes in graphs, which are both considered chal-
lenging at scale [VBW15, KPW14].

Path Ranking. A core aspect of our method is the dynamic rank-
ing of paths (R IV). In concert with query refinement, dynamic
ranking allows us to utilize human intelligence, contextual knowl-
edge, and individual judgment for path analysis. It enables us to
consider paths based not only on their topological properties or
simple attributes, such as edge weights, but based on complex rela-
tionships of attributes, topology, and group structures.

By default, paths are ranked by their length, i.e., number of
edges, but other rankings based on node attributes (e.g., minimum,
maximum, average value across a path), the number of connecting

sets, etc., are easily accessible. In addition, we empower users to
write custom scoring functions using a script editor, which enables
complex, targeted rankings as they are often desirable in advanced
analysis cases.

Pathfinder also supports multiple scores for each path. Each
score is represented by a rank-column displayed on the right of
the paths. Figure 1, for example, shows two scores: The first score
is the length of the path (represented by numbers) and the second
score is based on set connection strength (average number of con-
necting sets, represented by bars). The second score is used to break
ties. In this example, the ranking is first driven by the length, then
by the connection strength score. An arbitrary number of scores is
possible. In the example shown in Figure 5, paths are ranked on top
if they contain the selected node Krzysztof Z. Gajos, have a short
length, and a high average node degree.

Path Comparison Being able to compare and judge the similarity
of paths is an important task in path analysis (R VI). The path list
view provides a variety of methods that enable path comparison.
Nodes shared between adjacent paths are connected with a gray
line in the background. When a node is contained in a nonadjacent
path, we draw a line-stub pointing in its direction. We also support
different modes for node alignment to make shared nodes evident.
By default, paths are drawn as compactly as possible, from left to
right. On demand, paths can be aligned based on a selected pivot
node or based on an optimized global alignment, as illustrated in
Figure 6, which makes it easy to spot re-occurring nodes. A draw-
back of these layouts is that they are less compact than the default,
left-aligned layout.

Pathfinder also introduces methods to compare a selected ref-
erence path to other paths. Figure 5 shows an example where the
second path is the reference path; all other paths show icons next
to nodes and sets indicating whether they are shared or not. Shared
nodes also indicate their position relative to the same node in the
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Figure 6: Node-alignments that support path comparison. (a) All
paths are aligned around a selected pivot node. (b) A layout that
strives to put re-occurring nodes at the same horizontal position.

reference path. To make these differences and similarities pop out,
we disable the coloring of sets and attributes when a reference path
is selected. The reference path can also be considered in path rank-
ing: Instead of absolute scores, each score can be computed as a
difference to the reference path. As a result, the reference path will
be displayed first, followed by paths with decreasing similarity.

5.3. Path Topology View

The path topology view complements the path list view by showing
the topology of the nodes in the paths, which addresses the require-
ment of judging the topology and its context (R V), and providing
an overview. By default, we use a layered layout that makes it easy
to trace paths from their start at the left to their end at the right (see
Figure 1). When working with many paths, the topology view suf-
fers from scalability issues. Zooming and panning helps to reveal
details, but we can also show only the paths on the active page of
the path list. This addresses the scalability issues and still shows
the topology for the top-ranked paths.

To judge the path topology in the context of attributes, a user can
select individual node attributes to be mapped onto the nodes. This
can be helpful for identifying the relationship between attributes
and topology, which is important, for example, when investigating
gene regulatory networks.

Some usage scenarios demand contextual topological informa-
tion that goes beyond the topology of the path result set (R V).
Pathfinder provides two ways to add additional topological infor-
mation: First, the links that connect a node to other nodes in the
path result-set, but are not covered by the paths, can be shown on
demand. Second, the user may add all neighbors of a selected node,
even if they are not in the set of paths (see Figure 7). This can be
done repeatedly with neighbors to enable a simple node-by-node
graph exploration, which is especially desirable when only query-
ing for start nodes. To better support this approach to graph explo-
ration, Pathfinder also provides a force-directed layout.

5.4. Path Statistics View

The path statistics view provides basic statistics and gives an
overview of the most important nodes and sets. For paths, nodes,
edges, and sets, it displays the total numbers in the result-set, and
the numbers considering active filters. To make the most important
nodes and sets apparent, we show them in ranked lists. The nodes
and sets are ranked by the number of paths of which they are part of,
which is displayed in bar charts. Details about all these entities can
be accessed by following links to external web-sites (if available),
which can be accessed using the context menu.

Figure 7: The path topology view showing paths that connect
Hanspeter Pfister and Ben Shneiderman. All neighbors of Tim
Berners-Lee were added and are shown in white, indicating that
they are not part of any path. Links to those nodes are stippled to
distinguish them from links that occur in the path list.

Figure 1 shows an example where Hanspeter Pfister and Ben
Shneiderman are ranked at the top, which is not surprising, as they
are the start and end nodes, respectively, and thus occur in all paths.
However, the highly ranked authors Krzysztof Z. Gajos and Desney
S. Tan also play a key role in connecting these authors, as they are
part of about half of the paths.

6. Implementation

Pathfinder is implemented as a client-server web-application us-
ing Caleydo Web [GGL∗15]. The front-end is implemented with
HTML, JavaScript, and TypeScript. We use D3 (http://d3js.
org) for the visual components. The layered graph layout in the
topology view is computed using the dagre library [Pet16]. Da-
gre attempts to balance computation performance and quality of
results by using a combination of different algorithms. On the
back-end, we use a Python web-server and a Neo4j graph database
(http://neo4j.org) to store the graph data. We use a cus-
tom Neo4j plugin written in Java for the k-shortest path search. It
uses the built-in Neo4j BFS algorithms, streams intermediate re-
sults via WebSocket, and computes virtual edges for set relation-
ships on-the-fly. The source code of Pathfinder is freely available at
https://github.com/Caleydo/pathfinder.

7. Use Case: Pathway Analysis

In addition to the examples given on the coauthor network through-
out this paper, we demonstrate Pathfinder’s value for an intricate
analysis in a use case about biological pathways. This use case was
conducted by a coauthor of this paper, who is a chemical biologist
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and a researcher at a large pharmaceutical company. We provide
detailed figures documenting the analysis process in the supple-
mentary material. Pathfinder was developed with constant feedback
from this researcher and other domain experts.

Our collaborator used Pathfinder to analyze biological signal-
ing cascades driving cell proliferation and cancer formation. These
signaling cascades consist of proteins that are encoded by genes.
For simplicity, we use the terms protein and gene interchangeably.
A well-known signaling cascade in biology is the so-called ERK-
MAPK pathway [RD07], which transduces signals from the cell
membrane to the cell nucleus. In the nucleus, these signals influ-
ence gene expression (i.e., the activity level of the genes) and can
induce changes in the cell leading to cell division. Uncontrolled
cell division, in turn, causes tumors. The gene RAS is the starting
point of the ERK-MAPK pathway; RAS is attached to the cell mem-
brane, where it is switched on by incoming signals. The end point
of the signaling pathway is the gene ERK, which activates proteins
that bind to the DNA and change gene expression. Accordingly, our
collaborator queried for paths that connect KRAS (one representa-
tive member of the RAS gene family) and MAPK3 (a member of
the ERK family) in Pathfinder. She ranked the 149 paths that were
returned by their average set connection strength (see supplemen-
tary Figure SP1; the first three paths are also visible in Figure 8).
She chose this score because she was interested in paths that occur

Figure 8: The query result in Pathfinder for paths connecting KRAS
and MAPK3. The paths are ranked by set connection strength,
which places the path KRAS-RAF1-MAP2K1-MAPK3 on top (no-
tice the thick lines for the aggregated pathways). This path cor-
responds to the ERK-MAPK signaling cascade. Associated copy
number and mRNA expression data are shown as box plots. The
expression dataset is expanded to investigate the expression across
different tissue types in detail. The box plots show that the four
genes are expressed in all displayed tissues, which emphasizes the
importance of this path.

in many KEGG pathway maps. The top-ranked path was KRAS-
RAF1-MAP2K1-MAPK3, which corresponds exactly to the ERK-
MAPK pathway. Thus, Pathfinder was able to identify correctly the
most important communication path between RAS and ERK. An
analysis of the pathways from which these connections were drawn
(see supplementary Figure SP2) revealed that this path is present
in many cancer pathways: Colorectal cancer, pancreatic cancer,
glioma, prostate cancer, and non-small cell lung cancer, to name
just a few. Similarly, the importance of this path was emphasized by
the gene expression box plots showing data from cancer cell lines.
The box plots revealed that these four genes are ubiquitously ex-
pressed across diverse tissues (see Figure 8), which indicates that
this signaling cascade is active in many different cell types.

Another important pathway involved in the formation of can-
cer is the so-called mTOR pathway [LS12]. Our collaborator used
Pathfinder to detect cross-talk between these two pathways, i.e.,
she explored how one signal transduction pathway could affect the
other. For this purpose, she defined an advanced query, searching
for connections between the four genes mentioned above and the
five genes MTOR, AKT1, TSC1, TSC2, and MLST8, which are part
of the mTOR pathway. She again ranked the paths by their average
connection strength (see supplementary Figure SP4). The result-
ing path topology view highlighted that the ERK-MAPK pathway
can modulate the mTOR pathway through the gene PI3K, which
in turn modulates AKT1 (note that there are different subtypes for
this gene, which are all displayed in the view). Furthermore, the
top-ranked path revealed a second route for regulation of the mTOR
pathway by the ERK-MAPK pathway: MAPK3 can modulate TSC2.
To learn more about this regulation, our collaborator chose the
path MAP2K1-MAPK3-TSC2 as reference path and sorted all other
paths by their similarity to the reference path (see supplementary
Figure SP5). This ranking revealed an additional, indirect way for
MAPK3 to regulate TSC2: via RPS6K. Our collaborator was ex-
cited that Pathfinder was able to demonstrate the complexity of bi-
ological pathway regulation: The ERK-MAPK pathway can either
modulate the mTOR pathway through PIK3CA or through TSC2.
Understanding cross-talk between signaling cascades is important
for the development of cancer therapeutics because they can con-
tribute to drug resistance.

In summary, the feedback from our collaborator was very pos-
itive. She claimed that the analysis of multiple paths across path-
ways would have been difficult or even impossible with standard
tools such as the KEGG web interface, especially when also con-
sidering experimental data.

8. Discussion

When developing Pathfinder, we set out to address two major goals:
scalability with respect to the number of nodes and edges, and scal-
ability with respect to associated sets and attributes. We deal with
them in a number of ways. Foremost, the query-based approach re-
duces the complexity of analyzing the whole graph to analyzing
resulting paths. Of equal importance is the list-based path view,
which enables us to show ranked paths and rich attribute and set
data that can be aggregated on demand. The computationally ex-
pensive and time-consuming path query process is mitigated by
showing intermediate results, i.e., a path matching the query is
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shown as soon as it is found. As the resulting paths can be nu-
merous, easily accessible methods to refine the query help narrow
down the result-set, and path ranking helps to quickly identify rele-
vant paths. The ranked list representation of paths scales very well
to large numbers of paths. The pagination of the list helps to im-
prove rendering performance and also defines meaningful subsets
of the ranked paths to be explored in the topology view.

Besides scalability, a major strength of our approach is that it can
be extended and customized to comply with requirements in differ-
ent use cases without changing the overall workings of the tech-
nique. Complex scores can easily be added to support customized
path rankings, and the sequential layout of nodes makes adding vi-
sualizations of attribute data easy.

In our design we employ the most effective visual channels for
the most important aspects of the data. For example, position, the
strongest visual variable, is used to encode path rank, and connect-
edness is used to encode relationships. Also, all attribute visualiza-
tions use a position/size encoding (bar charts, box plots); color is
used only as a redundant channel or for highlighting.

In the path list view some information is duplicated— for exam-
ple, the start and end nodes, and their associated attributes, occur in
every path. Although this wastes space, we argue that the benefits
of the linear representations (easy to rank, excellent for attribute
visualization) outweigh the cost of non-optimal space usage.

Our fundamental approach of transforming the graphs into a list
that can be ranked and queried is similar to UpSet [LGS∗14], where
set intersections are displayed as a list that also can be ranked and
queried. However, the underlying data type, the types of queries,
and the visualization of associated data are different.

Limitations We distinguish limitations of the technique from lim-
itations of our implementation. We argue that our technique ad-
dresses tasks related to paths and attributes well. A wide range of
other tasks discussed by Lee et al. [LPP∗06b] can be addressed by
using the topology view and its capability to dynamically extend
the network (see Figure 7). Specifically, the topology view allows
us to also address most adjacency, accessibility, common connec-
tion, and connectivity tasks, with the exceptions of finding clusters,
connected components, bridges, and articulation points, i.e., tasks
that are related to an overview of the graph. To address these tasks,
we envision integrating Pathfinder with a general purpose, query-
based graph visualization system such as Orion [HP14].

A limitation of the current implementation is the expressiveness
of the query interface. For example, attributes of nodes and edges
cannot be considered in the query. Also, the visual and interaction
design of the advanced query interface could be improved. Another
limitation is that we currently do not visualize edge attributes and
edge types. The display of both, however, is straightforward, as
they can be shown in the same way as node attributes: by adding
dedicated rows below the paths in the path list view. Finally, our
topology view can contain avoidable edge crossings, which could
be eliminated by improving the layout algorithm used.

Scalability We tested Pathfinder for graphs with more than 30k
nodes and more than 70k edges and found no significant scala-
bility problems. Queries on our example datasets typically return

results within a few seconds. Query performance is influenced by
the server’s computing power, but also by caching: Paths through
frequently used nodes are retrieved faster. Pathfinder can handle
at least 600 paths without problems, with the exception of the
overview mode of the topology view, which can become cluttered,
as any node-link diagram. The maximum length of paths that can
be conveniently shown depends on both screen resolution and the
node size configured by the user. On full-HD displays, paths of
length 6-12 can be shown conveniently, but longer paths may re-
quire scrolling. However, we found that the paths we consider are
rarely longer than 6-8 hops. The number of paths that can be shown
at the same time in the list view largely depends on the amount of
displayed attributes and sets. When all attributes and sets are hid-
den, up to 20 paths fit on a typical full-HD display. Especially com-
bined with path ranking, which puts the most relevant paths for a
specific question at the top of the list, we argue that this number
accommodates most tasks.

9. Conclusion and Future Work

In this work, we presented Pathfinder, a technique for the visual
analysis of paths in large multivariate graphs. Our query-based ap-
proach allows users to search for paths between a specified start
and end. The immediate display of intermediate results allows for
early query refinements and speeds up the analysis process. Paths
can be judged and ranked holistically, taking topology, attributes,
and grouping structures into account. We showcased Pathfinder in
context of a coauthor graph and a biological network. However, we
are confident that our technique can be useful for the analysis of
networks from other domains, such as social or computer networks.

Our technique addresses all requirements save one: the explo-
ration of path classes (R VII). Aggregating similar paths and show-
ing their basic structure could give analysts a better overview of
the variation of paths. Combined with revealing details on demand,
this could be an alternative approach to ranking for tackling large
lists of paths. Aggregations could also be driven by a user-defined
combination of properties, such as topology, attributes, and sets.
We believe this to be a fruitful direction for future research.
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