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ABSTRACT

We present the design, implementation and application of SCIRun, a sci-
entific programming environment that allows the interactive construction,
debugging, and steering of large-scale scientific computations. Using this
“computational workbench,” a scientist can design and modify simulations
interactively via a dataflow programming model. SCIRun enables scien-
tists to design and modify model geometry, interactively change simulation
parameters and boundary conditions, and interactively visualize geomet-
ric models and simulation results. We discuss the ubiquitous roles SCIRun
plays as a computational tool (e.g. resource manager, thread scheduler,
development environment), and how we have applied an object oriented
design (implemented in C++) to the scientific computing process. Finally,
we demonstrate the application of SCIRun to large scale problems in com-
putational medicine.

1.1 Introduction

1.1.1  Visual Computing and Interactive Steering

In recent years, the scientific computing community has experienced an
explosive growth in both the possible size and the possible complexity of
numeric computations. One of the significant benefits of this increased com-
puting power is the ability to perform complex three-dimensional simula-
tions. However, such simulations present new challenges for computational
scientists. How does one effectively analyze and visualize complex 3D data?
How does one solve the problems of working with very large datasets often
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consisting of tens to hundreds of gigabytes? How does one provide tools that
address these computational problems while serving the needs of scientific
users?

Scientific visualization clearly plays a central role in the analysis of
data generated by scientific simulations. Unfortunately, though visualiza-
tion may in itself be more computationally intensive than the original sim-
ulation, it 1s often performed only as a mystical post-processing step after
a large-scale computational batch job is run. For this reason, errors inval-
idating the results of the entire simulation may be discovered only during
post-processing. What is more, the decoupling of simulation and visualiza-
tion presents serious scientific obstacles to the researcher. A visualization
package may provide only a limited data analysis capability and may be
poorly matched to the underlying physical models used in the simulation
code. As a result, the researcher may expend significant effort trying to use
a data analysis package only to walk away frustrated.

In 1987, the Visualization in Scientific Computing (ViSC) workshop re-
ported [2]:

Scientists not only want to analyze data that results from super-
computations; they also want to interpret what is happening
to the data during super-computations. Researchers want to
steer calculations in close-to-real-time; they want to be able to
change parameters, resolution or representation, and see the
effects. They want to drive the scientific discovery process; they
want to interact with their data.

The most common mode of visualization today at national su-
percomputer centers is batch. Batch processing defines a se-
quential process: compute, generate images and plots, and then
record on paper, videotape or film.

Interactive visual computingis a process whereby scientists com-
municate with data by manipulating its visual representation
during processing. The more sophisticated process of navigation
allows scientists to steer, or dynamically modify computations
while they are occurring. These processes are invaluable tools
for scientific discovery.

Although these thoughts were reported close to ten years ago, they ex-
press a very simple and still current idea: scientists want more interaction
than is currently present in most simulation codes. While the scientific
computing community is still trying to find better ways to address these
needs, we feel that the problems encountered by computational scientists
encompass a wider range of issues, including but not restricted to scientific
visualization. Our efforts, therefore, include a diverse range of techniques,
including, among others, the use of scripting languages, existing software,
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visual dataflow programming, and a sophisticated system designed exclu-
sively for computational steering. In this chapter, we focus on the latter,
the SCIRun®[1] computational steering software system.

SCIRun is a scientific programming environment that allows the inter-
active construction, debugging and steering of large-scale scientific compu-
tations [3]. SCTRun can be envisioned as a “computational workbench,”
in which a scientist can design and modify simulations interactively via
a dataflow programming model. SCIRun enables scientists to modify geo-
metric models and interactively change numerical parameters and bound-
ary conditions, as well as to modify the level of mesh adaptation needed
for an accurate numerical solution. As opposed to the typical “off-line”
simulation mode - in which the scientist manually sets input parameters,
computes results, visualizes the results via a separate visualization package,
then starts again at the beginning - SCIRun “closes the loop” and allows
interactive steering of the design, computation, and visualization phases of
a simulation.

The dataflow programming paradigm has proven useful in many applica-
tions. In the scientific community, it has been successfully applied in several
scientific visualization packages, including AVS from Advanced Visual Sys-
tems Inc., and Iris Explorer from SGI. We have extended the use of the
dataflow programming model into the computational pieces of the simu-
lation. To make the dataflow programming paradigm applicable to large
scientific problems, we have identified ways to avoid the excessive memory
use inherent in standard dataflow implementations, and we have imple-
mented fine-grained dataflow in order to further promote computational
efficiency.

1.1.2  An lterative Environment for Scientific Computing

Currently, the typical process of constructing a computational model con-
sists of the following steps:

1. Create and/or modify a discretized geometric model;
2. Create and/or modify initial conditions and/or boundary conditions;

3. Compute numerical approximations to the governing equation(s),
storing results on disk;

4. Visualize and/or analyze results using a separate visualization pack-
age;

5. Make appropriate changes to the model; and

5SCIRun is pronounced “ski-run” and derives its name from the Scientific Computing
and Imaging (SCI) research group which is pronounced “ski” as in “ski Utah.”
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6. Repeat.

The “art” of obtaining valuable results from a model has up until now
required a scientist to execute this process time and time again. Changes
made to the model, input parameters, or computational processes are typi-
cally made using rudimentary tools (text editors being the most common).
Although the experienced scientist will instill some degree of automation,
the process is still time consuming and inefficient. Ideally, scientists and en-
gineers would be provided with a system in which all these computational
components were linked, so that all aspects of the modeling and simulation
process could be controlled graphically within the context of a single ap-
plication program. While this would be the preferred modus operand: for
most computational scientists, it is not the current standard of scientific
computing because the creation of such a program is a difficult task.

Difficulties in creating such a program arise from the need to integrate
a wide range of disparate computing disciplines (such as user interface
technology, 3D graphics, parallel computing, programming languages, and
numerical analysis) with a wide range of equally disparate application disci-
plines (such as medicine, meteorology, fluid dynamics, geology, physics, and
chemistry). Our approach to overcoming these difficulties is to separate the
components of the problem. SCIRun’s dataflow model employs “modules”
that can be tailored for each application or computing discipline. Although
this method is proving successful at partitioning many of the complexities,
we have found that some complexities remain, such as the burdens of par-
allel computing and user interfaces. Much work goes into simplifying the
programming interfaces to these features so that they will be used, rather
than ignored, by module implementors.

1.1.3  Steering

The primary purpose of SCIRun is to enable the user to interactively con-
trol scientific simulations while the computation is in progress [4, 5]. This
control allows the user to vary boundary conditions, model geometries,
or various computational parameters during simulation. Currently, many
debugging systems provide this capability in a very raw, low-level form.
SCIRun is designed to provide high-level control over parameters in an ef-
ficient and intuitive way, through graphical user interfaces and scientific
visualization. These methods permit the scientist or engineer to “close the
loop” and use the visualization to steer phases of the computation.

The ability to steer a large scale simulation provides many advantages to
the scientific programmer. As changes in parameters become more instan-
taneous, the cause-effect relationships within the simulation become more
evident, allowing the scientist to develop more intuition about the effect of
problem parameters; to detect program bugs, to develop insight into the
operation of an algorithm, or to deepen an understanding of the physics of
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the problem(s) being studied.

The scientific investigation process relies heavily on answers to a range
of “What if?” questions. Computational steering allows these questions to
be answered more efficiently and therefore to guide the investigation as it
occurs.

1.2 Requirements of SCIRun as a Computational
Steering System

Initially we designed SCIRun to solve specific problems in Computational
Medicine [6, 7, 8, 9], but we have made extensive efforts to make SCIRun ap-
plicable in other computational science and engineering problem domains.
In attacking the specific problems, we found that there were a wide range of
disparate demands placed on such a system. Each of these demands reveals
a different facet of what we call SCIRun.

1.2.1 SCIRun the Operating System

In a sophisticated simulation, each of the individual components (model-
ing, mesh generation, nonlinear/linear solvers, visualization, etc.) typically
consumes a large amount of memory and CPU resources. When all of these
pieces are connected into a single program, the potential computational
load is enormous. In order to use the resources effectively, SCIRun adopts
a role similar to an operating system in managing these resources. SCIRun
manages scheduling and prioritization of threads, mapping of threads to
processors, inter-thread communication, thread stack growth, memory al-
location policies, and memory exception signals (such as segmentation vi-
olations).

1.2.2  SCIRun the Scientific Library

SCIRun uses a visual programming interface to allow the scientist to con-
struct simulations through powerful computational components. While the
visual programming environment is the central focus of SCIRun, it requires
a powerful set of computational tools. In the first stage of SCIRun, we have
concentrated on integrating the computational components that we have
used to solve our own computational problems. We have recently expanded
focus and are now in the process of integrating popular libraries and tools,
such as Diffpack [10, 11], SparseLib++ [12], and PETSc [13, 14] into the
SCIRun environment.
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1.2.3  SCIRun the Development Environment

Perhaps the most powerful facet of SCIRun is the ability to use it in the
development phases of a simulation. SCIRun augments the development
environment by providing convenient access to a powerful set of computa-
tional components. However, these components could never be comprehen-
sive, so SCIRun also provides an environment whereby new modules can be
developed efficiently. If a module triggers a segmentation violation, bus er-
ror or failed assertion, SCIRun stops the module at the point of error, thus
allowing the developer to attach a debugger to the program at the point
of failure. This avoids the frustrating experience of trying to reproduce
these errors in the debugger. In addition, SCIRun provides simple instru-
mentation of module performance (CPU times printed out interactively),
feedback execution states (waiting for data, percent completed, etc.), and
visualization of memory usage. SCIRun employs dynamic shared libraries
to allow the user to recompile only a specific module without the expense of
a complete re-link. Another SCTRun window contains an interactive prompt
which gives the user access to a Tcl shell that can be used to interactively
query and change parameters in the simulation.

1.2.4  Requirements of the Application

SCIRun is not magic — it is simply a powerful, expressive environment
for constructing steerable applications, either from existing applications or
starting from the ground-up. The application programmer must assume
the responsibility of breaking up an application into suitable components.
In practice, this modularization is already present inside most codes, since
“modular programming” has been preached by software engineers as a sen-
sible programming style for years.

More importantly, it is the responsibility of the application programmer
to ensure that parameter changes make sense with regard to the underlying
physics of the problem. In a CFD simulation, for example, it is not phys-
ically possible for a boundary to move within a single timestep without a
dramatic impact on the flow. The application programmer may be better
off allowing the user to apply forces to a boundary that would move the
boundary in a physically coherent manner. Alternatively, the user could
be warned that moving a boundary in a non-physical manner would cause
gross errors in the transient solution.

1.3 Components of SCIRun

In order to implement the requirements described above, we have broken
down SCIRun into a layered set of libraries. These libraries are organized
as shown in Figure 1.1.
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Modules

Dataflow Datatypes
Library Library

General Libraries:
Classlib, Geometry, Malloc, Math, etc.

FIGURE 1.1. SCIRun library organization.

SCIRun uses an object oriented design; however, it should be stressed
that we have paid careful attention to avoid over-using the object oriented
paradigm to a point that efficiency suffers.

In implementing the SCIRun kernel and modules, we leverage off of a
powerful toolbox of C++ classes that have been tuned for scientific comput-
ing and operation in a multi-threaded environment. We discuss these classes
below, starting with the lowest level library and proceeding to more com-
plex libraries. We describe each of the toolbox components here, starting
with the lowest layer. In discussing higher layers, we describe how features
of the lower layers are leveraged to facilitate implementation.

1.3.1 Malloc, operator new: libMalloc

We have encountered several problems with the implementations of
malloc/free and new/delete that are available on current Unix systems.
Difficulties with the current implementations of malloc and new include:

1. They are not robust against erroneous behavior. This is particularly
confusing when the user’s program crashes in malloc, while the ac-
tual error resulted from freeing a bad pointer in a previous call. A
multithreaded environment further exacerbates this problem, allow-
ing errors in one thread to cause another thread to crash.

2. They are not thread-safe (reentrant) on many systems. This is typi-
cally the case on systems without a native implementation of threads.
Accessing malloc and free in such an environment can cause fre-
quent non-deterministic crashes.

3. They do not reveal statistics about their operation.

4. They do not return memory to the operating system when it is no
longer being used.
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5. They are very slow when allocating and deallocating large numbers
of small objects.

6. They have a large percentage of memory overhead for small objects.

Of course, the goal would be to resolve all of these problems, but we find
that many of the requirements conflict. For example, it is difficult to have
bullet-proof behavior against errors without incurring additional overhead,
even for small objects.

The implementation of libMalloc centers around the Pool class. Pool
defines a constructor and destructor, as well as the methods alloc, free,
realloc, get_stats and audit as shown below.

class Pool {
Pool();
“Pool();
Mutex lock;
void* alloc(size_t size, char* ctag, int itag);
void free(void#* p);
void* realloc(void#* p, size_t size);
void audit();
void get_stats(size_t statbuf[18]);
int nbins();
void get_bin_stats(int bin, size_t statbuf[6]);

N

Pool represents a pool of memory. At startup, there is a single pool,
default_pool, from which requests from malloc and new are granted. The
implementations of malloc and the new operator simply call the alloc
method of the default pool. Subsequently, the free and operator delete
methods call the free method of the default pool. The default malloc and
operator new provide generic information as the two tags for the allocation,
but there are alternate interfaces that automatically provide the file and
line number for these tags.

The alloc method uses three slightly different memory allocation al-
gorithms for small, medium and large objects. Based on heuristics from
current applications, small objects are those less than 512 bytes, medium
objects range from 513 bytes-64k bytes, and large objects are those over
64k bytes. These ranges are configurable at compile time.

Small and medium objects both use an algorithm based on bins. A bin
contains a list of free objects. When free space is requested, alloc figures
out which bin contains objects of the appropriate size, and the first one
from the list is removed. Sentinels are placed at the beginning and at the
end of the actual allocation. Small and medium bins differ in how the
bins are refilled when they become empty. Small bins use an aggressive
fill scheme, where 64k worth of objects are placed in the bin’s free list
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in order to minimize the number of refills. Medium objects, on the other
hand, use a less aggressive scheme - objects are allocated from a larger
pool one at a time. Large objects are allocated with independent mmap
calls to the operating system. This allows the large objects to be returned
to the operating system when they are no longer needed. In order to avoid
releasing and re-requesting memory, these large chunks are returned to the
operating system (unmapped) in a lazy fashion. It is possible for this policy
to fragment the address space of the program, but in practice this has not
been a problem, and will never be a problem for 64 bit programs.

The algorithms for the three different allocation ranges are based on the
philosophy that bigger objects can afford to use more CPU cycles in trying
to be efficient, since large objects will be allocated less frequently and used
for a longer period of time. It is also more valuable to minimize waste for
large objects than for small allocations.

In order to make the pool thread safe, each of the methods acquires the
mutex before accessing or modifying any data in the Pool, and releases
the mutex when these operations are complete. The alloc and release
methods attempt to minimize the time that the pool is locked by perform-
ing most operations (tag/header manipulation, verification, etc.) without
holding the lock.

This implementation resolves all of the problems that we described above,
except for items five and six. The memory overhead (item six) is approx-
imately the same as current implementations, and the time overhead for
small objects (item five) is considerably smaller, but still too large. In the
next section, we will see a mechanism that may be layered on top of lib-
Malloc to resolve these problems.

This memory allocator can also reveal statistics about its operation. Fig-
ure 1.2 shows these statistics displayed by a running program.

1.3.2  The Multitask Library: libMultitask

SCIRun derives much of its flexibility from its internal use of threads [15].
Threads allow multiple concurrent execution paths in a single program.
SCIRun uses threads to facilitate parallel execution, to allow user interac-
tion while computation is in progress, and to allow the system to change
variables without interrupting a simulation. However, standards for imple-
menting threads are only starting to appear, and the standards that are
appearing are, thus far, cumbersome. libMultitask i1s a layer that provides
a simple, clean C++ interface to threads and provides abstraction from the
actual standard used to implement them.

Tasks

The Multitask library provides a class Task, which encapsulates a thread.
The Task constructor requires a name for the Task and a priority. A new
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FIGURE 1.2. Statistics of the custom allocator, showing bytes allocated and
freed, high water marks, and spinlock statistics. Some of these statistics are also
displayed for each bin. To the right of each bin a small graph shows the objects
in the freelist and the objects in use for each range of sizes.

thread is created when the creator calls the activate method of the Task
class, which will cause the body method to be started in a separate thread.
Activate will return immediately and will not wait for body to complete
- thus triggering concurrent execution in the program, similar to a fork()
operation. However, all of the threads (Tasks) will share access to a common
heap - unlike the traditional fork() function. Task 1s an abstract base class
because it does not actually provide a body function. Other classes inherit
from Task, providing a body function to do the actual work of the thread.
The thread continues until the body function returns, or until Task: :exit
is called.

Task also provides static functions to return the number of processors

available on the system, to start-up multiple threads for a function, and to
cause all threads to exit.
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Intertask Communication

The Multitask library also provides a number of convenient synchronization
primitives for these tasks to communicate with each other — Inter-Task
Communication (ITC). ITC primitives are:

e Mutex provides lock, try_lock and unlock methods.

¢ Semaphore is a counting semaphore, providing down, try_down and
up methods.

o Barrier provides a single wait(int nwait) method to allow a group
of threads to stop executing at the barrier until all nwait threads
arrive.

e ConditionVariable provides wait (Mutex& lock), cond_signal and
cond _broadcast methods.

e CrowdMonitor a multiple-reader, singler-writer access control prim-
itive, provides read _lock, read_trylock, read_unlock,
write lock, write_trylock and write unlock methods.

e Mailbox a fixed-length, thread-safe FIFO (First-In, First-Out com-
munication pipe), allows multiple senders and multiple receivers. This
is a template class that provides send, try_send, receive and
try_receive methods. The mailbox allows multiple threads to send
tokens to the mailbox and an arbitrary number of threads to receive
tokens from the mailbox. These tokens are typically pointers to a
message structure. Using this primitive, one can implement threads
which behave like a small server.

e Other structures, including AsyncReply which provides a single pi-
geon hole rendezvous point, and classes to perform reduction opera-
tions.

The Task and ITC methods have been implemented in four different
environments: SGI IRIX (using sproc and us* primitives), and with Posix
threads (aka pthreads), with Solaris threads, and with setjmp/longjmp.

1.3.3 Generic Tools: [itbClasslib

This is a collection of various tools that are valuable in constructing
SCIRun’s kernel and computational modules. Some of these data structures
overlap those available in the Standard Template Library (STL)[16], but
our implementation predates common acceptance of STL. In implement-
ing these, we have not tried to make extravagant general-use interfaces.
Rather, we have designed our tools to be simple, easy to use, and efficient.
We have also designed these interfaces to perform the operations that we
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require, avoiding the temptation to over-engineer them. Data structures
that we have implemented include an unbounded queue, a bounded stack,
a dynamic hashtable, and a dynamic array class. These structures use tem-
plates to make them usable as containers for any type.

TrivialAllocator

Another useful tool is the TrivialAllocator class. This class is designed to
increase the efficiency of the new/delete operator for small objects that
are allocated and deleted frequently. The TrivialAllocator simply keeps a
list of free objects that are ready to be used. Using the TrivialAllocator for
a particular class simply requires redefining the operator new and operator
delete methods to use the alloc and free methods of the TrivialAlloca-
tor. Using Small_alloc.alloc is significantly more efficient than using the
general operator new, because most of the time it simply returns the first
item off of the free list. Objects are allocated in groups, using the second
parameter to the constructor as the number of objects to be allocated at a
time. Small_alloc.free always just puts the object back on the free list.
The free list is accessed in a last-in/first-out manner to maximize cache
locality. Since these will be used in a multithreaded environment, alloc
and free both require the acquisition and release of a mutex. However,
this is a separate mutex from the global allocator, so it will not be subject
to the same contention.

This tool allows us to work around the per-object overhead and allocation
time required for small, high-use objects. However, it does so at the expense
of the overrun detection and consistency checks that our implementation
of new/delete provides. A future implementation will provide a mecha-
nism by which trivial allocators can be disabled through an environment
variable - reducing run time performance, but allowing the consistency
checks to be made.

Handles and LockingHandles

Handles are a “smart pointer” mechanism for automatically maintaining
reference counts in objects [17]. SCTRun uses these to facilitate the sharing
of large data structures between modules. The last Handle to “let go” is
responsible for deleting the object. Reference counting provides a simple
form of garbage collection, without the high overhead and unpredictabil-
ity associated with a full garbage collection system. The largest weakness
is that reference counting can fail to destroy objects which contain circu-
lar references (including circular lists, self references, and back pointers).
However, it does provide the advantage that objects are destroyed immedi-
ately when the last handle releases the object. This feature is essential for
large scale scientific computing where the memory resources held by such
a handle need to be carefully controlled.

A handle contains a single data member rep, which contains a pointer



1. SCIRun 13

to the actual representation. It also defines constructors, a destructor and
accessor methods that increment and decrement a reference count in the
object. The objects used in a handle must provide a member called ref _cnt,
which is initialized to zero at construction time. In addition, objects which
support the detach operation must support a clone method which will
duplicate the object. Since template syntax i1s sometimes rather clumsy, it
is often convenient to typedef a “smart pointer” type for different object
types, such as:

typedef LockingHandle<Object> ObjectHandle;

A LockingHandle is similar to Handle, but with each object also provid-
ing a mutex that is locked under all of the ref_cnt operations. For more
details, see Appendix A.

Timers

Two very convenient classes are the CPUTimer and the WallClock Timer.
These provide a stopwatch interface to acquire time information. Methods
include start, stop, clear, and time. The time method simply returns
the total accumulated time between start and stop pairs. Typically, these
timers access the Unix timer functions appropriate for the operating sys-
tem, but they can also utilize a high resolution user-space mappable timer
on systems that support it.

Persistent Objects

Modern scientific computing codes use modern data structures that are
generally more complex than a large array of numbers. We needed a facility
to save complex data structures on disk. In order to solve this problem, we
employed the idea of “persistent objects,” where complex data structures
can be flattened into a data file and then reconstructed into their original
form. Since C+4++ does not support persistent objects automatically, we
designed a set of utilities to make these input and output routines in a
simple manner.

There are three different levels on which the persistent I/O routines
operate:

1. Primitive: There is an overloaded global function, Pio, for each of
the basic types (float, double, int, etc.), which can both read and
write these primitive types.

2. Simple Structure: For basic structures without class derivations,
the user can overload a global Pio function to serialize these objects.
Usually, this function just calls Pio on each of the individual data
elements.

3. Complex Structure: For a complicated class hierarchy, the user
writes a virtual io function which emits a class name and version
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number, then the io method for the superclass, and then calls other
Pio functions on the individual components.

The basic stream I/O routines support both binary files and somewhat
humanly readable text files. Binary input and output uses the Sun Mi-
crosystem’s XDR library for portable binary I/0O, which allows us to move
files between different architectures without the need to convert to ASCII
text. Binary files are sometimes smaller, and are always a factor of 3-5
faster in reading and writing. In addition, we support versioning of objects
so that we can change the data structures in the code without requiring
the conversion of all old data files.

To illustrate the simplicity of reading and writing objects in this manner,
consider an example of a 3D tetrahedral mesh:

class Mesh {
Arrayl<Node*> nodes;
Arrayl<Element*> elems;

}s
#define MESH_VERSION 1

void Mesh::io(Piostream& stream)

{
stream.begin_class("Mesh", MESH_VERSION); // identify type & version
Pio(stream, nodes); // read/write the nodes
Pio(stream, elems); // read/write the elements
stream.end_class();

}

The Arrayl classes know how to read and write themselves:

template<class T>
void Pio(Piostream& stream, Arrayl<int>% array)

{
stream.begin_class("Arrayl", ARRAY1_VERSION); // id the type & version
int size=array._size; // grab the size of the array...
Pio(stream, size); // ...and write it
if(stream.reading()) // if we’re reading...
array.resize(size); // ...allocate space for objects
for(int i=0;i<size;i++)
Pio(stream, array.objs[il); // read/write all of the objects
stream.end_class();
}

and the Node/Element classes know how to read and write themselves:
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void Pio(Piostream& stream, Node*& node)

{
stream.begin_cheap_delim() ;
if(stream.reading()) // if we’re reading...
node=new Node(); // ...allocate a new node
Pio(stream, node.pt); // read/write the node’s location
stream.end_cheap_delim();
}
void Pio(Piostream& stream, Element* elem)
{
if(stream.reading()) // if we’re reading...
elem=new Element(); // ...allocate a new element
stream.begin_cheap_delim() ;
Pio(stream, elem->n[0]); // read/write all of the
Pio(stream, elem->n[1]); // indices for the four
Pio(stream, elem->n[2]); // nodes composing the
Pio(stream, elem->n[3]); // tetrahedral element
stream.end_cheap_delim();
}

It is important to remember that these small functions will both read
and write the mesh for both binary files and text files. This feature virtually
eliminates the potential for incompatibilities between the reading code and
the writing code. However, the real power comes when we emit a scalar
field based on these meshes:

class ScalarFieldUG : public ScalarField {
MeshHandle mesh;
Arrayl<double> data;

L]

s

void ScalarFieldUG: :io( Piostream& stream)

{
stream.begin_class("ScalarFieldUG", SCALARFIELDUG_VERSION);
ScalarField: :io(stream); // This serializes the base class
Pio(stream, mesh); // read/write the mesh
Pio(stream, data); // read/write the data

}

Then, we could emit multiple scalar fields:

Pio(stream, fieldl); // read/write fieldl
Pio(stream, field2); // read/write field2
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In this example, the fields might share a common mesh. In this case, the
mesh would be written into the file only once. We have omitted many of
the details of how this is implemented internally, but the Pio routines do
not need to be concerned with this mechanism — it is handled internally by
the Piostream.

We have found that this mechanism is a very powerful way to implement
I/0 for complex data structures. The versioning system allows us to use
datafiles that were written years ago without converting them. Using the
same code for reading and writing drastically reduces the number of errors
in the input/output routines. In addition, this mechanism has increased the
utility of binary files by avoiding the need to write a separate I/O function.

1.3.4 Geometry Library

libGeometry provides Point, Vector, Plane, Ray, Transform, and
BoundingBox classes for convenient computation of 3D geometry. The ad-
dition, subtraction, and multiplication operators have all been implemented
to allow these components to be used in a convenient fashion.

We have chosen to separate the concept of a Point from the concept of
a Vector [18]. For the sake of efficiency, these are both specialized for 3
dimensions, with an x, y, and z component. A Point differs from a Vector
only in the operations that can be performed on it. A Point indicates
position in 3D space, and a Vector indicates direction. A Point subtracted
from another Point produces a Vector, a Vector added to another Vector
produces a Vector, and so forth. A cross product is defined only for Vectors,
since they do not make geometric sense for Points. This has proven to be a
useful way to help the programmer reason about geometric transformations
and to write correct code for geometric manipulations.

1.3.5 The Math Library

libMath provides a somewhat eclectic collection of various core numerical
functions, such as Min, Max, and Abs, which have all been overloaded for
various numerical types. libMath also contains several core linear algebra
loops, such as dot products, vector-vector multiply, etc. These loops have
all been highly tuned to take maximum advantage of various architectures.

1.4 The Datatypes Library

The libraries described above are the building blocks from which the
SCIRun kernel and SCIRun modules are created. The next layer consists
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of the Datatypes library. These datatypes are the data structures that get
passed from one SCIRun module to another. Reflecting our work in Finite
Element Analysis, the Datatypes library has four main parts:

1. Meshes: Unstructured tetrahedral meshes.

2. Fields: Scalar and Vector fields representing scalar and vector valued
functions of space. These are currently defined on regular grids or with
per-element or per-node values on an unstructured mesh.

3. Surfaces: Triangular mesh and parametric surface boundaries, op-
tionally tagged with boundary condition information.

4. Matrices: Dense, Compressed row storage (symmetric and
non-symmetric), Tridiagonal, and other matrix formats.

The Datatypes library is a powerful set of data structures for scientific
computing, but it also provides a powerful method of extending SCIRun. A
typical dataflow oriented program can be extended by adding new modules
to implement new algorithms. However, SCIRun can be extended by ex-
tending the abstract interfaces in the Datatypes library to operate on other
data formats. For example, one could make a new Field datatype which im-
plements the ScalarField interface for some type of spectral method. Then
most downstream modules would be able to operate on the data without
modifying those modules and without converting and duplicating the data.
Note that we are careful to say “most of the time.” There are times when
we violate these abstract interfaces for efficiency purposes. There will be
an example of this shown when we discuss the IsoSurface module.

1.4.1 The Mesh Class

The Mesh class is not an abstract interface but is meant to be a power-
ful class for operating on unstructured grids. A Mesh consists of a set of
Nodes and a set of Elements. A Node contains its Point in 3D space, and
an Element contains a pointer to four different Nodes. This data com-
pletely specifies the mesh, but we also maintain other information for mak-
ing mesh operations efficient. The full version of the Node data structure
also contains a list of the elements to which it is connected. The Element
data structure contains the face neighbors - the elements which neighbor its
four faces. In addition, the Element data structure can optionally contain
the element basis function and element volume. The element basis function
is a large amount of data, increasing the size of the element data structure
from 40 bytes to 176 bytes. This can cause memory limitations for large
problems, but it avoids repeated recalculation of these basis functions and
so increases the speed of finite element matrix assembly, element interpo-
lation, and many other operations. The user may select at compile time
whether or not to maintain the element basis functions.
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VectorField
(Base Class)

VectorField VectorField Mech
Regular Grid Unstructured Grid | -

FIGURE 1.3. VectorField class hierarchy showing the how the unstructured grid
and regular grid versions are derived from a common base class. The dotted line
to the Mesh shows that the Unstructured Grid version contains a 3D tetrahedral
Mesh. In addition, the field contains a Vector value for each node or element in
the mesh.

We could have chosen to make meshes of arbitrary dimension, but we
opted for the simplicity and efficiency afforded by hard coding the dimen-
sion to three.

1.4.2  Fields Data Structures

The fields data structures provide two base classes: ScalarField and Vec-
torField. We chose to separate these two types in order to clarify which
operations make sense on which type. ScalarField provides interfaces for
interpolating the value at a point (interpolate), determining the mini-
mum and maximumscalar values (minmax), and for determining the spatial
bounds of the field (get_bounds). There are currently two different imple-
mentations of the ScalarField: ScalarFieldRG, which defines a scalar field
using a regularly sampled grid, and ScalarFieldUG, which contains a Mesh,
and values for each node or element. ScalarFieldRG and ScalarFieldUG
implement the interpolate, minmax, and get_bounds methods described
above. Most modules use this abstract interface to access ScalarField data.
The VectorField class is similar to the ScalarField class, but does not
provide a get_minmax interface. Figure 1.3 shows the class structure for the
VectorField classes. The ScalarField classes are structured similarly.

1.4.3  Surfaces Data Structures

There is another class hierarchy that describes a surface in three-
dimensional space. For our work, the most important surface is a trian-
gulated surface defined as a collection of 3D points and the corresponding
triangles that connect them. These surfaces can be tagged with boundary



1. SCIRun 19

condition information for later integration with finite element problems. A
few other surfaces are provided such as cylinders, spheres, and points (a
degenerate surface).

1.4.4 The Matriz Class

Matrices: We implement a base class called Matrix, which defines multiply
and transpose multiply abstract methods. Instances of this class may
be implemented with SparseLib++ [12], or other sparse matrix packages.
SCIRun also implements a compressed-row storage matrix which has been
highly tuned for the architectures which we use most often.

The discussion of the SolveMatrix module will display how these abstract
interfaces are used to implement the conjugate gradient algorithm without
regard for the actual layout of the matrix. Other operations, such as matrix-
matrix multiply, are better implemented with code that checks the actual
type of the matrices and uses the most efficient multiplication algorithm
and resultant matrix format.

1.5 Dataflow

To this point, we have described a powerful set of computational elements
that may be composed by a variety of means. SCIRun composes compu-
tational algorithms with these data elements using a dataflow style “boxes
and wires” approach. An example of a dataflow network is shown in Fig-
ure 1.4.

1. A module, drawn as a box in the network, represents an algorithm
or operation. A set of input ports and a set of output ports define its
external parameters.

2. A port provides a connecting point for routing data to different stages
of the computation. Ports are typed: each datatype has a different
color, and datatypes cannot be mixed. In SCIRun, ports can be added
to and removed from a module dynamically. Input ports are repre-
sented on the top of the module icon, and output ports are on the bot-
tom. Qutput ports can cache datasets to avoid recomputation. The
user can select which datasets should be cached and which should
not.

3. A datatype represents a concept behind the numbers. Datatypes are
quantities such as scalar fields or matrices, but are not the specific
representations, such as regular grids, unstructured grids, banded ma-
trices, sparse matrices, etc.
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FIGURE 1.4. An example of a fairly complex dataflow network, showing the mod-
ules (the boxes), the connections (the wires between them), and the input/output
ports (the points on the modules that the wires connect). On a color monitor, the
colors of the ports and connections indicate the type of data that flows through
them.

4. A connection connects two modules together: the output port of one
module is connected to the input port of another module. These con-
nections control where the data is sent to be computed. Output ports
can be connected to multiple input ports, but input ports accept only
a single connection.

5. A network consists of a set of modules and the connections between
them. This represents a complete dataflow “program.”

The dataflow library is responsible for deciding which modules need to
be executed and when. A module is typically re-executed when the user
changes a module parameter, when new data is available at an input port,
or when data is required at its output port.
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When the user moves a user interface component, such as a 2D slider
or a 3D widget, the module sends a message to the scheduler requesting
execution. The scheduler analyzes the dataflow graph to determine what
other modules will also need to be executed. The dataflow scheduler uses
the following algorithm to determine which modules need to be executed:

execute_list = modules that requested execution;
resend_list = empty;
foreach module in the execute_list {
foreach module connected to an output {
if the connected module is not in the execute list,
add it
¥
foreach module connected to an input {
if the connected output port has a cached dataset,
add it to the resend list
else add it to the execute_list

¥
¥

cull all ports from the resend_list whose modules appear
in the execute list

send resend messages to the ports in the resend list

send execute messages to the modules in the execute list

Note that all of the modules are executed at the same time. The modules
actually communicate directly with each other using a threadsafe FIFO for
the dataset handoffs. Each thread will wait for data to appear on the input
ports. A module does not have to gather data from the inputs in order,
and 1t may interleave computation with receiving the data. However, in
order to satisfy the requirements for determinacy in a dataflow program,
the module is not able to request datasets in a first-come, first served or
any other non-deterministic order. It is important to note that modules do
not send actual data, but rather a handle to the data (see Appendix A. for
a discussion of handles).

Sending a dataset to the matrix out port looks like this:

MatrixHandle matrix = new DenseMatrix(...);
. build the matrix ..
matrix_out->send(matrix) ;

Receiving a dataset from the matrix_in port looks like:

MatrixHandle matrix;
if('matrix_in->receive(matrix))
return; // returns false if the dataset is not
// available - this is usually due to
// an error upstream
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. do cool stuff with the matrix ..

For each input port, the module must do exactly one receive, and for each
output port, the module must do exactly one send. If the module wishes
to send multiple datasets (as intermediate results, or for feedback loops),
it can use a special method called send multi, which also arranges for the
modules downstream to be executed again.

The send/receive pairs shown above are a simple atomic protocol where
the entire dataset i1s transferred at once. However, it often makes more
sense to use “fine grain” dataflow where appropriate. Fine-grain protocols
are tuned to the specific layout of the data, such as for receiving slabs of a
regular grid for isosurfacing or scanlines for image processing. In such cases
the module receives scanlines and sends scanlines for each scanline in the
image, but it semantically sends or receives the full dataset exactly once.

We chose to implement a centralized scheduler in order to avoid redun-
dant module re-execution in a branching situation. Since we leave the cen-
tral scheduler out of the loop for individual dataset handoffs, 1t does not
become a bottleneck in the execution of the program.

The Dataflow library also contains a base class from which all modules
are derived. This class contains the data structures that are required to
implement the dataflow structures; it also contains various utility func-
tions, such as update progress, a function that the module writer can
call periodically to update the graph on the module icon that indicates the
approximate percentage of work the module has completed.

1.6 Steering in a Dataflow System

All of the pieces described above have been designed to support steering of
large scale scientific simulations. SCIRun uses three different methods to
implement steering in this dataflow oriented system:

1. Direct lightweight parameter changes. The SolveMatrix module al-
lows the user to change the target error even while the module is
executing. The parameter change does not pass a new token through
the dataflow network, but simply changes the internal state of the
SolveMatrix module, effectively changing the definition of the oper-
ator rather than triggering a new dataflow event.

2. Cancellation. When parameters are changed, the module can choose
to cancel the current operation. For example, if boundary conditions
are changed, it may make sense to cancel the computation in order to
focus on the new solution. This makes the most sense when solving
elliptic problems, since the solution does not depend on any previous
solution.
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3. Feedback loops in the dataflow program. For a time varying problem,
the program usually goes through a time stepping loop with several
major operations inside. The boundary conditions are integrated in
one or more of these operations. If this loop is implemented in the
dataflow system, then the user can make changes in those operators
which will be integrated on the next trip through the loop.

These three methods provide the mechanisms whereby computational
parameters can be changed during the execution of the program.

1.7 Modules

We have thus far described a handy set of tools and a dataflow system for
imposing control structure. However, the real value in SCIRun comes from
how these components are leveraged in actual algorithms, or in
SCIRun - actual modules. This section covers how a module is constructed
and then describes some of the modules in SCTRun, showing how they use
the features that we have described above.

1.7.1 Writing a Module

The process of writing a new module involves writing a new C++4 class.
The constructor for this class creates the input and output ports for the
module and defines parameters which the user interface may control. A
single virtual function, execute, is overloaded to perform the actual work
of the module. The execute function typically receives data on the input
ports, performs some computation and then sends data on the output ports.
Other callback functions can provide input from user interface components
and 3D widgets. Adding a user interface to a module involves writing a
small Tcl script which sets up the components of the interface.

Existing code may be integrated into SCIRun by writing a small wrapper
module which passes data into and out of an existing C, C++ or Fortran
program. The wrapper module may be required to translate data structures
before passing them to the existing code and before sending them down the
pipe. In order to avoid this translation, existing code can also be incorpo-
rated by extending the class hierarchy that flows through the dataflow
network. For example, instead of translating to a specific ScalarField class
the module could send a new subclass of the ScalarField that would provide
interpolate and other methods for use by downstream modules.

SCIRun was originally designed as an environment for developing new
simulations and computational components. We are currently working on
ways to more automatically incorporating existing packages into the
SCIRun visual programming environment.
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1.7.2 FEM and Matriz Modules

The BuildFEMatrix module takes a tetrahedral mesh and builds a stiff-
ness matrix for a finite element approximation. The current version of this
module approximates the generalized 3D Poisson’s equation (or its homoge-
neous counterpart, Laplace’s equation) in the discretized physical domain

Q:

V-oVu=f (1.1)

where f 1s a vector of sources and o is 3 x 3 tensor corresponding to the
materials within the domain. The scalar field u is subject to the boundary
conditions:

u=1ug on 71 and oVu-n=0 on 7, (1.2)

The mesh elements have been tagged with a corresponding tensor prop-
erty and boundaries have been tagged with the appropriate boundary con-
dition. The module makes two passes - first to build the sparse structure
of the matrix using a compressed row storage scheme, and second to fill
in the resulting sparse matrix. Building the matrix is done in parallel in
order to take full advantage of multiple processors. The module also builds
the right hand side (load) vector. Users who wish to use other governing
equations can extend this module to build the stiffness and load matrices
appropriately.

Usually, these matrices are passed into the SolveMatrix module, which
uses direct or iterative schemes to find the solution, x to the matrix equa-
tion:

Axr =10 (1.3)

The SolveMatrix module graphs the convergence of the residual as the
algorithm iterates. The algorithm stops when the residual is less than some
target level (i.e., the solution has converged). The user may move the target
residual up or down while the solution is still in progress, thus steering the
computation in a simple manner. Figure 1.5 shows the interface for this
module in operation.

SolveMatrix uses the mult and mult_transpose virtual methods in the
Matrix base class to perform each iteration. As a result, the user could
implement a new matrix type which SelveMatrix could use without even
recompiling the module. This new matrix type does not even need to explic-
itly store the matrix - it could build the matrix dynamically or implicitly.

SolveMatrix also has an option to use the previous solution as the initial
guess for the iterative solver. When small changes are made in the boundary
conditions (a common case in an engineering design scenario), the system
converges rapidly. This is one instance where an integrated system can
actually be more efficient than implementing separate programs for each of
the phases.
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FIGURE 1.5. The user interface for the SolveMatrix module, showing the iter-
ative methods available, the graph of the convergence and the target residual,

which may be changed while the computation is in progress.

The VisualizeMatrix module draws a figure representing the non-zeros in
a matrix. Non-zero entries are draw with small red dots, and zero entries
are left black. This gives the user a quick representation of the sparse
structure of the matrix, as shown in Figure 1.6. A magnifying glass can
reveal the actual numbers in a portion of the matrix by clicking the mouse
in the desired region. VisualizeMatrix uses two additional virtual functions
in the Matrix base class: getRowNonZeros, which returns the nonzeros in
a particular row, and get, which returns the number in a specific row and

column of the matrix.
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FIGURE 1.6. Visualization of the sparse structure of a matrix. The black dots
represent the non-zeros in a matrix with approximately 10,000 rows and columns.

1.7.3 Readers and Writers

The Reader and Writer modules are very straightforward. They simply call
the Persistent object io routines which were described above in Classlib
(1.3.3). The readers read in a text or binary persistent object file and send
the resulting object downstream, and the writers receive an object and then
write 1t out to disk. Since the support for these modules has been provided
by the lower layers, these modules do nothing more than provide user in-
terfaces for the filenames. These modules are automatically generated, but
provide hooks for adding user-defined reader/writer functions.

1.7.4  Visualization Modules

In implementing SCIRun’s datatypes, we considered what type of opera-
tions SCIRun modules would require. One example of such a consideration
was the implementation of the vector and scalar field datatypes. Each of
these fields comes in a variety of flavors, corresponding to the internal rep-
resentation of the data - implicit, explicit, parametric - and the topology of
the field - structured (implicit) or unstructured (explicit). But in designing
the field datatype, we chose several generic operators to allow module writ-
ers to access information from the field without needing to know how the
field is internally represented. As discussed above (see section 1.4.2), these
operators can query the field for minimum and maximum scalar values or
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geometric bounds, or for the field’s value at an arbitrary point in space.
This last operation, retrieving the value of the field at any location, is im-
plemented by an interface called interpolate. In the following subsection,
we will discuss how we have exploited this generic operator in several of
our modules, and we will provide an example of when we chose to side-step
this abstraction in order to write a more efficient algorithm based on the
specific internal representation of the field.

Interpolation

Many of SCIRun’s modules exploit the field interface interpolate. The
interpolate method takes a point as an argument and calculates the value
of the field at that specific location. It accomplishes this by determining
which element of the field contains the point, and linearly interpolating the
values at the element’s vertices.

One example of a module that calls the interpolate method is the
Streamline module. The Streamline module is used for vector field visual-
ization: by tracing particles advecting through the vector field, the user can
examine local flow phenomena around critical points (such as vortices and
turbulence) while also gaining a global sense of the field’s flow. Figure 1.7
shows an example of the electrical current flow near the heart as computed
by the Streamline module. We compute the paths of particles through the
vector field as discrete line integrals, each corresponding to a streamline.
We have several implementations of this integration; one of these is a fourth
order Runge-Kutta method. Given a point p, we integrate along the path
to find the next point along the streamline, pNew. The following piece of
code accomplishes this:

Vector f1, f2, £3, f4;
Point p1l, p2, p3, pliew;

vfield->interpolate(p, f1);

pl =p + (£f1 * 0.5);

vfield->interpolate(pl, £2);

p2 =p + (£2 * 0.5);

vfield->interpolate(p2, £3);

p3 = p + £3;

vfield->interpolate(p3, f4);

pliew = p + (F1 + F2 * 2.0 + F3 * 2.0 + F4) / 6.0;

The principal idea of this algorithm is that we find the vectors cor-
responding to particular points near p and take a weighted average of
these vectors to determine our next location along the streamline. Note
that this algorithm will work for any type of vector field that imple-
ments the interpolate interface. By designing a generic interface to the
interpolate method, we have abstracted away the details of how interpo-
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FIGURE 1.7. Visualization of a defibrillator design simulation, showing an elec-
trode, the surface of the heart (epicardium), a 3D widget (rake), and electrical
current lines (streamlines). The other electrode in the simulation is obscured by
the heart. Much of the current leaving the visible electrode travels away from the
heart, due to the high conductivity of blood in a nearby vessel.

lation is implemented for different field types, and consequently the module
writer needs not be concerned with what {ype of vector field is generating
the streamlines.

Another module that uses the interpolate interface is SurfToGeom.
This module takes a surface, a scalar field, and a colormap as input, and
outputs colored geometric primitives that can be passed to a renderer. The
module computes these primitives in the following way: it queries the field
for scalar values corresponding to points on the input surface; these points
are assigned material properties by indexing the resultant scalar values in
the color table; and finally, these colored points are grouped into geometric
primitives (such as triangles or tri-strips). Here again the SurfToGeom
module utilizes the interpolate interface in order to find the scalar values
of the points on the surface.

The user programming the SurfToGeom module does not ever have to
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worry about the type of the incoming scalar field - structured, unstruc-
tured, or spectral. As long as the interpolate interface is provided, the
SurfToGeom module will work. Furthermore, as new scalar field types are
implemented in the future, they will automatically work with the SurfTo-
Geom module as long as the interpolate method is implemented, without
requiring code to be rewritten or even recompiled.

In contrast to the Streamline and SurfToGeom modules, the IsoSurface
extraction module does not use the interpolate method to find values at
points within the field. While the isosurfacing algorithm could have been
implemented this way, we were able to dramatically improve the speed of
our algorithm by taking into account (and exploiting) the underlying struc-
ture of the data. For example, we have implemented Lorensen and Cline’s
Marching Cubes algorithm [19] as one option for isosurface extraction. For
the case of both structured and unstructured grids, it is much faster to
solve the “forward problem” - finding the intersection of the field with each
element than it i1s to solve the “inverse problem” - using various calls to
interpolate to track down the isovalue points within the field. In this
case, 1t would have been highly inefficient to use the generic interpolate
operator, so we wrote data-structure dependent code to solve the problem.
The IsoSurface module lacks the abstraction (and as a result, the cleanli-
ness) of the Streamline and SurfToGeom modules. As other field types are
implemented, we will have to write new isosurfacing code to handle each
field type. In this case, there was considerably more to be gained by using
data-structure specific information in our implementation than there was
to be gained by using the generic accesses permitted by abstracting this
information away.

1.7.5 Salmon Module

One of SCIRun’s key modules is the graphical viewer called Salmon.
Salmon was named for its ability to spawn multiple views (Roe), and its
ability to send messages upstream in the dataflow network. Salmon collects
the geometric primitives from any number of modules and presents them
in a single 3D view. The user can rotate, scale, and translate the objects,
as well as manipulate lighting, camera parameters and rendering method,
in order to obtain the desired view. Other views can be spawned to sep-
arate windows in order to simultaneously display the objects from other
viewpoints or with different subsets of the objects.

Geometric primitives are passed from the modules to Salmon as a subset
of a scenegraph. These scenegraphs are a tree-based display list that define
geometric primitives, colors, and other rendering parameters. Drawing the
scene involves traversing the graph and emitting OpenGL commands at
each node. Scenegraphs can be composed, stored to disk via the persistent
object mechanism, and then read back for later display. Parameters in the
scenegraph can be changed dynamically by the module using the Crowd-
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Monitor (multiple reader, single writer) lock described above in libMultiask
(1.3.2).

In addition to using the Salmon module for visual output, we can also
use 1t for 3D input by allowing the user to interact with specific objects in
the scene. These objects, called Widgets[20], allow the user to intuitively
augment parameters directly in the 3D scene. For example, in order to
provide the starting point for a streamline advection, the user simply drags
a SphereWidget around in the scene. This interaction is generally more
intuitive to a user then typing in numbers or manipulating 2D sliders. This
interaction becomes even more powerful when a rake [21, 22] is used to
specify a line of starting points for streamline advection.

1.7.6 Other Modules

We have talked about several of the Modules in SCIRun, but there are
many more:

e FEMError - computes the upper and lower error bounds of a finite
element simulation [23, 24].

o MeshRefiner - uses the Error fields described above to decide where
to add new nodes and remove old nodes in order to refine and derefine
the mesh.

¢ Gradient - computes a vector field which is the gradient of the given
scalar field.

¢ Magnitude - computes a scalar field which is the magnitude of the
given vector field.

e FFTImage / IFFTImage - takes the FFT (inverse FFT) of an image,
producing another image.

¢ Filterlmage - multiplies two images together to perform a filter op-
eration in frequency space.

Even this is not an exhaustive list. Despite the number of modules avail-
able, the user will always need something different than what is supplied.
In such cases, the user can simply create a new module (by writing a small
C++ program). User modules are dynamically linked with SCIRun, thus
avoiding the need to relink the SCIRun executable.

1.8 Applications of SCIRun in Computational
Medicine

Here we address the application of SCIRun to two bicelectric field problems
in medicine: simulation of cardiac defibrillation and simulation of temporal
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lobe epilepsy.

Every year, a large number of people die suddenly because of abnormal-
ities in their hearts’ electrical system (cardiac arrhythmias) and/or from
coronary artery disease. While external defibrillation units have been in
use for some time, their use is limited because it takes such a short time for
a heart attack victim to die from insufficient oxygen to the brain. Lately,
research has been initiated to find a practical way of implanting electrodes
within the body of patients with recurring and life-threatening arrhythmias
to defibrillate a person automatically upon onset of cardiac fibrillation. Be-
cause of the complex geometry and inhomogeneous nature of the human
thorax and the lack of sophisticated thorax models, most past design work
on defibrillation devices has relied on animal studies. We have constructed a
large scale model of the human thorax, the Utah Torso Model [6, 7, 25, 26],
for simulating both the endogenous fields of the heart and applied current
sources (defibrillation devices). Using these computer models, we are also
able to simulate the multitude of electrode configurations, electrode sizes,
and magnitudes of defibrillation shocks. Figure 1.8 shows the results of
such a simulation. Given the large number of possible external and internal
electrode sites, magnitudes, and configurations, it is a daunting problem to
computationally test and verify various configurations. For each new con-
figuration tested, geometries, mesh discretization levels, and a number of
other parameters must be changed.

Excitation currents in the brain produce an electrical field that can be de-
tected as small voltages on the scalp. By measuring changes in the patterns
of the scalp’s electrical activity, physicians can detect some forms of neu-
rological disorders. Electroencephalograms, EEGs, measure these voltages;
however, they provide physicians with only a snapshot of brain activity.
These glimpses help doctors spot disorders but are sometimes insufficient
for diagnosing them. For the latter, doctors turn to other techniques; in
rare cases, they rely on investigative surgery.

Such is the case with some forms of epilepsy. To determine whether a
patient who is not responding to medication has an operable form of the
disorder, known as epilepsy (most of which occur in the temporal lobe),
neurosurgeons use an inverse procedure to identify whether the abnormal
electrical activity is highly localized (thus operable) or diffused over much
of the brain.

Using SCIRun, scientists and engineers are able to design internal defib-
rillation devices and source models for the epileptic foci, place them directly
into the computer model, and automatically change parameters (size, shape
and number of electrodes) and source terms (position and magnitude of
voltage and current sources) as well as the mesh discretization level needed
for an accurate finite element solution. Furthermore, engineers can use the
interactive visualization capabilities to visually gauge the effectiveness of
their designs and simulations in terms of distribution of electrical current
flow and density maps of current distribution.
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FIGURE 1.8. Visualization of the electrical current lines and an isovoltage surface
from a simulation of a cardiac defibrillator design simulation.

Mathematically, these problems are governed by variations of the gener-
alized Poisson’s equation for electrical conduction in the physical domain
Q1 of the thorax or head [27]. Thus one solves (1.1) where v = ® are the
electrostatic voltages, f = —Iy are the electrical current sources and o
is an electrical conductivity tensor. The boundary conditions in (1.2) are
such that 7 1s the surface of the internal defibrillator electrodes and 75 1s
the surface of the torso. ug = ®q specifies a Dirichlet boundary of known
voltages and oV ® - n represents the current flow normal to the surface of
the torso (scalp), which is zero for the insulated boundary of the thorax
(or head).

Once the electrostatic potentials are known, one can calculate the current
density J according to:

J=—oVo. (1.4)

For the defibrillation problem, electrodes are either implanted internally or
applied directly to the chest in order to deliver sufficient electric energy to
stop the irregular heart rhythms that signify a fibrillating heart [28, 29].
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Mathematically, this can be posed as solving equations (1.1-1.4) with the
voltage boundary condition applied on a portion of the torso boundary
Y. C 75 for external defibrillation or from the surface of the defibrillation
electrode(s) within the volume of the thorax for internal defibrillation.

Past (and much current) practice regarding the placement of the elec-
trodes for either type of defibrillator has been determined by clinical trial
and error. One of our goals is to allow engineers to use SCIRun to assist
in determining the optimum electrode placement, size, shape, and strength
of shock to terminate fibrillation by solving equations (1.1-1.4) within a
detailed model of the human thorax [30, 31, 32, 33, 34].

For the neuroscience problem, the epileptic foci are represented as a set of
idealized dipole sources situated in the brain. Using a model of the human
skull and brain, the direct EEG problem is posed by solving equations (1.1-
1.4) for the voltage and current distribution within the brain and upon the
surface of the scalp. For the inverse EEG problem, measured scalp voltages
are used as the inputs and equation (1.1) is solved for the source currents
Iyv. We are currently using SCIRun to investigate the direct and inverse
EEG problems as well as using SCIRun as an interactive modeling and
visualization tool.

A SCIRun System for Bioelectric Field Problems

A network that can be used to model cardiac defibrillation is shown in
Figure 1.4. A similar network is used for a forward solution in the neuro-
science application. The network consists of the following modules:

¢ SurfaceReader reads a triangulated surface definition from a file. One
of these modules will read the torso boundary (body surface) geome-
try, and the other will read the epicardium (heart surface) geometry.
In the neuroscience application, there may be several surfaces - includ-
ing the scalp surface, the scalp-skull interface, the skull-cerebrospinal
fluid (CSF) interface, the CSF-grey matter interface, and the grey-
white matter interface.

e GenSurface will generate two cylindrical electrodes for the defibrilla-
tion study. Parameters in the interface allow the scientist to control
the discretization of the electrodes. In the neuroscience application,
these surfaces may represent dipole or other types of source configu-
rations in the brain.

¢ SurfToGeom converts the surface definitions into displayable geome-
try. A flag in the user interface controls whether or not the geometry
i1s movable. The epicardium and torso boundary should not be moved,
since they correspond to physical geometry. The electrode cylinders,
on the other hand, must be moved so that various placements can be
tested. The SurfToGeom module provides 3D widget handles which
allow the user to manipulate these surfaces directly. An optional in-
put parameter selection will map scalar field values onto the surface.
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FIGURE 1.9. Visualization of a computational neuroscience simulation, showing
an epileptic focus (a dipole source, indicated by the arrow) and an isovoltage
surface in the resulting field.

This input is attached to the epicardium and shows the voltages on
the surface of the heart.

ApplyBC applies boundary conditions to the various surfaces. The
torso and scalp have a zero-flux Neumann boundary. In the defibril-
lation problem, the two electrode cylinders have Dirichlet boundary
conditions corresponding to their respective voltage. In the neuro-
science application, there are discrete current sources. The voltage
and current sources may be changed interactively.

GenerateMesh discretizes the volume defined on the outside by the
torso (scalp) and on the inside by the two voltage source electrodes.
This discretization occurs after the application of the boundary con-
ditions so that the mesh generator may optimize the mesh for the
particular boundary conditions.
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BuildFEMatrix uses the mesh structure, the boundary conditions,
and finite element theory to construct a matrix that describes the
user-specified configuration. Utilizing controls on the user interface,
the user may instruct the module to create a dense matrix, a band
diagonal matrix or a compressed sparse-row matrix.

SolveMatrix uses direct or iterative algorithms to find the solution to
the matrix equation. For this problem, we use a preconditioned conju-
gate gradient algorithm for iterative solutions. The scientist controls
convergence parameters through the graphical user interface.

MakeScalarField combines the solution of the finite element matrix
to the volume mesh generated by GenerateMesh. This mesh/solution
combination provides a representation of the solution in terms of a
scalar field of voltage values.

IsoSurface allows interactive extraction of isosurfaces in the voltage
field. A small sphere controls the starting point of the isosurface algo-
rithm, and an attached 3D arrow shows the direction of the gradient.
The sphere and arrow widget may be moved using the mouse to allow
interactive exploration of the voltage field. Dragging on the body of
the arrow moves the widget along the line defined by the gradient;
dragging on the sphere allows unconstrained movement of the seed
point.

¢ Gradient computes a vector field from the scalar voltage field ac-
cording to equation (1.4). This yields another form of the solution in
terms of electric current density.

e Streamline produces vector field lines that reveal the flow of electrical
currents within the torso and brain. These field lines are analogous
to massless particle traces in fluid flow fields. The streamlines are ad-
vected using a 4th order Runge-Kutta technique. The user may choose
between a single streamline or a row of streamlines. Adaptation pa-
rameters and step sizes are controlled via the 2D user interface, while
the positions of the particle sources are controlled with 3D widgets

[22].

e Salmon provides the underlying structure for viewing geometry and
3D user interaction for both viewpoint control and control of the
3D widgets described above. As the Streamline module computes
streamlines, or as the Isosurface module computes isosurfaces, it
will send geometry (lines, triangles or other primitives) to Salmon.
Salmon displays these objects geometry in a rendering window.

Each of these modules is simple enough to be managed easily, but when
they are joined together, they accomplish a very complex task. Sample
visualizations from this type of network are shown in Figures 1.7 and 1.9.
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FIGURE 1.10. Pop-up window for the Streamline module.

Pressing the “UI” (user interface) button on any of the modules’ icons
summons a pop-up window which allows the user to change various param-
eters for that module. For example, the Streamline module’s pop-up allows
the user to specify integration parameters, display modes, 3D widget types,
and other information. As an example user interface, Figure 1.10 shows the
pop-up windows for the Streamline module.

1.9 Summary

We have presented an overview of the SCIRun software architecture.
SCIRun provides support for computational steering by providing powerful
libraries and tools at a variety of levels, ranging from operating system level
to a high-level visual user interface. SCIRun allows computational compo-
nents to be efficiently assembled using a dataflow programming paradigm.

The real power of SCIRun comes from its modules. The set of modules
can be extended by the user in order to provide custom tools and interfaces
to existing programs.
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1.10 Future Work

SCIRun is continually evolving. We look forward to the challenges of in-
tegrating SCTRun components with other computational paradigms (alter-
natives to dataflow), and also to the converse: connecting SCTRun’s visual
programming environment to other computational components. In addi-
tion, we are continually trying to stretch SCIRun in new directions by
applying it to new applications in a range of disciplines.

In addition to porting SCIRun to new shared memory architectures [35],
we have ideas of how to use SCIRun in a distributed environment. SCIRun’s
role as a miniature operating system would be greatly expanded in such a
scenario.
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Appendix A. Software Appendix

Appendiz A..1  Handles

A handle contains a single data member rep, which contains a pointer to
the actual representation. It also defines ten methods:

1.
2.
3.

Handle() - initializes rep to NULL.
Handle(Type* p) - sets rep to p, and increments p->ref _cnt.

Handle (Handle<Type>& copy) - copies rep from another handle,
and increments the reference count.

. "Handle() - decrements rep->ref cnt. If it is now zero, delete the

object pointed to by rep.

. Handle<Type>& operator = (Type* p) - decrements

rep->ref _cnt, deleting when it reaches zero; sets rep to p and incre-
ments p->ref_cnt.

. Handle<Type>& operator = (Handle<Type>& copy) -

decrements rep->ref _cnt, deleting if it reaches zero; copies rep from
copy and increments copy->ref cnt.

Type* operator -> () const - this simply returns rep, but it allows
the handle to be dereferenced using -> like a normal C++ pointer.

. Type* get rep() const - returns the actual pointer rep. This is

useful for some code, but is also dangerous since the handle must
continue to exist as long as the pointer is being used - otherwise the
object could be deleted while it is still being accessed.
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9. bool isNull() comnst - returns true if rep==0.

10. void detach() - if rep->ref _cnt is greater than one, then void
detach clones the object, thus obtaining an exclusive copy of the
object. If rep->ref _cnt is equal to one, then we already own an
exclusive copy of the object. This allows subsequent code to make
changes to the referred object without sharing those changes with
other handle owners.



