
1 The SCIJump Framework for
Parallel an Distributed Scientific
Computing

STEVEN G. PARKER, KOSTADIN DAMEVSKI, AYLA KHAN, ASH-
WIN SWAMINATHAN, CHRISTOPHER R. JOHNSON

Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, Utah

1.1 INTRODUCTION

In recent years, software component technology has been a successful methodology
for large-scale commercial software development. Component technology combines
a set of frequently used functions in an easily reusable component and makes the
implementation transparent to the users or other components. Developers create new
software applications by connecting groups of components.Component technology
is becoming increasingly popular for large-scale scientific computing to help tame
software complexity resulting from coupling multiple disciplines, multiple scales,
and/or multiple physical phenomena.

In this chapter, we discuss our SCIJump Problem Solving Environment (PSE),
that builds on its successful predecessor SCIRun and the DOECommon Component
Architecture (CCA) scientific component model. SCIJump provides distributed
computing, parallel components and the ability to combine components from several
component models in a single application. These tools provide the ability to use
a larger set of computing resources to solve a wider set of problems. For even
larger applications that may require thousands of computing resources and tens
of thousands of component instances, we present our prototype scalable distributed
component framework technology called CCALoop. When the technology described
in CCALoop matures, it will be included in SCIJump.

SCIRun is a scientific PSE that allows interactive construction and steering of
large-scale scientific computations [25, 27, 26, 18, 17, 19]. A scientific application
is constructed by connecting computational elements (modules) to form a program
(network), as shown in Figure 1.1. The program may contain several computational

i

ii

Fig. 1.1 The SCIRun PSE, illustrating a 3D finite element simulation of an implantable
cardiac defibrillator.

elements as well as several visualization elements, all of which work together in
orchestrating a solution to a scientific problem. SCIRun is designed to facilitate large-
scale scientific computation and visualization on a wide range of architectures from
the desktop to large supercomputers. Geometric inputs and computational parameters
may be changed interactively, and the interface provides immediate feedback to the
investigator.

The CCA model consists of a framework and an expandable set ofcomponents.
The framework is a workbench for building, connecting and running components. A
component is the basic unit of an application. A CCA component consists of one or
more ports, and a port is a group of method-call based interfaces. There are two types
of ports: usesandprovides. A provides port (or callee) implements its interfaces
and waits for other ports to call them. A uses port (or caller)issues method calls that
can be fulfilled by a type-compatible provides port on a different component. A CCA
port is represented by an interface, which is specified through the Scientific Interface
Definition Language (SIDL). SIDL is compiled to specific language bindings using
compilers such as Babel [12], which supports a number of languages such as C/C++,
Java, Fortran, Python etc.

SCIJump is a framework built on SCIRun [11] infrastructure that combines CCA
compatible architecture with hooks for other commercial and academic component

INTRODUCTION iii

models. It provides a broad approach that will allow scientists to combine a variety
of tools for solving a particular problem. The overarching design goal of SCIJump
is to provide the ability for a computational scientist to use the right tool for the
right job. SCIJump utilizes parallel-to-parallel remote method invocation (RMI) to
connect components in a distributed memory environment, and is multi-threaded to
facilitate shared memory programming. It also has an optional visual-programming
interface. A few of the design goals of SCIJump are:

1. SCIJump is fully CCA compatible, thus any CCA components can be used in
SCIJump and CCA components developed from SCIJump can also be used in
other CCA frameworks.

2. SCIJump accommodates several useful component models. In addition to
CCA components and SCIRun Dataflow modules, CORBA components, and
Vtk[20] modules are supported in SCIJump, which can be utilized in the same
simulation.

3. SCIJump builds bridges between different component models, so that we can
combine a disparate array of computational tools to create powerful applica-
tions with cooperative components from different sources.

4. SCIJump supports distributed computing. Components created on different
computers can be networked to build high performance applications.

5. SCIJump supports parallel components in a variety of waysfor maximum
flexibility. This support is not constrained to only CCA components, because
SCIJump employs aM process toN process method invocation and data redis-
tribution (MxN) library [5] that can potentially be used by many component
models.

Figure 1.2 shows a SCIJump application that demonstrates bridging multiple
component models. SCIJump is currently released under the MIT license and can be
obtained at http://www.sci.utah.edu.

As scientific computing experiences continuous growth of the size of simula-
tions, component frameworks intended for scientific computing need to handle more
components and execute on numerous hardware resources simultaneously. Our
distributed component framework CCALoop presents a novel design that supports
scalability in both number of components in the system and distributed computing
resources. CCALoop also incorporates several other beneficial design principles
for distributed component frameworks such as fault-tolerance, parallel component
support and multiple user support.

In this chapter, Section 1.2 discusses meta-components, while Section 1.3 and Sec-
tion 1.4 explain the support SCIJump provides for distributed computing and parallel
components. The design of our highly scalable component framework CCALoop is
discussed in Section 1.5. We present conclusions and futurework in Section 1.6.

iv

Fig. 1.2 Components from different models cooperate in SCIJump

META-COMPONENT MODEL v

BCSE

Driver Function

Integrator

BridgeDriver Function

Integrator

CCA CORBA

Fig. 1.3 Bridging components from different models in SCIJump

1.2 META-COMPONENT MODEL

Component software systems for scientific computing provide a limited form of
interoperability, typically working only with other components that implement the
same underlying component model. As such, we propose a next generation concept
of meta-components where software components can be manipulated in a more
abstract manner, providing a plug-in architecture for component models and bridges
between them, allowing for interoperability between different component models.
These abstract, meta-components are manipulated and managed by the SCIJump
framework, while concrete, standard component models perform the actual work.
Thus components implemented with disparate component models can be orchestrated
together. As an example of a multi-component system, we haveused this system
to connect components from SCIRun, the Visualization Toolkit (Vtk), and the CCA
into a single application (see Figure 1.2).

The success of Java Beans, COM, CORBA and CCA stems from allowing users
to rapidly assemble computational tools from components ina single environment.
However, these systems typically do not interact with one another in a straightforward
manner, and it is difficult to take components developed for one system and re-deploy
them in another. Software developers mustbuy into a particular model and produce
components for one particular system. Users must typicallyselect a single system
or face the challenges of manually managing the data transfer between multiple
(usually) incompatible systems. SCIJump addresses these shortcomings through the
meta-component model, allowing support for disparate component-based systems to
be incorporated into a single environment and managed through a common user-
centric visual interface. Furthermore, many systems that are not traditionally thought
of as component models, but that have well-designed, regular structures, can be
mapped to a component model and manipulated dynamically.

Figure 1.3 demonstrates a simple example of how SCIJump bridges different com-
ponent models. Two CCA components (Driver and Integrator) and one CORBA
component (Function) are created in the SCIJump framework. In this simple exam-

vi

ple, the Driver is connected to both the Function and Integrator. Inside SCIJump, two
frameworks are hidden: the CCA framework and the CORBA Object Request Broker
(ORB). The CCA framework creates the CCA components, Driverand Integrator.
The CORBA framework creates the CORBA component, Function.The two CCA
components can be connected in a straightforward manner through the CCA com-
ponent model. However, the components Driver and Function cannot be connected
directly because neither CCA nor CORBA allow a connection from a component of
a different model, so a bridge component is created instead.Bridges belong to a
special internal component model used to build connectionsbetween components of
different component models. In this example, Bridge has twoports: one CCA port
and one CORBA port allowing it to be connected to both the CCA component and
the CORBA component. The CORBA invocation is converted to a request to the
CCA port inside the bridge component.

Bridge components can be manually or automatically generated. In situations
where interfaces are easily mapped between one interface and another, automatically
generated bridges can facilitate interoperability in a straightforward way. More com-
plex component interactions may require manually generated bridge components.
Bridge components may implement heavy-weight transformations between compo-
nent models, and therefore have the potential to introduce performance bottlenecks.
For scenarios that require maximum performance, reimplementation of both com-
ponents in a common, performance-oriented component modelmay be required.
However, for rapid prototyping or for components that are not performance-critical,
this is completely acceptable.

A generalized translation between the component models is needed to automati-
cally generate a bridge component. Typically, a software engineer determines how
two particular component models will interact; this task can require creating meth-
ods of data and controlling translation between the two models, which can be quite
difficult in some scenarios. The software engineer implements the translation as a
compiler plugin, which is used as the translation specification as it abstractly rep-
resents the entire translation between the two component models. It is specified by
an eRuby (embedded Ruby) template document. eRuby templates are text files that
can be augmented by Ruby [13] scripts. Ruby scripts are useful for situations where
translation requires more sophistication than regular text (such as control structures
or additional parsing). The scripted plugin provides us with better flexibility and
more power with the end goal of supporting translation between a wider range of
component models.

The only other source of information is the interface of the ports we want to bridge
(usually expressed in an IDL file). The bridge compiler accepts commands that
specify a mapping between incompatible interfaces, where the interfaces between
the components differ in member names or types but not functionality. Using a
combination of the plugin and the interface augmented with mapping commands,
the compiler is able to generate the specific bridge component. This component
is automatically connected and ready to broker the translation between the two
components of different models.

DISTRIBUTED COMPUTING vii

Fig. 1.4 A more intricate example of how components of different models cooperate in
SCIJump. The application and components shown are from a realistic (albeit incomplete)
scenario.

Figure 1.4 shows a more complex example that is motivated by the needs of a
biological application. This example works very much like the last: the framework
manages components from several different component models through the meta-
model interface. Components from the same model interact with each other natively,
and interact with components in other models through bridges. Allowing components
to communicate with each other through native mechanisms ensures that performance
bottlenecks are not introduced and that the original semantics are preserved.

1.3 DISTRIBUTED COMPUTING

SCIJump provides support for RMI-based distributed objects. This support is utilized
in the core of the SCIRun framework in addition to distributed components. This
section describes the design of the distributed object subsystem.

A distributed object implements a set of interfaces defined in SIDL that can
be referenced remotely. The distributed object is similar to the C++ object, it
utilizes similar inheritance rules and all objects share the same code. However
only methods (interfaces) can be referenced, and the interfaces must be defined in
SIDL. We implemented a straightforward distributed objectsystem by extending the
SIDL language and building upon this system for implementing parallel to parallel
component connections, which will be demonstrated in the next section.

A distributed object is implemented by a concrete C++ class and referenced by
a proxy class. The proxy class is a machine-generated class that associates a user-

viii

made method call to a call by the concrete object. The proxy classes are described
in a SIDL file which is parsed by a compiler that recognizes theSIDL extensions to
generate the proxy classes. The proxy classes are defined as abstract classes with a
set of pure virtual functions. The concrete classes extend those abstract proxy classes
and implement each virtual functions.

There are two types of object proxies. One is called server proxy, the other is
called client proxy. The server proxy (or skeleton) is the object proxy created in
the same memory address space as the concrete object. When theconcrete object is
created, the server proxy starts and works as a server, waiting for any local or remote
methods invocations. The client proxy (or stub) is the proxycreated on a different
memory address space. When a method is called through the client proxy, the client
proxy will package the calling arguments into a single message, and send the message
to the server proxy, and then wait for the server proxy to invoke the methods and
return the result and argument changes.

We created the Data Transmitter, which is a communication layer used by gen-
erated proxy code for handling messaging. We also employ theconcept of a Data
Transmission Point (DTP), which is similar to the start point and end points used
in Nexus [8]. A DTP is a data structure that contains a object pointer pointing to
the context of a concrete class. Each memory address space has only one Data
Transmitter, and each Data Transmitter uses three communication ports (sockets):
one listening port, one receiving port and one sending port.All the DTPs in the same
address space share the same Data Transmitter. A Data Transmitter is identified by its
universal resource identifier(URI): IP address + listeningport. A DTP is identified by
its memory address together with the Data Transmitter URI, because DTP addresses
are unique in the same memory address space. Optionally, we could use other type
of object identifiers.

The proxy objects package method calls into messages by marshaling objects and
then waiting for a reply. Non-pointer arguments, such as integers, fixed sized arrays
and strings (character arrays), are marshaled by the proxy into a message in the order
that they are presented in the method. After the server proxyreceives the message,
it unmarshals the arguments in the same order. An array size is marshaled in the
beginning of an array argument so that the proxy knows how to allocate memory
for the array. SIDL supports a special opaque data type that can be used to marshal
pointers if the two objects are in the same address space. Distributed object references
are marshaled by packaging the DTP URI (Data Transmitter URIand object ID). The
DTP URI is actually marshaled as a string and when it is unmarshaled, a new proxy
of the appropriate type is created based on the DTP URI.

C++ exceptions are handled as special distributed objects.In a remote method
invocation, the server proxy tries to catch an exception (also a distributed object)
before it returns. If it catches one, the exception pointer is marshaled to the returned
message. Upon receiving the message, the client proxy unmarshals the message and
obtains the exception. The exception is then re-thrown by the proxy.

PARALLEL COMPONENTS ix

1.4 PARALLEL COMPONENTS

This section introduces the CCA parallel component design and discusses issues aris-
ing from the implementation. Our design goal is to make the parallelism transparent
to the component users. In most cases, the component users can use a parallel com-
ponent as the way they use sequential component without knowing that a component
is actually parallel component.

Parallel CCA Component (PCom) is a set of similar componentsthat run in a
set of processes respectively. When the number of processes is one, the PCom is
equivalent to a sequential component. We call each component in a PCom amember
component. Member components typically communicate internally withMPI [15]
or an equivalent message passing library.

PComs communicate with each other through CCA-style RMI ports. We devel-
oped a prototype parallel component infrastructure [3] that facilitates connection of
parallel components in a distributed environment. This model supports two types of
methods calls:independentandcollective, and as such our port model supports both
independent and collective ports.

An independent port is created by a single component member,and it contains
only independent interfaces. A collective port is created and owned by all component
members in a PCom, and one or more of its methods are collective. Collective
methods require that all member components participate in the collective calls in the
same order.

As an example of how parallel components interact, let pA be auses port of
component A, and and pB be a provides port of component B. BothpA and pB have
the same port type, which defines the interface. If pB is a collective port, and has the
following interface:

collective int foo(inout int arg);

Then getPort(“pA”) returns a collective pointer that points to the collective port
pB. If pB is an independent port, getPort(“pA”) returns a pointer that points to an
independent port.

Component A can have one or more members, so each member mightobtain
a (collective/independent) pointer to a provides port. Thecomponent developer
can decide what subset (one, many, or all components) participate in a method call
foo(arg). When any member component registers a uses port, all other members
can share the same uses port. But for a collective provides port, each member must
call addProvidesPort to register each member port.

TheMxN library takes care of the collective method invocation and data distri-
bution. We repeat only the essentials here, one can reference [5] for details.

If a M-member PCom A obtains a pointerptr pointing to a N-member PCom’s
B collective port pB. Thenptr→foo(args) is a collective method invocation. The
MxN library index PCom members with rank 0,1,...,M-1 for A and 0,1,...,N-1 for
B. If M = N , then the i-th member component of A callsfoo(args) on the i-th
component of B. But ifM<N , then we “extend” the A’s to 0,1,2,...,M, 0, 1,2,...M,

x

0 0

1 1

2 2

0 3

1 4

M < N

0 0

1 1

2 2

3 0

4 1

M > N

Fig. 1.5 MxN method invocation, with the caller on the left and the callee on the right. In
the left scenario, the number of callers is fewer than the numbers of callees, so some callers
make multiple method calls. In the right, the number of callees is fewer, so some callees send
multiple return values.

... N-1 and they callfoo(args) on each member component of B like theM = N

case, but only the first M calls request returns.
The left panel of Figure 1.5 shows an example of this case withM=3 and N=5.

If M>N , we “extend” component B’s set to 0, 1, ..., N, 0, 1,...,N, ...,M-1 and only
the first N member components of B are actually called, and therest are not called
but simply return the result. We rely on collective semantics from the components
to ensure consistency without requiring global synchronization. The right panel of
Figure 1.5 shows an example of this case with M=5 and N=3.

TheMxN library also does most of the work for the data redistribution. A multi-
dimensional array can be defined as a distributed array that associates a distribution
scheduler with the real data. Both callers and callees definethe distribution schedule
before the remote method invocation, using an first-stride-last representation for each
dimension of the array. The SIDL compiler creates the scheduler and scheduling is
done in the background.

With independent ports and collective ports, we cover the two extremes. Ports
that require communication among a subset of the member components present a
greater challenge. Instead, we utilize a sub-setting capability in the MxN system to
produce ports that are associated with a subset of the membercomponents, and then
utilize them as collective ports.

SCIJump provides the mechanism to start a parallel component either on shared
memory multi-processors computers, or clusters. SCIJump consists of a main frame-
work and a set of Parallel Component Loaders (PCLs). A PCL canbe started with ssh
on a cluster, where it gathers and reports its local component repository and registers
to the main framework. The PCL on a N-node cluster is essentially a set of loaders,
each running on a node. When the user requests to create a parallel component,

PARALLEL COMPONENTS xi

Fig. 1.6 The synchronization options given for (top to bottom) synchronous (smethod), non-
blocking asynchronous (na method) and oneway asynchronous (oa method) parallel remote
method invocation.

the PCL instantiates a parallel component on its processes (or nodes) and passes a
distributed pointer to the SCIJump framework. PCLs are responsible for creating
and destroying components running on their nodes, but they do not maintain the port
connections. The SCIJump framework maintains all component instances and port
connections.

Supporting threads and MPI together can be difficult. MPI provides a convenient
communication among the processes in a cluster. However, ifany process has more
than one thread and the MPI calls are made in those threads, the MPI communication
may break because MPI distinguishes only processes, not threads. The MPI interface
allows an implementation to support threads but does not require it, allowing most
MPI implementations not to be threadsafe. We provide support for both threadsafe
and non-threadsafe MPI implementations so that users can choose any available MPI.

To address variability of MPI implementations and to optimize parallel-to-parallel
component communication performance we provide three different locking behav-
iors: ”synchronous”, ”nonblocking asynchronous”, and ”oneway asynchronous” as

xii

shown in Figure 1.6. These are currently only provided in conjunction with the Ba-
bel [12] SIDL compiler, whose facilities are integrated within SCIJump as a separate
component model. When Babel uses a wire protocol without threads, we con-
servatively allow only ”synchronous” Parallel Remote Method Invocation (PRMI).
Similarly, to allow asynchronous PRMI we require a version of the parallel library
(e.g. MPI, PVM) that is thread-safe. An example of the progression of the thread of
execution for each type of method is given in Figure 1.6 and anexplanation of the
types of PRMI synchronization option we provide follows:

• synchronous. These parallel invocations should work in all system environ-
ments so they are built to work without any thread support. Even if threads exist
in the wire protocol, the parallel library may not be thread-safe so we synchronize
conservatively in order to get the right behavior in all scenarios. The conservative
synchronization style of these parallel invocation comes at a significant performance
cost.

•nonblocking asynchronous. Nonblocking methods in Babel return immediately
when invoked and each method returns a ticket that can be usedto wait until the call
finishes or to periodically check its status. We extend this existing ticket mechanism
from Babel nonblocking calls to additionally control our nonblocking asynchronous
calls. This enables the caller to use a ticket to check the status of an invocation. For
parallel objects receiving invocations from multiple proxies, we provide a guarantee
that two method calls coming from the same proxy (caller) will execute in order and
will be non-overtaking on the callee.

• oneway asynchronous. These methods are defined not to return any variable
or error condition to the caller, making them least syncronized. Only ’in’ arguments
are allowed so the only guarantee we provide for these calls is ordering and non-
overtaking behavior of invocations coming from the same caller.

When designing PRMI, it is crucial to provide the user with a consistent set
of guarantees. In the case of most programming languages, execution order is
something that a programmer relies on for program correctness. When programming
in a middleware that is multithreaded and offers support foran operation such as
PRMI, the invocation order given by a user should be preserved. In the past we have
identified situations when some reordering may take place [4] with user awareness.
However, in implementing general PRMI, we choose not to reorder any invocations
and ensure that calls made on the proxy execute in order on theserver. An object
may receive calls from multiple proxies, and we see no reasonwhy synchronization
should preserve inter-proxy order. Therefore, our implementation does not guarantee
invocation order from more than one proxy.

Some synchronization is necessary to provide single proxy invocation ordering.
Another choice we make is to synchronize on the object (callee) side and never on
the caller side. Previous implementations have synchronized on the proxy (caller)
side, but in a threaded environment this is not necessary. Weeliminate any proxy
synchronization for all but the conservative “collective”invocations which have to
be deadlock free in the absence of threads.

CCALOOP xiii

1.5 CCALOOP

Component frameworks aimed at scientific computing need to support a growing
trend in this domain toward larger simulations that producemore encompassing
and accurate results. The CCA component model has already been used in several
domains, creating components for large simulations involving accelerator design,
climate modeling, combustion, and accidental fires and explosions [14]. These simu-
lations are often targeted to execute on sets of distributedmemory machines spanning
several computational and organizational domains [1]. To address this computational
paradigm a collection of component frameworks that are ableto cooperate to manage
a large, long-running scientific simulation containing many components are neces-
sary.

In each of the CCA-compliant component frameworks, facilities are provided to
support the collaboration among several distributed component frameworks. How-
ever, existing designs do not scale to larger applications and multiple computing
resources. This is due to a master-slave (server-client) communication paradigm. In
these systems, the master framework manages all the components and their meta-
data while also handling communicating with the user through the GUI. The slave
frameworks act only as component containers that are completely controlled by the
master. This centralized design is simple to implement and its behavior is easy to
predict. As component and node numbers grow however, the master framework is
quickly overburdened with managing large quantities of data and the execution time
of the entire application is affected by this bottleneck. Moreover, as simulation size
grows even further, the master-slave design can inhibit theefficiency of future scien-
tific computing applications. We present an alternative design that is highly scalable
and retains its performance under high loads. In addition tothe scalability problem,
the master framework presents a single point of failure thatpresents an additional
liability for long-running applications and simulations.

A component framework’s data may be queried and modified by a user through
provided user interfaces and by executing components. In both cases it is imperative
that the framework is capable of providing quick responses under heavy loads and
high-availability to long running applications. The goal of our work is to present
distributed component framework design as the solution to several key issues. The
system described in this paper is architected to:

1. Scale to a large number of nodes and components.

2. Maintain framework availability when framework nodes are joining and leaving
the system and be able to handle complete node failures.

3. Facilitate multiple human users of the framework.

4. Support the execution and instantiation of SPMD parallelcomponents. Our
distributed component framework, CCALoop, is self-organizing and uses an
approach that partitions the load of managing the components to all of the
participating distributed frameworks.

xiv

The responsibility for managing framework data is divided among framework
nodes by using a technique called Distributed Hash Tables (DHT) [9]. CCALoop
uses a hash function available at each framework node that maps a specific component
type to a framework node in a randomly distributed fashion. This operation of
mapping each component to a node is equally available at all nodes in the system.
Framework queries or commands require only one-hop routingin CCALoop. To
provide one-hop lookup of framework data we keep perfect information about other
nodes in the system, all the while allowing a moderate node joining/leaving schedule
and not impacting scalability. We accommodate the possibility that a framework
node may fail or otherwise leave the system by creating redundant information and
replicating this information onto other frameworks.

1.5.1 Design

Current distributed framework design is inappropriate in accommodating component
applications with numerous components that use many computing resources. We
implemented a CCA-compliant distributed component framework called CCALoop
that prototypes our design for increased framework scalability and fault tolerance.
CCALoop scales by dividing framework data storage and lookup responsibilities
among its nodes. It is designed to provide fault-tolerance and uninterrupted services
on limited framework failure. CCALoop also provides the ability to connect multiple
GUIs in order for users to monitor an application from multiple points. While
providing these capabilities CCALoop does not add overwhelming overhead or cost
to the user and satisfies framework queries with low latency.In this section we will
examine the parts that form the structure of this framework.We begin by looking
more closely at the tasks and roles of a CCA-compliant component framework.

The main purpose of a component framework is to manage and disseminate data.
Some frameworks are more involved, such as Enterprise Java Beans [7], but in this
work we focus on the ones in the style of CORBA [16] that do not interfere with
the execution of every component. This kind of a component framework performs
several important tasks in the staging of an application, but gets out of the way of
the actual execution. Executing components may access the framework to obtain
data or to manage other components if they choose to, but it isnot usually necessary.
CCA-compliant frameworks also follow this paradigm as it means low overhead and
better performance.

CCA-compliant frameworks store two types of data: static and dynamic. The ma-
jority of the data is dynamic, which means that it changes as the application changes.
The relatively small amount of static data describes the available components in the
system. In a distributed setting, static data consists of the available components
on each distributed framework node. The dynamic data rangesfrom information
on instantiated components and ports to results and error messages. A significant
amount of dynamic data is usually displayed to the user via a GUI. In our design, we
distribute management of framework data without relocating components or forcing
the user to instantiate components on a specific resource. The user is allowed to make
his or her own decisions regarding application resource usage.

CCALOOP xv

One of the principal design goals of CCALoop is to balance theload of managing
component data and answering queries to all participating frameworks. This is done
by using the DHT mechanism where each node in the system is assigned a unique
identifier in a particular identifier space. This identifier is chosen to ensure an even
distribution of the framework identifiers across the identifier space. We provide an
operation that hashes each component type to a number in the identifier space. All
metadata for a given component is stored at the framework node whose identifier is
the successor of the component hash as shown in Figure 1.7(b). Given a random
hash function the component data is distributed evenly across the framework nodes.
The lookup mechanism is similar to the storage one: to get information about a
component, we compute its hash and query the succeeding framework node.

(a) (b)

Fig. 1.7 (a) Framework data replication across node’s two successors. Shown as
node 25 is leaving the system and before any data adjustmentshave been made.
(b) The data responsibilities of the CCALoop framework with four nodes.

1.5.1.1 Loop Structure CCALoop’s framework nodes are organized in a ring
structure in topological order by their identifier numbers.Each framework node has
a pointer to its successor and predecessor, allowing the ring to span the identifier space
regardless of how the system may change or how many nodes exists in a given time.
CCALoop also facilitates a straightforward way of recovering from node failure, by
naturally involving the successor of the failed node to become new successor to the
queried identifier. Use of a loop structure with a DHT lookup is commonly found in
several peer-to-peer systems such as Chord [21].

Adding framework nodes to the system splits the responsibility for framework
data between the joining node and its current owner. It is a two step process that
begins at any already connected node in the system. The first step is assigning an

xvi

identifier to the joining node that best distributes the nodes across the identifier space.
The identifier in the middle of the largest empty gap between nodes is selected based
on the queried framework node’s information. Later, we willexplain how every node
in the system contains perfect information about the existence of other nodes in the
distributed framework. Apart from a well-chosen identifier, the node is given the
address of its predecessor and successor. The second step isfor the joining node
to inform the predecessor and successor that it is about to join the network so that
they can adjust their pointers. This step also resolves conflicts that may occur if two
joining frameworks are assigned the same identifier in the first step by two separate
nodes. If this conflict occurs, one of the nodes is assigned a new identifier and forced
to repeat the second step. Removing nodes in the system has the opposite effect as
adding nodes: the successor of the leaving node becomes responsible for the vacated
identifier space and associated framework data.

Periodically, nodes invoke astabilize()method that ensures that the successor and
predecessor of that node are still alive. If one or both has failed, the node adjusts
its predecessor or successor pointer to the next available node. Since perfect loop
membership information is kept at every node, finding the next node in the loop is
straightforward. The process of updating predecessor and successor pointers ensures
that the loop structure is preserved, even when framework nodes leave the system.
When a node leaves and this readjustment takes place, the identifier distribution may
become unbalanced. This will last until a new framework joins; when it will be
instructed to fill the largest current gap in the identifier space.

In order to enable seamless functioning of CCALoop during framework node
failure we replicate the data across successor nodes, so that if a framework fails,
its successor is able to assume its responsibilities. To be able to handle multiple
simultaneous failures we can increase the number of successors to which we replicate
the framework data. This incurs a bandwidth cost proportional to the number of
replicas. If a node joins or leaves the system, some data readjustment is performed to
ensure that the replication factor we have chosen is restored. CCALoop targets the
high-performance scientific computing domain, which uses dedicated machines with
high availability. Machine failures or intermittent network failures are possible, but
infrequent. Because of this, we are content with providing two or three replicas for a
particular framework node’s data. Figure 1.7(a) shows an example of data replication
across two successors as a node leaves the framework.

1.5.1.2 One-hop Lookup An advantage of our distributed framework design is
the ability for nodes to contact other nodes directly, or through “one-hop”. The
one-hop mechanism was initially designed as an alternativeto Chord’s multi-hop
query design [10]. One-hop lookup enables low latency querying, which is important
in maximizing performance to components in a distributed framework. In order to
support one-hop lookups, full membership awareness is required in the framework;
every node needs to keep updated information about all othernodes in the system.
There is certainly a cost to keeping this information current in the framework and it
is proportional to the joining and leaving (turnover) rate.As with data replication,
our expectation is that framework nodes comprising a CCA-compliant distributed

CCALOOP xvii

framework will not have the same framework turnover rate as one of the popular file
sharing networks, where turnover is an issue. Therefore, our design is unlikely to
encounter very high levels of node turnover. When node turnover does occur, our
distributed framework would provide graceful performancedegradation.

CCALoop uses a multicast mechanism to provide easy and quickdissemination
of membership information. This mechanism creates a tree structure to propagate
node leaving and joining information to all nodes in the system. We divide our loop
structure into a number of slices, and assign a “slice leader” node to each slice. In
CCALoop, the slice leader is the node with the smallest identifier in the slice. When
a node joins the framework, its successor contacts the sliceleader. The slice leader
distributes this information to all other slice leaders as well as all the other nodes
in the slice. Finally, each slice leader that received the message propagates it to all
members of its slice. This hierarchy enables faster membership propagation which
in turn enables CCALoop to reach a steady state faster. Additionally, this reduces
errant queries as well as providing the means for low-latency access to framework
node.

1.5.1.3 Multiple GUIs Providing a graphical user interface is an important role
of a scientific component framework. A framework’s user is interested in assembling
a simulation, steering it, and analyzing intermediate and final results. In large,
cross-organizational simulations several users may need to manage a simulation,
and several others may be interested in viewing the results.State of the art CCA-
compliant scientific computing frameworks provide the capability to attach multiple
GUIs and users. However, each of these frameworks provides that capability only
at the master node, which hinders scalability as previouslydiscussed. One of the
opportunities and challenges of a scalable distributed framework like CCALoop is to
handle multiple GUIs.

CCALoop allows a GUI to attach to any cooperating framework node. A user is
allowed to manage and view the simulation from that node. Whenmultiple GUIs are
present, we leverage the slice leader multicast mechanism to distribute information
efficiently to all frameworks with GUIs. We establish a general event publish-
subscribe mechanism with message caching capability and create a specific event
channel for GUI messages. Other channels may be created to service other needs.
GUIs on which some state is changed by the user are event publishers, while all the
other GUIs in the system are subscribers. We route messages from publishers to
subscribers through the system by passing them through slice leaders while ensuring
that we are not needlessly wasting bandwidth. All messages are cached on the slice
leader of the originating slice of nodes.

The reason we use the hierarchical mechanism to transfer GUImessages over a
more direct approach is to cache the GUI state of the framework. CCALoop provides
a mechanism that is able to update a GUI with the current statewhen this GUI joins
after some user operations have already occurred. To prepare for this scenario, we
continuously cache the contribution to the GUI state from each slice at its slice leader.
This is advantageous since we expect GUIs to often join at midstream, then leave the
system, and possibly return.

xviii

An additional concern with multiple distributed GUIs is theorder of state-changing
operations. We use a first-come-first-serve paradigm and allow every GUI to have
equal rights. A more complex scheme is possible and would be useful, but that is
outside the scope of this paper.

1.5.1.4 Parallel Frameworks To support CCA’s choice of SPMD-style parallel
components, a framework needs to be able to create a communicator, such as an
MPI Communicator, which identifies the set of components that are executing in
parallel and enables their internal communication. This internal (inter-process) com-
munication is embedded in the algorithm and it is necessary for almost any parallel
computation. To produce this communicator a framework itself needs to be exe-
cuting in parallel: In order to execute the component in parallel we first execute
the framework in parallel. A parallel framework exists as a resource onto which
parallel components can execute. Parallel component communication and specifi-
cally parallel remote method invocation can be quite complex and it has been studied
extensively [2].

A concern of this work is the inclusion of parallel frameworks in a distributed
framework environment involving many other parallel and non-parallel frameworks.
The parallel framework can be handled as one framework entity with one identifier
or it can be considered as a number of entities correspondingto the number of
parallel framework processes. We choose to assign one identifier to the entire parallel
framework to simplify framework-to-framework interaction. This needs to be done
carefully, however, to ensure that communication to all parallel cohorts is coordinated.
By leveraging previous work in the area of parallel remote method invocation we
gain the ability to make collective invocations. We use these collective invocations
to always treat the parallel framework as one entity in a distributed framework.

Even though we choose to treat all parallel framework processes as one parallel
instance, the component’s data that the framework stores isnot limited to one entry
per parallel component. To enable a more direct communication mechanism, we need
to store an amount of data that is proportional to the number of parallel processes of
the parallel component. Large parallel components are a significant reason that more
attention should be directed toward scalable distributed component frameworks.

1.6 SUMMARY

We presented the SCIJump problem solving environment for scientific computing.
SCIJump employs components that encapsulate computational functionality into a
reusable unit. It is based on DOE’s CCA component standard but it is designed to
be able to combine different component models into a single visual problem solving
environment.

Several features of SCIJump were discussed: multiple component models, dis-
tributed computing support, and parallel components. SCIJump integrates multiple
component models into a single visual problem solving environment and builds
bridges between components of different component models.In this way, a number

SUMMARY xix

of tools can be combined into a single environment without requiring global adoption
of a common underlying component model. We have also described a parallel com-
ponent architecture with several synchronization optionsand utilizing the common
component architecture, combined with distributed objects and parallelMxN array
redistribution that can be used in SCIJump. Lastly, we presented our novel design for
scalability in component frameworks through our prototypeframework CCALoop.

A prototype of the SCIJump framework has been developed, andwe are using this
framework for a number of applications in order to demonstrate SCIJump’s features.
Future applications will rely more on the system, and will facilitate joining many
powerful tools, such as the SCI Institutes’ interactive ray-tracing system [23, 22]
and the Uintah [24, 6] parallel, multi-physics system. Additional large scale com-
putational applications are under construction and are beginning to take advantage
of the capabilities of SCIJump. The design prototyped by CCALoop which will
greatly increase the scalability of SCIJump in order to support the future generation
application will be added in the future.

Acknowledgments

The authors gratefully acknowledge support from NIH NCRR and the DOE ASCI and SciDAC
programs. SCIJump is available as open source software at www.sci.utah.edu.

REFERENCES

1. Gordon Bell and Jim Gray. What’s next in high-performance computing?Com-
munications of the ACM, 45(2):91–95, 2002.

2. Felipe Bertrand, Randall Bramley, Alan Sussman, David E.Bernholdt, James A.
Kohl, Jay W. Larson, and Kostadin Damevski. Data redistribution and remote
method invocation in parallel component architectures. InProceedings of the
19th International Parallel and Distributed Processing Symposium (IPDPS),
2005. (Best Paper Award).

3. K. Damevski. Parallel component interaction with an interface definition lan-
guage compiler. Master’s thesis, University of Utah, 2003.

4. K. Damevski and S. Parker. Imprecise exceptions in distributed parallel com-
ponents. InProceedings of 10th International Euro-Par Conference (Euro-Par
2004 Parallel Processing), volume 3149 ofLecture Notes in Computer Science.
Springer, 2004.

5. K. Damevski and S. Parker. M x N data redistribution through parallel remote
method invocation.Special Issue of the International Journal of High Perfor-
mance Computer Applications, 19(4), 2005.

xx

6. J. Davison de St. Germain, John McCorquodale, Steven G. Parker, and Christo-
pher R. Johnson. Uintah: A Massively Parallel Problem Solving Environment.
In Proceedings of the Ninth IEEE International Symposium on High Performance
and Distributed Computing, August 2000.

7. Enterprise Java Beans. http://java.sun.com/products/ejb, 2007.

8. I. Foster, C. Kesselman, and S. Tuecke. The Nexus approachto integrating mul-
tithreading and communication.Journal of Parallel and Distributed Computing,
37:70–82, 1996.

9. S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, distributed data
structures for Internet service construction. InProceedings of the Symposium on
Operating Systems Design and Implementation, 2000.

10. Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. One hop lookups for
peer-to-peer overlays. InNinth Workshop on Hot Topics in Operating Systems
(HotOS-IX), pages 7–12, Lihue, Hawaii, 2003.

11. C. Johnson and S. Parker. The SCIRun Parallel Scientific Compouting Problem
Solving Enviroment. InProceedings of the 9th SIAM Conference on Parallel
Processing for Scientific Computing, 1999.

12. S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing language depen-
dencies from a scientific software library. InProceedings of the 10th SIAM
Conference on Parallel Processing, Portsmouth, VA, March 2001.

13. The Ruby Language. http://www.ruby-lang.org/en, 2004.

14. Lois Curfman McInnes, Benjamin A. Allan, Robert Armstrong, Steven J. Ben-
son, David E. Bernholdt, Tamara L. Dahlgren, Lori Freitag Diachin, Manojkumar
Krishnan, James A. Kohl, J. Walter Larson, Sophia Lefantzi,Jarek Nieplocha,
Boyana Norris, Steven G. Parker, Jaideep Ray, and Shujia Zhou. Parallel PDE-
based simulations using the Common Component Architecture. In Are Magnus
Bruaset and Aslak Tveito, editors,Numerical Solution of PDEs on Parallel Com-
puters, volume 51 ofLecture Notes in Computational Science and Engineering
(LNCSE), pages 327–384. Springer-Verlag, 2006.

15. Message Passing Interface Forum.MPI: A Message-Passing Interface Standard,
June 1995.

16. OMG. The Common Object Request Broker: Architecture and Specification.
Revision 2.0, June 1995.

17. S. G. Parker.The SCIRun Problem Solving Environment and Computational
Steering Software System. PhD thesis, University of Utah, 1999.

18. S.G. Parker, D.M. Beazley, and C.R. Johnson. Computational steering software
systems and strategies.IEEE Computational Science and Engineering, 4(4):50–
59, 1997.

xxi

19. S.G. Parker and C.R. Johnson. SCIRun: A scientific programming environment
for computational steering. InSupercomputing ‘95. IEEE Press, 1995.

20. W. Schroeder, K. Martin, and B. Lorensen.The Visualization Toolkit, An Object-
Oriented Approach to 3-D Graphics. Prentice Hall PTR, 2nd edition, 2003.

21. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
SIGCOMM ’01: Proceedings of the 2001 conference on Applications, Technolo-
gies, Architectures,and Protocols for Computer Communication, pages 149–160,
New York, NY, USA, 2001. ACM Press

22. S. Parker, M. Parker, Y. Livnat, P. Sloan, and P. Shirley.Interactive ray tracing
for volume visualization. IEEE Transactions on Visualization and Computer
Graphics, July-September 1999.

23. J. Bigler, A. Stephens and S.G. Parker. Design for Parallel Interactive Ray
Tracing Systems. InProceedings of The IEEE Symposium on Interactive Ray
Tracing, pages 187–196, 2006.

24. S.G. Parker. A Component-Based Architecture for Parallel Multi-physics PDE
Simulation. InFuture Generation Computer Systems (FGCS), 22(1-2):204–216,
2006, Elsevier.

25. SCIRun: A Scientific Computing Problem Solving Environment. Scientific Com-
puting and Imaging Institute (SCI), University of Utah, 2007. http://software.sci.utah.edu/scirun.html.

26. C.R. Johnson, S. Parker and D. Weinstein and S. Heffernan. Component-Based
Problem Solving Environments for Large-Scale Scientific Computing. In J.
Conc. & Comp.: Prac. & Exper., (14):1337–1349, 2002.

27. D.M. Weinstein and S.G. Parker and J. Simpson and K. Zimmerman and G. Jones.
Visualization in the SCIRun Problem-Solving Environment.In The Visualization Handbook,
Edited by C.D. Hansen and C.R. Johnson, pages 615–632, 2005,Elsevier.

