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Abstract

Jointly analyzing biological pathway maps and experimental data is critical for understanding how biological
processes work in different conditions and why different samples exhibit certain characteristics. This joint analysis,
however, poses a significant challenge for visualization. Current techniques are either well suited to visualize large
amounts of pathway node attributes, or to represent the topology of the pathway well, but do not accomplish
both at the same time. To address this we introduce enRoute, a technique that enables analysts to specify a path
of interest in a pathway, extract this path into a separate, linked view, and show detailed experimental data
associated with the nodes of this extracted path right next to it. This juxtaposition of the extracted path and the
experimental data allows analysts to simultaneously investigate large amounts of potentially heterogeneous data,
thereby solving the problem of joint analysis of topology and node attributes. As this approach does not modify
the layout of pathway maps, it is compatible with arbitrary graph layouts, including those of hand-crafted, image-
based pathway maps. We demonstrate the technique in context of pathways from the KEGG and the
Wikipathways databases. We apply experimental data from two public databases, the Cancer Cell Line Encyclopedia
(CCLE) and The Cancer Genome Atlas (TCGA) that both contain a wide variety of genomic datasets for a large
number of samples. In addition, we make use of a smaller dataset of hepatocellular carcinoma and common
xenograft models. To verify the utility of enRoute, domain experts conducted two case studies where they explore
data from the CCLE and the hepatocellular carcinoma datasets in the context of relevant pathways.

Introduction
Biological networks, such as interactions between proteins,
biochemical reactions, and signaling processes are com-
monly depicted in pathway maps. Pathway maps are often
hand-crafted and only show the part of the whole known
biological network that is immediately relevant for a parti-
cular natural process, such as the tyrosine metabolism, or
for a particular disease, such as HIV or diabetes. The net-
work described by these pathways is based on published
research on the interactions and interdependencies
between the various nodes. As a consequence, pathway
maps are static and are only valid for the specific processes

or disease states they are designed for and fail to adapt
to the variation found in real-world data. It is not uncom-
mon, for example, that a de-activation of a node in a
cascade invalidates reactions further downstream. For
example, the gene PTEN is a part of the phosphoinositide
3-kinase signaling pathway, which regulates cell-growth
[1]. If PTEN is mutated it does not fulfill its function
and shuts down the pathway, which can lead to tumor
growth. Jointly analyzing experimental data and pathways
can help in reasoning about and predicting such effects for
different conditions. Knowledge about how pathways are
modulated by the genetic profile of groups or individual
samples can help improving prognosis, treatment, and
patient well-being.
Current approaches for visualizing interdependencies

between pathways and experimental data do not scale to
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the now common large and heterogeneous experimental
datasets, which often contain hundreds of experiments
and multiple data types. We designed enRoute to remedy
this. enRoute consists of two views: the pathway view,
which shows the whole pathway and hints at interesting
paths, and the enRoute view, which visualizes experimen-
tal data for parts of the pathway. In the pathway view,
shown in Figure 1(a), we show the pathway maps augmen-
ted with abstractions of the mapping experimental data.
Even though these abstractions are insufficient for an
in-depth analysis, they provide an overview and hint at
those parts worth investigating in more detail. The enRoute
view shows the experimental data for a path that is selected
in the pathway view (see Figure 1(a)). The selected path is
extracted and juxtaposed with the experimental data, as
shown in Figure 1(b). This combined approach successfully
addresses the issue of showing large and heterogeneous
datasets in the context of networks, the problem of show-
ing multiple groupings of datasets, and it resolves multi-
mapping issues that are common in pathway analysis.
enRoute is part of Caleydo, an open-source biomolecular
visualization framework (http://caleydo.org), which features
various other visualization techniques for analyzing tabular
and network data.

At the beginning of this paper, we give a brief introduc-
tion of the biological background, followed by a detailed
analysis of the challenges of visualizing graphs with
very large numbers of node-attributes. We continue by
reviewing the literature and evaluating how existing
approaches address the described challenges. Based on
this discussion of the state-of-the-art and its limitations,
we present our visualization technique, followed by a
validation of our approach in case studies, conducted
with experts in molecular biology. In the course of these
case studies, we demonstrate how enRoute can be used
to analyze large datasets in the context of pathways.
This paper is based on and extends previously pub-

lished work [2]. In addition to a more detailed descrip-
tion of the original concepts, we extend the previous
work with a generalization of enRoute to other pathway
databases, a novel method to incorporate mutation status
data into enRoute, a method to integrate potentially
missing edges in the network, a semi-automatic path
selection approach, an improved on-node data mapping
in pathway maps, and various other improvements. In
addition to the conceptual improvements and extensions,
we present two new case studies that show the effective-
ness of the enRoute technique.

Figure 1 The dual-view setup of the enRoute visualization technique. (a) The ErbB signaling pathway from the Wikipathways database,
augmented to show abstract experimental data and a selected path (orange). (b) The selected path is extracted and displayed top-down along
with associated experimental data from a TCGA glioblastoma multiforme dataset.
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Biological background
Life scientists have accumulated intricate knowledge about
biochemical and signaling processes in living cells, which
has been used to build detailed biological interaction net-
works called pathways. These pathways summarize the
molecular interactions in the biochemical conversions of
molecules from source material to complex biomolecules
or the signaling from a cell surface receptor via a second
messenger to the nucleic transcription machinery. Several
initiatives are drawing pathway maps and make these
maps available to the scientific community, such as KEGG
[3] or Wikipathways [4]. In the databases pathway maps
are usually categorized by type (e.g., biochemical conver-
sion or signaling pathways) and by biological purpose (e.g.,
cellular processes, human disease). Biochemical pathways
describe the buildup or breakdown of molecules. For
example, in the Glycolysis/Gluconeogenesis pathway of the
KEGG database the buildup or degradation of glucose is
described in great detail with all biochemical conversions
and the connections to the Pentosephosphate pathway and
the Citrate cycle pathway. A prominent example of the sig-
naling pathway group is the MAPK signaling pathway,
which contains a well-studied signaling cascade leading
from an activated cell surface receptor to a phosphoryla-
tion cascade of several kinases to the activation of DNA
binding complexes, which regulate transcription of genes
involved in the proliferation of cells thus enabling the cell
to react to growth stimuli from its environment. It is com-
mon for pathways to include the spatial organization of
cells like cell walls, the Golgi apparatus, or the cell
nucleus, thus allowing to depict transport of molecules
and signaling through these compartments.
Pathway maps have become a valuable resource for

molecular biologists summarizing broad knowledge about
molecular interactions and presenting this information in
a condensed view highlighting the functional aspects most
interesting to the researcher. In the pathway maps nodes
represent biological entities like proteins, metabolites, or
chemical compounds. Protein nodes are annotated using
the gene names from which these proteins are transcribed.
These nodes usually contain several isoforms of the same
protein and often several proteins of the same family
catalyzing the same reaction, leading to extensive multi-
mapping of many gene names to a single node. The nodes
in a pathway are connected by links that depict biochem-
ical reactions, activating or inhibiting modifications of pro-
teins, or enzymatic reactions. The nodes together with the
links between them allow to capture the interaction net-
work of a biological system and present them in a struc-
tured graph with node-link diagrams following specific
drawing conventions. Most pathway databases contain
manually curated pathway maps that are trying to repre-
sent the molecular interactions in a visually appealing way
while maintaining the scientific content.

In recent years, the advent of high throughput ~omics
technologies has generated large amounts of data. These
datasets include genetic and expression data from large
consortia like TCGA (http://cancergenome.nih.gov) and
ENCODE (http://encodeproject.org/), but also high
throughput metabolic screens via nuclear magnetic reso-
nance (NMR) measurements or large scale proteomics by
mass spectrometry. Data generated from these analysis
includes dynamic data like gene expression levels, meta-
bolite levels, and protein levels in various tissues, cells,
and disease states, and also information about the genetic
constitution of samples like copy number variation of
genes, mutations in genes, or methylation patterns. All
this data can only be interpreted in the context of the
biological system present in cells, which are captured in
the aforementioned pathway maps. The purpose of the
techniques presented in this paper is to support the
researcher in dynamically mapping biological data onto
pathways. This allows researchers to compare, reason,
and ultimately explain the complex biological systems
and signaling cascades.

Requirement analysis
As a foundation for the design of our visualization tech-
nique and the evaluation of the related work, we have
conducted a requirement analysis based on interviews
with our collaborators from the Medical University of
Graz. Our analysis resulted in five requirements that
must be met by a visualization system to successfully
enable the joint analysis of pathways and experimental
data.
R I: The Scale Requirement - While the scalability of

the graph is addressed by the sub-division of the biological
network into individual pathway maps, the experimental
datasets we consider are quite large. Consequently, a joint
pathway and experimental data visualization system must
be able to scale to dozens of experimental conditions or
groups and hundreds of samples.
R II: The Heterogeneity Requirement - Modern bio-

logical studies often include a wide array of complementary
but heterogeneous experimental datasets. While, for exam-
ple, mRNA expression data measures the gene activity,
copy number or mutation data can be used to reason
about deviating expression values. These heterogeneous
datasets need to be presented using different visualization
techniques, as they differ in terms of data type. For exam-
ple, mRNA expression data is numerical, copy number
data is a hybrid categorical/numerical dataset, which is
often binned into ordinal (ordered categorical) data, and
mutation status data is nominal (unordered categorical).
In order to analyze these different kinds of data in context
of pathways, the visualization system needs to handle all of
them simultaneously and also represent each of them
using suitable visual encodings.
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R III: The Multi-Mapping Requirement - Pathway
nodes can represent various different gene products,
such as enzymes, proteins, or RNA. In some cases, path-
ways also summarize a whole gene family into a single
node, where different genes produce functionally similar
proteins. This is what we call a multi-mapping: One
node in a pathway actually represents multiple entities
and therefore multiple entries of an experimental dataset
can be associated with this node. As understanding this
complexity is essential for judging effects of experimental
data on a pathway, it is critical to convey multi-mappings
adequately.
R IV: The Layout Constraint Requirement - Layouts

for pathway maps can be either produced automatically or
manually. To make pathway maps easier to understand, a
number of drawing conventions have been established.
Examples are cycles being drawn in circles or the predo-
minance of orthogonal edges in many popular databases.
Also, manually curated pathway maps typically contain
rich meta-information indicating, for example, the cell
compartments in which specific processes occur. Automa-
tically drawn pathway maps can either try to respect these
conventions (see, for example, the algorithm by Lambert
et al. [5]), or optimize global layout properties using, for
example, algorithms for force-directed layouts. We
observe that domain experts prefer manual or at least con-
sistent layouts that adhere to these drawing conventions.
A reason for that might be that familiar layouts enable
them to recognize and understand a pathway only by its
topology. While showing experimental data is easier in
automatically generated layouts, as the layout can be
adapted to suit the representation, a good visualization
technique for joint analysis of experimental data and path-
ways also needs to work with the large baseline of existing,
manually produced pathways.
R V: The Topology-Attribute Coexistence Require-

ment - We distinguish between two main types of tasks
conducted on a pathway: tasks that are based on the
topology of the underlying graph, and tasks that are
based on the node or edge attributes of the graph [6].
Topology-based tasks are concerned with the connectiv-
ity of the graph, e.g., which nodes can be reached from a
given node, what are the articulation points of a graph,
etc. An example for a topology-based task in pathway ana-
lysis is to find all nodes that might be influenced by
the inhibition of a node at the beginning of a pathway.
Attribute-based tasks are concerned with analyzing the
properties of node or edge attributes. Edge attributes in
pathways commonly describe the type of a relationship
between two nodes, such as biochemical conversion, while
mapping experimental data represents the majority of
node attributes. An example for an attribute-based task
for pathway analysis is to find all nodes in a pathway that
are mutated in a large number of the mapping samples.

Visualization techniques for graphs are usually opti-
mized for either topology-based task or for attribute-based
tasks, but are rarely suitable for both at the same time.
Node-link diagrams, are, for example, well-suited for
topology-based tasks, while matrix layouts, where nodes
are shown on the sides of a matrix and the cells contain
information on whether there is an edge connecting the
nodes, are ideally suited for edge-attribute-based tasks [7].
When analyzing pathways and experimental data, how-
ever, both types of tasks need to be addressed at the same
time. The two central questions an analyst is trying to
answer when analyzing both pathways and experimental
data are (a) how the experimental data for particular
experimental conditions or groups of samples influences
the topology of the graph and (b) how effects observed in
the experimental data can be explained using the topology
of the pathways. Consequently, an effective visualization
technique has to enable both: an in-depth analysis of the
topology and the pathway attributes.

Related work
While there is a wide body of literature on graph drawing
and graph visualization, we focus on the discussion of
techniques that are either directly relevant for pathways or
that can address the scale requirement (R I) with respect
to the encoding of node or edge attributes. For a compre-
hensive review of systems biology visualization refer to the
article by Gehlenborg et al. [8]. We identify several techni-
ques that can be used to visualize multiple edge and node
attributes in graphs. These are:

• on-node mapping,
• using multiple instances of the graph with different
on-node mappings (small multiples),
• using separate linked views for the graph and the
attributes, and
• adapting the graph layout.

The benefit of using on-node mapping is that it makes
it easy to address the layout constraint requirement (R IV).
Consequently, on-node mapping has been widely used to
augment pathways with multiple colored rectangles, each
representing a single experiment or an aggregation of
multiple experiments [9-11], where the color encodes the
value. There are also variations that use color together
with selection and animation [12]. The biggest drawback
of this approach is its inability to scale (violating R I) as
the amount of distinguishable colored rectangles inside a
node is severely limited.
An alternative strategy to using multiple colors within

each node in one graph is to use multiple graphs where
each of them uses a single experiment or a single aggre-
gate of experiments to drive its color-coding. This
approach is commonly referred to as small multiples.
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Small multiples show the same configuration of a plot mul-
tiple times while changing one variable ([13]pp.170-175).
An example that employs small multiples for automatically
layouted pathways is Cerebral [14]. Lex et al. have used
small multiples to show differences between experimental
data associated with cancer subtypes on top of KEGG
pathways [15]. Again, scale (R I) is a limiting factor.
Depending on the pathway about four to ten multiples are
reasonable.
A technique that can easily address the scale (R I) and

the heterogeneity requirement (R II) is using separate
linked views for the experimental data and the pathways.
This, of course, also preserves the topology (R IV) and
can be used to address multi-mappings (R III). Separate
linked views use synchronized highlighting (linking &
brushing) between the multiple views to communicate
relationships. If, for instance, a user selects a node in the
pathway, the corresponding experimental values are
highlighted in the views depicting the experimental data.
Shannon et al. [16] and Barsky et al. [14], for example,
use a parallel coordinates plot for experimental data,
which is linked to a graph depicting protein interaction
and metabolic networks. Streit et al. [17] use heat maps
and parallel coordinates to show experimental data
related to pathways. The major shortcoming of the sepa-
rate linked views approach is its failure to address R V, to
simultaneously enable topology-and attribute-based
tasks. As separate linked views require interaction to
show relationships between a single node and its asso-
ciated data, the joint analysis of the topology and attributes
is severely hindered.
Finally, there are methods that adapt the graph lay-

out to be able to show experimental data in pathways.
There are numerous systems that calculate an automatic
layout for pathways (violating R IV) and choose a node
size that enables in-place encoding of experimental data
with various visual encodings (e.g., bar [18,19] and line
charts [20]). While this approach scales a little better
than simple on-node encoding, it fails to scale to larger
numbers of experimental values (R I).
There are also more radical adaption approaches for the

graph layout. Schulz et al. [21], for example, use two
tables, one for each “side” of a bipartite network and con-
nect the rows in the tables with edges. Each node is repre-
sented by one row and there are multiple columns for
node attributes. GraphDice by Bezerianos et al. [22] prob-
ably takes the most extreme approach by laying out the
nodes purely based on their node attributes in a scatterplot
while still drawing the edges. Both approaches severely
hamper the interpretability of the topology, violating R IV
and R V.
A different approach on adapting the graph layout was

taken by Meyer et al. with their Pathline tool [23]. Pathline
uses a linearized version of a pathway where branches and

cycles are conveyed using special visual encodings. Next to
the linearized pathway the system shows the Curvemap
view, which displays experimental data for both genes and
metabolites recorded in time series. While Pathline was
the main inspiration for our approach, it suffers from the
unconventional pathway layout, which can hinder under-
standing the graph topology (R V). Also, it currently
requires manual creation of the linearized pathways,
thereby making it difficult to integrate the large existing
databases of pathways.

The enRoute visualization technique
The goal of the enRoute visualization technique is to
jointly visualize experimental data and pathways in a way
that addresses all five requirements discussed. We iden-
tify the topology-attribute coexistence requirement (R V)
as the most critical requirement to address, as current
techniques usually either support only topology-based or
attribute-based tasks. Only small-multiples and direct
on-node mapping are able to address requirement R V,
however, both neither scale to many experiments (R I),
nor do they allow to simultaneously present heteroge-
neous data (R II). Our solution to this problem makes
use of an observation we made in discussions with our
collaborators: they usually reason about and analyze
experimental data associated with a single path at any
given time in detail, while the rest of the network merely
informs them about the context of this path. They of
course continuously change the path of interest, but do
not need to see detailed data for multiple paths at the
same time. This temporal separation of high-level topol-
ogy-based tasks and low-level attribute-based tasks
allowed us to create a solution that meets all five require-
ments. The enRoute visualization technique, as depicted
in Figure 2, is a dual-view approach consisting of the
pathway view, showing the pathway map in its original
graph layout (meeting R IV), and the enRoute view where
a user-selected path is shown in a linear fashion together
with a potentially large number of experimental data
from multiple sources (R I and R II). Due to the linear
arrangement of the nodes from top to bottom, it is possi-
ble to encode multi-mappings (R III) by giving them
more vertical space. enRoute thus makes use of the tem-
poral separation of analysis focus by presenting an over-
view in one and the details of a selected path in another
view. In the following, we discuss the components of our
approach and their interplay in more detail.

Pathway view
The pathway view supports two tasks that are an inte-
gral part of our approach. First, it is the primary view
for conducting topology based tasks. Second, it is used
to interactively select the path that is then shown in the
accompanying enRoute view along with the associated
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experimental data. To facilitate identifying interesting
paths, the pathway view also shows averages and var-
iances of the mapped experimental datasets. In this sec-
tion we provide details about our design of the pathway
view and its features.
Selecting and visualizing the path
An integral part of the pathway view is to allow analysts to
determine the path that shall be investigated in the context
of experimental data using the enRoute view. In this sec-
tion we describe methods to select and visualize the paths.
The obvious way for visualizing selected paths in path-

way maps is to simply highlight the edges along the path,
by, for instance, changing their color or width. Instead of
highlighting the edges, however, we decided to use the
Bubble Sets technique [24] to convey selected paths. Bubble
Sets is a method to highlight sets of spatially distributed
data points. The elements of each set are wrapped with a
continuous iso-contour. We use a slightly modified version
of Bubble Sets, as we need to highlight paths instead of
sets. Figure 1(a) shows an example of a highlighted path.
Compared to simple edge highlighting, the contour-

based Bubble Sets are more salient and can therefore be
perceived faster. Furthermore, due to their curve-shaped
outline, Bubble Sets can be easier discriminated from the
mainly orthogonal structures in the pathway maps [25].
For selecting a path, analysts can choose between two

methods: the iterative approach and the start-stop
approach, which can be combined at will. In the iterative
approach the analyst can directly select a series of con-
nected nodes that should be part of the path of interest.
After selecting an initial node, the analyst can interactively
extend the path in both directions by holding the control
key while clicking connected nodes. Figure 3(a) shows a

selected path in orange, which is extended to include one
additional node in Figure 3(b). In the second path selec-
tion method, the start-stop approach, analysts pick a start
and end node between which all possible alternative paths
are highlighted. We use a slightly adapted version of the
Bellman-Ford algorithm [26] to find the paths between the
two user-selected nodes. The shortest path is selected by
default, as shown in orange in Figure 3(a), however, ana-
lysts can switch to all possible alternative paths by either
using the mouse wheel or by directly clicking a path repre-
sentation. Figure 3(c) demonstrates a switch to an alterna-
tive path with respect to the path selected in Figure 3(b).
While the iterative approach allows analysts to deter-

mine paths that cover various kinds of topological struc-
tures like, for instance, cycles, the start-stop approach
makes it possible to investigate multiple alternative paths
between nodes without the need to find and select the
route by hand. Additionally, the start-stop approach is
more efficient for selecting longer paths.
However, pathway maps are often very complex and

sometimes it is not obvious which choices are available for
a path. To address this we provide an interactive preview
mode for selecting paths on user request. Starting at the
end of the current selection, we highlight possible exten-
sions. For example, in Figure 4(a) all edges and nodes are
highlighted which extend the end of the current selection
at PDGFR.
In some cases, the information of pathway maps is not

complete or simply outdated. As a consequence, they
may not reflect the true process, especially not for all
experimental conditions. Additionally, pathway databases
can also contain errors that users are aware of. In order
to cope with such incomplete or outdated pathway

Figure 2 The enRoute visualization technique with its two basic building blocks: the pathway view and the enRoute view. The pathway
view shows the pathway map in its original layout. In the example shown a path from node A to E is selected, which is extracted and shown on
the right in the enRoute view. Due to the linear layout of the extracted path, the associated experimental data can be visualized next to it. The
data can originate from different datasets and can be grouped.
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descriptions we provide a force mode for selecting paths.
This mode enables analysts to add an edge to the path-
way, which does not exist in the database. Notice that the
second to last edge of the selected path in Figure 4(b)
does not exist in the pathway map, neither in the image,
nor in the underlying graph representation. By using the
force mode during path selection, analysts are able to
extend the current path by arbitrary nodes within the
pathway map.
Visualizing experimental data on pathways
As discussed, directly mapping experimental data on path-
way nodes using color-coding does not scale to more than
a few experimental values, due to the small size of the
nodes in the pathway maps. Despite this limitation, direct
on-node mapping is valuable in two scenarios: First, it
allows analysts to gain an overview of the main trends in
the pathway. Having this overview can be helpful additional
information for finding interesting paths. In the second
scenario analysts want to investigate a condition (a group
of samples) or a single sample in its high-level topological
context. This allows analysts to consider experimental data
associated with nodes that are not in the currently
extracted path. For this purpose, the pathway view can be
configured to show only the mapping of selected samples.

To address the overview task where analysts want to
get a rough indicator of the mapped experimental values,
we calculate the average of all experimental sample
values and multi-mappings, if applicable, and color-code
the nodes accordingly. If multiple data types are available,
the analyst can choose which of them should be mapped.
Figure 5(a) shows the Glioma pathway with on-node
mappings of mRNA data, while Figure 5(b) shows the
same pathway overlaid with copy number data.
For numerical and ordinal data we use a blue-white-red

color map. We decided to use white as a neutral base of
the color map to be able to intuitively represent data that
has a neutral base, as, for example is the case with copy
number data, which has a “normal” status. In addition, the
blue-white-red color map avoids the drawbacks of the
common red-black-green color map for red-green color
blind users. A two-color gray-red color map is used for
nominal data with two categories, such as mutation status
data. To indicate cases where experimental data is missing,
we show a small rectangle in the lower left corner of the
node, as can be seen, for example, in the mTOR node in
the lower right part of Figure 5(b).
Since the aggregation of all samples and possible

multi-mappings into an average value hides all variation,

Figure 3 Multiple differently colored Bubble Sets, each visualizing an alternative path between two user-selected nodes. In (a) the
analyst has selected IFG-1 as a start and Ras as end node. In (b) the path is extended to also include the PI3K gene. This results in a newly
added alternative path, which is finally selected by the analyst in (c).

Figure 4 Support for path selection. (a) Showing possible extensions of a path using the preview mode. Here, all paths continuing after PDGFR
are highlighted. (b) Adding edges to paths that do not exist in the original pathway. Notice that no edge is shown between Bid and IAP in the
original pathway map, but is introduced using the force mode.
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we additionally provide the standard deviation encoded
as a green bar below each node, as shown in Figure 5.
This indication of variance is very valuable for the over-
view task. High variation (corresponding to an almost
full bar), as can be seen for instance for the PDGFR
gene in Figure 5(b), is an indicator for potentially inter-
esting experimental data that is worth to be investigated
in detail using the enRoute view.

enRoute view
Once a path has been selected in the pathway view, it can
be analyzed in detail in context of experimental data in
the enRoute view. The path is displayed in a linear, top-
down layout, which is ideally suited to show rows of
experimental data (data rows) right next to the nodes they
are associated with. As a node can have multiple mapped
data rows, we adapt the spacing between nodes of the
path so that all rows can be shown with a uniform height.

Such multi-mappings or the occurrence of complex nodes
(nodes that consist of multiple subnodes) in the path
make it very hard, if not impossible, to determine which
data row belongs to which node using their position alone.
Therefore, we connect each node with corresponding data
rows using ribbons, as shown in Figure 2. To make the
association between data rows and nodes even more
obvious, we alternate the shade of gray in the data rows’
backgrounds for each node. Figure 11(b) illustrates an
example where these alternating shades of gray allow us to
disambiguate the mappings of multiple subnodes of a
complex node to corresponding data rows.
Following the divide-and-conquer visualization strategy

[27], we group experimental data in the enRoute view
based on a homogeneity criterion. For example, experi-
ments can be grouped by the species they belong to
(homogeneity with respect to semantics), or a grouping
can be obtained by clustering (homogeneity with respect

Figure 5 On-node data mapping. Averages of mapped samples for different data types of the TCGA glioblastoma dataset overlaid as color
codes on nodes of the KEGG glioma pathway. Bars at the bottom of the nodes encode the variance across the mapped samples. (a) mRNA
data, using a blue-white-red color map where blue corresponds to under-, white to regular, and red corresponds to overexpression. (b) Copy
number data, also on a blue-white-red color map, where blue corresponds to deletions, white to a regular copy number, and red to increased
copies of the gene.
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to statistics). As illustrated in Figure 2, the groups are
depicted as columns resulting in an overall tabular layout.
We address the heterogeneity requirement (R II) by allow-
ing the individual groups to originate from different data-
sets. However, all experiments within a group must be
from a single dataset.
Visualizing the path
In addition to showing the extracted path top-down in
the enRoute view, we also display branches that join or
leave the path in order to preserve some of the topologi-
cal information present in the pathway maps. We indi-
cate a branch by showing its first node relative to the
node where the branching occurs in the extracted path.
In order to maintain a compact path representation, mul-
tiple branches that join or leave a single node of the path
are abstracted into expandable nodes, one for all joining
and one for all leaving branches, as shown in Figure 6(a).
These abstract branch nodes indicate the number of
branches they represent and also show labels for them, if
sufficient space is available. Abstract branch nodes can
be expanded at any time to reveal the individual branch
nodes, which display previews of associated experimental
data, as shown in Figure 6(b). When expanding a node,
its content is rendered on top of the other branches,
which are grayed out.
As illustrated in Figure 6(c), an analyst can interactively

switch to a branch by selecting the corresponding branch
node. A selected branch replaces all nodes in the extracted
path above or below the node where the branching occurs,
depending on whether it is a joining or leaving branch. All
nodes of the branch are added to the path until either a
new branch or a dead end is reached. As the enRoute
visualization technique synchronizes all corresponding ele-
ments among its components, any changes to the path

caused by branch switching are propagated back to the
pathway view, thus keeping the highlights of the selected
path up-to-date. Also, the synchronization of node high-
lights facilitates the association of branches shown in the
enRoute view with corresponding branches in the pathway
maps.
Visualizing experimental data
Being able to display large amounts of heterogeneous
experimental data is an integral part of the enRoute visua-
lization technique (see requirements R I and R II). enRoute
supports the visualization of quantitative, ordinal, and bin-
ary categorical data. As previously mentioned, we organize
experimental data in rows and columns. Each row shows
data that maps to a certain node in the path and columns
group the data by a homogeneity criterion. Different
groups may also have overlapping experiments. The cap-
tions of the individual groups are displayed at the top and
at the bottom of the corresponding columns. Their back-
ground color indicates the dataset they belong to. For
example, in Figure 1(b) the background of groups showing
mRNA expression data is turquoise, whereas the back-
ground of copy number data groups is blue and the back-
ground for mutation data is light violet.
In molecular biology, heat maps are the standard way

to visualize quantitative and ordinal data. However, it is
well known that hue or value are inferior to other encod-
ings with respect to communicating changes in the data.
For both quantitative and ordinal data, encodings in posi-
tion are a better choice and for quantitative data, length
encodings are also superior [28]. Recently, Meyer et al.
[23] also showed that a mirroring effect in expression
data was much more apparent when it was visualized
using line plots compared to when using heat maps. Heat
maps or any other pixel-based visualization techniques

Figure 6 Path representation and branch switching in the enRoute view. (a) The extracted path from the node EGFR to MTOR is shown
top-down along with branches on the left. (b) Expanding the abstract node for leaving branches of EGFR reveals the individual branch nodes
PLCG1 and SHC2, which show previews of associated experimental data. (c) By selecting SHC2 the associated branch replaces all path nodes
below EGFR. All nodes of the branch are added up to the point where the branch is no longer unambiguous. In this case HRAS represents the
end point, as it has two leaving branches.
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are superior in terms of space efficiency and therefore
scalability. enRoute, however, only requires the visualiza-
tion to be scalable with respect to experiments, since the
number of genes is typically small, as it is limited by the
number of nodes in the path. Therefore, we prefer bar
charts over heat maps for the representation of quantita-
tive data as well as for ordinal data.
In the bar charts used for quantitative data, each bar

represents one value of a single experiment, as shown in
Figure 7(a). In order to make the borders of adjacent bars
apparent without having to waste space for drawing out-
lines, we color the bars using a gradient from left to
right. As shown in Figure 1(b), tooltips are used to show
the numerical values of the underlying data. In some
cases it might be desirable to see an abstract and more
compact visualization of a group of quantitative data. For
this purpose, we use one horizontally aligned bar that
represents the mean value of a group together with error
bars, encoding the standard deviation, as shown in Figure
7(b). In contrast to the detailed representations, where
the width adapts to the number of experiments in the
group and available display space, the width of abstract
group representations is fixed. This constant width and
the horizontal alignment of the abstract bars allows ana-
lysts to compare values of the same group across rows
along the path more easily. However, for tasks that
require comparisons across multiple groups, the detailed
representation with vertical bars are preferable.
As copy number data commonly occurs either in ordinal

or quantitative form, we use an optimized encoding that
can deal with both of them. Ordinal copy number data is
often categorized into high and low increase of gene
copies, a normal copy number, deletion on one allele, and
deletion on both alleles. As shown in Figure 7(c), our
encoding of this data redundantly uses the length, color,
and orientation of bars. For highly increased copy num-
bers, we show long, dark red bars pointing upwards from
a base line. For low increases we use shorter, light red
bars. Similarly, deletions are represented by dark and light
blue bars pointing downwards. No bar is shown for
normal copy numbers. The same encoding can be used
for quantitative copy number data. The higher the increase

in copies, the longer and darker the red bar is. The same
concept applies to deletions. Just like for general quantita-
tive data, we also employ an abstract representation for
groups of copy number values. As shown in Figure 7(d),
we use a horizontal histogram, which makes use of
the same color coding as the detailed copy number
representation.
For binary categorical data, such as data on whether a

gene is mutated or not, we use a matrix visualization
where each cell corresponds to a sample, as shown in
Figure 7(e). For the mutation status example we color
samples that are mutated in red, while non-mutated sam-
ples are shown in the background color. While the
matrix layout deviates from the convention used for
numerical and ordinal data of placing all samples side-
by-side, we found it to be significantly more space-effi-
cient compared to presenting mutation data in line with
the bar-techniques. Space efficiency is important for
mutation data since mutated genes are scarce in many
datasets. Also, since only binary information is encoded,
the redundant encoding using length and color is obso-
lete. For the abstract summary representation we use a
histogram, similar to the one used for copy number data
as shown in Figure 7(f).
The previously mentioned data previews, shown on-

demand for branch nodes, use an encoding similar to the
abstract data representations, as can be seen in Figure 6(b).
For each group of mRNA data one bar indicating the
group’s mean value is drawn. For copy number and muta-
tion data, we show one stacked bar per group.
The enRoute visualization technique makes use of syn-

chronized highlighting of corresponding elements across
all its components but also within all components. The
latter case is especially useful in the experimental data dis-
play. By highlighting a set of experiments in one group, we
allow analysts to identify these experiments in other
groups, even for different data types. For example in
Figure 10(b), all cell lines with an increased copy number
are highlighted, which allows analysts to relate the increase
in copy number with mRNA expression. As evident in this
figure, scattered selections make it difficult to quantify the
number of selected experiments. To alleviate this problem,

Figure 7 Six visual encodings for different types of experimental data. (a) One vertical bar is shown for numerical data point. (b) A group
of numerical data points is abstracted into one horizontal bar with error bars. (c) Redundant encoding using color and length for copy number
data. Red bars pointing upwards indicate an increased number of copies, whereas reduced copy numbers are shown as blue bars pointing
downwards. (d) Several copy number values are abstracted into a histogram. (e) Matrix visualization for mutation status data. Red cells indicate
samples where the gene is mutated. (f) Histogram abstracting the binary mutation status of the gene across samples.
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we add tooltips to the groups’ captions showing the total
number of experiments and the number of currently
selected experiments of each group.

Choosing experimental data and groupings for enRoute
Up to this point, we have assumed that decisions on which
datasets and which groupings of the datasets to show are
already made. However, given a large set of datasets and a
variety of alternative groupings to choose from for every
dataset, this presumably easy task is in fact not trivial. To
support analysts in the task of selecting datasets and
groupings and assigning them to views, Caleydo provides
a dedicated view, the Data-View Integrator (DVI) [15]. As
shown in Figure 8, the DVI view uses a graph representa-
tion that shows all loaded datasets at the bottom and all
open views at the top. Each dataset is associated with a
unique color that is the same as the one used in the back-
ground of the dataset labels in the enRoute view. For tabu-
lar datasets it is quite common to have groupings, such as
clusterings, of both rows and columns available. These
alternative groupings are represented in the matrix layout
shown when exploring a dataset in detail, where alterna-
tive row groupings are shown in the rows and column
groupings in the columns. An analyst can assign grouped
datasets to enRoute by dragging the blocks onto the view
representation at the top. Connection bands between data-
sets and views help analysts to understand the association
of the data to the view. This is in particular helpful for
highly heterogeneous configurations with multiple data-
sets, groups, and views. Users can switch to the DVI view
at any time during a pathway analysis in order to refine
the mapped experimental data. Additionally, new datasets
and groupings can be added at runtime.

Implementation
The approach presented in this paper is implemented as a
module of Caleydo, which is an open source visualization
framework for biomolecular data [17]. Binary versions for
Windows, Linux, and Mac, as well as the full source code
and help material are available at http://www.caleydo.org.
Both, our visualization technique and the visualization fra-
mework are implemented in Java and OpenGL using the
freely available JOGL library (available at https://jogamp.
org/jogl). In order to highlight selected pathways, we make
use of a free implementation of the Bubble Sets technique
[29] that we integrated into the Caleydo framework.
Caleydo allows analysts to import data sets with large

amounts of experiments, such as mRNA, copy number,
and mutation status datasets. We provide pre-packaged
and preprocessed TCGA datasets (see http://tcga.caleydo.
org), which contain up to 900 samples (depending on the
subtype stratification) and ~20,000 genes each. As demon-
strated in Figure 10, our visualization technique scales well
to such large datasets. To cope with the limitations of
available screen space, we make use of scroll bars for
longer path in enRoute, which is justified by the linear nat-
ure of the exploration process along the path.
Our current implementation builds upon the well-

established KEGG and Wikipathways databases, which
provide information about pathways as image data in
combination with an XML-based descriptions of the
graph. The description includes the topological informa-
tion as well as the position and the size of nodes. We
use this information to render the various augmenta-
tions described on top of the pathways.
Since pathway databases such as KEGG do not provide

information about how edges are routed in the images,

Figure 8 Assignment of experimental data and groupings to the enRoute view using Caleydo’s Data-View Integrator.
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directly connecting nodes in a path using straight edges
can lead to overlaps between edges and nodes that are not
part of the path. In Figure 9(a), for example, the edge high-
light between node CASP9 and CASP3 collides with the
representation of node CASP7, which is not a member of
the selected path. In such cases, we route edges around
nodes to avoid overlaps. Figure 9(b) shows the Bubble Set
with a refined route from CASP9 to CASP3.
The Bubble Sets algorithm renders the overlays semi-

transparent on the top of an existing base representation.
However, if the base representation uses color-coding,
overlaying colored Bubble Sets can lead to a wrong inter-
pretation of the encoded information, as the colors of the
Bubble Sets interfere with the color of the augmented con-
tent. Additionally, blending decreases the legibility of the
original content. To avoid this problem, we cut the area of
nodes out of the Bubble Sets.
Pathways can be selected from a drop-down list, which

contains all loaded pathways. The full list is reduced on-
the-fly to only contain the ones that match a user-specified
query string. In addition to the title-based search, analysts
can click embedded pathways to replace the current path-
way with the full version of the embedded one.

Case studies
We developed the enRoute visualization technique in close
collaboration with a biologist from the Medical University
of Graz, who is also an author of this paper. To evaluate
the utility of the enRoute visualization technique, we con-
ducted two case studies using different datasets together
with this biologist. The first dataset is taken from the

Broad-Novartis Cancer Cell Line Encyclopedia (CCLE,
http://www.broadinstitute.org/ccle/home), which contains
the genetic and pharmacologic characterization of a large
panel of human cancer cell lines. The second is a microar-
ray dataset from a model of hepatocellular carcinoma
collected at the Medical University of Graz, which can be
found through the corresponding original article [30].

Apoptosis regulation in cancer cell lines
The first case study investigates the difference in regula-
tion of the apoptosis pathway in different human tumor
cell lines from various organs. Apoptosis is the pro-
grammed death of a cell due to internal damage or as a
consequence of external stimuli and involves a signaling
cascade, which is not mediated by phosphorylation but by
targeted degradation of proteins through enzymes called
caspases. To initiate apoptosis in a cell, a ligand called
TRAIL or TNFa binds to receptors on the outer cell sur-
face. This leads to activation of receptor associated death
domain containing proteins, which activate the first of a
cascade of caspases, which in turn eventually leads to the
cleavage of proteins in the cell subsequently triggering
apoptosis. During apoptosis the cell shrinks in volume,
exhibits nuclear fragmentation, chromosomal DNA frag-
mentation, and release of Cytochrome c from the mito-
chondria, which eventually leads to cell death.
As first step of the analysis, the Apoptosis pathway of

the KEGG database is loaded into the the pathway view.
The researcher selects TRAIL as the starting point
and DEF40 as the endpoint of the signaling cascade to
be investigated. As shown in Figure 10(a), the system

Figure 9 Re-routing of Bubble Sets for path highlights. (a) As the pathway description does not provide information about the routes used
to connect the nodes, a collision of the path leading form CASP9 to CASP3 with the unrelated node CASP7 occurs. (b) To avoid this, we redirect
the path around the node.
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automatically highlights all possible paths from TRAIL to
DEF40 and allows to switch between these alternative
paths. The selected path is extracted and displayed in a
linear layout in the enRoute view, which shows detailed
CCLE mRNA expression, copy number variation, and
mutation status data for the genes that map to the nodes
of the path, as can be seen in Figure 10(b). In this example,
the grouping of the experimental data reflects the source
organ of origin of the cell lines. The analyst can now easily
identify differences in the copy number variation, gene
expression, and mutation status for these groups and
relate them immediately to the stages of the linearized
path, which would not be possible using other techniques.
As indicated by the upward pointing bars for the copy
number data, there is a clear amplification of TNFSF10
(an alias for TRAIL) for cell lines originating from ovary,
lung, or breast tissue among others. By selecting all sam-
ples with an increased copy number of TNFSF10 in the
histogram, the system also highlights these cell lines in the
mRNA expression plots, as indicated by the arrows

in Figure 10(b). The analyst can now confirm that ovary
cell lines with a higher copy number of this gene also
show a higher expression of TNFSF10 in the mRNA
expression plots. Based on this data, one could interpret
that these cell lines should be prone to apoptosis, as they
have high amounts of the cytokine triggering the cell
death. However, given the nature of these cell lines which
are derived from human tumors, which are by definition
resistant to apoptosis, this conclusion would be mislead-
ing. An explanation for this seemingly strange behavior
can be found by looking at the copy numbers of the genes
TNFRSF10A to TNFRSF10D, which are receptors for
TNFSF10 cytokine, further downstream the path. Here, it
quickly becomes evident that these genes exhibit a fre-
quent loss of copies, which is easy to see when looking at
the many blue bars pointing downwards for these genes.
This explains how these cells can still form a tumor, as the
loss of the receptor makes the cells immune to the stimu-
lus by the TNFSF10 cytokine, thus preventing apoptosis
initiation.

Figure 10 Analysis of CCLE experimental data in context of apoptosis. (a) Different paths between the nodes TRAIL and DEF40 are
highlighted in the Apoptosis pathway map. The orange Bubble Set shows the chosen path. (b) The selected path is shown in context of
associated mRNA expression, copy number, and mutation status data from the CCLE dataset with about 350 samples each. As indicated by the
arrows, highlighting all samples with an increased copy number of TNFSF10 reveals the correlation with increased expression levels in the ovary
cell lines. Notice that while the labels shown in the enRoute view are not identical to the labels in the pathway view, the labels are homologous
and deviate since pathway databases use one of many aliases for genes or proteins.
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In summary, enRoute enabled the analyst to study copy
number variation, gene expression, and mutation status of
a large number of samples in parallel in a clearly visualized
and linearized sub-path of the complex network initiating
apoptosis. The researcher stated that the linearization of
the signaling cascade and the clear association of the other
data entities to the individual steps of this cascade are very
intuitive and greatly facilitated the interpretation of the
data and the deduction of a biological interpretation from
the dataset.

HCC xenograft models
The second use case demonstrates the ability of the
enRoute path extraction feature to aid in a common pro-
blem when interpreting pathway maps. In biological reac-
tion systems enzymatic reactions are often carried out not
by a single gene or protein but by a family of proteins
encoded by several genes. Additionally, enzymatic reac-
tions are often not specific to a single protein family, but
can be substituted by other enzymes, which, however,
often work with different efficiency. This biological diver-
sity leads to functional nodes in pathways that contain a
multitude of genes with historically designated gene
names often not indicative of the real function of these
genes. It is extremely difficult for the researcher to keep in
mind which genes are behind a single node of a pathway
and thus understand the mapped biological data. Cross
referencing of expression levels to genes and functional
nodes can thus only be achieved by resolving the multi-
mapping in a node to gene names which can then be
mapped to the individual gene expression levels. In
enRoute, the researcher can select nodes upstream and
downstream of the enzymatic reaction, which is then
resolved in a linearized representation of all genes
involved. An example is the conversion of all-trans-
Retinoate to all-trans-18-Hydroxy retinoic acid, which is a
reaction contained in the Retinol (Vitamin A) metabolism
pathway shown in Figure 11(a). The single node that
represents this reaction contains 16 different proteins or
genes that are involved. As depicted in Figure 11(b),
enRoute resolves this node into a convenient map of
genes, thus making it possible to map the gene expression
of each individual gene in all experimental conditions of
this experiment. The dataset mapped onto the Retinol
pathway was generated by gene expression profiling of
normal and cirrhotic human liver, hepatocellular carci-
noma, and grafts of three human tumor cell lines (Hep3B,
HUH7, and SK-Hep) into immunodeficient mice. Expres-
sion was measured in liver samples from patients and in
samples from tumor cells grown in culture (TC), as subcu-
taneous grafts (SC), or as orthotopic grafts (Ortho) in the
liver of experimental animals. The task was to find out
how well the cell line models correlate to the human dis-
ease, with special focus on drug metabolism and oxidative

stress. The response of tumors to anticancer treatments is
closely linked to the activity of cytochrome p450 enzymes,
which metabolize drugs and mediate oxidative stress.
When studying the aforementioned conversion of retino-
ate to retinoic acid by cytochrome p450 enzymes, it can
now be seen that the node CYP2A6 actually contains
members of the whole CYP2 family of genes and that the
expression of these genes is uniform in normal liver and
cirrhosis, but very variable in HCC, dividing these cases
into a low expressing and a high expressing group. It is
immediately visible that the xenograft models are only
representative of the low CYP2 expressing group of HCCs.
Decomposition of the complex nodes allows the identifica-
tion and investigation of the individual expression patterns
of genes contained in the complex node. It becomes
obvious that the expression of CYP2C18 (highlighted in
yellow), contained in the node labeled CYP2A6, is higher
in the Hep3B model than in the other cell lines.
Additionally, it can be detected that CYP1A1 is highly

expressed in HUH7 tissue culture cells. All this informa-
tion was not visible to the researcher using conventional
on-node mapping approaches and was successfully visua-
lized using enRoute. Node decomposition is an integral
feature of the enRoute path extraction and thus makes the
association of many mapped nodes and their correspond-
ing experimental data readily available to the researcher.

Conclusion and future work
Enabling the joint analysis of biological pathways and
large amount of experimental data by means of visualiza-
tion is a challenging problem. In this paper, we provide a
list of requirements that have to be met to support such
analysis. We introduce the enRoute visualization techni-
que, which addresses these requirements using a tightly-
coupled dual-view approach. Our visualization technique
allows experts to select a single path from a pathway
map, which is then extracted and shown in linear form in
a second view, the enRoute view. This view allows
experts to investigate associated experimental data in
detail by displaying it in a tabular layout right next to the
extracted path. The conducted case studies using two dif-
ferent datasets confirmed the utility of our visualization
technique.
Although we currently already support pathways from

both the Wikipathways and the KEGG database, we plan
to integrate further resources for biological networks. For
instance, an integration of the EBI IntAct database [31]
will make the analysis of protein interaction networks
possible using enRoute.
enRoute allows to select nodes independent of the struc-

ture of the pathway graph. However, the boundaries of a
single pathway graph also limit the potential of enRoute.
Consequently, we plan to extend enRoute to also support
the analysis of paths spanning multiple pathways, which
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introduces new challenges for scalability concerning the
topology of the graph. Solving these problems is subject of
future research. Another interesting area of research is the
selection of pathways, which we have only briefly touched
in this paper. We intend to implement common measures
for identifying interesting pathways in the context of the
available experimental data and integrate them in a unified
data and pathway visual analysis workflow.
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