2024 IEEE Workshop on Uncertainty Visualization: Applications, Techniques, Software, and Decision Frameworks

Glyph-Based Uncertainty Visualization and Analysis of Time-Varying
Vector Fields

Timbwaoga A. J. Ouermi *
SCl Institute, University of Utah

Bart van Bloemen Waanders $

Sandia National Laboratories

Jixian Li *
SCl Institute, University of Utah

Zachary Morrow *
Sandia National Laboratories

Chris R. Johnson T
SClI Institute, University of Utah

‘ cone

. comet

l tailed-disc

‘ squid
(proposed glyph design)

Figure 1: 3D vector uncertainty glyph. The glyphs’ direction corresponds to the median vector direction. The angle and length
of the cone glyph represent the angular variation (the maximum angle between all pairs of vectors within the ensemble) and
the maximum vector length. The magnitude variation (the difference between the maximum and minimum magnitude) is not
included. The comet glyph encodes the magnitude variation and minimum magnitude using the length of the cone and cylinder,
respectively. However, these variations are not easily discernible. While both the failed-disc and squid clearly distinguish these
uncertainties, the small arrow size and rotational symmetry of the tailed-disc limit the perception of the size of the uncertainty.
In contrast, our proposed squid glyph effectively distinguishes between magnitude and direction variations. Additionally, it
employs a superellipse (2D superquadric) to better approximate directional variations, eliminating rotational ambiguity around
the median direction. The last column shows the uncertainty variation between the selected time step (opaque blue) and the next
two time steps shown in transparent grey and red. The squid glyph is more accurate and less prone to rotational degeneracy.

ABSTRACT

Uncertainty is inherent to most data, including vector field data, yet
it is often omitted in visualizations and representations. Effective
uncertainty visualization can enhance the understanding and inter-
pretability of vector field data. For instance, in the context of severe
weather events such as hurricanes and wildfires, effective uncer-
tainty visualization can provide crucial insights about fire spread or
hurricane behavior and aid in resource management and risk miti-
gation. Glyphs are commonly used for representing vector uncer-
tainty but are often limited to 2D. In this work, we present a glyph-
based technique for accurately representing 3D vector uncertainty
and a comprehensive framework for visualization, exploration, and
analysis using our new glyphs. We employ hurricane and wildfire
examples to demonstrate the efficacy of our glyph design and visu-
alization tool in conveying vector field uncertainty.
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1 INTRODUCTION

Visualization and analysis of vector field data is fundamental to
many scientific applications including flow simulations, weather
prediction, and wildfire simulations. For example, in the context
of wildfires, understanding wind uncertainty and flow patterns is
critical for forecasting the overall fire behavior and ultimately pro-
viding more information to aid in resource management and risk
mitigation. The wind data in these scenarios are inherently time-
varying, three-dimensional, and associated with uncertainties.

Effective techniques for visualizing uncertainty in vector field
data can improve understanding and interpretability [13, 25, 4].
Uncertainty visualization provides an understanding of the limita-
tions and potential errors in the data, as well as insight into the
observed features and trends in the vector field.

In this work, we present a glyph-based method for visualiza-
tion and analysis of time-dependent 3D vector field uncertainty.
Glyph-based methods for vector field uncertainty visualization have
mostly been limited to 2D [20, 5, 29, 32,7, 8, 27, 4, 6], and existing
3D glyph-based methods are prone to rotational ambiguity and do
not provide insight into the distribution of vectors within the high
uncertainty region. We address these limitations through the fol-
lowing contributions: (1) A 3D uncertainty glyph, we have named
the squid glyph, that is designed using superellipses and cones to
provide a more accurate approximation of the vector magnitude and
direction uncertainty compared to the uncertainty cone [12], comet
(cylinder + cone) [17], and tailed-disc (disc + arrow) [12] glyphs.
Our squid glyph is suitable for representing anisotropy in direc-
tional variation and is less prone to visual ambiguity; (2) The use of



multivariate data depth, which we refer to as “vector depth” for ex-
ploration and analysis. The vector depth measures how immersed
a given vector is compared to other vectors in a set. This metric
provides insight into the distribution and individual vectors at each
spatiotemporal location without prior assumptions about the distri-
bution; and (3) A visualization framework that utilizes the squid
glyph, the vector depth, and other methods to enable interactive vi-
sualization, exploration, and analysis of time-varying vector field
uncertainty.

2 RELATED WORK

Several glyph-based methods have been developed to integrate un-
certainty in order to improve understanding and interpretability of
vector field visualization [29, 19, 21, 7, 8, 12, 31, 10, 32, 4]. Un-
certainty in vector fields is often incorporated into the visualization
as an add-on by overloading or modifying visual attributes such as
surface reflectance, rendering opacity, and color to represent the
uncertainty [3, 5, 19].

The work in [29, 30, 19] proposes different 2D glyph designs
where the vector magnitude and angular variation are encoded in
the length and shape of the glyph. Jarema et al. [8] propose a
glyph-based methods that fits the vector field distribution at each
location with the Gaussian mixture model (GMM) and a 2D lobu-
lar glyph overloaded with a colormap to visualize the distribution
and uncertainty. Halwatsch et al. [7] proposed flow-radar glyphs
for visualization of time-varying vector fields and their extension to
incorporate magnitude and direction uncertainty in 2D. The flow-
radar glyph is constructed by spatially and radially organizing the
temporal vector direction into a sequence of points that are con-
nected to form the glyph. Zuk et al. [32] utilize animation with 2D
glyph representations to visualize the bidirectional vector field un-
certainty in the context of analyzing anisotropy of rocks. Lee and
Park [12] proposed a 3D glyph design to improve the representation
of uncertainty and visual perception of the vector field data. This
approach combines a disc and arrow glyph to encode the uncer-
tainty. Schmidt et al. [21] use box, sphere, and cylinder glyphs to
represent scalar uncertainty and arrow glyphs overloaded with color
to represent directional uncertainty. Post et. al [20] proposed geo-
metric primitives such as arrows and ellipses to encode and render
3D vectors and its distribution.

3 METHODS

Several uncertainties, including measurement, data transformation,
and parameter variation, occur in 3D vector field. The instruments
typically provide the uncertainty for measured data [28]. The un-
certainties from data transformation and parameter variations can
be estimated from ensemble data with statistical methods. Sec-
tion 2 highlights different glyph-based methods for encoding the
estimated uncertainties to different glyph attributes.

3.1

The uncertainty glyph design is crucial for effectively visualizing
the vector field uncertainty. We introduce the squid glyph, a 3D
uncertainty glyph that builds on the ideas introduced in [29, 19]
and leverages the design guidelines in [25, 13, 4]. Our squid glyph
design primarily focuses on (1) accurately encoding the magnitude
and direction uncertainty, (2) ensuring that the information encoded
in the glyph is easily discernible, and (3) utilizing intuitive repre-
sentations to provide insight into the vector field patterns and their
uncertainties. We discuss these considerations sequentially. The
design details of our squid glyph are illustrated in Fig. 2.

First, accurately mapping uncertainty information to glyph at-
tributes is essential for the correct interpretation of individual un-
certainty glyph and their relationships to neighboring glyphs. The
use of ellipses can improve accuracy; however, it introduces a rota-
tional degeneracy about the median direction of the glyph. In tensor
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Figure 2: Uncertainty squid glyph design: The visualization on the
left side illustrates calculating the first (0p) and second (07) PCA
principal components used to represent the directional spread and
scale of the superellipse semi-minor axis. The diagram on the right
side shows the squid glyph design with its parameters. The magni-
tude and magnitude variation are represented along the glyph direc-
tion. The minimum magnitude, magnitude variation, and maximum
magnitude are represented with h, Ah, h+ Ah, respectively.

visualization, superquadrics have been employed to enhance accu-
racy and remove rotational ambiguity [11, 22]. Following a similar
approach, we utilize superellipses to design an uncertainty glyph
that is both more accurate and less susceptible to rotational ambi-
guity. In Fig. 2, the minimum magnitude /4, magnitude variation Ah,
and the maximum magnitude &+ Ah are mapped to the length of the
body, head, and entire glyph, respectively. The directional uncer-
tainty is mapped to the angles ¢, o and the semi-major axis ry and
semi-minor axis | of the superellipse at the base of the squid glyph
shown on the right side of Fig. 2. The semi-major and semi-minor
axis indicate the spread of the directional variation is calculated ac-
cording to

1 h+Ah
r0:(h+Ah)tan(§ao), rlzro‘lclH, oy =tan~! (L)

ool r

where 0 is the maximum angle from the ensemble vectors at each
spatiotemporal location. The visualization on the left side of Fig. 2
illustrates the process for calculating 6 and o. They are obtained
by finding the intersection of each vector with a plane orthogonal
to the scaled median vector (||vmax||/|[Vmedian||) Vmedian @nd crosses
its tip. The median vector vyegian corresponds to the vector with
the largest “vector depth” which is multivariate data depth that will
be described in Sec. 3.2. We then employ principal component
analysis (PCA) decomposition to find the first and second princi-
pal directions oy and o7, respectively. The “squid” glyph direction
corresponds to the median direction.

Second, individual glyph parts encoding the data information
should be easily discernible. To facilitate interpretability, the glyph
parts should be “orthogonal,” meaning that each glyph part should
be visually distinguishable independently [13]. To ensure orthogo-
nality, our uncertainty squid glyph is designed such that the head,
body, magnitudes, and angles can be perceived separately. These
glyph attributes are normalized across the vector field data to en-
able comparison based on glyph sizes.

Lastly, given that arrows are a common and intuitive representa-
tion of directions and vectors, we utilize the cone and super-ellipse
primitives to construct an arrow-like glyph that intuitively indicates
size and direction. Glyphs that are designed based on semantic
meaning are well-suited for interpretability and identifying features
and patterns for visualization [25, 13, 4].

Occlusion and depth-perception limitations in 3D visualization
impede the user’s ability to effectively interpret spatial relationships
and structures of the vector field and its uncertainty. We address this
limitation by providing global and local interactive visualization ca-



pabilities that enable the user to focus on specific regions, or slices,
thereby reducing occlusion and limitations of depth perceptions.

Figure 1 shows a comparison of our uncertainty squid glyph with
the comet, tailed-disc [12], and the standard cone glyphs. The cone
glyph only represents angular variation and not magnitude varia-
tions. The comet glyph does not clearly distinguish magnitude and
direction variations. While both tailed-disc and squid glyphs de-
pict these uncertainties, the tailed-disc’s small arrow size and rota-
tional symmetry around the median direction limit the perception
of the glyph’s size, as highlighted in the orange boxes. In contrast,
the squid glyph design effectively distinguishes between magnitude
and direction variations. Additionally, it employs a superellipse
to better approximate directional variations, eliminating rotational
ambiguity around the median direction. Overall, the squid glyph is
more accurate and less prone to rotational degeneracy.

3.2 Vector Depth

“Vector depth” is a multivariate data depth, a non-parametric sta-
tistical method for measuring centrality. It measures how deep
or immersed a given vector is compared to other vectors in the
dataset. The squid glyph in Sec. 3.1 provides a summary of the
uncertainty at each spatiotemporal location, while the vector depth
offers insights into the distribution of vectors from which the uncer-
tainty summary is derived. The multivariate data depth approaches
[15, 2, 14] have been extended to characterize contours [26], and
curves [18]. Here, we adapt the multivariate data depth to vec-
tors by computing the vector depth in spherical coordinates instead
of standard Cartesian coordinates. Spherical coordinates are better
suited for representing magnitude and direction variations.

Let F be a continuous probability distribution in Q =R x [0, 7] x
[-m, 7], with V = {Xj,...,X,} C Q a collection of n > 3 random
samples from F. Any point in the 3D Cartesian coordinate (R?) can
be uniquely represented in the spherical coordinate (). The vector
depth of x is the percentage of size-4 subsets of V whose bounding
box in Q contains x. Mathematically,

(D _l ch;w:4 towi )

S[V] is the closed region in spherical space with corners defined by
V, and 1 is the indicator function (1 if x € S[V], 0 otherwise).

The data depth is suitable for identifying outliers and providing
insight into vector distribution. Figure 3 shows a skewed distribu-
tion with an outlier on the left side, a squid glyph approximation
of the distribution in the center, and a squid approximation without
the outlier that is removed by excluding the smallest vector.

\J ol

Figure 3: The arrows on the left side show the explicit visualization
of the vector distribution. The squid glyph approximation for this
distribution is shown in the center. The squid glyph representation
without the outlier is shown on the left side.

VD(x) = ey

3.3 Vector Field Uncertainty Visualization Tool

We present a visualization tool for the exploration and analysis of
time-varying vector field data. Vector field uncertainties are often
omitted, and when included, they are typically limited to 2D rep-
resentations. Our framework leverages color, transparency, multi-
ple views, the squid glyph, and “vector depth” of the previous two
sections to enable a comprehensive global and local spatiotempo-
ral analysis of vector-field uncertainty. The interface is designed
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to highlight and provide insights into regimes with significant un-
certainty while preserving the overall visual patterns of the vector
field.

We employ an example dataset constructed by sampling the vec-
tor field in Eq. (2) and adding uniform random noise to each vector
component. Specifically, the generated dataset includes 20 ensem-
ble members at each spatiotemporal location, obtained by perturb-
ing each vector component with uniform noise.

up = sin(x) Uy 1 uy cos(t) — vy sin(z) xe[-1,1]
vo = sin(y) Vir1 | = |uesin(z) + vy cos(z) ye[-1,1] 2
wo = 0.5 Wit1 wy t €0, %75],

Figure 4 shows the framework interface with the components in
black rectangles and the numbers in orange.
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Figure 4: Vector uncertainty analysis interface. The outlined black
rectangles and orange numbers indicate the components. C| and C»
are used for global and local visualization of filtered vector data, re-
spectively. C3 visualizes the magnitude variations and while Cy vi-
sualizes the vector depth distribution magnitudes and angular vari-
ations at a selected location.

The component Cj (top left) uses the squid glyph to show a global
visualization of the vector field data while the second component
C, (top right) shows a local visualization based on the selected re-
gion indicated by the black box in Cj. The component C3 (bottom
left) enables the visualization of magnitude variations for the spe-
cific a time range and specific selected time. The top plots in C3
of Fig. 4 show the maximum magnitude variations (on the y-axis)
versus time (x-axis) and the bottom plot shows the magnitude vari-
ations at each location for a selected time step. Both visualizations
can help the user identify regions with large variations as shown
with orange ellipses.The component Cy visualizes the vector depth
values and provides insight about the distribution of vectors at a
selected spatiotemporal point. The top figure in C4 uses heatmap
visualization where the y-axis represents the spacial locations, the
x-axis represents the ensemble members, and the colormap repre-
sents vector depth for the vectors in the C; at a selected time step.
The bottom figure provides detailed information about the distribu-
tion of vectors from which the vector uncertainty is computed. The
angular variation is calculated with respect to the median vector
direction. These visualizations provide detailed information about
the vector field uncertainty and can be employed to detect outliers,
as shown in the bottom plot in Cy.

The variations are computed with respect to the data to provide
an intuitive visualization and uncertainty analysis at the measured
or sampled spatiotemporal locations directly. These computed vari-
ations can be used to guide measurement and resampling offline
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(a) comet (hurricane) (b) tailed-disc (hurricane)

(c) squid (hurricane)

A, g

(d) comet (wildfire) (e) tailed-disc (wildfire) (f) squid (wildfire)

Figure 5: Hurricane Isabel and wildfire examples. Both examples show a comparison of the comet, tailed-disc and squid glyphs

to reduce uncertainty and improve data quality. In future studies,
we plan to investigate Combining spatial, temporal, and parameter-
based uncertainty altogether to provide additional insight and fur-
ther enhance the uncertainty analysis.

4 RESULTS AND DISCUSSION
4.1 Hurricane Isabel

Hurricane Isabel was the most costly hurricane of the 2003 season
with $3.6 billion in damage. In the context of hurricanes, under-
standing wind patterns and uncertainty is crucial for a better char-
acterization of the hurricane behavior and to provide useful infor-
mation that can aid in resource management and risk mitigation.
The visualization dataset is obtained by down-sampling the orig-
inal dataset [9] volume resolution from 500 x 500 x 100 x 48 to
40 x 40 x 100 x 48. The vector uncertainty at each sub-sampled
location is obtained using the local neighborhood vectors in the
5 x5 x 1 spatial patch.

Figure 5a - Figure 5c show a comparison of the different glyph
representations around the hurricane eye for a horizontal slice. The
larger-size comet glyphs in Fig. 5a better highlight the regions with
large uncertainty compared to the other approaches. However, the
comet glyphs in Fig. 5a do not effectively differentiate between
magnitude and directional variations. In contrast, these variations
are distinguished in failed-disc glyphs shown in Fig. 5b, but the
tailed-disc design is not suitable for highlighting regions with large
uncertainties. Figure 5c show that the proposed squid glyph de-
sign is suitable for (1) identifying regions with larger uncertainties,
(2) distinguishing the magnitude and directional variation in each
glyph, and (3) more accurately encoding the directional uncertainty
dispersion compared the other approaches. The zoomed-in region
enables uncertainty comparison of the currently selected time step
with neighboring time steps indicated by using transparency and
different colors. These results demonstrate that the squid glyph
provides a more accurate representation of the vector uncertainties
compared to the comet and tailed-disc.

4.2 Wildfire

This example models wildfire-produced winds resulting from un-
certain fuel properties in the Valles Caldera National Preserve of
northern New Mexico. This location was selected for its varied
topography, well-defined fuel regions, and history of fire activity.
There are three easily identifiable fuel regions: the caldera floor,
forest edge, and forest. In reality, fuels are strongly dependent on
fine-grained local properties, but state-of-the-art models treat them
as bulk quantities for computational tractability, resulting in epis-
temic uncertainty. Moreover, material parameters in fire codes are
typically set to a priori nominal values based on standard fuel mod-
els, e.g. [1, 23], resulting in aleatoric uncertainty.
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For each of the three fuel regions, we sample the surface-area-
to-volume ratio (SAVR) from a uniform distribution centered on
the nominal parameter value. Using the state-of-the-art code WRF-
SFIRE [16], we run a fire simulation for each SAVR sample, last-
ing ¢ = 10 hours. The quantity of interest is the final-time, three-
dimensional wind, defined on a 69 x 53 grid where Ax = Ay =
150m. The winds are initialized modestly at 1 m/s for dynamical
stability, and topographic data comes from LANDFIRE [24].

Figure 5d - Figure 5f show a comparison of the different glyph
designs applied to wildfire winds. The results in the zoomed-in re-
gion show that all four glyphs effectively highlight the region with
large uncertainty shown in the black box. The magnitude and di-
rectional variations are more distinguishable in both the tailed-disc
and squid glyphs, compared to the comet glyphs where the different
parts are not easily discernible. Moreover, the squid glyph provides
a more accurate representation and superior visualization of wind
uncertainty. Additionally, the squid glyph provides a more accurate
representation of the directional variations compared to the other
methods that assume symmetry in the directional spread around
the median direction. This provides insights into overall wind pat-
terns and their associated variations due to changes in fuel content,
thereby enhancing understanding of wildfire behavior.

5 CONCLUSION

In this paper, we introduced the squid glyph, a 3D vector field un-
certainty glyph that accurately represents magnitude and direction
uncertainties and is less prone to rotational ambiguity. In addition,
we presented a visualization tool that utilizes the squid glyph, vec-
tor depth, and other techniques for exploration and analysis of vec-
tor field uncertainty. The squid glyph with pointy tip is suboptimal
in cases with extensive angular variation. In the future, we plan to
investigate the use of tensor glyphs and alternative design strategies,
such as arrowheads with less accentuated shapes like half-ellipses
to represent vector ensembles with multiple modes and wide varia-
tions to further enhance glyph design.
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