
This is page 1Printer: Opaque this1The SCIRun ComputationalSteering Software SystemSteven G. Parker1David M. Weinstein2Christopher R. Johnson34ABSTRACTWe present the design, implementation and application of SCIRun, a sci-enti�c programming environment that allows the interactive construction,debugging, and steering of large-scale scienti�c computations. Using this\computational workbench," a scientist can design and modify simulationsinteractively via a dataow programming model. SCIRun enables scien-tists to design and modify model geometry, interactively change simulationparameters and boundary conditions, and interactively visualize geomet-ric models and simulation results. We discuss the ubiquitous roles SCIRunplays as a computational tool (e.g. resource manager, thread scheduler,development environment), and how we have applied an object orienteddesign (implemented in C++) to the scienti�c computing process. Finally,we demonstrate the application of SCIRun to large scale problems in com-putational medicine.1.1 Introduction1.1.1 Visual Computing and Interactive SteeringIn recent years, the scienti�c computing community has experienced anexplosive growth in both the possible size and the possible complexity ofnumeric computations. One of the signi�cant bene�ts of this increased com-puting power is the ability to perform complex three-dimensional simula-tions. However, such simulations present new challenges for computationalscientists. How does one e�ectively analyze and visualize complex 3D data?How does one solve the problems of working with very large datasets often1Email: sparker@cs.utah.edu.2Email: dweinste@cs.utah.edu.3Email: crj@cs.utah.edu.4Department of Computer Science, University of Utah, Salt Lake City, Utah, 84112,US.



2 S.G. Parker, D.W. Weinstein, C.R. Johnsonconsisting of tens to hundreds of gigabytes? How does one provide tools thataddress these computational problems while serving the needs of scienti�cusers?Scienti�c visualization clearly plays a central role in the analysis ofdata generated by scienti�c simulations. Unfortunately, though visualiza-tion may in itself be more computationally intensive than the original sim-ulation, it is often performed only as a mystical post-processing step aftera large-scale computational batch job is run. For this reason, errors inval-idating the results of the entire simulation may be discovered only duringpost-processing. What is more, the decoupling of simulation and visualiza-tion presents serious scienti�c obstacles to the researcher. A visualizationpackage may provide only a limited data analysis capability and may bepoorly matched to the underlying physical models used in the simulationcode. As a result, the researcher may expend signi�cant e�ort trying to usea data analysis package only to walk away frustrated.In 1987, the Visualization in Scienti�c Computing (ViSC) workshop re-ported [2]:Scientists not only want to analyze data that results from super-computations; they also want to interpret what is happeningto the data during super-computations. Researchers want tosteer calculations in close-to-real-time; they want to be able tochange parameters, resolution or representation, and see thee�ects. They want to drive the scienti�c discovery process; theywant to interact with their data.The most common mode of visualization today at national su-percomputer centers is batch. Batch processing de�nes a se-quential process: compute, generate images and plots, and thenrecord on paper, videotape or �lm.Interactive visual computing is a process whereby scientists com-municate with data by manipulating its visual representationduring processing. The more sophisticated process of navigationallows scientists to steer, or dynamically modify computationswhile they are occurring. These processes are invaluable toolsfor scienti�c discovery.Although these thoughts were reported close to ten years ago, they ex-press a very simple and still current idea: scientists want more interactionthan is currently present in most simulation codes. While the scienti�ccomputing community is still trying to �nd better ways to address theseneeds, we feel that the problems encountered by computational scientistsencompass a wider range of issues, including but not restricted to scienti�cvisualization. Our e�orts, therefore, include a diverse range of techniques,including, among others, the use of scripting languages, existing software,



1. SCIRun 3visual dataow programming, and a sophisticated system designed exclu-sively for computational steering. In this chapter, we focus on the latter,the SCIRun5[1] computational steering software system.SCIRun is a scienti�c programming environment that allows the inter-active construction, debugging and steering of large-scale scienti�c compu-tations [3]. SCIRun can be envisioned as a \computational workbench,"in which a scientist can design and modify simulations interactively viaa dataow programming model. SCIRun enables scientists to modify geo-metric models and interactively change numerical parameters and bound-ary conditions, as well as to modify the level of mesh adaptation neededfor an accurate numerical solution. As opposed to the typical \o�-line"simulation mode - in which the scientist manually sets input parameters,computes results, visualizes the results via a separate visualization package,then starts again at the beginning - SCIRun \closes the loop" and allowsinteractive steering of the design, computation, and visualization phases ofa simulation.The dataow programming paradigm has proven useful in many applica-tions. In the scienti�c community, it has been successfully applied in severalscienti�c visualization packages, including AVS from Advanced Visual Sys-tems Inc., and Iris Explorer from SGI. We have extended the use of thedataow programming model into the computational pieces of the simu-lation. To make the dataow programming paradigm applicable to largescienti�c problems, we have identi�ed ways to avoid the excessive memoryuse inherent in standard dataow implementations, and we have imple-mented �ne-grained dataow in order to further promote computationale�ciency.1.1.2 An Iterative Environment for Scienti�c ComputingCurrently, the typical process of constructing a computational model con-sists of the following steps:1. Create and/or modify a discretized geometric model;2. Create and/or modify initial conditions and/or boundary conditions;3. Compute numerical approximations to the governing equation(s),storing results on disk;4. Visualize and/or analyze results using a separate visualization pack-age;5. Make appropriate changes to the model; and5SCIRun is pronounced\ski-run" and derives its name from the Scienti�cComputingand Imaging (SCI) research group which is pronounced \ski" as in \ski Utah."



4 S.G. Parker, D.W. Weinstein, C.R. Johnson6. Repeat.The \art" of obtaining valuable results from a model has up until nowrequired a scientist to execute this process time and time again. Changesmade to the model, input parameters, or computational processes are typi-cally made using rudimentary tools (text editors being the most common).Although the experienced scientist will instill some degree of automation,the process is still time consuming and ine�cient. Ideally, scientists and en-gineers would be provided with a system in which all these computationalcomponents were linked, so that all aspects of the modeling and simulationprocess could be controlled graphically within the context of a single ap-plication program. While this would be the preferred modus operandi formost computational scientists, it is not the current standard of scienti�ccomputing because the creation of such a program is a di�cult task.Di�culties in creating such a program arise from the need to integratea wide range of disparate computing disciplines (such as user interfacetechnology, 3D graphics, parallel computing, programming languages, andnumerical analysis) with a wide range of equally disparate application disci-plines (such as medicine, meteorology, uid dynamics, geology, physics, andchemistry). Our approach to overcoming these di�culties is to separate thecomponents of the problem. SCIRun's dataow model employs \modules"that can be tailored for each application or computing discipline. Althoughthis method is proving successful at partitioning many of the complexities,we have found that some complexities remain, such as the burdens of par-allel computing and user interfaces. Much work goes into simplifying theprogramming interfaces to these features so that they will be used, ratherthan ignored, by module implementors.1.1.3 SteeringThe primary purpose of SCIRun is to enable the user to interactively con-trol scienti�c simulations while the computation is in progress [4, 5]. Thiscontrol allows the user to vary boundary conditions, model geometries,or various computational parameters during simulation. Currently, manydebugging systems provide this capability in a very raw, low-level form.SCIRun is designed to provide high-level control over parameters in an ef-�cient and intuitive way, through graphical user interfaces and scienti�cvisualization. These methods permit the scientist or engineer to \close theloop" and use the visualization to steer phases of the computation.The ability to steer a large scale simulation provides many advantages tothe scienti�c programmer. As changes in parameters become more instan-taneous, the cause-e�ect relationships within the simulation become moreevident, allowing the scientist to develop more intuition about the e�ect ofproblem parameters, to detect program bugs, to develop insight into theoperation of an algorithm, or to deepen an understanding of the physics of



1. SCIRun 5the problem(s) being studied.The scienti�c investigation process relies heavily on answers to a rangeof \What if?" questions. Computational steering allows these questions tobe answered more e�ciently and therefore to guide the investigation as itoccurs.1.2 Requirements of SCIRun as a ComputationalSteering SystemInitially we designed SCIRun to solve speci�c problems in ComputationalMedicine [6, 7, 8, 9], but we have made extensive e�orts to make SCIRun ap-plicable in other computational science and engineering problem domains.In attacking the speci�c problems, we found that there were a wide range ofdisparate demands placed on such a system. Each of these demands revealsa di�erent facet of what we call SCIRun.1.2.1 SCIRun the Operating SystemIn a sophisticated simulation, each of the individual components (model-ing, mesh generation, nonlinear/linear solvers, visualization, etc.) typicallyconsumes a large amount of memory and CPU resources. When all of thesepieces are connected into a single program, the potential computationalload is enormous. In order to use the resources e�ectively, SCIRun adoptsa role similar to an operating system in managing these resources. SCIRunmanages scheduling and prioritization of threads, mapping of threads toprocessors, inter-thread communication, thread stack growth, memory al-location policies, and memory exception signals (such as segmentation vi-olations).1.2.2 SCIRun the Scienti�c LibrarySCIRun uses a visual programming interface to allow the scientist to con-struct simulations through powerful computational components. While thevisual programming environment is the central focus of SCIRun, it requiresa powerful set of computational tools. In the �rst stage of SCIRun, we haveconcentrated on integrating the computational components that we haveused to solve our own computational problems. We have recently expandedfocus and are now in the process of integrating popular libraries and tools,such as Di�pack [10, 11], SparseLib++ [12], and PETSc [13, 14] into theSCIRun environment.



6 S.G. Parker, D.W. Weinstein, C.R. Johnson1.2.3 SCIRun the Development EnvironmentPerhaps the most powerful facet of SCIRun is the ability to use it in thedevelopment phases of a simulation. SCIRun augments the developmentenvironment by providing convenient access to a powerful set of computa-tional components. However, these components could never be comprehen-sive, so SCIRun also provides an environment whereby new modules can bedeveloped e�ciently. If a module triggers a segmentation violation, bus er-ror or failed assertion, SCIRun stops the module at the point of error, thusallowing the developer to attach a debugger to the program at the pointof failure. This avoids the frustrating experience of trying to reproducethese errors in the debugger. In addition, SCIRun provides simple instru-mentation of module performance (CPU times printed out interactively),feedback execution states (waiting for data, percent completed, etc.), andvisualization of memory usage. SCIRun employs dynamic shared librariesto allow the user to recompile only a speci�c module without the expense ofa complete re-link. Another SCIRun window contains an interactive promptwhich gives the user access to a Tcl shell that can be used to interactivelyquery and change parameters in the simulation.1.2.4 Requirements of the ApplicationSCIRun is not magic { it is simply a powerful, expressive environmentfor constructing steerable applications, either from existing applications orstarting from the ground-up. The application programmer must assumethe responsibility of breaking up an application into suitable components.In practice, this modularization is already present inside most codes, since\modular programming" has been preached by software engineers as a sen-sible programming style for years.More importantly, it is the responsibility of the application programmerto ensure that parameter changes make sense with regard to the underlyingphysics of the problem. In a CFD simulation, for example, it is not phys-ically possible for a boundary to move within a single timestep without adramatic impact on the ow. The application programmer may be bettero� allowing the user to apply forces to a boundary that would move theboundary in a physically coherent manner. Alternatively, the user couldbe warned that moving a boundary in a non-physical manner would causegross errors in the transient solution.1.3 Components of SCIRunIn order to implement the requirements described above, we have brokendown SCIRun into a layered set of libraries. These libraries are organizedas shown in Figure 1.1.



1. SCIRun 7
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Classlib, Geometry, Malloc, Math, etc.FIGURE 1.1. SCIRun library organization.SCIRun uses an object oriented design; however, it should be stressedthat we have paid careful attention to avoid over-using the object orientedparadigm to a point that e�ciency su�ers.In implementing the SCIRun kernel and modules, we leverage o� of apowerful toolbox of C++ classes that have been tuned for scienti�c comput-ing and operation in a multi-threaded environment.We discuss these classesbelow, starting with the lowest level library and proceeding to more com-plex libraries. We describe each of the toolbox components here, startingwith the lowest layer. In discussing higher layers, we describe how featuresof the lower layers are leveraged to facilitate implementation.1.3.1 Malloc, operator new: libMallocWe have encountered several problems with the implementations ofmalloc/free and new/delete that are available on current Unix systems.Di�culties with the current implementations of malloc and new include:1. They are not robust against erroneous behavior. This is particularlyconfusing when the user's program crashes in malloc, while the ac-tual error resulted from freeing a bad pointer in a previous call. Amultithreaded environment further exacerbates this problem, allow-ing errors in one thread to cause another thread to crash.2. They are not thread-safe (reentrant) on many systems. This is typi-cally the case on systems without a native implementation of threads.Accessing malloc and free in such an environment can cause fre-quent non-deterministic crashes.3. They do not reveal statistics about their operation.4. They do not return memory to the operating system when it is nolonger being used.



8 S.G. Parker, D.W. Weinstein, C.R. Johnson5. They are very slow when allocating and deallocating large numbersof small objects.6. They have a large percentage of memory overhead for small objects.Of course, the goal would be to resolve all of these problems, but we �ndthat many of the requirements conict. For example, it is di�cult to havebullet-proof behavior against errors without incurring additional overhead,even for small objects.The implementation of libMalloc centers around the Pool class. Poolde�nes a constructor and destructor, as well as the methods alloc, free,realloc, get stats and audit as shown below.class Pool fPool();~Pool();Mutex lock;void* alloc(size_t size, char* ctag, int itag);void free(void* p);void* realloc(void* p, size_t size);void audit();void get_stats(size_t statbuf[18]);int nbins();void get_bin_stats(int bin, size_t statbuf[6]);...g;Pool represents a pool of memory. At startup, there is a single pool,default pool, from which requests from malloc and new are granted. Theimplementations of malloc and the new operator simply call the allocmethod of the default pool. Subsequently, the free and operator deletemethods call the free method of the default pool. The default malloc andoperator new provide generic information as the two tags for the allocation,but there are alternate interfaces that automatically provide the �le andline number for these tags.The alloc method uses three slightly di�erent memory allocation al-gorithms for small, medium and large objects. Based on heuristics fromcurrent applications, small objects are those less than 512 bytes, mediumobjects range from 513 bytes-64k bytes, and large objects are those over64k bytes. These ranges are con�gurable at compile time.Small and medium objects both use an algorithm based on bins. A bincontains a list of free objects. When free space is requested, alloc �guresout which bin contains objects of the appropriate size, and the �rst onefrom the list is removed. Sentinels are placed at the beginning and at theend of the actual allocation. Small and medium bins di�er in how thebins are re�lled when they become empty. Small bins use an aggressive�ll scheme, where 64k worth of objects are placed in the bin's free list



1. SCIRun 9in order to minimize the number of re�lls. Medium objects, on the otherhand, use a less aggressive scheme - objects are allocated from a largerpool one at a time. Large objects are allocated with independent mmapcalls to the operating system. This allows the large objects to be returnedto the operating system when they are no longer needed. In order to avoidreleasing and re-requesting memory, these large chunks are returned to theoperating system (unmapped) in a lazy fashion. It is possible for this policyto fragment the address space of the program, but in practice this has notbeen a problem, and will never be a problem for 64 bit programs.The algorithms for the three di�erent allocation ranges are based on thephilosophy that bigger objects can a�ord to use more CPU cycles in tryingto be e�cient, since large objects will be allocated less frequently and usedfor a longer period of time. It is also more valuable to minimize waste forlarge objects than for small allocations.In order to make the pool thread safe, each of the methods acquires themutex before accessing or modifying any data in the Pool, and releasesthe mutex when these operations are complete. The alloc and releasemethods attempt to minimize the time that the pool is locked by perform-ing most operations (tag/header manipulation, veri�cation, etc.) withoutholding the lock.This implementation resolves all of the problems that we described above,except for items �ve and six. The memory overhead (item six) is approx-imately the same as current implementations, and the time overhead forsmall objects (item �ve) is considerably smaller, but still too large. In thenext section, we will see a mechanism that may be layered on top of lib-Malloc to resolve these problems.This memory allocator can also reveal statistics about its operation. Fig-ure 1.2 shows these statistics displayed by a running program.1.3.2 The Multitask Library: libMultitaskSCIRun derives much of its exibility from its internal use of threads [15].Threads allow multiple concurrent execution paths in a single program.SCIRun uses threads to facilitate parallel execution, to allow user interac-tion while computation is in progress, and to allow the system to changevariables without interrupting a simulation. However, standards for imple-menting threads are only starting to appear, and the standards that areappearing are, thus far, cumbersome. libMultitask is a layer that providesa simple, clean C++ interface to threads and provides abstraction from theactual standard used to implement them.TasksThe Multitask library provides a class Task, which encapsulates a thread.The Task constructor requires a name for the Task and a priority. A new
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FIGURE 1.2. Statistics of the custom allocator, showing bytes allocated andfreed, high water marks, and spinlock statistics. Some of these statistics are alsodisplayed for each bin. To the right of each bin a small graph shows the objectsin the freelist and the objects in use for each range of sizes.thread is created when the creator calls the activate method of the Taskclass, which will cause the body method to be started in a separate thread.Activate will return immediately and will not wait for body to complete- thus triggering concurrent execution in the program, similar to a fork()operation. However, all of the threads (Tasks) will share access to a commonheap - unlike the traditional fork() function.Task is an abstract base classbecause it does not actually provide a body function. Other classes inheritfrom Task, providing a body function to do the actual work of the thread.The thread continues until the body function returns, or until Task::exitis called.Task also provides static functions to return the number of processorsavailable on the system, to start-up multiple threads for a function, and tocause all threads to exit.



1. SCIRun 11Intertask CommunicationThe Multitask library also provides a number of convenient synchronizationprimitives for these tasks to communicate with each other { Inter-TaskCommunication (ITC). ITC primitives are:� Mutex provides lock, try lock and unlock methods.� Semaphore is a counting semaphore, providing down, try down andup methods.� Barrier provides a single wait(int nwait) method to allow a groupof threads to stop executing at the barrier until all nwait threadsarrive.� ConditionVariable provides wait(Mutex& lock), cond signal andcond broadcast methods.� CrowdMonitor a multiple-reader, singler-writer access control prim-itive, provides read lock, read trylock, read unlock,write lock, write trylock and write unlock methods.� Mailbox a �xed-length, thread-safe FIFO (First-In, First-Out com-munication pipe), allows multiple senders and multiple receivers. Thisis a template class that provides send, try send, receive andtry receive methods. The mailbox allows multiple threads to sendtokens to the mailbox and an arbitrary number of threads to receivetokens from the mailbox. These tokens are typically pointers to amessage structure. Using this primitive, one can implement threadswhich behave like a small server.� Other structures, including AsyncReply which provides a single pi-geon hole rendezvous point, and classes to perform reduction opera-tions.The Task and ITC methods have been implemented in four di�erentenvironments: SGI IRIX (using sproc and us* primitives), and with Posixthreads (aka pthreads), with Solaris threads, and with setjmp/longjmp.1.3.3 Generic Tools: libClasslibThis is a collection of various tools that are valuable in constructingSCIRun's kernel and computational modules. Some of these data structuresoverlap those available in the Standard Template Library (STL)[16], butour implementation predates common acceptance of STL. In implement-ing these, we have not tried to make extravagant general-use interfaces.Rather, we have designed our tools to be simple, easy to use, and e�cient.We have also designed these interfaces to perform the operations that we



12 S.G. Parker, D.W. Weinstein, C.R. Johnsonrequire, avoiding the temptation to over-engineer them. Data structuresthat we have implemented include an unbounded queue, a bounded stack,a dynamic hashtable, and a dynamic array class. These structures use tem-plates to make them usable as containers for any type.TrivialAllocatorAnother useful tool is the TrivialAllocator class. This class is designed toincrease the e�ciency of the new/delete operator for small objects thatare allocated and deleted frequently. The TrivialAllocator simply keeps alist of free objects that are ready to be used. Using the TrivialAllocator fora particular class simply requires rede�ning the operator new and operatordelete methods to use the alloc and free methods of the TrivialAlloca-tor. Using Small alloc.alloc is signi�cantly more e�cient than using thegeneral operator new, because most of the time it simply returns the �rstitem o� of the free list. Objects are allocated in groups, using the secondparameter to the constructor as the number of objects to be allocated at atime. Small alloc.free always just puts the object back on the free list.The free list is accessed in a last-in/�rst-out manner to maximize cachelocality. Since these will be used in a multithreaded environment, allocand free both require the acquisition and release of a mutex. However,this is a separate mutex from the global allocator, so it will not be subjectto the same contention.This tool allows us to work around the per-object overhead and allocationtime required for small, high-use objects. However, it does so at the expenseof the overrun detection and consistency checks that our implementationof new/delete provides. A future implementation will provide a mecha-nism by which trivial allocators can be disabled through an environmentvariable - reducing run time performance, but allowing the consistencychecks to be made.Handles and LockingHandlesHandles are a \smart pointer" mechanism for automatically maintainingreference counts in objects [17]. SCIRun uses these to facilitate the sharingof large data structures between modules. The last Handle to \let go" isresponsible for deleting the object. Reference counting provides a simpleform of garbage collection, without the high overhead and unpredictabil-ity associated with a full garbage collection system. The largest weaknessis that reference counting can fail to destroy objects which contain circu-lar references (including circular lists, self references, and back pointers).However, it does provide the advantage that objects are destroyed immedi-ately when the last handle releases the object. This feature is essential forlarge scale scienti�c computing where the memory resources held by sucha handle need to be carefully controlled.A handle contains a single data member rep, which contains a pointer



1. SCIRun 13to the actual representation. It also de�nes constructors, a destructor andaccessor methods that increment and decrement a reference count in theobject. The objects used in a handle must provide a member called ref cnt,which is initialized to zero at construction time. In addition, objects whichsupport the detach operation must support a clone method which willduplicate the object. Since template syntax is sometimes rather clumsy, itis often convenient to typedef a \smart pointer" type for di�erent objecttypes, such as:typedef LockingHandle<Object> ObjectHandle;A LockingHandle is similar to Handle, but with each object also provid-ing a mutex that is locked under all of the ref cnt operations. For moredetails, see Appendix A.TimersTwo very convenient classes are the CPUTimer and the WallClockTimer.These provide a stopwatch interface to acquire time information. Methodsinclude start, stop, clear, and time. The time method simply returnsthe total accumulated time between start and stop pairs. Typically, thesetimers access the Unix timer functions appropriate for the operating sys-tem, but they can also utilize a high resolution user-space mappable timeron systems that support it.Persistent ObjectsModern scienti�c computing codes use modern data structures that aregenerally more complex than a large array of numbers. We needed a facilityto save complex data structures on disk. In order to solve this problem, weemployed the idea of \persistent objects," where complex data structurescan be attened into a data �le and then reconstructed into their originalform. Since C++ does not support persistent objects automatically, wedesigned a set of utilities to make these input and output routines in asimple manner.There are three di�erent levels on which the persistent I/O routinesoperate:1. Primitive: There is an overloaded global function, Pio, for each ofthe basic types (oat, double, int, etc.), which can both read andwrite these primitive types.2. Simple Structure: For basic structures without class derivations,the user can overload a global Pio function to serialize these objects.Usually, this function just calls Pio on each of the individual dataelements.3. Complex Structure: For a complicated class hierarchy, the userwrites a virtual io function which emits a class name and version



14 S.G. Parker, D.W. Weinstein, C.R. Johnsonnumber, then the io method for the superclass, and then calls otherPio functions on the individual components.The basic stream I/O routines support both binary �les and somewhathumanly readable text �les. Binary input and output uses the Sun Mi-crosystem's XDR library for portable binary I/O, which allows us to move�les between di�erent architectures without the need to convert to ASCIItext. Binary �les are sometimes smaller, and are always a factor of 3-5faster in reading and writing. In addition, we support versioning of objectsso that we can change the data structures in the code without requiringthe conversion of all old data �les.To illustrate the simplicity of reading and writing objects in this manner,consider an example of a 3D tetrahedral mesh:class Mesh fArray1<Node*> nodes;Array1<Element*> elems;...g;#define MESH_VERSION 1void Mesh::io(Piostream& stream)f stream.begin_class("Mesh", MESH_VERSION); // identify type & versionPio(stream, nodes); // read/write the nodesPio(stream, elems); // read/write the elementsstream.end_class();g The Array1 classes know how to read and write themselves:template<class T>void Pio(Piostream& stream, Array1<int>& array)f stream.begin_class("Array1", ARRAY1_VERSION); // id the type & versionint size=array._size; // grab the size of the array...Pio(stream, size); // ...and write itif(stream.reading()) // if we're reading...array.resize(size); // ...allocate space for objectsfor(int i=0;i<size;i++)Pio(stream, array.objs[i]); // read/write all of the objectsstream.end_class();g and the Node/Element classes know how to read and write themselves:



1. SCIRun 15void Pio(Piostream& stream, Node*& node)f stream.begin_cheap_delim();if(stream.reading()) // if we're reading...node=new Node(); // ...allocate a new nodePio(stream, node.pt); // read/write the node's locationstream.end_cheap_delim();gvoid Pio(Piostream& stream, Element* elem)f if(stream.reading()) // if we're reading...elem=new Element(); // ...allocate a new elementstream.begin_cheap_delim();Pio(stream, elem->n[0]); // read/write all of thePio(stream, elem->n[1]); // indices for the fourPio(stream, elem->n[2]); // nodes composing thePio(stream, elem->n[3]); // tetrahedral elementstream.end_cheap_delim();g It is important to remember that these small functions will both readand write the mesh for both binary �les and text �les. This feature virtuallyeliminates the potential for incompatibilities between the reading code andthe writing code. However, the real power comes when we emit a scalar�eld based on these meshes:class ScalarFieldUG : public ScalarField fMeshHandle mesh;Array1<double> data;...;g;void ScalarFieldUG::io( Piostream& stream)f stream.begin_class("ScalarFieldUG", SCALARFIELDUG_VERSION);ScalarField::io(stream); // This serializes the base classPio(stream, mesh); // read/write the meshPio(stream, data); // read/write the datag Then, we could emit multiple scalar �elds:Pio(stream, field1); // read/write field1Pio(stream, field2); // read/write field2



16 S.G. Parker, D.W. Weinstein, C.R. Johnson...In this example, the �elds might share a common mesh. In this case, themesh would be written into the �le only once. We have omitted many ofthe details of how this is implemented internally, but the Pio routines donot need to be concerned with this mechanism { it is handled internally bythe Piostream.We have found that this mechanism is a very powerful way to implementI/O for complex data structures. The versioning system allows us to usedata�les that were written years ago without converting them. Using thesame code for reading and writing drastically reduces the number of errorsin the input/output routines. In addition, this mechanism has increased theutility of binary �les by avoiding the need to write a separate I/O function.1.3.4 Geometry LibrarylibGeometry provides Point, Vector, Plane, Ray, Transform, andBoundingBox classes for convenient computation of 3D geometry. The ad-dition, subtraction, and multiplication operators have all been implementedto allow these components to be used in a convenient fashion.We have chosen to separate the concept of a Point from the concept ofa Vector [18]. For the sake of e�ciency, these are both specialized for 3dimensions, with an x, y, and z component. A Point di�ers from a Vectoronly in the operations that can be performed on it. A Point indicatesposition in 3D space, and a Vector indicates direction. A Point subtractedfrom another Point produces a Vector, a Vector added to another Vectorproduces aVector, and so forth. A cross product is de�ned only forVectors,since they do not make geometric sense for Points. This has proven to be auseful way to help the programmer reason about geometric transformationsand to write correct code for geometric manipulations.1.3.5 The Math LibrarylibMath provides a somewhat eclectic collection of various core numericalfunctions, such as Min, Max, and Abs, which have all been overloaded forvarious numerical types. libMath also contains several core linear algebraloops, such as dot products, vector-vector multiply, etc. These loops haveall been highly tuned to take maximumadvantage of various architectures.1.4 The Datatypes LibraryThe libraries described above are the building blocks from which theSCIRun kernel and SCIRun modules are created. The next layer consists



1. SCIRun 17of the Datatypes library. These datatypes are the data structures that getpassed from one SCIRun module to another. Reecting our work in FiniteElement Analysis, the Datatypes library has four main parts:1. Meshes: Unstructured tetrahedral meshes.2. Fields: Scalar and Vector �elds representing scalar and vector valuedfunctions of space. These are currently de�ned on regular grids or withper-element or per-node values on an unstructured mesh.3. Surfaces: Triangular mesh and parametric surface boundaries, op-tionally tagged with boundary condition information.4. Matrices: Dense, Compressed row storage (symmetric andnon-symmetric), Tridiagonal, and other matrix formats.The Datatypes library is a powerful set of data structures for scienti�ccomputing, but it also provides a powerful method of extending SCIRun. Atypical dataow oriented program can be extended by adding new modulesto implement new algorithms. However, SCIRun can be extended by ex-tending the abstract interfaces in the Datatypes library to operate on otherdata formats. For example, one could make a new Field datatype which im-plements the ScalarField interface for some type of spectral method. Thenmost downstream modules would be able to operate on the data withoutmodifying those modules and without converting and duplicating the data.Note that we are careful to say \most of the time." There are times whenwe violate these abstract interfaces for e�ciency purposes. There will bean example of this shown when we discuss the IsoSurface module.1.4.1 The Mesh ClassThe Mesh class is not an abstract interface but is meant to be a power-ful class for operating on unstructured grids. A Mesh consists of a set ofNodes and a set of Elements. A Node contains its Point in 3D space, andan Element contains a pointer to four di�erent Nodes. This data com-pletely speci�es the mesh, but we also maintain other information for mak-ing mesh operations e�cient. The full version of the Node data structurealso contains a list of the elements to which it is connected. The Elementdata structure contains the face neighbors - the elements which neighbor itsfour faces. In addition, the Element data structure can optionally containthe element basis function and element volume. The element basis functionis a large amount of data, increasing the size of the element data structurefrom 40 bytes to 176 bytes. This can cause memory limitations for largeproblems, but it avoids repeated recalculation of these basis functions andso increases the speed of �nite element matrix assembly, element interpo-lation, and many other operations. The user may select at compile timewhether or not to maintain the element basis functions.
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VectorField
(Base Class)

VectorField
Regular Grid

VectorField
Unstructured Grid MeshFIGURE 1.3. VectorField class hierarchy showing the how the unstructured gridand regular grid versions are derived from a common base class. The dotted lineto the Mesh shows that the Unstructured Grid version contains a 3D tetrahedralMesh. In addition, the �eld contains a Vector value for each node or element inthe mesh.We could have chosen to make meshes of arbitrary dimension, but weopted for the simplicity and e�ciency a�orded by hard coding the dimen-sion to three.1.4.2 Fields Data StructuresThe �elds data structures provide two base classes: ScalarField and Vec-torField. We chose to separate these two types in order to clarify whichoperations make sense on which type. ScalarField provides interfaces forinterpolating the value at a point (interpolate), determining the mini-mum and maximumscalar values (minmax), and for determining the spatialbounds of the �eld (get bounds). There are currently two di�erent imple-mentations of the ScalarField: ScalarFieldRG, which de�nes a scalar �eldusing a regularly sampled grid, and ScalarFieldUG, which contains aMesh,and values for each node or element. ScalarFieldRG and ScalarFieldUGimplement the interpolate, minmax, and get bounds methods describedabove. Most modules use this abstract interface to access ScalarField data.The VectorField class is similar to the ScalarField class, but does notprovide a get minmax interface. Figure 1.3 shows the class structure for theVectorField classes. The ScalarField classes are structured similarly.1.4.3 Surfaces Data StructuresThere is another class hierarchy that describes a surface in three-dimensional space. For our work, the most important surface is a trian-gulated surface de�ned as a collection of 3D points and the correspondingtriangles that connect them. These surfaces can be tagged with boundary



1. SCIRun 19condition information for later integration with �nite element problems. Afew other surfaces are provided such as cylinders, spheres, and points (adegenerate surface).1.4.4 The Matrix ClassMatrices: We implement a base class calledMatrix, which de�nes multiplyand transpose multiply abstract methods. Instances of this class maybe implemented with SparseLib++ [12], or other sparse matrix packages.SCIRun also implements a compressed-row storage matrix which has beenhighly tuned for the architectures which we use most often.The discussion of the SolveMatrixmodule will display how these abstractinterfaces are used to implement the conjugate gradient algorithm withoutregard for the actual layout of the matrix.Other operations, such as matrix-matrix multiply, are better implemented with code that checks the actualtype of the matrices and uses the most e�cient multiplication algorithmand resultant matrix format.1.5 DataowTo this point, we have described a powerful set of computational elementsthat may be composed by a variety of means. SCIRun composes compu-tational algorithms with these data elements using a dataow style \boxesand wires" approach. An example of a dataow network is shown in Fig-ure 1.4.1. A module, drawn as a box in the network, represents an algorithmor operation. A set of input ports and a set of output ports de�ne itsexternal parameters.2. A port provides a connecting point for routing data to di�erent stagesof the computation. Ports are typed: each datatype has a di�erentcolor, and datatypes cannot be mixed. In SCIRun, ports can be addedto and removed from a module dynamically. Input ports are repre-sented on the top of the module icon, and output ports are on the bot-tom. Output ports can cache datasets to avoid recomputation. Theuser can select which datasets should be cached and which shouldnot.3. A datatype represents a concept behind the numbers. Datatypes arequantities such as scalar �elds or matrices, but are not the speci�crepresentations, such as regular grids, unstructured grids, banded ma-trices, sparse matrices, etc.
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FIGURE 1.4. An example of a fairly complex dataow network, showing the mod-ules (the boxes), the connections (the wires between them), and the input/outputports (the points on the modules that the wires connect). On a color monitor, thecolors of the ports and connections indicate the type of data that ows throughthem.4. A connection connects two modules together: the output port of onemodule is connected to the input port of another module. These con-nections control where the data is sent to be computed. Output portscan be connected to multiple input ports, but input ports accept onlya single connection.5. A network consists of a set of modules and the connections betweenthem. This represents a complete dataow \program."The dataow library is responsible for deciding which modules need tobe executed and when. A module is typically re-executed when the userchanges a module parameter, when new data is available at an input port,or when data is required at its output port.



1. SCIRun 21When the user moves a user interface component, such as a 2D slideror a 3D widget, the module sends a message to the scheduler requestingexecution. The scheduler analyzes the dataow graph to determine whatother modules will also need to be executed. The dataow scheduler usesthe following algorithm to determine which modules need to be executed:execute_list = modules that requested execution;resend_list = empty;foreach module in the execute_list fforeach module connected to an output fif the connected module is not in the execute list,add itgforeach module connected to an input fif the connected output port has a cached dataset,add it to the resend listelse add it to the execute_listggcull all ports from the resend_list whose modules appearin the execute listsend resend messages to the ports in the resend listsend execute messages to the modules in the execute listNote that all of the modules are executed at the same time. The modulesactually communicate directly with each other using a threadsafe FIFO forthe dataset hando�s. Each thread will wait for data to appear on the inputports. A module does not have to gather data from the inputs in order,and it may interleave computation with receiving the data. However, inorder to satisfy the requirements for determinacy in a dataow program,the module is not able to request datasets in a �rst-come, �rst served orany other non-deterministic order. It is important to note that modules donot send actual data, but rather a handle to the data (see Appendix A. fora discussion of handles).Sending a dataset to the matrix out port looks like this:MatrixHandle matrix = new DenseMatrix(...);.. build the matrix ..matrix_out->send(matrix);Receiving a dataset from the matrix in port looks like:MatrixHandle matrix;if(!matrix_in->receive(matrix))return; // returns false if the dataset is not// available - this is usually due to// an error upstream



22 S.G. Parker, D.W. Weinstein, C.R. Johnson.. do cool stuff with the matrix ..For each input port, the modulemust do exactly one receive, and for eachoutput port, the module must do exactly one send. If the module wishesto send multiple datasets (as intermediate results, or for feedback loops),it can use a special method called send multi, which also arranges for themodules downstream to be executed again.The send/receive pairs shown above are a simple atomic protocol wherethe entire dataset is transferred at once. However, it often makes moresense to use \�ne grain" dataow where appropriate. Fine-grain protocolsare tuned to the speci�c layout of the data, such as for receiving slabs of aregular grid for isosurfacing or scanlines for image processing. In such casesthe module receives scanlines and sends scanlines for each scanline in theimage, but it semantically sends or receives the full dataset exactly once.We chose to implement a centralized scheduler in order to avoid redun-dant module re-execution in a branching situation. Since we leave the cen-tral scheduler out of the loop for individual dataset hando�s, it does notbecome a bottleneck in the execution of the program.The Dataow library also contains a base class from which all modulesare derived. This class contains the data structures that are required toimplement the dataow structures; it also contains various utility func-tions, such as update progress, a function that the module writer cancall periodically to update the graph on the module icon that indicates theapproximate percentage of work the module has completed.1.6 Steering in a Dataow SystemAll of the pieces described above have been designed to support steering oflarge scale scienti�c simulations. SCIRun uses three di�erent methods toimplement steering in this dataow oriented system:1. Direct lightweight parameter changes. The SolveMatrix module al-lows the user to change the target error even while the module isexecuting. The parameter change does not pass a new token throughthe dataow network, but simply changes the internal state of theSolveMatrix module, e�ectively changing the de�nition of the oper-ator rather than triggering a new dataow event.2. Cancellation. When parameters are changed, the module can chooseto cancel the current operation. For example, if boundary conditionsare changed, it may make sense to cancel the computation in order tofocus on the new solution. This makes the most sense when solvingelliptic problems, since the solution does not depend on any previoussolution.



1. SCIRun 233. Feedback loops in the dataow program. For a time varying problem,the program usually goes through a time stepping loop with severalmajor operations inside. The boundary conditions are integrated inone or more of these operations. If this loop is implemented in thedataow system, then the user can make changes in those operatorswhich will be integrated on the next trip through the loop.These three methods provide the mechanisms whereby computationalparameters can be changed during the execution of the program.1.7 ModulesWe have thus far described a handy set of tools and a dataow system forimposing control structure. However, the real value in SCIRun comes fromhow these components are leveraged in actual algorithms, or inSCIRun - actual modules. This section covers how a module is constructedand then describes some of the modules in SCIRun, showing how they usethe features that we have described above.1.7.1 Writing a ModuleThe process of writing a new module involves writing a new C++ class.The constructor for this class creates the input and output ports for themodule and de�nes parameters which the user interface may control. Asingle virtual function, execute, is overloaded to perform the actual workof the module. The execute function typically receives data on the inputports, performs some computation and then sends data on the output ports.Other callback functions can provide input from user interface componentsand 3D widgets. Adding a user interface to a module involves writing asmall Tcl script which sets up the components of the interface.Existing code may be integrated into SCIRun by writing a small wrappermodule which passes data into and out of an existing C, C++ or Fortranprogram. The wrapper modulemay be required to translate data structuresbefore passing them to the existing code and before sending them down thepipe. In order to avoid this translation, existing code can also be incorpo-rated by extending the class hierarchy that ows through the dataownetwork. For example, instead of translating to a speci�c ScalarField classthe module could send a new subclass of the ScalarField that would provideinterpolate and other methods for use by downstream modules.SCIRun was originally designed as an environment for developing newsimulations and computational components. We are currently working onways to more automatically incorporating existing packages into theSCIRun visual programming environment.



24 S.G. Parker, D.W. Weinstein, C.R. Johnson1.7.2 FEM and Matrix ModulesThe BuildFEMatrix module takes a tetrahedral mesh and builds a sti�-ness matrix for a �nite element approximation. The current version of thismodule approximates the generalized 3D Poisson's equation (or its homoge-neous counterpart, Laplace's equation) in the discretized physical domain
: r � �ru = f (1.1)where f is a vector of sources and � is 3 � 3 tensor corresponding to thematerials within the domain. The scalar �eld u is subject to the boundaryconditions: u = u0 on �1 and �ru � n = 0 on �2 (1.2)The mesh elements have been tagged with a corresponding tensor prop-erty and boundaries have been tagged with the appropriate boundary con-dition. The module makes two passes - �rst to build the sparse structureof the matrix using a compressed row storage scheme, and second to �llin the resulting sparse matrix. Building the matrix is done in parallel inorder to take full advantage of multiple processors. The module also buildsthe right hand side (load) vector. Users who wish to use other governingequations can extend this module to build the sti�ness and load matricesappropriately.Usually, these matrices are passed into the SolveMatrix module, whichuses direct or iterative schemes to �nd the solution, x to the matrix equa-tion: Ax = b (1.3)The SolveMatrix module graphs the convergence of the residual as thealgorithm iterates. The algorithm stops when the residual is less than sometarget level (i.e., the solution has converged). The user may move the targetresidual up or down while the solution is still in progress, thus steering thecomputation in a simple manner. Figure 1.5 shows the interface for thismodule in operation.SolveMatrix uses the mult and mult transpose virtual methods in theMatrix base class to perform each iteration. As a result, the user couldimplement a new matrix type which SolveMatrix could use without evenrecompiling the module. This new matrix type does not even need to explic-itly store the matrix - it could build the matrix dynamically or implicitly.SolveMatrix also has an option to use the previous solution as the initialguess for the iterative solver. When small changes are made in the boundaryconditions (a common case in an engineering design scenario), the systemconverges rapidly. This is one instance where an integrated system canactually be more e�cient than implementing separate programs for each ofthe phases.
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FIGURE 1.5. The user interface for the SolveMatrix module, showing the iter-ative methods available, the graph of the convergence and the target residual,which may be changed while the computation is in progress.The VisualizeMatrixmodule draws a �gure representing the non-zeros ina matrix. Non-zero entries are draw with small red dots, and zero entriesare left black. This gives the user a quick representation of the sparsestructure of the matrix, as shown in Figure 1.6. A magnifying glass canreveal the actual numbers in a portion of the matrix by clicking the mousein the desired region. VisualizeMatrix uses two additional virtual functionsin the Matrix base class: getRowNonZeros, which returns the nonzeros ina particular row, and get, which returns the number in a speci�c row andcolumn of the matrix.
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FIGURE 1.6. Visualization of the sparse structure of a matrix. The black dotsrepresent the non-zeros in a matrix with approximately 10,000 rows and columns.1.7.3 Readers and WritersThe Reader andWriter modules are very straightforward. They simply callthe Persistent object io routines which were described above in Classlib(1.3.3). The readers read in a text or binary persistent object �le and sendthe resulting object downstream, and the writers receive an object and thenwrite it out to disk. Since the support for these modules has been providedby the lower layers, these modules do nothing more than provide user in-terfaces for the �lenames. These modules are automatically generated, butprovide hooks for adding user-de�ned reader/writer functions.1.7.4 Visualization ModulesIn implementing SCIRun's datatypes, we considered what type of opera-tions SCIRun modules would require. One example of such a considerationwas the implementation of the vector and scalar �eld datatypes. Each ofthese �elds comes in a variety of avors, corresponding to the internal rep-resentation of the data - implicit, explicit, parametric - and the topology ofthe �eld - structured (implicit) or unstructured (explicit). But in designingthe �eld datatype, we chose several generic operators to allow module writ-ers to access information from the �eld without needing to know how the�eld is internally represented. As discussed above (see section 1.4.2), theseoperators can query the �eld for minimum and maximum scalar values or



1. SCIRun 27geometric bounds, or for the �eld's value at an arbitrary point in space.This last operation, retrieving the value of the �eld at any location, is im-plemented by an interface called interpolate. In the following subsection,we will discuss how we have exploited this generic operator in several ofour modules, and we will provide an example of when we chose to side-stepthis abstraction in order to write a more e�cient algorithm based on thespeci�c internal representation of the �eld.InterpolationMany of SCIRun's modules exploit the �eld interface interpolate. Theinterpolatemethod takes a point as an argument and calculates the valueof the �eld at that speci�c location. It accomplishes this by determiningwhich element of the �eld contains the point, and linearly interpolating thevalues at the element's vertices.One example of a module that calls the interpolate method is theStreamline module. The Streamline module is used for vector �eld visual-ization: by tracing particles advecting through the vector �eld, the user canexamine local ow phenomena around critical points (such as vortices andturbulence) while also gaining a global sense of the �eld's ow. Figure 1.7shows an example of the electrical current ow near the heart as computedby the Streamline module. We compute the paths of particles through thevector �eld as discrete line integrals, each corresponding to a streamline.We have several implementations of this integration; one of these is a fourthorder Runge-Kutta method. Given a point p, we integrate along the pathto �nd the next point along the streamline, pNew. The following piece ofcode accomplishes this:Vector f1, f2, f3, f4;Point p1, p2, p3, pNew;vfield->interpolate(p, f1);p1 = p + (f1 * 0.5);vfield->interpolate(p1, f2);p2 = p + (f2 * 0.5);vfield->interpolate(p2, f3);p3 = p + f3;vfield->interpolate(p3, f4);pNew = p + (F1 + F2 * 2.0 + F3 * 2.0 + F4) / 6.0;The principal idea of this algorithm is that we �nd the vectors cor-responding to particular points near p and take a weighted average ofthese vectors to determine our next location along the streamline. Notethat this algorithm will work for any type of vector �eld that imple-ments the interpolate interface. By designing a generic interface to theinterpolatemethod, we have abstracted away the details of how interpo-
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FIGURE 1.7. Visualization of a de�brillator design simulation, showing an elec-trode, the surface of the heart (epicardium), a 3D widget (rake), and electricalcurrent lines (streamlines). The other electrode in the simulation is obscured bythe heart. Much of the current leaving the visible electrode travels away from theheart, due to the high conductivity of blood in a nearby vessel.lation is implemented for di�erent �eld types, and consequently the modulewriter needs not be concerned with what type of vector �eld is generatingthe streamlines.Another module that uses the interpolate interface is SurfToGeom.This module takes a surface, a scalar �eld, and a colormap as input, andoutputs colored geometric primitives that can be passed to a renderer. Themodule computes these primitives in the following way: it queries the �eldfor scalar values corresponding to points on the input surface; these pointsare assigned material properties by indexing the resultant scalar values inthe color table; and �nally, these colored points are grouped into geometricprimitives (such as triangles or tri-strips). Here again the SurfToGeommodule utilizes the interpolate interface in order to �nd the scalar valuesof the points on the surface.The user programming the SurfToGeom module does not ever have to



1. SCIRun 29worry about the type of the incoming scalar �eld - structured, unstruc-tured, or spectral. As long as the interpolate interface is provided, theSurfToGeom module will work. Furthermore, as new scalar �eld types areimplemented in the future, they will automatically work with the SurfTo-Geommodule as long as the interpolatemethod is implemented, withoutrequiring code to be rewritten or even recompiled.In contrast to the Streamline and SurfToGeom modules, the IsoSurfaceextraction module does not use the interpolate method to �nd values atpoints within the �eld. While the isosurfacing algorithm could have beenimplemented this way, we were able to dramatically improve the speed ofour algorithm by taking into account (and exploiting) the underlying struc-ture of the data. For example, we have implemented Lorensen and Cline'sMarching Cubes algorithm [19] as one option for isosurface extraction. Forthe case of both structured and unstructured grids, it is much faster tosolve the \forward problem" - �nding the intersection of the �eld with eachelement than it is to solve the \inverse problem" - using various calls tointerpolate to track down the isovalue points within the �eld. In thiscase, it would have been highly ine�cient to use the generic interpolateoperator, so we wrote data-structure dependent code to solve the problem.The IsoSurface module lacks the abstraction (and as a result, the cleanli-ness) of the Streamline and SurfToGeom modules. As other �eld types areimplemented, we will have to write new isosurfacing code to handle each�eld type. In this case, there was considerably more to be gained by usingdata-structure speci�c information in our implementation than there wasto be gained by using the generic accesses permitted by abstracting thisinformation away.1.7.5 Salmon ModuleOne of SCIRun's key modules is the graphical viewer called Salmon.Salmon was named for its ability to spawn multiple views (Roe), and itsability to send messages upstream in the dataow network. Salmon collectsthe geometric primitives from any number of modules and presents themin a single 3D view. The user can rotate, scale, and translate the objects,as well as manipulate lighting, camera parameters and rendering method,in order to obtain the desired view. Other views can be spawned to sep-arate windows in order to simultaneously display the objects from otherviewpoints or with di�erent subsets of the objects.Geometric primitives are passed from the modules to Salmon as a subsetof a scenegraph. These scenegraphs are a tree-based display list that de�negeometric primitives, colors, and other rendering parameters. Drawing thescene involves traversing the graph and emitting OpenGL commands ateach node. Scenegraphs can be composed, stored to disk via the persistentobject mechanism, and then read back for later display. Parameters in thescenegraph can be changed dynamically by the module using the Crowd-



30 S.G. Parker, D.W. Weinstein, C.R. JohnsonMonitor (multiple reader, single writer) lock described above in libMultiask(1.3.2).In addition to using the Salmon module for visual output, we can alsouse it for 3D input by allowing the user to interact with speci�c objects inthe scene. These objects, called Widgets[20], allow the user to intuitivelyaugment parameters directly in the 3D scene. For example, in order toprovide the starting point for a streamline advection, the user simply dragsa SphereWidget around in the scene. This interaction is generally moreintuitive to a user then typing in numbers or manipulating 2D sliders. Thisinteraction becomes even more powerful when a rake [21, 22] is used tospecify a line of starting points for streamline advection.1.7.6 Other ModulesWe have talked about several of the Modules in SCIRun, but there aremany more:� FEMError - computes the upper and lower error bounds of a �niteelement simulation [23, 24].� MeshRe�ner - uses the Error �elds described above to decide whereto add new nodes and remove old nodes in order to re�ne and dere�nethe mesh.� Gradient - computes a vector �eld which is the gradient of the givenscalar �eld.� Magnitude - computes a scalar �eld which is the magnitude of thegiven vector �eld.� FFTImage / IFFTImage - takes the FFT (inverse FFT) of an image,producing another image.� FilterImage - multiplies two images together to perform a �lter op-eration in frequency space.Even this is not an exhaustive list. Despite the number of modules avail-able, the user will always need something di�erent than what is supplied.In such cases, the user can simply create a new module (by writing a smallC++ program). User modules are dynamically linked with SCIRun, thusavoiding the need to relink the SCIRun executable.1.8 Applications of SCIRun in ComputationalMedicineHere we address the application of SCIRun to two bioelectric �eld problemsin medicine: simulation of cardiac de�brillation and simulation of temporal



1. SCIRun 31lobe epilepsy.Every year, a large number of people die suddenly because of abnormal-ities in their hearts' electrical system (cardiac arrhythmias) and/or fromcoronary artery disease. While external de�brillation units have been inuse for some time, their use is limited because it takes such a short time fora heart attack victim to die from insu�cient oxygen to the brain. Lately,research has been initiated to �nd a practical way of implanting electrodeswithin the body of patients with recurring and life-threatening arrhythmiasto de�brillate a person automatically upon onset of cardiac �brillation. Be-cause of the complex geometry and inhomogeneous nature of the humanthorax and the lack of sophisticated thorax models, most past design workon de�brillation devices has relied on animal studies. We have constructed alarge scale model of the human thorax, the Utah Torso Model [6, 7, 25, 26],for simulating both the endogenous �elds of the heart and applied currentsources (de�brillation devices). Using these computer models, we are alsoable to simulate the multitude of electrode con�gurations, electrode sizes,and magnitudes of de�brillation shocks. Figure 1.8 shows the results ofsuch a simulation. Given the large number of possible external and internalelectrode sites, magnitudes, and con�gurations, it is a daunting problem tocomputationally test and verify various con�gurations. For each new con-�guration tested, geometries, mesh discretization levels, and a number ofother parameters must be changed.Excitation currents in the brain produce an electrical �eld that can be de-tected as small voltages on the scalp. By measuring changes in the patternsof the scalp's electrical activity, physicians can detect some forms of neu-rological disorders. Electroencephalograms, EEGs, measure these voltages;however, they provide physicians with only a snapshot of brain activity.These glimpses help doctors spot disorders but are sometimes insu�cientfor diagnosing them. For the latter, doctors turn to other techniques; inrare cases, they rely on investigative surgery.Such is the case with some forms of epilepsy. To determine whether apatient who is not responding to medication has an operable form of thedisorder, known as epilepsy (most of which occur in the temporal lobe),neurosurgeons use an inverse procedure to identify whether the abnormalelectrical activity is highly localized (thus operable) or di�used over muchof the brain.Using SCIRun, scientists and engineers are able to design internal de�b-rillation devices and source models for the epileptic foci, place them directlyinto the computer model, and automatically change parameters (size, shapeand number of electrodes) and source terms (position and magnitude ofvoltage and current sources) as well as the mesh discretization level neededfor an accurate �nite element solution. Furthermore, engineers can use theinteractive visualization capabilities to visually gauge the e�ectiveness oftheir designs and simulations in terms of distribution of electrical currentow and density maps of current distribution.
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FIGURE 1.8. Visualization of the electrical current lines and an isovoltage surfacefrom a simulation of a cardiac de�brillator design simulation.Mathematically, these problems are governed by variations of the gener-alized Poisson's equation for electrical conduction in the physical domain
 of the thorax or head [27]. Thus one solves (1.1) where u = � are theelectrostatic voltages, f = �IV are the electrical current sources and �is an electrical conductivity tensor. The boundary conditions in (1.2) aresuch that �1 is the surface of the internal de�brillator electrodes and �2 isthe surface of the torso. u0 = �0 speci�es a Dirichlet boundary of knownvoltages and �r� � n represents the current ow normal to the surface ofthe torso (scalp), which is zero for the insulated boundary of the thorax(or head).Once the electrostatic potentials are known, one can calculate the currentdensity J according to: J = ��r�: (1.4)For the de�brillation problem, electrodes are either implanted internally orapplied directly to the chest in order to deliver su�cient electric energy tostop the irregular heart rhythms that signify a �brillating heart [28, 29].



1. SCIRun 33Mathematically, this can be posed as solving equations (1.1-1.4) with thevoltage boundary condition applied on a portion of the torso boundary� � �2 for external de�brillation or from the surface of the de�brillationelectrode(s) within the volume of the thorax for internal de�brillation.Past (and much current) practice regarding the placement of the elec-trodes for either type of de�brillator has been determined by clinical trialand error. One of our goals is to allow engineers to use SCIRun to assistin determining the optimum electrode placement, size, shape, and strengthof shock to terminate �brillation by solving equations (1.1-1.4) within adetailed model of the human thorax [30, 31, 32, 33, 34].For the neuroscience problem, the epileptic foci are represented as a set ofidealized dipole sources situated in the brain. Using a model of the humanskull and brain, the direct EEG problem is posed by solving equations (1.1-1.4) for the voltage and current distribution within the brain and upon thesurface of the scalp. For the inverse EEG problem, measured scalp voltagesare used as the inputs and equation (1.1) is solved for the source currentsIV . We are currently using SCIRun to investigate the direct and inverseEEG problems as well as using SCIRun as an interactive modeling andvisualization tool.A SCIRun System for Bioelectric Field ProblemsA network that can be used to model cardiac de�brillation is shown inFigure 1.4. A similar network is used for a forward solution in the neuro-science application. The network consists of the following modules:� SurfaceReader reads a triangulated surface de�nition from a �le. Oneof these modules will read the torso boundary (body surface) geome-try, and the other will read the epicardium (heart surface) geometry.In the neuroscience application, there may be several surfaces - includ-ing the scalp surface, the scalp-skull interface, the skull-cerebrospinaluid (CSF) interface, the CSF-grey matter interface, and the grey-white matter interface.� GenSurface will generate two cylindrical electrodes for the de�brilla-tion study. Parameters in the interface allow the scientist to controlthe discretization of the electrodes. In the neuroscience application,these surfaces may represent dipole or other types of source con�gu-rations in the brain.� SurfToGeom converts the surface de�nitions into displayable geome-try. A ag in the user interface controls whether or not the geometryis movable. The epicardium and torso boundary should not be moved,since they correspond to physical geometry. The electrode cylinders,on the other hand, must be moved so that various placements can betested. The SurfToGeom module provides 3D widget handles whichallow the user to manipulate these surfaces directly. An optional in-put parameter selection will map scalar �eld values onto the surface.
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FIGURE 1.9. Visualization of a computational neuroscience simulation, showingan epileptic focus (a dipole source, indicated by the arrow) and an isovoltagesurface in the resulting �eld.This input is attached to the epicardium and shows the voltages onthe surface of the heart.� ApplyBC applies boundary conditions to the various surfaces. Thetorso and scalp have a zero-ux Neumann boundary. In the de�bril-lation problem, the two electrode cylinders have Dirichlet boundaryconditions corresponding to their respective voltage. In the neuro-science application, there are discrete current sources. The voltageand current sources may be changed interactively.� GenerateMesh discretizes the volume de�ned on the outside by thetorso (scalp) and on the inside by the two voltage source electrodes.This discretization occurs after the application of the boundary con-ditions so that the mesh generator may optimize the mesh for theparticular boundary conditions.



1. SCIRun 35� BuildFEMatrix uses the mesh structure, the boundary conditions,and �nite element theory to construct a matrix that describes theuser-speci�ed con�guration. Utilizing controls on the user interface,the user may instruct the module to create a dense matrix, a banddiagonal matrix or a compressed sparse-row matrix.� SolveMatrix uses direct or iterative algorithms to �nd the solution tothe matrix equation. For this problem, we use a preconditioned conju-gate gradient algorithm for iterative solutions. The scientist controlsconvergence parameters through the graphical user interface.� MakeScalarField combines the solution of the �nite element matrixto the volume mesh generated by GenerateMesh. This mesh/solutioncombination provides a representation of the solution in terms of ascalar �eld of voltage values.� IsoSurface allows interactive extraction of isosurfaces in the voltage�eld. A small sphere controls the starting point of the isosurface algo-rithm, and an attached 3D arrow shows the direction of the gradient.The sphere and arrow widget may be moved using the mouse to allowinteractive exploration of the voltage �eld. Dragging on the body ofthe arrow moves the widget along the line de�ned by the gradient;dragging on the sphere allows unconstrained movement of the seedpoint.� Gradient computes a vector �eld from the scalar voltage �eld ac-cording to equation (1.4). This yields another form of the solution interms of electric current density.� Streamline produces vector �eld lines that reveal the ow of electricalcurrents within the torso and brain. These �eld lines are analogousto massless particle traces in uid ow �elds. The streamlines are ad-vected using a 4th order Runge-Kutta technique. The user may choosebetween a single streamline or a row of streamlines. Adaptation pa-rameters and step sizes are controlled via the 2D user interface, whilethe positions of the particle sources are controlled with 3D widgets[22].� Salmon provides the underlying structure for viewing geometry and3D user interaction for both viewpoint control and control of the3D widgets described above. As the Streamline module computesstreamlines, or as the Isosurface module computes isosurfaces, itwill send geometry (lines, triangles or other primitives) to Salmon.Salmon displays these objects geometry in a rendering window.Each of these modules is simple enough to be managed easily, but whenthey are joined together, they accomplish a very complex task. Samplevisualizations from this type of network are shown in Figures 1.7 and 1.9.
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FIGURE 1.10. Pop-up window for the Streamline module.Pressing the \UI" (user interface) button on any of the modules' iconssummons a pop-up window which allows the user to change various param-eters for that module. For example, the Streamlinemodule's pop-up allowsthe user to specify integration parameters, display modes, 3D widget types,and other information. As an example user interface, Figure 1.10 shows thepop-up windows for the Streamline module.1.9 SummaryWe have presented an overview of the SCIRun software architecture.SCIRun provides support for computational steering by providing powerfullibraries and tools at a variety of levels, ranging from operating system levelto a high-level visual user interface. SCIRun allows computational compo-nents to be e�ciently assembled using a dataow programming paradigm.The real power of SCIRun comes from its modules. The set of modulescan be extended by the user in order to provide custom tools and interfacesto existing programs.
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1. SCIRun 419. bool isNull() const - returns true if rep==0.10. void detach() - if rep->ref cnt is greater than one, then voiddetach clones the object, thus obtaining an exclusive copy of theobject. If rep->ref cnt is equal to one, then we already own anexclusive copy of the object. This allows subsequent code to makechanges to the referred object without sharing those changes withother handle owners.


