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1.1 INTRODUCTION

In recent years, software component technology has beeccassful methodology
for large-scale commercial software development. Compiieehnology combines
a set of frequently used functions in an easily reusable co@pt and makes the
implementation transparent to the users or other compsnBmavelopers create new
software applications by connecting groups of componedtsnponent technology
is becoming increasingly popular for large-scale scientiimputing to help tame
software complexity resulting from coupling multiple digiines, multiple scales,
and/or multiple physical phenomena.

In this chapter, we discuss our SClJump Problem Solving ranment (PSE),
that builds on its successful predecessor SCIRun and the@gdiinon Component
Architecture (CCA) scientific component model. SClJumpvijaes distributed
computing, parallel components and the ability to combragonents from several
component models in a single application. These tools geothie ability to use
a larger set of computing resources to solve a wider set dflgnts. For even
larger applications that may require thousands of computésources and tens
of thousands of component instances, we present our ppetatyalable distributed
component framework technology called CCALoop. When therietogy described
in CCALoop matures, it will be included in SCIJump.

SCIRun is a scientific PSE that allows interactive consioncand steering of
large-scale scientific computations [25, 27, 26, 18, 17, 29%cientific application
is constructed by connecting computational elements (fhesjito form a program
(network), as shown in Figure 1.1. The program may contaiarsé computational
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Fig. 1.1 The SCIRun PSE, illustrating a 3D finite element simulation of an implantable
cardiac defibrillator.

elements as well as several visualization elements, allto€lwwork together in
orchestrating a solution to a scientific problem. SCIRuresghed to facilitate large-
scale scientific computation and visualization on a widegeaof architectures from
the desktop to large supercomputers. Geometric inputs@nguatational parameters
may be changed interactively, and the interface provideseadiate feedback to the
investigator.

The CCA model consists of a framework and an expandable satroponents.
The framework is a workbench for building, connecting anmthing components. A
component is the basic unit of an application. A CCA comporensists of one or
more ports, and a port is a group of method-call based irtesfaThere are two types
of ports: usesandprovides. A provides port (or callee) implements its interfaces
and waits for other ports to call them. A uses port (or cals)ies method calls that
can be fulfilled by a type-compatible provides port on a défé component. A CCA
port is represented by an interface, which is specified tindbe Scientific Interface
Definition Language (SIDL). SIDL is compiled to specific larage bindings using
compilers such as Babel [12], which supports a number ofdaggs such as C/C++,
Java, Fortran, Python etc.

SClJump is a framework built on SCIRun [11] infrastructurattcombines CCA
compatible architecture with hooks for other commercial anademic component
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models. It provides a broad approach that will allow scitstio combine a variety
of tools for solving a particular problem. The overarchirggidn goal of SClJump
is to provide the ability for a computational scientist teeubke right tool for the
right job. SClJump utilizes parallel-to-parallel remotethod invocation (RMI) to
connect components in a distributed memory environmeiatjsmulti-threaded to
facilitate shared memory programming. It also has an optigisual-programming
interface. A few of the design goals of SCIJump are:

1. SClJump is fully CCA compatible, thus any CCA componeats loe used in
SCIlJump and CCA components developed from SCIJump can elgsddl in
other CCA frameworks.

2. SClJump accommodates several useful component modelsddition to
CCA components and SCIRun Dataflow modules, CORBA compsnant
Vtk[20] modules are supported in SCIJump, which can bezgiliin the same
simulation.

3. SCIlJump builds bridges between different component tspde that we can
combine a disparate array of computational tools to createepful applica-
tions with cooperative components from different sources.

4. SClJump supports distributed computing. Componenttedeon different
computers can be networked to build high performance agumics.

5. SClJump supports parallel components in a variety of waysnaximum
flexibility. This support is not constrained to only CCA cooments, because
SCIlJump employs &7 process taV process method invocation and data redis-
tribution (M N) library [5] that can potentially be used by many component
models.

Figure 1.2 shows a SClJump application that demonstrategibg multiple
component models. SCIJump is currently released under tidiéénse and can be
obtained at http://www.sci.utah.edu.

As scientific computing experiences continuous growth ef ¢size of simula-
tions, component frameworks intended for scientific conmgubheed to handle more
components and execute on numerous hardware resourcekasi@ously. Our
distributed component framework CCALoop presents a nogsigh that supports
scalability in both number of components in the system asttiduted computing
resources. CCALoop also incorporates several other béadefiesign principles
for distributed component frameworks such as fault-toieea parallel component
support and multiple user support.

Inthis chapter, Section 1.2 discusses meta-componenils,3dttion 1.3 and Sec-
tion 1.4 explain the support SCIJump provides for distéotomputing and parallel
components. The design of our highly scalable componemtdveork CCALoop is
discussed in Section 1.5. We present conclusions and futriein Section 1.6.
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Fig. 1.3 Bridging components from different models in SClJump

1.2 META-COMPONENT MODEL

Component software systems for scientific computing pm\adiimited form of
interoperability, typically working only with other compents that implement the
same underlying component model. As such, we propose a eagtagtion concept
of meta-components where software components can be nhateiguin a more
abstract manner, providing a plug-in architecture for congmt models and bridges
between them, allowing for interoperability between dif@ component models.
These abstract, meta-components are manipulated and ethbggthe SCIlJump
framework, while concrete, standard component modelparthe actual work.
Thus components implemented with disparate componentisicale be orchestrated
together. As an example of a multi-component system, we haed this system
to connect components from SCIRun, the Visualization Tio¢ikk), and the CCA
into a single application (see Figure 1.2).

The success of Java Beans, COM, CORBA and CCA stems fromiatiavsers
to rapidly assemble computational tools from components single environment.
However, these systems typically do not interact with orwleer in a straightforward
manner, and it is difficult to take components developed hersystem and re-deploy
them in another. Software developers mugy into a particular model and produce
components for one particular system. Users must typicallgct a single system
or face the challenges of manually managing the data trahsfisveen multiple
(usually) incompatible systems. SClJump addresses thestesmings through the
meta-component model, allowing support for disparate eorept-based systems to
be incorporated into a single environment and managed ghraucommon user-
centric visual interface. Furthermore, many systems tieatat traditionally thought
of as component models, but that have well-designed, regtilactures, can be
mapped to a component model and manipulated dynamically.

Figure 1.3 demonstrates a simple example of how SClJumgédsidifferent com-
ponent models. Two CCA componenriver andIntegrator) and one CORBA
componentfunction) are created in the SClJump framework. In this simple exam-
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ple, the Driver is connected to both the Function and Integrénside SClIJump, two
frameworks are hidden: the CCA framework and the CORBA Qlfifecjuest Broker
(ORB). The CCA framework creates the CCA components, Draret Integrator.
The CORBA framework creates the CORBA component, Functitimne two CCA
components can be connected in a straightforward manneughrthe CCA com-
ponent model. However, the components Driver and Functomat be connected
directly because neither CCA nor CORBA allow a connectiomfia component of
a different model, so a bridge component is created inst&xtiges belong to a
special internal component model used to build connectiehween components of
different component models. In this example, Bridge haspaus: one CCA port
and one CORBA port allowing it to be connected to both the CGfpgonent and
the CORBA component. The CORBA invocation is converted tequest to the
CCA port inside the bridge component.

Bridge components can be manually or automatically geedratn situations
where interfaces are easily mapped between one interfacaremher, automatically
generated bridges can facilitate interoperability in aigtitforward way. More com-
plex component interactions may require manually gendrbtelge components.
Bridge components may implement heavy-weight transfaomatbetween compo-
nent models, and therefore have the potential to introdec®pnance bottlenecks.
For scenarios that require maximum performance, reimpi¢atien of both com-
ponents in a common, performance-oriented component nrodgl be required.
However, for rapid prototyping or for components that arepeformance-critical,
this is completely acceptable.

A generalized translation between the component modelsaded to automati-
cally generate a bridge component. Typically, a softwagirerer determines how
two particular component models will interact; this task caquire creating meth-
ods of data and controlling translation between the two nsodéhich can be quite
difficult in some scenarios. The software engineer implem#ére translation as a
compiler plugin, which is used as the translation specificahs it abstractly rep-
resents the entire translation between the two componedélsolt is specified by
an eRuby (embedded Ruby) template document. eRuby ternpalegdext files that
can be augmented by Ruby [13] scripts. Ruby scripts are Lfggfsituations where
translation requires more sophistication than regular(®xch as control structures
or additional parsing). The scripted plugin provides ushwviietter flexibility and
more power with the end goal of supporting translation betwa wider range of
component models.

The only other source of information is the interface of tboepwe want to bridge
(usually expressed in an IDL file). The bridge compiler atsggpmmands that
specify a mapping between incompatible interfaces, wheedrtterfaces between
the components differ in member names or types but not fomality. Using a
combination of the plugin and the interface augmented wieippng commands,
the compiler is able to generate the specific bridge compgon&his component
is automatically connected and ready to broker the traosldietween the two
components of different models.
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Fig. 1.4 A more intricate example of how components of different models cedpean
SCIlJump. The application and components shown are from a realistait(albomplete)
scenario.

Figure 1.4 shows a more complex example that is motivatechbyneeds of a
biological application. This example works very much like tast: the framework
manages components from several different component mddelugh the meta-
model interface. Components from the same model interdhtagich other natively,
and interact with components in other models through bedgdéowing components
to communicate with each other through native mechanissigesathat performance
bottlenecks are not introduced and that the original seictgate preserved.

1.3 DISTRIBUTED COMPUTING

SCI1Jump provides support for RMI-based distributed olkjethis support is utilized
in the core of the SCIRun framework in addition to distrimitsmponents. This
section describes the design of the distributed objectystiés.

A distributed object implements a set of interfaces define@®IDL that can
be referenced remotely. The distributed object is simitathte C++ object, it
utilizes similar inheritance rules and all objects share same code. However
only methods (interfaces) can be referenced, and the auesfmust be defined in
SIDL. We implemented a straightforward distributed ob@tem by extending the
SIDL language and building upon this system for implemanparallel to parallel
component connections, which will be demonstrated in thxé sextion.

A distributed object is implemented by a concrete C++ clasbsraferenced by
a proxy class. The proxy class is a machine-generated tlasadsociates a user-
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made method call to a call by the concrete object. The proagsels are described
in a SIDL file which is parsed by a compiler that recognizes3HaL extensions to
generate the proxy classes. The proxy classes are definbdteasch classes with a
set of pure virtual functions. The concrete classes extergktabstract proxy classes
and implement each virtual functions.

There are two types of object proxies. One is called servexypithe other is
called client proxy. The server proxy (or skeleton) is thégeobproxy created in
the same memory address space as the concrete object. Wieamthete object is
created, the server proxy starts and works as a serverng/éiti any local or remote
methods invocations. The client proxy (or stub) is the prosgated on a different
memory address space. When a method is called through thé iy, the client
proxy will package the calling arguments into a single mgssand send the message
to the server proxy, and then wait for the server proxy to kevthe methods and
return the result and argument changes.

We created the Data Transmitter, which is a communicatigerlased by gen-
erated proxy code for handling messaging. We also emplogdheept of a Data
Transmission Point (DTP), which is similar to the start paind end points used
in Nexus [8]. A DTP is a data structure that contains a objeatter pointing to
the context of a concrete class. Each memory address spacenhyaone Data
Transmitter, and each Data Transmitter uses three comatioricports (sockets):
one listening port, one receiving port and one sending gdrthe DTPs in the same
address space share the same Data Transmitter. A Data Tr@nssridentified by its
universal resource identifier(URI): IP address + listeqiog. A DTP is identified by
its memory address together with the Data Transmitter Uiabse DTP addresses
are unique in the same memory address space. Optionallypweé ase other type
of object identifiers.

The proxy objects package method calls into messages byalag objects and
then waiting for a reply. Non-pointer arguments, such asgets, fixed sized arrays
and strings (character arrays), are marshaled by the pntoyaimessage in the order
that they are presented in the method. After the server precgives the message,
it unmarshals the arguments in the same order. An array sizeishaled in the
beginning of an array argument so that the proxy knows howltacae memory
for the array. SIDL supports a special opaque data type #rabe used to marshal
pointers if the two objects are in the same address spactibDted object references
are marshaled by packaging the DTP URI (Data Transmitterasidlobject ID). The
DTP URI is actually marshaled as a string and when it is unhzdesl, a new proxy
of the appropriate type is created based on the DTP URI.

C++ exceptions are handled as special distributed objdots. remote method
invocation, the server proxy tries to catch an exceptioso(@ distributed object)
before it returns. If it catches one, the exception poirdenarshaled to the returned
message. Upon receiving the message, the client proxy shalarthe message and
obtains the exception. The exception is then re-thrown byptioxy.
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1.4 PARALLEL COMPONENTS

This section introduces the CCA parallel component degigidéscusses issues aris-
ing from the implementation. Our design goal is to make thalpgism transparent
to the component users. In most cases, the component useusea parallel com-
ponent as the way they use sequential component withoutikgdiat a component
is actually parallel component.

Parallel CCA Component (PCom) is a set of similar compon#rds run in a
set of processes respectively. When the number of processg®]j the PCom is
equivalent to a sequential component. We call each compdamarPCom anember
component Member components typically communicate internally vitRI [15]
or an equivalent message passing library.

PComs communicate with each other through CCA-style RMispdie devel-
oped a prototype parallel component infrastructure [3{ thailitates connection of
parallel components in a distributed environment. This ehedpports two types of
methods callsindependenandcollective and as such our port model supports both
independent and collective ports.

An independent port is created by a single component merabdrijt contains
only independent interfaces. A collective port is createdl@vned by all component
members in a PCom, and one or more of its methods are cobeciollective
methods require that all member components participatesicollective calls in the
same order.

As an example of how parallel components interact, let pA heses port of
component A, and and pB be a provides port of component B. gathnd pB have
the same port type, which defines the interface. If pB is a&ctile port, and has the
following interface:

collective int foo(inout int arg);

Then getPort(“pA’) returns a collective pointer that pairib the collective port
pB. If pB is an independent port, getPort(“pA’) returns arer that points to an
independent port.

Component A can have one or more members, so each member obiglin
a (collective/independent) pointer to a provides port. Tbenponent developer
can decide what subset (one, many, or all components) ipatiicin a method call
foo(arg). When any member component registers a uses port, all othabars
can share the same uses port. But for a collective providesgarh member must
call addProvidesPort to register each member port.

The MxN library takes care of the collective method invocation aathdlistri-
bution. We repeat only the essentials here, one can refefbhior details.

If a M-member PCom A obtains a pointgtr pointing to a N-member PCom’s
B collective port pB. Theptr— foo(args) is a collective method invocation. The
MzN library index PCom members with rank 0,1,...,M-1 for A and,0,,N-1 for
B. If M = N, then the i-th member component of A cafiso(args) on the i-th
component of B. But if\/ <N, then we “extend” the As to 0,1,2,...,M, 0, 1,2,...M,



Fig. 1.5 MaxN method invocation, with the caller on the left and the callee on the right. In
the left scenario, the number of callers is fewer than the numbers oésalie some callers
make multiple method calls. In the right, the number of callees is fewer,rae sallees send
multiple return values.

... N-1 and they calffoo(args) on each member component of B like thé = N
case, but only the first M calls request returns.

The left panel of Figure 1.5 shows an example of this case MitB and N=5.
If M>N, we “extend” component B'ssetto 0, 1, ..., N, 0, 1,...,NM-1 and only
the first N member components of B are actually called, anddbkeare not called
but simply return the result. We rely on collective semanfrom the components
to ensure consistency without requiring global synchratiim. The right panel of
Figure 1.5 shows an example of this case with M=5 and N=3.

The Mz N library also does most of the work for the data redistributid multi-
dimensional array can be defined as a distributed array sisatates a distribution
scheduler with the real data. Both callers and callees défendistribution schedule
before the remote method invocation, using an first-stiddérepresentation for each
dimension of the array. The SIDL compiler creates the scleedund scheduling is
done in the background.

With independent ports and collective ports, we cover the éxtremes. Ports
that require communication among a subset of the member @oemts present a
greater challenge. Instead, we utilize a sub-setting dhiyab the Mz N system to
produce ports that are associated with a subset of the mesob®onents, and then
utilize them as collective ports.

SCIJump provides the mechanism to start a parallel compaiter on shared
memory multi-processors computers, or clusters. SClIJumgists of a main frame-
work and a set of Parallel Component Loaders (PCLs). A PClbeastarted with ssh
on a cluster, where it gathers and reports its local compaeensitory and registers
to the main framework. The PCL on a N-node cluster is esdgnéi@et of loaders,
each running on a node. When the user requests to create &elpeoahponent,
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Fig. 1.6 The synchronization options given for (top to bottom) synchronausgthod), non-
blocking asynchronous (amethod) and oneway asynchronousa(method) parallel remote
method invocation.

the PCL instantiates a parallel component on its processesofles) and passes a
distributed pointer to the SClJump framework. PCLs areanasible for creating
and destroying components running on their nodes, but teptimaintain the port
connections. The SClJump framework maintains all compoimstances and port
connections.

Supporting threads and MPI together can be difficult. MPV/jates a convenient
communication among the processes in a cluster. Howeamyiprocess has more
than one thread and the MPI calls are made in those threadglRhcommunication
may break because MPI distinguishes only processes, maitdhr The MPI interface
allows an implementation to support threads but does nefired, allowing most
MPI implementations not to be threadsafe. We provide sugdpoboth threadsafe
and non-threadsafe MPIl implementations so that users carselany available MPI.

To address variability of MPI implementations and to optienarallel-to-parallel
component communication performance we provide threerdifft locking behav-
iors: "synchronous”, "nonblocking asynchronous”, and éaiay asynchronous” as
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shown in Figure 1.6. These are currently only provided inwaction with the Ba-
bel [12] SIDL compiler, whose facilities are integratedhiit SCIJump as a separate
component model. When Babel uses a wire protocol withoutatteewe con-
servatively allow only "synchronous” Parallel Remote Madhinvocation (PRMI).
Similarly, to allow asynchronous PRMI we require a versidrthe parallel library
(e.g. MPI, PVM) that is thread-safe. An example of the pregi@n of the thread of
execution for each type of method is given in Figure 1.6 anéxtanation of the
types of PRMI synchronization option we provide follows:

e synchronous These parallel invocations should work in all system envir
ments so they are built to work without any thread supporterEl threads exist
in the wire protocol, the parallel library may not be thresade so we synchronize
conservatively in order to get the right behavior in all séws. The conservative
synchronization style of these parallel invocation comessagnificant performance
cost.

e nonblocking asynchronous Nonblocking methods in Babel returnimmediately
when invoked and each method returns a ticket that can betasesit until the call
finishes or to periodically check its status. We extend thistmg ticket mechanism
from Babel nonblocking calls to additionally control oumimocking asynchronous
calls. This enables the caller to use a ticket to check thastd an invocation. For
parallel objects receiving invocations from multiple piess we provide a guarantee
that two method calls coming from the same proxy (caller) @iecute in order and
will be non-overtaking on the callee.

e oneway asynchronous These methods are defined not to return any variable
or error condition to the caller, making them least synaedi Only 'in’ arguments
are allowed so the only guarantee we provide for these lisdering and non-
overtaking behavior of invocations coming from the saméecal

When designing PRMI, it is crucial to provide the user with agistent set
of guarantees. In the case of most programming languagesugon order is
something that a programmer relies on for program corrsstrié/hen programming
in a middleware that is multithreaded and offers supportaimroperation such as
PRMI, the invocation order given by a user should be preskrlrethe past we have
identified situations when some reordering may take platw@ih user awareness.
However, in implementing general PRMI, we choose not todepany invocations
and ensure that calls made on the proxy execute in order ogetiver. An object
may receive calls from multiple proxies, and we see no reaggnsynchronization
should preserve inter-proxy order. Therefore, our impletaition does not guarantee
invocation order from more than one proxy.

Some synchronization is necessary to provide single pnoxgciation ordering.
Another choice we make is to synchronize on the object (€phkale and never on
the caller side. Previous implementations have syncheohan the proxy (caller)
side, but in a threaded environment this is not necessaryel\Winate any proxy
synchronization for all but the conservative “collectivie¥ocations which have to
be deadlock free in the absence of threads.



CCALOOP Xiii

1.5 CCALOOP

Component frameworks aimed at scientific computing needuppart a growing
trend in this domain toward larger simulations that prodosae encompassing
and accurate results. The CCA component model has alreadyused in several
domains, creating components for large simulations iraghaccelerator design,
climate modeling, combustion, and accidental fires andoskphs [14]. These simu-
lations are often targeted to execute on sets of distribmedory machines spanning
several computational and organizational domains [1].dtbess this computational
paradigm a collection of component frameworks that are deoperate to manage
a large, long-running scientific simulation containing m@oemponents are neces-
sary.

In each of the CCA-compliant component frameworks, faesitare provided to
support the collaboration among several distributed carapbframeworks. How-
ever, existing designs do not scale to larger applicatiows raultiple computing
resources. This is due to a master-slave (server-clientjramication paradigm. In
these systems, the master framework manages all the comtpaared their meta-
data while also handling communicating with the user thiotige GUI. The slave
frameworks act only as component containers that are caempleontrolled by the
master. This centralized design is simple to implement smbehavior is easy to
predict. As component and node numbers grow however, théemfaamework is
quickly overburdened with managing large quantities ohdatd the execution time
of the entire application is affected by this bottleneck. rbtaver, as simulation size
grows even further, the master-slave design can inhibietfi@ency of future scien-
tific computing applications. We present an alternativegiethat is highly scalable
and retains its performance under high loads. In additidhécscalability problem,
the master framework presents a single point of failure pihasents an additional
liability for long-running applications and simulations.

A component framework’s data may be queried and modified bsea tihrough
provided user interfaces and by executing components. tndases it is imperative
that the framework is capable of providing quick responseteu heavy loads and
high-availability to long running applications. The godlaur work is to present
distributed component framework design as the solutioretersl key issues. The
system described in this paper is architected to:

1. Scale to a large number of nodes and components.

2. Maintain framework availability when framework nodes mining and leaving
the system and be able to handle complete node failures.

3. Facilitate multiple human users of the framework.

4. Support the execution and instantiation of SPMD paralehponents. Our
distributed component framework, CCALoop, is self-orgarg and uses an
approach that partitions the load of managing the compsnienall of the
participating distributed frameworks.
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The responsibility for managing framework data is dividedoag framework
nodes by using a technique called Distributed Hash TablésT§}9]. CCALoop
uses a hash function available at each framework node thgt anspecific component
type to a framework node in a randomly distributed fashiorhisToperation of
mapping each component to a node is equally available abdksin the system.
Framework queries or commands require only one-hop routingCALoop. To
provide one-hop lookup of framework data we keep perfedrinftion about other
nodes in the system, all the while allowing a moderate noéng/leaving schedule
and not impacting scalability. We accommodate the podsiliiat a framework
node may fail or otherwise leave the system by creating réaotninformation and
replicating this information onto other frameworks.

1.5.1 Design

Current distributed framework design is inappropriatedocanmodating component
applications with numerous components that use many congptgsources. We
implemented a CCA-compliant distributed component fraorévealled CCALoop
that prototypes our design for increased framework sdéthalind fault tolerance.
CCALoop scales by dividing framework data storage and Ipotesponsibilities
among its nodes. It is designed to provide fault-toleramzbuminterrupted services
on limited framework failure. CCALoop also provides thelapio connect multiple
GUIs in order for users to monitor an application from muéipoints. While
providing these capabilities CCALoop does not add overmirel overhead or cost
to the user and satisfies framework queries with low latehrcyhis section we will
examine the parts that form the structure of this framewdtle begin by looking
more closely at the tasks and roles of a CCA-compliant corapbftamework.

The main purpose of a component framework is to manage asdrdirate data.
Some frameworks are more involved, such as Enterprise JaaasH7], but in this
work we focus on the ones in the style of CORBA [16] that do mb¢rifere with
the execution of every component. This kind of a componarh&work performs
several important tasks in the staging of an application gets out of the way of
the actual execution. Executing components may accessahefork to obtain
data or to manage other components if they choose to, butdtissually necessary.
CCA-compliant frameworks also follow this paradigm as itame low overhead and
better performance.

CCA-compliant frameworks store two types of data: statit@mamic. The ma-
jority of the data is dynamic, which means that it changesasipplication changes.
The relatively small amount of static data describes théahla components in the
system. In a distributed setting, static data consists efa¥ailable components
on each distributed framework node. The dynamic data rafrges information
on instantiated components and ports to results and erresages. A significant
amount of dynamic data is usually displayed to the user vidJa (B our design, we
distribute management of framework data without relocatiomponents or forcing
the user to instantiate components on a specific resoureeudér is allowed to make
his or her own decisions regarding application resourcgeisa
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One of the principal design goals of CCALoop is to balancddhd of managing
component data and answering queries to all participatargéworks. This is done
by using the DHT mechanism where each node in the systemignassa unique
identifier in a particular identifier space. This identifisrchosen to ensure an even
distribution of the framework identifiers across the idéatispace. We provide an
operation that hashes each component type to a number idehgfier space. All
metadata for a given component is stored at the framework ndubse identifier is
the successor of the component hash as shown in Figure .1.@&(egn a random
hash function the component data is distributed evenlysadioe framework nodes.
The lookup mechanism is similar to the storage one: to germmétion about a
component, we compute its hash and query the succeedingvraiik node.

hash values
0-25

hash values
75 - 100(0)

hash values
50 - 75
(LinearSolver)

hash values
50-75

hash(“LinearSolver”) = 56

(@) (b)

Fig. 1.7 (a) Framework data replication across node’s two successsr Shown as
node 25 is leaving the system and before any data adjustmertiave been made.
(b) The data responsibilities of the CCALoop framework with four nodes.

1.5.1.1 Loop Structure CCALoop’s framework nodes are organized in a ring
structure in topological order by their identifier numbdgésach framework node has
a pointer to its successor and predecessor, allowing théaispan the identifier space
regardless of how the system may change or how many nodés iexé&ggiven time.
CCALoop also facilitates a straightforward way of recomgrfrom node failure, by
naturally involving the successor of the failed node to Ineemew successor to the
gueried identifier. Use of a loop structure with a DHT lookagommonly found in
several peer-to-peer systems such as Chord [21].

Adding framework nodes to the system splits the respoiitgiior framework
data between the joining node and its current owner. It isadtep process that
begins at any already connected node in the system. Thetégsisassigning an
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identifier to the joining node that best distributes the soatross the identifier space.
The identifier in the middle of the largest empty gap betwemfes is selected based
on the queried framework node’s information. Later, we exiplain how every node
in the system contains perfect information about the eméstef other nodes in the
distributed framework. Apart from a well-chosen identifigre node is given the
address of its predecessor and successor. The second $tefhis joining node
to inform the predecessor and successor that it is abouirtdatje network so that
they can adjust their pointers. This step also resolvesictmthat may occur if two
joining frameworks are assigned the same identifier in tisé $sbep by two separate
nodes. If this conflict occurs, one of the nodes is assigneshadrentifier and forced
to repeat the second step. Removing nodes in the systeméhappbsite effect as
adding nodes: the successor of the leaving node becomemsiisie for the vacated
identifier space and associated framework data.

Periodically, nodes invokestabilize()method that ensures that the successor and
predecessor of that node are still alive. If one or both hdsdiathe node adjusts
its predecessor or successor pointer to the next availafale. nSince perfect loop
membership information is kept at every node, finding the nexe in the loop is
straightforward. The process of updating predecessor@ussor pointers ensures
that the loop structure is preserved, even when framewodesiteave the system.
When a node leaves and this readjustment takes place, th#iatafistribution may
become unbalanced. This will last until a new framework goiwhen it will be
instructed to fill the largest current gap in the identifieasp

In order to enable seamless functioning of CCALoop duriramiework node
failure we replicate the data across successor nodes, sd thramework fails,
its successor is able to assume its responsibilities. Tableta handle multiple
simultaneous failures we can increase the number of susrsassvhich we replicate
the framework data. This incurs a bandwidth cost propoafi®do the number of
replicas. If a node joins or leaves the system, some datgustatent is performed to
ensure that the replication factor we have chosen is rest@@€ALoop targets the
high-performance scientific computing domain, which ussichted machines with
high availability. Machine failures or intermittent netdailures are possible, but
infrequent. Because of this, we are content with providimg or three replicas for a
particular framework node’s data. Figure 1.7(a) shows amgte of data replication
across two successors as a node leaves the framework.

1.5.1.2 One-hop Lookup An advantage of our distributed framework design is
the ability for nodes to contact other nodes directly, ootiygh “one-hop”. The
one-hop mechanism was initially designed as an altern&iveéhord’s multi-hop
guery design [10]. One-hop lookup enables low latency qagryvhich is important

in maximizing performance to components in a distributeanfiework. In order to
support one-hop lookups, full membership awareness isnegljin the framework;
every node needs to keep updated information about all oibees in the system.
There is certainly a cost to keeping this information curierthe framework and it

is proportional to the joining and leaving (turnover) rates with data replication,
our expectation is that framework nodes comprising a CCwal@nt distributed
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framework will not have the same framework turnover raterasaf the popular file
sharing networks, where turnover is an issue. Thereforedesign is unlikely to
encounter very high levels of node turnover. When node twendees occur, our
distributed framework would provide graceful performadegradation.

CCALoop uses a multicast mechanism to provide easy and glisslemination
of membership information. This mechanism creates a treetste to propagate
node leaving and joining information to all nodes in the syst We divide our loop
structure into a number of slices, and assign a “slice Iéaumte to each slice. In
CCALoop, the slice leader is the node with the smallest ifientn the slice. When
a node joins the framework, its successor contacts thelskaker. The slice leader
distributes this information to all other slice leaders adlwas all the other nodes
in the slice. Finally, each slice leader that received thesage propagates it to all
members of its slice. This hierarchy enables faster merhlpeopagation which
in turn enables CCALoop to reach a steady state faster. idddity, this reduces
errant queries as well as providing the means for low-laterocess to framework
node.

1.5.1.3 Multiple GUIs Providing a graphical user interface is an important role
of a scientific component framework. A framework’s user tefasted in assembling

a simulation, steering it, and analyzing intermediate andlfresults. In large,
cross-organizational simulations several users may needanage a simulation,
and several others may be interested in viewing the resBltste of the art CCA-
compliant scientific computing frameworks provide the dalitg to attach multiple
GUIs and users. However, each of these frameworks proviggscapability only

at the master node, which hinders scalability as previodslgussed. One of the
opportunities and challenges of a scalable distributadérmork like CCALoop is to
handle multiple GUIs.

CCALoop allows a GUI to attach to any cooperating framewa#e A user is
allowed to manage and view the simulation from that node. Wheltiple GUls are
present, we leverage the slice leader multicast mechawmististribute information
efficiently to all frameworks with GUIs. We establish a gealegvent publish-
subscribe mechanism with message caching capability arateca specific event
channel for GUI messages. Other channels may be createdvioesether needs.
GUIs on which some state is changed by the user are evenspatsi while all the
other GUIs in the system are subscribers. We route messegasplublishers to
subscribers through the system by passing them throughlshclers while ensuring
that we are not needlessly wasting bandwidth. All messagesached on the slice
leader of the originating slice of nodes.

The reason we use the hierarchical mechanism to transfem@&dsages over a
more direct approach is to cache the GUI state of the framlew&CALoop provides
a mechanism that is able to update a GUI with the current atags this GUI joins
after some user operations have already occurred. To grépathis scenario, we
continuously cache the contribution to the GUI state froghesice at its slice leader.
This is advantageous since we expect GUIs to often join astm@dm, then leave the
system, and possibly return.
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An additional concern with multiple distributed GUIs is threler of state-changing
operations. We use a first-come-first-serve paradigm aod a&Very GUI to have
equal rights. A more complex scheme is possible and wouldseéuly but that is
outside the scope of this paper.

1.5.1.4 Parallel Frameworks To support CCAs choice of SPMD-style parallel
components, a framework needs to be able to create a comamamisuch as an
MPI Communicator which identifies the set of components that are executing in
parallel and enables their internal communication. Thisrimal (inter-process) com-
munication is embedded in the algorithm and it is necessarglmost any parallel
computation. To produce this communicator a frameworkfitseeds to be exe-
cuting in parallel: In order to execute the component in rave first execute
the framework in parallel. A parallel framework exists aseaaurce onto which
parallel components can execute. Parallel component cameation and specifi-
cally parallel remote method invocation can be quite cormalel it has been studied
extensively [2].

A concern of this work is the inclusion of parallel framewsri a distributed
framework environment involving many other parallel and+parallel frameworks.
The parallel framework can be handled as one frameworkyentih one identifier
or it can be considered as a number of entities correspondirtbe number of
parallel framework processes. We choose to assign onéfidetd the entire parallel
framework to simplify framework-to-framework interaatioThis needs to be done
carefully, however, to ensure that communication to athfj@rcohorts is coordinated.
By leveraging previous work in the area of parallel remotehoé invocation we
gain the ability to make collective invocations. We use ¢hesllective invocations
to always treat the parallel framework as one entity in aithisted framework.

Even though we choose to treat all parallel framework preegss one parallel
instance, the component’s data that the framework stonmestismited to one entry
per parallel component. To enable a more direct communitatechanism, we need
to store an amount of data that is proportional to the numbpaillel processes of
the parallel component. Large parallel components areréfisignt reason that more
attention should be directed toward scalable distributedponent frameworks.

1.6 SUMMARY

We presented the SCIJump problem solving environment fientic computing.
SClJump employs components that encapsulate computhtioraionality into a
reusable unit. It is based on DOE’s CCA component standarét lBudesigned to
be able to combine different component models into a sinigleaV problem solving
environment.

Several features of SClJump were discussed: multiple caemgamodels, dis-
tributed computing support, and parallel components. @@plintegrates multiple
component models into a single visual problem solving emritent and builds
bridges between components of different component modiekis way, a number
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of tools can be combined into a single environment withogtinéng global adoption
of a common underlying component model. We have also dextatparallel com-
ponent architecture with several synchronization optiemd utilizing the common
component architecture, combined with distributed olsjecid paralleM « N array
redistribution that can be used in SCIJump. Lastly, we prieskour novel design for
scalability in component frameworks through our prototfraenework CCALoop.

A prototype of the SCIJump framework has been developedwarate using this
framework for a number of applications in order to demonst&CIJump’s features.
Future applications will rely more on the system, and witlilitate joining many
powerful tools, such as the SCI Institutes’ interactive-ti@ging system [23, 22]
and the Uintah [24, 6] parallel, multi-physics system. Aidlial large scale com-
putational applications are under construction and arinbeyy to take advantage
of the capabilities of SCIJump. The design prototyped by C&zp which will
greatly increase the scalability of SCIJump in order to suptine future generation
application will be added in the future.
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