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Figure 1: enRoute A path highlighted in orange in the pathway map in (a) is extracted and shown next to associated experimental data in (b).

ABSTRACT

Pathway maps are an important source of information when analyz-
ing functional implications of experimental data on biological pro-
cesses. Associating large quantities of data with nodes on a path-
way map and allowing in depth-analysis at the same time, however,
is a challenging task. While a wide variety of approaches for doing
so exist, they either do not scale beyond a few experiments or fail to
represent the pathway appropriately. To remedy this, we introduce
enRoute, a new approach for interactively exploring experimental
data along paths that are dynamically extracted from pathways. By
showing an extracted path side-by-side with experimental data, en-
Route can present large amounts of data for every pathway node.
It can visualize hundreds of samples, dozens of experimental con-
ditions, and even multiple datasets capturing different aspects of a
node at the same time. Another important property of this approach
is its conceptual compatibility with arbitrary forms of pathways.
Most notably, enRoute works well with pathways that are manually
created, as they are available in large, public pathway databases.
We demonstrate enRoute with pathways from the well-established
KEGG database and expression as well as copy number datasets
from humans and mice with more than 1,000 experiments at the
same time. We validate enRoute in case studies with domain ex-
perts, who used enRoute to explore data for glioblastoma multi-
forme in humans and a model of steatohepatitis in mice.
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1 INTRODUCTION

Pathway maps are an important tool for studying biomolecular pro-
cesses. There is a wide variety of pathway maps available that
model interactions of proteins, chemical reactions and their catalyz-
ing enzymes, as well as cellular signaling processes. Pathways are
small to medium-sized graphs representing consensus knowledge
that is backed up by literature and typically either describe a pro-
cess in healthy organisms or a specific disease. Consequently, path-
ways are often activated or inactivated in particular conditions, as
diseases or other influences change the processes within the cells.

A common approach to study specific influences on cellular pro-
cesses is to concurrently analyze experimental data for one or mul-
tiple conditions. A condition in this sense describes a group of
measurements that are semantically homogeneous. Examples for
this homogeneity criterion are samples taken from one species in a
multi-species analysis, or samples of patients belonging to a sub-
type of a form of cancer. Looking at pathways in the context of
experimental data can tell analysts that, for example, branches of a
graph are inactive for a given condition. Examples of such observa-
tions are omnipresent in the literature. For instance, the gene PTEN
is known to regulate a signaling pathway relevant to the regula-
tion of cell-growth (phosphoinositide 3-kinase signaling pathway)
[4]. If PTEN is mutated, however, the pathway becomes deacti-
vated, leading to unchecked cell division and tumor growth. In
other well-studied examples, pathways such as the p53 signaling
pathway or the tyrosine kinase pathway are affected by mutations
and de-regulations of PIK3R1, NF1, and ERBB2, which play a role
in subtypes of glioblastoma multiforme (GBM), a brain cancer [29].
In previous work, we described a case where different subtypes of
GBM have highly differential behavior in mRNA expression pat-
terns in the Glioma pathway [16]. It is also well documented that
these molecular subtypes and their effect on biochemical processes
captured in pathways have serious implications for prognosis, treat-
ment, and patient well-being (e.g., [29, 21]). Our goal with the de-
velopment of enRoute is to visually support the analysis processes
leading to such insights.

Due to the relevance of the problem, it is not surprising that a



multitude of approaches, techniques, and implementations for aug-
menting pathways with experimental data exist. However, because
of the complex nature of the biological processes involved, this task
is not trivial. In this paper, we present enRoute, a novel approach to
explore experimental data in the context of pathways. We augment
the original pathway map to hint at parts with interesting under-
lying experimental data, and let analysts select paths for detailed
analysis. A selected path is highlighted in the pathway map and
extracted. The extracted path is displayed in a separate view in
linear form side-by-side with visualizations of experimental data.
Using our method, we can solve many critical problems in visu-
alizing experimental data for pathways, such as showing datasets
of large scale, displaying multiple different datasets, and resolving
multi-mapping issues common in pathway representations.

enRoute is integrated in a suite of visualization techniques avail-
able in the Caleydo visualization framework1. It enables detailed
analysis of pathways that were identified using other methods (e.g.,
[16]). However, enRoute can also be used as a stand-alone tool, pro-
vided the analyst is aware of pathways of relevance for the studied
conditions. While we focus on how enRoute can be used to explore
experimental conditions for nodes in pathways, the underlying con-
cept of extracting paths can be equally applied to the general case
of graphs with many node attributes.

2 BIOLOGICAL BACKGROUND

Biological pathways describe molecular processes in living cells,
explaining the complex relationships between biomolecules in the
intracellular compartments and membranes in a time and treatment
dependent way. The functional biomolecules are mostly proteins
and metabolites, however, other biomolecules, like nucleic acids,
lipids and ions also have regulatory effects. Last but not least, path-
ways also consider the spatial separation of compartments within
cells with specialized pathways for membrane bound signaling cas-
cades or in mitochondria.

Biological pathways can be categorized into groups. Metabolic
pathways describe buildup and degradation of chemical substances;
an example is the TCA cycle pathway. Another important group of
pathways describes intracellular signaling cascades, like the mTOR
signaling pathway, which regulates apoptosis. Disease related path-
ways focus on the molecular aspects of a disease, like the diabetes
mellitus type 1, or the well known Pathways in Cancer pathway.
One also has to keep in mind that each pathway is individually de-
signed to highlight the functional aspects in the center of the re-
searchers’ interest.

In common biological pathway maps, nodes represent functional
entities, like proteins, metabolites or chemical compounds. As pro-
teins are generated from mRNA, which is itself transcribed from
the genes encoded in DNA, a protein node is often identical with
a gene node. Functional nodes that catalyze reactions often have
extensive multi-mapping of many genes onto the same node, due to
the ability of many proteins to catalyze this particular reaction. As
in chemistry, one enzyme can often be substituted for another one,
albeit with different efficiency.

Links between nodes describe biological reactions, like protein
modifications, biochemical reactions or changes in gene expression.
Pathways are usually drawn as maps, where the structure of the
graph is depicted in node-link diagrams following specific draw-
ing conventions. Manually curated pathways try to simplify the
complex network of interactions to make the presentation visually
appealing, while maintaining the scientific content. Pathway maps
are available from a wide variety of databases, where KEGG [11]
is a prominent example. Protein-protein interaction networks are a
more general form of a biological network that captures the reac-
tions and interactions between proteins without the necessity of a
functional context.

1http://www.caleydo.org/

In recent years, profound advances in molecular biology have
made a multitude of large datasets available for pathway modeling.
High throughput mass-spec analysis of proteins, next-generation
sequencing of nucleic acids, and NMR for metabolites generate vast
amounts of data that have to be put into the right biological context
to be useful. Data generated by these new techniques fall into two
categories, one is a direct measurement of protein amounts, gene
expression levels, or metabolite concentrations. The second cat-
egory of data, like copy number variation of genes, mutations in
genes, or methylation patterns, is not directly represented in path-
way maps, but has a profound influence on the biological system
represented in the pathway. Data of the second category is often
used to reason about the causes of differences in the expression lev-
els of genes or the concentrations of metabolites in different exper-
imental conditions. It is this scientific comparing, reasoning, and
explaining that we want to support with the tools presented in this
paper.

3 REQUIREMENT ANALYSIS

In collaboration with our partners from the Medical University
of Graz, we have elicited the challenges experts face when
analyzing pathways and associated experimental data. In the
following, we discuss these challenges and, later on, evaluate
the related work as well as our own solution in light of this analysis.

R I: The Scale Requirement – A common challenge in any type of
visualization is scalability. In the context of pathway analysis the
scale of the graph is hardly a problem, as the graphs are grouped
into semantical units. The problem of scale in the context of path-
way analysis is primarily concerned with the large number of exper-
iments and experimental conditions. Scaling to several hundreds of
experiments is a requirement for integrated pathway analysis.
R II: The Heterogeneity Requirement – While mRNA expression
data is still the most prevalent data type analyzed in the context of
pathways, next-generation sequencing has made other types of data
readily available. Copy number variation and mutation status data
are relevant examples, as mutation and copy number variation are
often the cause of a change in a path, while mRNA only measures
an effect. Additional datasets increase the scale problem, but it
is also important to make clear distinctions in the representations
used to avoid confusing analysts. Also, as different datasets are
of different data type (copy number data is often ordinal, mutation
status nominal), different visualization techniques are required.
R III: The Multi-Mapping Requirement – The most important
nodes in pathways are gene products. They summarize various en-
tities such as RNA, enzymes, proteins, etc., which have complex re-
lationships. One gene can be the template for multiple proteins with
slightly distinct domain composition called isoforms. Additionally,
multiple genes sometimes encode proteins with similar functions,
which are then consolidated into a gene family. As a consequence,
a node in a pathway can be associated with multiple measurements
of a single experiment. In fact, multi-mappings are quite common
in KEGG. This significantly increases the complexity of visualizing
experimental data.
R IV: The Layout Constraint Requirement – The layout of path-
ways is either produced manually by experts, or automatically.
Manual pathway layout follows biological drawing conventions, by,
for example, drawing cycles in circles or using pseudo-orthogonal
edges. Also, these carefully hand-crafted layouts contain rich meta-
data and annotations. Automatic layouts either aim to respect those
conventions to some degree (e.g., [13]) or use a force-directed lay-
out (e.g., [24]). Our experience has shown that biologists prefer
manually created pathways, or at least representations following
these biological conventions, over arbitrary layouts. A reason for
this might be that biologists are often intimately familiar with the
layout of particular pathways and are reluctant to see it changed, as



this requires additional effort on their side. Integrating large quan-
tities of experimental data in a constrained layout is more compli-
cated than doing so in a free layout, since the free layout can be
adapted to fit the data.
R V: The Topology-Attribute Coexistence Requirement – Ana-
lyzing experimental data in the context of cellular processes can be
described as tasks on a graph. The process contains topology-based
tasks, as well as attribute-based tasks. Topology-based tasks are,
for example, those that look for node accessibility (which nodes
are reachable from a source node) or connectivity (which nodes are
connected, where are articulation points) [14]. An example for a
topology-based task in pathway analysis is to find all processes that
are influenced by a receptor at the cell surface. Attribute based tasks
either focus on edge- or on node-attributes [14]. Common edge at-
tributes in pathways characterize the type of a relationship between
two nodes, for example transcriptional activation or inhibition, pro-
tein modification by cleavage, ubiquitination or phosphorylation,
or biochemical conversion. The topology and the edge-attribute in-
formation is typically contained in the pathway maps themselves.
The pathway maps also contain node-attributes (e.g., specifying the
type of node; whether it is a protein, a compound, etc.), but mostly
node-attributes are available in the form of mapped experimental
data. Typically, graph visualization techniques are optimized for
one or two of these tasks. Path-related topology-based tasks are, for
example, well supported in node-link layouts, while edge-attribute-
based-tasks are, for example, better supported by matrix layouts.
The biggest challenge in pathway visualization is that all three types
of tasks are equally relevant and the states and properties of all three
– topology, edge attributes and node-attributes – influence the oth-
ers. The node attributes, for example, influence the topology as
experimental evidence can show that the topology is not valid for
a particular condition. Consequently, a suitable visualization tech-
nique for pathways including experimental data has to enable all
three types of tasks.

4 RELATED WORK

Of the aforementioned challenges, the scale requirement (R I) sets
the relevant body of related work apart from the wider sub-field of
graph visualization. In standard node-link diagrams up to three or
four node attributes can be encoded by assigning different visual
attributes, such as color or size, to the nodes [3]. Consequently, we
discuss techniques addressing node and/or edge attributes in excess
of these numbers in addition to pathway visualization approaches
(see the article by Gehlenborg et al. [6] for a review of the latter).

An example for a technique adapting the layout to accommo-
date large amounts of node attributes is the table-based graph
visualization technique by Schulz et al. [23], where each node cor-
responds to a row in a table that can have multiple columns for
multiple attributes. An approach by Pretorious and van Wijk [22]
uses recursive partitioning for multiple node attributes. Another
technique in this class is GraphDice by Bezerianos et al. [3], which
positions the nodes in a scatter-plot according to the values of a
pair of selected node attributes. For the examples mentioned, we
observed that the accommodation of node attributes significantly
impair the ability to understand the topology of the graph, violating
R V as well as R IV. A number of systems strive for a compromise
between node-size, embedded experimental data visualization, and
topology information. Examples for automatically routed pathway
graphs (violating R IV) are bar charts [9, 30] or line plots [8] used
inside of nodes.

The approach of using a separate linked view is a widely used
alternative. Shannon et al., for example, use a linked parallel coor-
dinates view to visualize attributes in metabolic and protein-protein
interaction networks [25]. Streit et al. have previously used linked
parallel coordinates as well as a heat map to show associations be-
tween experimental data and pathways with the Bucket technique

[28]. The recent GraphPrism [10] shows graph measures in stacked
histograms and highlights nodes in a node-link-layout based on se-
lections in the histograms. This approach could be easily extended
to node attributes. Cerebral by Barsky et al. [1], a Cytoscape plug-
in, also contains a parallel coordinates view linked to a node-link-
layout depicting protein-protein interaction networks. The main
drawback of separate linked views is that it requires interaction to
see the association to the experimental data and the number of si-
multaneously associated entities is severely limited thereby violat-
ing R V.

Cerebral also employs small multiples, where each of the mul-
tiples contains a topologically identical node-link layout, but has
different experimental data mapped to the node color. Lex et al.
have used this approach to show differences of a small number of
cancer subtypes on pathways [16]. While this approach is a good
choice for a limited set of experiments or conditions, it can not han-
dle more cases (R I) or heterogeneous attributes (R II).

Approaches that fulfill the layout constraint requirement (R IV)
typically employ on-node mapping using color-coding with mul-
tiple glyphs (e.g., [17, 20, 27]) or color coding in combination with
animation and selection [12]. As the available screen space for en-
coding the information is limited to the node size, this approach
does not scale to more than a handful of experimental attributes (R
I). Interactively switching experimental conditions requires signif-
icant cognitive effort when comparing conditions. However, it can
be a suitable technique for topology-based tasks that only consider
one condition.

The work most closely related to our own is Pathline, by Meyer
et al. [19]. Pathline uses a set of visual encoding techniques to rep-
resent cycles, branches, and directionality of a linearized pathway.
The linear layout allows for a simple comparison of functional data
for genes and metabolites. Pathline also introduces the Curvemap
view, which is used to compare temporal expression data between
multiple species. While the linearized pathway is very space ef-
ficient, its biggest drawback is its unconventional layout that can
hinder topology-based tasks (R V). Also, the linearized pathways
currently need to be manually produced and therefore cannot make
use of the wide body of pathways available in public databases.

5 THE ENROUTE VISUALIZATION TECHNIQUE

Creating a solution that meets all five requirements formulated in
Section 3 is challenging. The only two options discussed so far that
fulfill R V, i.e., that support topology-based as well as attribute-
based tasks concurrently, are direct on-node mapping and small
multiples. However, both of these techniques fail to address R I
- R III. In order to create a technique that fulfills R V and allows ex-
perts to investigate a large number of experiments (R I) that poten-
tially belong to different datasets (R II), using the original pathway
map layout (R IV), we can make use of an observation: high-level
topology-based tasks (e.g., identify the sub-part of the pathway rel-
evant for a situation) are not conducted at the same time as low-
level attribute based tasks (e.g., explore whether a de-regulation in
a receptor in one experiment influences the rest of the path for this
experiment).

This observation can be exploited by following Schneiderman’s
visual information seeking mantra: “Overview first, zoom and fil-
ter, then details-on-demand” [26]. The analyst starts by investi-
gating the pathway in its standard layout as taken from one of the
major databases (meeting R IV). She then selects a concrete path
for which she wants to investigate experimental data, executing a
zoom and filter operation. The chosen path is then shown in the
enRoute view in a linear form. Next to the nodes we now have
space available to concurrently show all mapped experimental data
in a tabular format. In contrast to the classical multiple coordi-
nated view approaches discussed before, this technique makes it
possible to inspect the complete set of experimental data (meet-



Figure 2: The components of the enRoute visualization technique.
An analyst can choose a path in the pathway view, which is then
shown side-by-side with the associated experimental data.

ing R I, R II), including resolved multi-mappings (meeting R III),
along the path of interest, while the original layout is preserved
(fulfilling R IV). Therefore, the overall process can be divided into
three independent steps: pathway brushing in the source pathway,
path extraction, and sample data encoding. These steps are cov-
ered by two tightly-coupled views that act together, as illustrated
in Figure 2. The pathway view provides the complete topological
information as well as an overview of the experimental data, while
the enRoute view contains the linear path and the experimental data
visualization. The elaborate interplay of all these systems can solve
the critical Topology-Attribute Coexistence Requirement (R V): The
topological information for the whole pathway is preserved in the
pathway view, while the topological information for a path and the
experimental data is shown in the enRoute view. However, to fully
support all of the requirements using such a setup, several impor-
tant design decisions have to be made, which are explained in the
next sections.

5.1 Pathway View

Pathway maps, as they are provided by, for example, KEGG, are
available as annotated image files. We use these images and aug-
ment them to present information and enable interaction, as de-
scribed in previous work [27]. The interactive version of the path-
way makes it possible to select nodes, allowing synchronized high-
lighting with other views, but also to define paths (i.e., a series of
nodes). Pathways can be chosen through a drop down list, via a
search interface, or by clicking embedded pathway nodes.

5.1.1 Experimental Data Mapping on Pathways

While direct on-node mapping of experimental data suffers from
the drawbacks discussed previously, there are two applications
where it is beneficial. The first is the overview task, when decid-
ing which path to choose. Initially, we use color-coding of average
mRNA expression values of all experiments and multi-mappings of
a node to indicate the “general trend” of the experimental data for
this node. Since this feature itself hides all variation between ex-
periments and experimental conditions, we additionally encode the
standard-deviation from the mean value in a small bar at the side
of the node (see the green vertical bars at the right of each node
in Figure 3). Nodes with a high standard-deviation hint at under-
lying inhomogeneous and thus interesting experimental data. This
enables experts to get a rough overview of the experimental data,
which is particularly valuable for selecting a path in the first place.
Color coding is also valuable if high-level topological information
for a condition or an experiment is required. In these cases, we
map the precise value of an experiment, the average and standard-
deviation across multi-mapping nodes, or the average and standard-
deviations of the condition. We use a blue-white-red color map by
default, avoiding the more traditional red-black-green color map,
which is problematic for color blind people. In cases where no ex-

perimental data is available for nodes, we indicate the possibility of
interaction by a small black rectangle in the upper left corner of the
node, see for instance the CAM gene in Figure 3.

5.1.2 Path Selection
As the enRoute visualization technique builds upon the idea of pro-
viding experimental data along a path in the pathway, the user-
driven determination of the path is a critical step in the overall pro-
cess. Selecting paths in graphs can be either done by letting the
user interactively brush a series of edges or nodes that form a path
(iterative approach), or by specifying a start and stop node (start-
stop approach). While the former results in a unique path, the latter
can produce multiple alternative paths. Being able to quickly inves-
tigate alternative paths interactively is an additional benefit of the
start-stop approach. Also, specifying longer paths is faster using
the start-stop approach. Consequently, we have chosen the start-
stop approach as the default behavior for path selection. We calcu-
late the set of alternative paths between two nodes using a variant
of the Bellman-Ford algorithm [2]. By default, the shortest path is
selected and loaded into the enRoute view. However, the user can
browse through the alternative paths by using the mouse wheel and
therefore can easily choose the most relevant one for the current
task considering both topological and attribute information. How-
ever, in some cases it is desirable to extend a path (in either direc-
tion). For these cases, nodes can be added by selecting them while
holding the control key, de-facto enabling an iterative approach as
well. In addition to the path selection in the pathway view, paths
can also be modified by selecting branching nodes in the enRoute
view, which is discussed in Section 5.2.

5.1.3 Path Representation
To visualize the chosen path and its alternatives, we use a slightly
modified version of the Bubble Sets technique [5]. Using Bubble
Sets has several advantages compared to highlighting edges. First,
they are more salient, due to their size, but especially due to their
curved features, standing out compared to the otherwise largely or-
thogonal layout found in many pathway map databases [7]. Sec-
ond, the precise routing of edges is often not available and one
would have to resort to drawing not-exactly matching edges. Third,
higlighting with Bubble Sets can also resolve ambiguities found in
the original pathway textures. Figure 3 demonstrates how we use
Bubble Sets with the interactive features previously discussed. In
(a) the system shows two possible paths between two genes that
were selected using the start-stop approach. The expert extends the
currently selected path in (b) and chooses an alternative one in (c).
An example of a resolved ambiguity can be seen at the cell mem-
brane (the vertical double-lines) in Figure 3. Only from the image
it is not clear which of the receptor nodes are connected to those
farther right. Using the path overlay however, it is now obvious
that IGFR is indeed linked to PLCy (see edge from second to third
node highlighted by the orange path in Figure 3 (a)), although the
original pathway graph does not explicitly show this.

While the original Bubble Sets technique is meant for visualiz-
ing a set of items, it is not developed to highlight a certain path
between the members of a set exclusively. Thus, in order to force
each Bubble Set to strictly follow a certain path, we have modified
the Bubble Sets technique. Instead of allowing arbitrary branch-
ing between the nodes within a Bubble Set, we connect only those,
which are connected by an edge in the pathway.

5.2 enRoute View
After a path was chosen in the pathway view, the enRoute view
enables a detailed analysis of this path in context of the experimen-
tal data. The top-down, linear layout of the path is optimized for
the node-attribute based task; if a node has a lot of mapping data
rows, the spacing is adjusted to allow for a uniform row height in



(a) (b) (c)

Figure 3: Pathway overlay showing all possible paths between a user-chosen start and end node using the Bubble Sets technique. In (a) the
expert has selected ICG-1 as start and Ras as end node, which results in two possible paths that can be chosen for an in-depth investigation in
the context of experimental data. The system selects the shorter path by default (orange). In (b) the user extends the path by the PI3K gene,
which adds one additional alternative path that is finally chosen by the user in (c).

the experimental data display. The nodes are connected to the rows
in the experimental data display using ribbons, as is illustrated in
Figure 2. While nodes that map to a single data row are unambigu-
ously associated with its row through the position, multi-mappings
and complex nodes can not be associated with rows using position
alone. A complex node contains multiple nested nodes, which in
turn can again contain multiple mappings. An example is shown in
Figure 7, where the complex node contains five embedded nodes,
which map to multiple rows each. The ribbons make these subtle
associations obvious.

The enRoute experimental data view follows the divide-and-
conquer visualization strategy [15]. Experiments are grouped based
on a homogeneity criterion, which can be based on semantics (e.g.,
as all experiments in a group are from the same species, while other
groups are from different species), or based on statistics (for ex-
ample, obtained through a clustering algorithm). As shown in Fig-
ure 2, the groups are spatially separated, resulting in a matrix lay-
out. While we require the data within a group to be from a single
dataset, the groups themselves can be from arbitrary combinations
of datasets, addressing the heterogeneity requirement (R II).

5.2.1 Visualizing the Path

To preserve more of the topological information, enRoute also
shows where branches join or leave the path. A branch is repre-
sented by its first node relative to the existing path and connects to
the left side of the node where the branching occurs. In case of mul-
tiple branches coming into or leaving from a node, all incoming, re-
spectively outgoing nodes are abstracted into one expandable node,
keeping the visualization compact (see Figure 4(a)). The abstract
nodes show how many branches they contain and display labels, if
enough space is available. Each of these nodes can be expanded
on demand to reveal the individual branch nodes. When a node
is expanded, all other branches are grayed out, and the expanded
nodes are rendered on top of them. The expanded nodes show a
preview for their associated experimental data, as demonstrated in
Figure 4(b). This facilitates the identification of potentially inter-
esting branches.

A user can interactively switch to a branch, as shown in Figure
4(c). Depending on whether the branch is incoming or outgoing,
the branch either replaces the nodes above or below the node where
the branching occurs in the original path. The new branch contains
all nodes that are in an unambiguous path, up to the next branch.
Changes in the path triggered in the enRoute view are propagated
to the pathway view, where the Bubble Sets surface is updated.
All components of the enRoute visualization technique use linking
and brushing. This helps to associate one of multiple branches in
the enRoute view with the corresponding branches in the pathway
view. The visual appearance of the path is modeled to resemble the
KEGG pathway maps. Different designs for other data sources are
possible.

(a) (b) (c)

Figure 4: Illustration of the properties of the path representation in the
enRoute view. (a) shows the selected path from EGFR to MTOR. By
expanding the abstract node leaving EGFR in (b), the branch nodes
PLCG1 and SHC2 are revealed, showing abstract previews of their
associated data. Selecting the node SHC2 causes its branch to re-
place all nodes in the path succeeding EGFR in (c). As SHC2 is
followed by an unambiguous path of nodes, all of them are added.

5.2.2 Visualizing Experimental Data
A scalable visualization of heterogeneous experimental data is one
of the core challenges for the enRoute visualization technique. As
previously mentioned, enRoute supports multi-dataset analysis for
one of two data types: quantitative and ordinal. Heat maps are a
common choice for visualizing quantitative as well as ordinal data
in biomolecular data visualization. However, we have decided not
to use heat map views, since changes in hue or value are known
to be inferior to changes in position and length for quantitative and
inferior to position for ordinal data [18]. Meyer et al. have recently
given an example for expression data, where a mirroring effect was
apparent in a line-plot but much less so in a heat map. Heat maps
or more generally pixel-oriented displays, are, however, superior,
as far as scalability is concerned. Clustered heat maps can con-
vey trends even if more data values are visualized then pixels are
available. However, while enRoute requires significant scalability
in terms of the number of experiments, the number of genes is lim-
ited by the number of nodes in the path.

Consequently, we chose to use bar charts instead of heat maps
for the visualization of both quantitative and ordinal data. Figure
5(a) illustrates a case for quantitative data, where each bar repre-
sents one mRNA expression value for one experiment. We use
a slight cushioning to make the borders between bars apparent.
As previously mentioned, the experiments are grouped based on
homogeneity. Groupings can contain overlapping sets of experi-
ments. The groups have captions at the top and bottom, the back-
ground of which color-codes the dataset type. In Figure 1, for ex-



(a) (b) (c) (d)

Figure 5: The four types of visual encoding for experimental data
(quantitative data in (a-b) and ordinal data in (c-d)). (a) Each experi-
ment has its own vertical bar. (b) Abstraction of several experiments
into a bar chart with error bars. (c) Redundantly encoded ordinal val-
ues where reduced copy numbers are shown in blue bars pointing
downwards, increased copy numbers are shown in red bars pointing
upwards. (d) Histogram abstracting a group of copy number values.

ample, groups of mRNA data have a turquoise background, while
copy number data captions have a green background. Depending
on the task, it might be sensible to use an abstraction for multiple
experiments instead of a separate bar for each one. Our solution
for abstractions of quantitative data is shown in Figure 5(b). In-
stead of vertical bars we use bar charts with error bars, where the
bars encode the mean value of the underlying experiments for the
row and the error bars encode the standard-deviation. Abstracted
groups have a constant width, in contrast to individual bars, where
the width adapts to the available space. This guarantees the ability
to compare the lengths across columns in the matrix. Not only is
this representation less cluttered, it also facilitates a better compar-
ison of values of the same group along the path. If, in contrast, a
comparison between groups is more relevant in a particular situa-
tion, the individual (vertical) bars are preferable, as they facilitate
comparison across groups. Aside from the orientation, the abstract
bars also are of another color to make the difference evident.

For ordinal data, we employ a redundant encoding using both
length and color. Figure 5(c) shows an encoding optimized for or-
dinal copy number datasets. Copy number is often categorized into
five categories – deleted on both alleles, deleted on one allele, reg-
ular copy number, low amplification, and high amplification. Our
encoding shows nothing for a regular copy number, a bar pointing
downward from a baseline in light blue for a deletion on one al-
lele, and a longer bar in dark blue for a deletion in both alleles.
Increased copy numbers are encoded using bars pointing upwards
in either light or dark red. This visual encoding is also suitable for
cases where copy number data is available in hybrid form: quan-
titative values in case of increased copies (e.g., 10 vs. 100 copies)
and ordinal values for the deletion states. In line with the abstract
display of quantitative data for multiple experiments, the abstrac-
tion of ordinal data is rendered as horizontal bars, more specifically
as a horizontal histogram. Thereby, the same color coding is used.

The aforementioned previews of experimental data for branches
in the path use a similar visual encoding. The branches contain one
bar for each group of experiments. Here, the abstract bars are ren-
dered vertically, due to the space constraints in the preview. Instead
of a histogram, a stacked bar is shown for ordinal data.

The experimental data display uses extensive linking and brush-
ing. Not only is it synchronized with all other views as far as genes
are concerned, it also utilizes brushing within the experimental data
display. This is particularly valuable, when the same sample is con-
tained in multiple columns, possibly even in different data types.
Figure 6(b), for example, shows a brush (in gold) for those samples
that have a high-level amplification of the gene PDGFRA, which
allows to look for influences of copy number variation on mRNA
expression.

6 IMPLEMENTATION AND SCALABILITY

The enRoute visualization technique is part of Caleydo, an open
source biomolecular data visualization framework [28]. Caleydo is
implemented in Java and uses JOGL for rending. The path over-

lay on top of the KEGG pathway maps is created using a modified
version of a free implementation of the Bubble Sets technique2.

enRoute scales to hundreds of experiments covering even the
most extensive datasets currently available. Figures 1 and 6 show
public mRNA and copy number datasets from The Cancer Genome
Atlas (TCGA)3 containing 550 samples and ∼20,000 genes each.
Figure 6 contains the whole set of experiments twice (in different
groupings, once abstracted, once showing all values). If the length
of the path exceeds the available screen space, we use scroll-bars to
navigate to the off-screen parts. We found this to be reasonable due
to the linear nature of the exploration process along the path.

7 CASE STUDIES

enRoute was designed in collaboration with the fifth author, a biol-
ogist from the Medical University of Graz. We evaluate the en-
Route visualization technique using case studies conducted with
this biologist and two different datasets. The first is the aforemen-
tioned TCGA dataset containing mRNA and copy number data for
patients suffering from glioblastoma multiforme (GBM), a type of
brain cancer, the second is a dataset collected at the Medical Univer-
sity of Graz for a mouse model of steatohepatitis containing mRNA
expression data.

7.1 Glioblastoma Multiforme
Our first case study demonstrates the path extraction feature by vi-
sualizing a part of the large Pathways in Cancer map from KEGG.
We use gene expression and copy number variation data generated
by the TCGA project to ask the question if the signaling cascade
from platelet derived growth factor A via map kinases to the cell
cycle regulators CDK4 and CyclinD1 plays a role in the differ-
ent subtypes of GBM. The Pathways in Cancer map encompasses
many important regulatory mechanisms involved in tumor prolifer-
ation like angiogenesis, metastasis, apoptosis evasion, resistance to
chemotherapy and cell cycle activation. The cell cycle is activated
by the transcription factor c-myc, which is a fundamental event that
leads to unrestricted growth of tumor cells. The signaling cascade
leading to c-myc activation can either follow the canonical path via
g-protein coupled receptors, Grb2, Ras, Raf, Mek, Erk to the AP-1
complex or alternatively via protein kinase c mediated phosphory-
lation of Ras and Raf. enRoute allows the selection of all sub-paths
leading to the activation of the cell cycle in the Pathways of Cancer
map and automatically selects one of the possible connections, as
shown in Figure 6(a).

Using the mouse-wheel, the researcher can now highlight and
select the different possible paths in the large map. Selection of the
path leads to the extraction of a linear representation of the path into
the enRoute view. Here the available experimental data is dynam-
ically displayed in bar charts, which are grouped, as can be seen
in Figure 6(b). The grouping in this case is based on a classifi-
cation by Verhaak et al. [29], where each group corresponds to a
clinically relevant subtype. The researcher stated that visualization
of the data in this manner allows him to compare the gene expres-
sion in the sub-types of GBM and correlate it to the copy number
variation data. Using this visualization, it is easily detectable that
in GBM, the PDGFA gene has become replicated multiple times in
the genome of the tumor, whereas the PDGFB gene is commonly
lost (see Figure 6(b)). The replication or loss of the PDGF genes
does not, however, impact the expression levels of these growth fac-
tors indicating tight control over protein levels downstream of gene
count. This is different for the copy number variation of PDGF-
receptor A (PDGFRA). The amplification of this gene is associated
with overexpression of the protein, which can be highlighted by se-
lecting the experiments with high amplification in the data plots (or-
ange in Figure 6(b)). Interestingly, this copy number variation and

2http://github.com/JosuaKrause/Bubble-Sets
3http://cancergenome.nih.gov
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Figure 6: The GBM case study. (a) Alternative branches from the
receptors to cell proliferation are highlighted, the orange alternative
is selected. (b) enRoute view for the selected path and the GBM
dataset showing about 550 samples for copy number and gene ex-
pression data each. Notice the correlation between the increased
copy number status of PDGFRA and increased expression levels in
the proneural subtype.

upregulation of PDGFRA seems to be specific to the proneural sub-
type of GBM. Further downstream in the signaling cascade we find
that nearly all tumor samples show amplification of the BRAF locus
and the MAP2K1 locus also known as MEK1. This demonstrates
that the activation of the cell cycle by the map-kinase pathway is
an important feature of GBM indicated by multiple gene amplifica-
tions and changes in the expression of the proteins involved in this
signaling cascade.

In summary the pathway extraction via the enRoute tool allowed
the expert to study gene expression data and copy number variation
data in an easily selectable sub-path of the complex pathway maps
contained in the KEGG database. The expert stated that the visual-
ization of the flow of signal transduction along the vertical axis and
the horizontal organization of the different sample types (i.e., tumor
subtypes) is very intuitive and helped him in efficiently extracting
biologically relevant information from the dataset.

7.2 Steatohepatitis Mouse Model
The second use case demonstrates another advantage of the path-
extraction feature of enRoute for the analysis of biochemical path-
ways. In biochemical pathways, the links between nodes represent
chemical conversions catalyzed by proteins, which are then called
enzymes. Enzymes are usually capable of converting multiple sub-
strates to products, albeit with different efficiencies. This partially
unspecific reaction, and the fact that enzymes often have many pro-
tein isoforms generated by alternative splicing, lead to heavy multi-
mapping of gene names to nodes in biochemical pathways. It is

(a) (b)

Figure 7: Complex multi-mapping in the KEGG retinol metabolism
pathway map. (a) A path over a complex node is selected. (b) The
gene expression data for two mouse strains (C57 and AJ) at different
time points of intoxication with DDC (0d, 7d, 8w). Cyp4a14 (orange)
is induced in short term toxicity in the 7d treatment. Cyp2c55 (gold)
is differentially regulated in the AJ and C57 mouse strains.

extremely difficult for a researcher to understand the biology of a
metabolic conversion using pathway maps, if the node of interest
contains a multitude of involved gene names. Using enRoute, the
researcher can select the nodes upstream and downstream of the
enzymatic reaction and thus obtain a linearized representation of
all genes involved. This is demonstrated in Figure 7(a), where the
conversion of all-trans-Retinoate to all-trans-18-Hydroxy retinoic
acid, a part of the Retinol (Vitamin A) metabolism, was selected.
The single node in between these two metabolites encompasses 18
different proteins that can contribute to this conversion. The en-
Route tool can display all these genes in a convenient map (see
Figure 7(b)) allowing to study the gene expression of each sin-
gle gene in all experimental conditions. In this example we have
loaded data generated by gene expression profiling of the livers of
experimental animals (two mouse strains; AJ and C57) during the
course of DDC (3,5-diethoxy-carbonyl-1,4-dihydrocollidine) treat-
ment. Expression was measured at three time points, after 0 days, 7
days and 8 weeks of intoxication. This treatment induces histolog-
ical changes in the liver parenchyme, which resemble closely the
changes seen in human steatohepatitis, making it a model for non-
alcoholic steatohepatitis. These morphological changes are the re-
sult of oxidative stress, which is usually connected to the activity
of cytochrome p450 enzymes. These enzymes catalyze the oxida-
tion of organic substances and are major enzymes involved in drug
metabolism and bioactivation. Studying the aforementioned con-
version of retinoate to retinoic acid by cytochrome p450 enzymes,
it can now be seen that Cyp2c55 (highlighted in gold) is differen-
tially regulated in the AJ and C57 mouse strains and that Cyp2b13 is
predominantly expressed in mouse strain A. Additionally it can be
detected that Cyp4a14 (highlighted in orange) is induced in short
term toxicity in the 7d treatment timepoint. All this information
was not visible to the researcher using conventional on-node map-
ping approaches and was successfully visualized using enRoute.

8 CONCLUSION AND FUTURE WORK

Developing a solution that enables experts to analyze functional im-
plications of a large number of experimental data on cellular pro-
cesses is a challenging and yet unsolved task. We have introduced
five requirements that are crucial for creating such a system. In



short, an optimal solution needs to allow experts to concurrently
investigate hundreds of samples in dozens of experimental condi-
tions and even considering multiple, heterogeneous datasets in the
context of pathway maps. We propose the enRoute visualization
technique that addresses all five requirements in a tightly-coupled
dual-view approach. Experts can select a path from a pathway map,
which is then highlighted in the map. The selected path is extracted
and shown in linear form side-by-side with the associated experi-
mental data. Our case studies showed that enRoute enables analyses
that are not possible by other means. Feedback from our collabo-
rators as to the utility was enthusiastic throughout. The enRoute
visualization technique will be publicly available with the next re-
lease of the Caleydo software.

The enRoute system integrates about 500 pathways from the
KEGG database for the two most researched organisms, human and
mouse. enRoute can be easily extended to other organisms covered
by KEGG. However, although KEGG has a very broad focus and
is nowadays widely spread in the community, we plan to integrate
further pathway resources of different kinds, which often have a
special focus on certain types of cellular processes. A valuable ex-
tension would be, for instance, to include the EBI IntAct database,
which centers on protein interaction networks. Furthermore, we
plan to allow experts to not only investigate the association of ex-
perimental data in the context of a single pathway at a time, but to
concurrently see their interdependencies within the cellular network
to other related pathways.
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