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Figure 1: Our proposed visualization system highlights the geometric and topological errors introduced by linear interpolation
methods and allows users to query local vertex differences between interpolation methods. The first column (Fig. 1a and Fig. 1f)
shows the approximated isosurface uncertainty and local selection using the colormap and transparent box, respectively. The
second column (Fig. 1b and Fig. 1g) shows the differences between linear and cubic, linear and WENO methods and the
approximated error for each vertex inside the transparent boxes. The third column shows a global comparison between linear
and WENO interpolation methods. The fourth and fifth columns (Fig. 1d, Fig. 1e, Fig. 1i, and Fig. 1j) show a comparison
between isosurfaces with (transparent orange) and without (opaque blue) possible hidden features that indicates isosurface
feature uncertainty.

ABSTRACT

Isosurface visualization is fundamental for exploring and analyzing
3D volumetric data. Marching cubes (MC) algorithms with linear
interpolation are commonly used for isosurface extraction and vi-
sualization. Although linear interpolation is easy to implement, it
has limitations when the underlying data is complex and high-order,
which is the case for most real-world data. Linear interpolation can
output vertices at the wrong location. Its inability to deal with sharp
features and features smaller than grid cells can lead to an incor-
rect isosurface with holes and broken pieces. Despite these limita-
tions, isosurface visualizations typically do not include insight into
the spatial location and the magnitude of these errors. We utilize
high-order interpolation methods with MC algorithms and interac-
tive visualization to highlight these uncertainties. Our visualization
tool helps identify the regions of high interpolation errors. It also
allows users to query local areas for details and compare the dif-
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ferences between isosurfaces from different interpolation methods.
In addition, we employ high-order methods to identify and recon-
struct possible features that linear methods cannot detect. We show-
case how our visualization tool helps explore and understand the
extracted isosurface errors through synthetic and real-world data.

Index Terms: Marching cubes, linear interpolation, high-order
interpolation isosurface uncertainty, weighted essentially non-
oscillatory method

1 INTRODUCTION

Isosurface visualization is fundamental for the exploration and anal-
ysis of 3D volumetric data. Several domains, including medical
imaging [30, 52, 43, 19], dynamic simulations [37, 15], and crys-
tallography [45] rely on isosurface visualization to explore and
analyze important features that provide key insight for decision-
making. The marching cubes (MC) [31] algorithm is widely
used for extracting and visualizing these isosurfaces. The MC
algorithms are commonly coupled with linear interpolation. Al-
though local and fast, linear interpolation can introduce signifi-
cant errors that lead to undesirable visual artifacts and degrade
the isosurface approximation [17, 13]. In addition, the standard
MC algorithms with linear interpolation fail to detect and recon-
struct hidden and sharp features not captured by the mesh resolu-
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tion [29, 26, 22, 23, 38, 53, 14]. Sharp features correspond to edges
and corners, while hidden features are isosurface patches ignored
by MC topological cases and linear interpolation. Despite the MC
algorithms’ well-known errors and limitations, most visualizations
don’t offer insights into how those errors could impact the extracted
isosurface. Instead of treating the extracted isosurface as a complete
piece, we observe that some regions are more (or less) trustworthy
than others. Characterizing the quality of extracted isosurfaces and
the type of errors can help better understand the reliability and limi-
tations of the extracted isosurface and its features. However, obtain-
ing the true surface specification is often impossible due to insuffi-
cient information. Scalar fields are commonly stored on a sampled
uniform grid. Linear interpolation directly computes the surface’s
geometry using those values, ignoring some of the important infor-
mation, such as gradients or high-order coefficients. Therefore, it
is important to highlight the regions with high errors and variations
and allow the users to determine the correct surfaces based on their
expertise and domain-specific knowledge.

To investigate the isosurface uncertainty, one considers the er-
rors caused by noisy input data (data uncertainty) and/or the iso-
surface extraction procedure (model uncertainty). Here, we investi-
gate the latter in the context of interpolation methods. Current ap-
proaches have focused on characterizing the uncertainty from noisy
data applied to MC with linear interpolation [2, 44, 41, 3, 4, 20].
These approaches apply probabilistic methods to the noisy data
to estimate the isosurface uncertainty. Other approaches com-
pare the extracted isosurface against a high-resolution target isosur-
face [11]. Many real-world examples lack finer resolution datasets
or target isosurface to compare against. Several studies propose
quadratic and cubic interpolation methods to improve the accuracy
of level-crossing at each edge, and therefore the isosurface accu-
racy [17, 13, 12, 32, 33, 8, 46]. However, these methods don’t pro-
vide sufficient insight into the accuracy improvement from linear to
higher-order interpolation.

To address the issue of feature recovery, several studies extend
the original MC algorithm to recover sharp features by inserting
additional points or refining the cells containing the sharp features
[29, 26, 22, 23, 38, 53, 14]. These methods require access to nor-
mals or finer-resolution data to identify and recover sharp edges. In
practice, finer resolution data are often unavailable and normals at
the interior of the cell edges are approximated using linear inter-
polation, which has large errors as previously indicated. Moreover,
these methods do not identify features in cells where all node values
are above or below the provided isovalue.

In this paper, we provide insights into uncertainties caused by
interpolation methods through interactive visualization and address
the aforementioned limitations. We summarize our contribution as
follows: (1) We construct an analytical error approximation of the
edge-crossing vertex in the MC algorithms for visualizing the re-
constructed isosurface error. This method effectively approximates
the edge-crossing error and is computationally more efficient than
the isosurface comparison methods. In addition, the method is ap-
plicable to any volumetric data as it directly computes the estimated
error from the volume data and doesn’t require sampling or addi-
tional information such as ensemble or high-resolution data. (2)
We introduce a method for detecting and reconstructing possible
hidden features missed with the MC algorithm with linear interpo-
lation. We use the divided differences (slopes) of each cell’s edges
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and its neighbors to identify the cell with possible hidden features.
The target cells are fitted with local cubic Lagrange polynomials
that are then used to divide the cell and reconstruct the hidden fea-
tures. The current approaches for sharp feature reconstruction don’t
recover hidden features because they don’t consider cells where
all node values are above or below the provided isovalue. (3) We
present a visualization tool that employs error approximation, iso-
surface positional variation for different interpolation methods, and
possible feature reconstruction with other techniques to provide a
platform for the exploration and analysis of isosurface uncertainty.
The framework can effectively highlight edge-crossing errors and
isosurface feature uncertainty.

2 RELATED WORK

2.1 Edge-Crossing Uncertainty

The approximation and visualization of isosurface uncertainty is a
challenging problem [7, 25]. Statistical methods for parametric [2]
and nonparametric [41, 3] models provide measure metrics that can
be used to visualize the most probable isosurface and its uncer-
tainty. For instance, Athawale et al. provided a closed form for
computing the expected position and variance of the level-crossing
in the MC algorithm for parametric [2] and nonparametric [3] dis-
tributions. Topology case count and entropy-based methods can
resolve ambiguity in MC algorithm and visualize isosurface un-
certainty [4]. The statistical approaches may require solving the
level-set crossing problem for each cell many times or sampling
methods such as Monte Carlo sampling algorithms that are compu-
tationally expensive [20, 48]. The closed forms in [2, 3, 4] improve
the computational performance for independent noise models, how-
ever, no closed forms are available for more complex noise models
such as multivariate Gaussian noise models. The isosurface uncer-
tainty characterized by the statistical methods relies on ensemble
data and doesn’t explicitly account for the uncertainty from the in-
terpolation method (model uncertainty) which is the focus of this
work. When the target isosurface is accessible, the uncertainty can
be derived by computing the error between the target and approxi-
mated isosurfaces [11, 1]. However, the error computation is com-
putationally expensive as it relies on isosurface sampling, and the
target isosurface is often unavailable.

2.2 Feature Uncertainty

We consider the isosurface variation from MC with and without
feature-preserving methods. These feature uncertainties impact the
overall isosurface structure. Several studies have extended the MC
algorithms to incorporate feature-preserving techniques that can re-
cover these sharp features [29, 26, 22, 23, 38, 53, 14, 5]. These
methods use information about the cell derivatives to better rep-
resent the underlying sharp features. Recently, machine learning-
based approaches have been proposed for more accurate MC with
feature preservation [10, 16, 9, 42, 18].

Kobelt et al. [29] propose a surface extraction method from di-
rected distance field and surface normals of a geometric object that
preserves sharp features. The normals are used to detect the sharp
features and new sample points are added inside the cell to re-
cover the hidden features. The Dual contouring algorithm proposed
in [26] uses the edges intersection and the normals at those intersec-
tions to process the cells with sharp features. This method doesn’t
explicitly require identifying the cell with sharp features because it
uses a quadratic error function to automatically place the additional
points. Ho et al. [23] propose sampling the edges normals to detect
the cell with sharp features in volumetric data. These cells are then
subdivided to represent the sharp features. The adaptive refinement
of the cell requires access to a finer-resolution version of the data.
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3 TECHNICAL BACKGROUND

3.1 Marching Cubes Algorithm
The MC algorithm [31] extracts the isosurface as it steps through
each cubical cell of the uniform grid. For a single cell, the algo-
rithm first determines the topological configuration based on the
relationship between the value on each vertex and the isovalue k.
The values on the vertices could be either larger or smaller than the
isovalue. On each edge, the isosurface crosses the edge if one of
the vertex has a value larger than the isovalue while the other is
smaller. We connect the edge-crossing points to form surfaces con-
tributing to the final output surface. Comparing vertex values only
shows whether there is an edge-crossing point. To determine the
exact location of the edge-crossing point, we need to identify the
point on the edge where the value is equal to our isovalue. There-
fore, we need a method for interpolation between the two vertices
of an edge. We will introduce different methods of interpolation in
the rest of this section.

3.2 Linear Interpolation
Estimating edge-crossing points using linear approximation has
advantages in terms of speed and simplicity of the mathematical
model. Let f (x0) and f (x1) be the scalar values sampled at vertex
positions x0 and x1 denoting ends of a cell edge, respectively. The
crossing position for the isovalue k on this cell edge is determined
by finding x such that k = f (x0)+

f (x1)− f (x0)
x1−x0

(x−x0). The solution
is x= x0+

x1−x0
f (x1)− f (x0)

(k− f (x0)). To take advantage of vector arith-
metic the solution can written as follows: x = α ∗ x1 +(1−α)∗ x0,
where α =

k− f (x0)
f (x1)− f (x0)

.

3.3 Cubic Interpolation
Although linear interpolation is efficient, it may lead to significant
approximation errors that degrade the quality of the extracted iso-
surface. Many studies have proposed higher order interpolation
methods to improve the accuracy of the level crossing at each edge,
and therefore the isosurface accuracy [17, 13, 12, 32, 33, 8, 46].

For the same edge (or interval) considered in Sec. 3.2 the cubic
interpolant is q(x) = c0 + c1x+ c2x2 + c3x3 with x ∈ [x0,x1]. The
cubic polynomial has four degrees of freedom and requires solv-
ing a 4× 4 system of linear equations to compute the coefficients
ci, i = 0, · · · ,3. A common approach is to use the sampled data
values and derivatives at the edge endpoints to build the system of
linear equations and find the coefficients. Let ( f (x0), f

′
(x0)) and

( f (x1), f
′
(x1)) be the data values at x0 and x1, respectively. The

coefficients are obtained by solving

q(x0) = f (x0) q(x1) = f (x1) q
′
(x0) = f

′
(x0) q

′
(x1) = f

′
(x1).

The crossing position for isovalue k on this edge is obtained by
finding the roots to q(x) = k. We note that the derivatives f

′
(x0)

and f
′
(x1) are often not available and therefore approximated using

finite difference methods.

3.4 WENO Interpolation
The weighted essentially non-oscillatory (WENO) method [54]
is a high-order polynomial reconstruction method developed for
solving hyperbolic and convection-diffusion equations. WENO
achieves high-order accuracy in smooth regions and provides a bet-
ter representation of regions with sharp gradients compared to stan-
dard Lagrange interpolation [21].

Let’s consider the 1D mesh M = {· · · ,xi−2,xi−1,xi,xi+1, · · ·}
where i ∈ N∪{0}. For each edge Ei where the isovalue k lies be-
tween fi and fi+1, a high-order polynomial pi(x) is used to approxi-
mate the function inside the interval defined by the edge boundaries.
The edge-crossing is obtained by finding the roots of the implicit

equation pi(x) = k. The final interpolant pi(x) is a convex combi-
nation of the third-order polynomials p(1)(x), p(2)(x), and p(3)(x).

pi(x) = w1 p(1)(x)+w2 p(2)(x)+w3 p(1)(x), (1)

where w1,w2, and w3 are nonlinear weights such that w1 +w2 +
w3 = 1. The nonlinear weights are obtained using the “smoothness”
indicator β j in [24] that can be approximated as follows:

β1 =13/12
(

fi−2 −2 fi−1 + fi
)2

+1/4
(

fi−2 −4 fi−1 +3ui
)2
,

β2 =13/12
(

fi−1 −2 fi + fi+1
)2

+1/4
(

fi−1 − fi+1
)2
,

β3 =13/12
(

fi −2 fi+1 + fi+2
)2

+1/4
(
3 fi −4 fi+1 + fi+2

)2
.

(2)

The nonlinear weights are dependent on the constants γ1 = 1/10,
γ2 = 3/5, γ3 = 3/10. Using the “smoothness” indicator in Eq. (2)
and the constants, the nonlinear weight can be expressed as follows:

w j = α j/(α1 +α2 +α3), α j = γ j/(ε +β j)
2, j = 1,2,3. (3)

The parameter ε , typically set to 10−6, is introduced to avoid di-
vision by zero. Jiang and Shu [24] proved that in smooth regions
the approximation pi(x) in Eq. (1) is fifth-order accurate. Solving
pi(x) = k is equivalent to a root-finding problem for a cubic poly-
nomial. The roots for the WENO polynomial can be found using
the cubic formula in [51]. Similar to [17], the median solution is
selected in the cases where multiple valid roots are found.

4 METHOD

4.1 Edge-Crossing Error Approximation
We propose an edge-crossing error approximation for MC algo-
rithms derived from polynomial interpolation error, which is used to
visualize isosurface discrepancies and highlight regions with signif-
icant errors. Taylor series expansion is widely used for local func-
tion and error approximation function. For instance, in the context
of visualization, Moller et al. [36, 35, 34] use it to develop smooth
filters for volume data approximation and estimate their local er-
ror. We distinguish our approach by using the Taylor series expan-
sion to estimate the edge-crossing error, which has the advantage
of providing insight into the isosurface reconstruction error without
the need to solve a linear system. The interpolation error from the
linear approximation ℓ(x) of the function f (x) is

e(x) = ℓ(x)− f (x) =
f
′′
(ξ )

2
(x− xi)(x− xi+1), (4)

where ξ ∈ (xi−1,xi+2). The MC algorithms solve the implicit prob-
lem ℓ(x) = k where k ∈R is the isovalue. Let x∗ and x̄∗ the solutions
to f (x) = k and ℓ(x) = k. Substituting the solutions x∗ and x̄∗ into
f (x) and ℓ(x) gives.

ℓ(x̄∗) = fi +U [i, i+1](x̄∗− xi) = k, and (5)

f (x∗) = fi +U [i, i+1](x∗− xi)+
f
′′
(ξ )

2
(x∗− xi)(x∗− xi+1) = k.

(6)

The divided difference U [i, i+1] is recursively defined as

U [i] = f (xi) = fi, U [i, i+1] =
U [i+1]−U [i]

xi+1 − xi
,

U [i, i+ j] =
U [i+1, · · · , i+ j]−U [i, · · · , i+ j−1]

xi+ j − xi
,

(7)
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(a) Tangle Error (323) (b) Torus Error (643) (c) M. and L. Error (643) (d) Teardrop Error (323) (e) Tubey Error (323)

(f) Tangle Approx. Error (323) (g) Torus Approx. Error (643) (h) M. and L. Approx. Error (643) (i) Teardrop Approx. Error (323) (j) Tubey Approx. Error (323)

Figure 2: Comparison between measured and approximate error. The first row corresponds to the measured error and the second to the
approximated error. Each column from left to right corresponds the Tangle ( Fig. 2a and Fig. 2f with k = 0.1), Torus ( Fig. 2b and Fig. 2g
with k = 0.0), Marschner and Lobb (Fig. 2c and Fig. 2h with k = 0.5), and Teardrop (Fig. 2d and Fig. 2i with k = −0.001) and Tubey
(Fig. 2e and Fig. 2j with k = 0.0) examples. Our approximated errors show similar patterns to the measured errors. In most cases, it slightly
overestimates the errors.

(a) Tangle (b) Torus (c) Marschner and Lobb (d) Teardrop (e) Tubey

Figure 3: Comparison of measured (in green), our estimated (in blue), and standard approach for error approximation (light blue). The
columns from left to right show errors for the Tangle (Fig. 3a), Torus (Fig. 3b), Marschner and Lobb (Fig. 3c), Teardrop (Fig. 3d), and
Tubey (Fig. 3e). Our error estimation in Eq. (11) is much closer to the measured error compared to the standard approach in Eq. (10).

with j being an integer. Subtracting Eq. (5) from Eq. (6) gives the
edge-crossing error

|x∗− x̄∗|=
∣∣∣ 1
U [i, i+1]

f
′′
(ξ )

2
(x∗− xi)(x∗− xi+1)

∣∣∣. (8)

The edge-crossing approximation error can be bounded by

|x∗− x̄∗| ≤
maxξ∈[xi,xi+1] | f

′′
(ξ )|

2U [i, i+1]
(x∗− xi)(x∗− xi+1) (9)

In practice, ξ , f
′′
, and x∗ are not available. Typically the

term maxξ∈[xi,xi+1] | f
′′
(ξ )| is approximation using finite difference

max
(
|U [i−1, i+1]|, |U [i, i+2]|

)
. The product (x∗− xi)(x∗− xi+1)

is approximate with the interval size (xi − xi+1)
2. The error bound

on the right side of Eq. (9) is approximated as follows:

ēb =
max

(
|U [i−1, i+1]|, |U [i, i+2]|

)
U [i, i+1]

(xi − xi+1)
2 (10)

The approximation ēb in Eq. (10) tends to overestimate the edge-
crossing errors |x∗− x̄∗|. We estimate the vertex approximation er-
ror ē ≈ |x∗− x̄∗| as follows:

ē =
max

(
|U [i−1, i+1]|, |U [i, i+2]|

)
U [i, i+1]

(x̄∗− xi)∗ (x̄∗− xi+1) (11)

Eq. (11) provides a much tighter approximation of the error com-
pare to Eq. (10). Fig. 4 shows the difference between the under-
lying function (black curve) and its linear approximation (orange

line). The black horizontal line indicates the edge considered and
the blue line shows the isovalue position of the underlying function
(black curve) and the linear interpolation (orange line).

Figure 4: Edge-crossing uncertainty. The underlying function and
the linear interpolation are shown in black and orange, respectively.
The black line segment with the positive and negative nodes is the
edge and the blue line indicates the target isovalue. The red double
arrow indicates the approximation error. The isovalue is indicated
by the blue horizontal line.

We use several datasets to evaluate the approximated edge-
crossing error introduced in Eq. (11). The volume datasets are
sampled from a Tangle, Torus[28], Marschner and Lobb[32],
Teardrop [28], and Tubey [6] functions. Their equations are pro-
vided in the appendix.

The functions are sampled on a 5123 uniform mesh to construct
the high-resolution data from which the target isosurfaces are ex-
tracted. The isosurface error is obtained by calculating the differ-
ence between the high- (target) and coarse-resolution isosurfaces
using METRO [11]. The results in Fig. 2 and Fig. 3 evaluate and
validate the edge-crossing error introduced in Eq. (11). The first and
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second rows in Fig. 2 show the measured and approximated errors,
respectively. The label “EC error” represents the edge-crossing er-
ror. In each example, the measured and approximated errors exhibit
similar patterns, demonstrating that the edge-crossing error approx-
imation offers a fast and reliable estimate of the isosurface error
arising from linear interpolation. This method is computationally
more efficient because the approximated error is directly computed
using Eq. (11) and doesn’t require additional data, computation,
or sampling algorithm as in the case of statistical and isosurface
comparison methods. For instance, the isosurface extraction, and
error estimation for the tangle example in Fig. 2f takes less than
a millisecond (1ms) whereas the measured error in Fig. 2a takes a
few seconds. This cost is significantly magnified with the increase
in grid resolution which can hinder the interactivity of visualiza-
tion. Our approach provides a much more efficient way of visual-
izing linear interpolation uncertainty with the proposed approxima-
tion. The estimated isosurface uncertainty provides quick insight
into the quality of the isosurface that can guide decisions about us-
ing higher-order interpolation, higher-resolution data, and/or other
methods to improve the isosurface quality.

The results in Fig. 3 show the root mean squares (RMS) errors.
The green line corresponds to the measured errors, the blue to our
introduced method, and the light blue to the standard approach for
polynomial error approximation. The standard approach (in light
blue) [21] significantly overestimates the edge-crossing errors. Our
method provides a better approximation of the measured error that
can be utilized for visual analysis of isosurface error.

4.2 Hidden Features Detection and Reconstruction

The MC algorithms with and without sharp feature recovery fail to
identify and reconstruct hidden features not captured by the mesh
resolution. These hidden features are isosurface patches not de-
tected by linear interpolation and the topological cases considered
in MC algorithms. The hidden features can alter the isosurface con-
nectivity and its overall structure. We propose a method for hidden
feature detection and reconstruction that relies on the slopes (di-
vided differences) on cell edges and high-order interpolation. We
utilize this method to offer the user two possible isosurface recon-
structions: one with hidden feature recovery and one without. Both
isosurfaces are visualized together to highlight the differences and
provide insight into the feature differences.

A cell might have a hidden feature if for any of its edges two
of the three slopes U [i− 1, i], U [i, i+ 1], and U [i, i− 1] of neigh-
boring edges have opposite signs. The detected cell is divided into
smaller subcells using tri-cubic Lagrange polynomial interpolation.
We note that using linear interpolation instead for the cell refine-
ment does not recover the missing hidden features. The MC al-
gorithm is then applied to each subcell to reconstruct the hidden
features.

Fig. 5a shows a 1D example where the vertex crossings on the
middle edge are detected using the slopes (divided differences) of
the neighboring edges. The middle edge is split into two new edges
that can then be used to detect and approximate the edge-crossing.
The scalar value at the split location is obtained using a cubic La-
grange interpolation. Fig. 5b provides an illustration using a march-
ing square in the 2D case. The MC algorithms with and without
sharp feature-preserving methods don’t reconstruct the hidden fea-
ture in orange. This cell is considered above the desired isoline
because all its node values are larger than the target isovalue. The
cell outlined with black lines is divided into smaller cells, indicated
by the dashed lines, using cubic Lagrange interpolation. These new
cells reveal new edge-crossings that are used to represent the hidden
feature and better approximate the overall isosurface.

These cell refinements lead to cracks in the reconstructed iso-
surface. Crack-free isosurface extraction techniques have been in-
troduced in the context of adaptive mesh refinement [50, 49, 47]

(a) 1D hidden feature recovery (b) 2D hidden feature recovery

Figure 5: Hidden feature recovery in 1D and 2D.Fig. 5a shows an
example of a hidden feature between i and i+ 1 that can be de-
tected by noting that U [i−1, i+1]∗U [i+1, i+2]< 0, meaning the
slopes surrounding the hidden features have a different sign. Our
method subdivides the cell at the orange dotted line to recover the
hidden feature. The isovalue is indicated by the blue horizontal
line. Fig. 5b shows a 2D example with hidden features that can be
recovered by refining the cell. The orange curves are the isocontour
inside the cell. MC will miss the contour because all four corners
have the same sign. Our method identifies the hidden feature and
subdivides the cell at the dotted black lines.

(a) (b)

Figure 6: Crack patching. Fig. 6a shows an isosurface crack caused
by the refined cell. The cell on the left is divided according to our
algorithm, while the cell on the right is from the original Marching
Cubes. The extracted vertices on the interface of two cells are mis-
matched. In Fig. 6b the crack is fixed by (1) matching the bound-
aries of the blue triangle in Fig. 6a to the boundary of the blue line
in Fig. 6a, (2) connecting the edges of the new polygon to the center
of the triangle in Fig. 6a to form the crack-free triangulated patch..

(a) target (b) standard MC (c) dual contouring (d) hidden feature

Figure 7: Comparison between the target, MC, dual contouring,
and hidden feature reconstruction method. This example is based
on the teardrop example with a resolution of 323 and an isovalue
k = −0.001. The hidden feature recovery method can detect and
reconstruct the missing feature that connects the two broken pieces.

Here, we resolve this issue by connecting the edges at hidden fea-
ture face boundaries with edges at the boundaries of the reaming
isosurface. Additional edges indicated by the interior blue lines
shown in Fig. 6b are introduced to reduce discontinuities at the cell
interface. The cells at the boundaries of the isosurface with no hid-
den features are modified during the polygon extraction to ensure a
crack-free isosurface, as shown in Fig. 6.

The interface is designed to highlight high errors and isosurface
feature differences based on queries. Several filter tools (sliders,
switches, checklists, radio buttons) are introduced for flexibility and
to facilitate exploration and analysis. The different views are used
to enable simultaneous visualization of different isosurface error
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Figure 8: Our visualization framework has seven components. It shows the approximated error cumulative distribution function(CDF), the
local selection box specifier, the interpolation method specifier, the approximated error overview, the local vertices comparison, the surface
comparison, and the summary.

metrics. The interface design provides insight into the confidence
of the extracted isosurface. Fig. 7 shows the ground truth, standard
MC, dual contouring, and our hidden feature recovery method iso-
surfaces for the Teardrop dataset. The standard MC and dual con-
touring do not detect and reconstruct the missing piece. The dual
contouring method inserts additional triangles to enforce closed
surfaces. Our method successfully recovers the missing piece and
yields an isosurface similar to the target solution.

4.3 Isosurface Uncertainty Visual Analysis Tool
Here, we introduce a framework for visualizing and analyzing MC
isosurface uncertainty using C, Python, and Dash 1. Our framework
employs the error approximation in Sec. 4.1, the hidden feature-
preserving method in Sec. 4.2, and several other techniques to en-
able visual analysis of isosurfaces uncertainty obtained from using
different interpolation methods along with MC algorithms. The in-
terface is designed to highlight high errors and isosurface feature
differences based on queries. Several filter tools (sliders, switches,
checklists, radio buttons) are introduced for flexibility and to fa-
cilitate exploration and analysis. The different views are used to
enable simultaneous visualization of different isosurface error met-
rics. The interface design provides insight into the confidence of the
extracted isosurface. Our framework has seven components indi-
cated by the outlined rectangles and the corresponding component
number shown in Fig. 8

The first component C1 shows a plot of the cumulative percent-
age of vertices (y-axis) with respect to the approximated error (x-
axis) introduced in Sec. 4.1. The vertical slider to the right of the
plot in the first component is used to select a cumulative percent-
age. The switch below “Approx. Error CDF” turns on and off a
binary color map on the isosurface shown in the fifth component.
This component provides insight into the percentage of isosurface
vertices below and above a selected threshold.

The second component C2 is used to insert a transparent box
inside the domain of the fifth component to show a selected local
region. The switch below “Selection Box” must be on to activate
the box feature. The position and size of the box are adjusted using
“Center” and “Dimension”, respectively. This component facili-
tates detailed inspection of local isosurface uncertainty based on a
selected region of interest.

The third component C3 is used to select different interpola-
tion methods for selected and unselected edges based on the error
threshold in C1 or local box selection in C2. This feature enables
the comparison between different interpolation methods.

1https://dash.plotly.com/

The fourth component C4 visualizes the estimated isosurface un-
certainty obtained from Sec. 4.1 and the local selection based on
the parameters selected in C2. This component highlights regions
with high and low edge-crossing errors.

The fifth component C5 shows a bar plot that provides a local
comparison of the different interpolation methods for selected local
regions. This enables a vertex-by-vertex comparison of the edge-
crossing error and the difference between interpolation methods.

The sixth component C6 visualizes the comparison between two
selected interpolation methods using the “Edge-Crossing” radio
button. The ”Hidden Feature” radio button enables the simulta-
neous visualization of both the isosurface with and without hidden
features reconstruction. This component provides insight into the
difference and accuracy gain between linear and higher interpola-
tion methods. It also highlights the feature uncertainty between
standard MC and hidden feature recovery.

The seventh component C7 provides a summary of the isosurface
uncertainties.

5 RESULTS

5.1 Synthetic Examples
The synthetic examples are based on the Tangle, Torus,
Marschner and Lobb, Teardrop, and Tubey. Figure 9 shows
an exploration/analysis pipeline using the visualization framework
to gain insight into the isosurface uncertainties from interpolation
methods. The first column in Fig. 9 shows a selected error threshold
(vertical dashed line) and the corresponding percentage of vertices
with errors larger than the specified error threshold is indicated with
the red horizontal line. The results in the second column in Fig. 9
are constructed from measured error obtained METRO [11]. These
results show the isosurfaces with a binary colormap indicating the
regions with isosurface errors that are above (in reg) and below (in
light orange) the specified error threshold. The third column shows
the maximum variation across all three interpolation methods. The
fourth, fifth, and sixth columns in Fig. 9 show a comparison be-
tween linear and cubic (L vs. C), linear and WENO (L vs. W), and
cubic and WENO (C vs. W) in the regions with errors larger than
the selected threshold. The similar patterns between the second,
third, fourth, and fifth columns in Fig. 9 indicate that the approx-
imated error effectively identifies regions with large errors which
corresponds to the regions with large variation between interpola-
tion methods indicated in purple. The fourth and fifth columns of
Fig. 9 show the possible accuracy improvement from linear to cu-
bic and WENO. The linear, cubic, WENO interpolation are O(h2),
O(h4), and O(h5) accurate. The fifth column highlights the differ-

56

https://dash.plotly.com/


(a) (b) Threshold (c) Max. Variation (d) L vs C (e) L vs W (f) C vs W

(g) (h) Threshold (i) Max. Variation (j) L vs C (k) L vs W (l) C vs W

(m) (n) Threshold (o) Max. Variation (p) L vs C (q) L vs W (r) C vs W

Figure 9: Isosurface comparison based on selected threshold value and interpolation methods (Components C1, C3, C4 and C6). The first
column shows the selected threshold using the plot of the cumulative percentage of vertices (y-axis) with respect to the approximated error
(x-axis). The second column shows the binary colormap based on the selected threshold. The third column shows the maximum variation.
The fourth, fifth, and sixth columns show a comparison of L vs. C, L vs. C, and C vs. W.

ence between cubic and WENO. WENO further improves the cu-
bic interpolation accuracy from O(h4) to O(h5). The improvement
from cubic to WENO can be minor as shown in Fig. 9l.

The visualization tool in Fig. 8 uses C2 for local uncertainty ex-
ploration , as shown in the first and second columns of the teaser
image Fig. 1. The transparent boxes in Fig. 1a and Fig. 1f indicate
the selected local region of interest. These selections correspond
to the regions with broken pieces and hidden features. Fig. 1b and
Fig. 1g show a local vertex-by-vertex comparison of the approxi-
mate edge-crossing error, L vs. C, and L vs. W. Fig. 1c and Fig. 1h
show a comparison of L vs. W. This local vertex-by-vertex com-
parison enables a detailed comparison of the magnitude of the ap-
proximated error and the difference between interpolation methods.
The fourth and fifth columns show a comparison of the isosurface
with (transparent orange) and without (opaque blue) hidden feature
recovery. The zoomed-in versions in Fig. 1e and Fig. 1j demon-
strate that our proposed feature-reconstructions methods introduced
in Sec. 4.2 successfully constructs possible connection among the
broken components (the transparent orange isosurface) and propose
an alternate isosurface to be considered.

5.2 Real-World Examples
The datasets obtained from [27] include a simulation of fuel in-
jection into a combustion chamber (643), a CT scan of an engine
(256×256×128), a CT scan of a lobster (301×324×56), a sim-
ulation of a homogeneous charge compression ignition (5603), a
rotational C-arm x-ray scan of the arteries of the right half of a hu-
man head (2563), a CT scan of a Bonsai tree (2563), and a CT scan
of a carp fish (256×256×512).

5.2.1 Edge-Crossing Uncertainty

The isosurface uncertainty shown in Fig. 10 is based on our edge-
crossing error estimation introduced in Sec. 4.1, and the difference
between interpolation methods. The approximated isosurface un-

certainty shown in the first column (Fig. 10a, Fig. 10f, Fig. 10k,
Fig. 10q) is larger than the difference between interpolation meth-
ods shown in the remaining columns. The regions with high er-
rors (red regions in the first column) correspond to the regions with
large differences (uncertainty) between interpolation methods. For
instance, in the fuel example, the black rectangle delineates a re-
gion of high error detected by our method in Fig. 10a, correspond-
ing to the same region with significant differences between linear
and higher-order methods in Fig. 10c and Fig. 10d. These results
show that the edge-crossing error estimation in Sec. 4.1 identifies
regions with large uncertainty in the context of practical datasets.
In addition, the similarity observed demonstrates that our uncer-
tainty estimation methods efficiently indicate the positions (red re-
gions), where high-order interpolation can improve isosurface ac-
curacy compared to linear interpolation. In the case of the Engine
dataset, the improvements from linear in Fig. 10h, Fig. 10i, and
Fig. 10j are considerably smaller than the approximated errors in
Fig. 10f. These results indicate that using higher-order interpola-
tion methods in the case of the engine dataset doesn’t significantly
improve the accuracy. For the fuel, combustion simulation, and
lobster examples, the differences between cubic and WENO are
smaller compared to the differences between linear and high-order
interpolation methods, as shown in Fig. 10e, Fig. 10o, and Fig. 10t.

5.2.2 Hidden Features Comparison

The uncertain isosurface feature recovery using our proposed meth-
ods (Sec. 4.2) in the first, second, and fourth columns from the left
of Fig. 11 improves the reliability of results. State-of-the-art tech-
niques miss these important features, as shown in the third and fifth
columns from left in Fig. 11, which can lead to less reliable data
analysis. The targeted regions of interest are shown with the rect-
angles in the first column. The zoomed-in regions shown in the
remaining columns correspond to the red rectangles. The second
and fourth columns show a comparison between the standard MC
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(a) Fuel Approximated Error (b) Max. Variation (c) L vs C (d) L v W (e) C vs W

(f) Fuel Approximated Error (g) Max. Variation (h) L vs C (i) L vs C (j) C vs W

(k) Fuel Approximated Error (l) Max. Variation (m) L vs C (n) L vs W (o) C vs W

(p) Fuel Approximated Error (q) Max. Variation (r) L vs C (s) L vs W (t) C vs W

Figure 10: Comparison of approximated error and different interpolation methods (Components C1, C3, C4, and C6). The first column
corresponds to the approximated edge-crossing error. The second column shows the maximum variation. The remaining third, fourth, fifth,
and sixth columns correspond to the comparison L vs. C, L vs. W, and C vs. W, respectively. These results show that using our methods in
the first column from left effectively identifies regions with large errors and variations between linear and higher-order interpolation methods.

(opaque blue) and the hidden feature recovery method introduced
in Sec. 4.2 (transparent orange). Showing the standard MC and hid-
den feature recovery in the framework enables a visual comparison
of isosurface features. The third and fifth columns show results for
sharp feature recovery based on dual contouring [26].

The zoomed-in results show that many broken pieces in the iso-
surface without hidden feature recovery shown with the opaque
blue in the second and fourth columns (Fig. 11b, Fig. 11d, Fig. 11g,
Fig. 11i, Fig. 11l, and Fig. 11n) are connected in the isosurface with
hidden feature recovery shown in transparent orange in the same
figures. The dual contouring method connects the broken pieces
but introduces sharp corners and edges.

6 DISCUSSION

We presented an integrated interactive visualization system that
provides valuable insights into the uncertainties inherent in the MC
algorithm with linear interpolation. Our error estimation method
introduced in Sec. 4.1, provides a more accurate approximation of
the edge-crossing errors compared to standard error approximation,
as demonstrated in Fig. 2 and Fig. 3. The estimated error can be
computed for any 3D volumetric data without the need for addi-

tional information, such as high-resolution data which underscores
its broad applicability. In addition, the error estimation is compu-
tationally efficient compared to measured error and other sampling
methods because the errors are directly calculated using the local
neighborhood cells.

Figure 9 and Fig. 10 show examples of how the framework in
Fig. 8 can be used to visualize edge-crossing errors and compare
different interpolation methods. The results in these figures further
demonstrate that the isosurface uncertainty estimation, shown in
the first column of both figures, successfully identifies regions with
large errors (red) and variations between linear and higher-order in-
terpolation methods. The orange regions in Fig. 9 and Fig. 10 show
the accuracy improvement from linear to higher order methods.

Moreover, we introduced a hidden feature reconstruction method
in Sec. 4.2 that successfully identifies and reconstructs possible fea-
tures that are ignored by the MC algorithms. The extraction of these
features is based on fitting and refining the target cells using cubic
interpolation. The polygon extraction at the boundary of the refined
and unrefined cells causes cracks that are resolved using a similar
approach in [29], illustrated in Fig. 6. we visualize the isosurfaces
with (transparent orange) and without (opaque blue) to enable vi-
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(a) Aneurism (k = 160.0) (b) Hidden features (top box) (c) Dual Contouring (top box) (d) Hidden features (bottom box) (e) Dual contouring (bottom box)

(f) Bonsai (k = 75.0) (g) Bonsai zoomed in (top box) (h) Dual contouring (top box) (i) Hidden features (bottom box) (j) Dual contouring (bottom box)

(k) Carp (k = 1270.0) (l) Hidden features (top box) (m) Dual contouring (top box) (n) Hidden features (bottom box) (o) Dual contouring (bottom box)

Figure 11: Comparison of isosurfaces from MC using our uncertain-feature recovery methods in C6 (first, second, and fourth columns from
left) vs. sharp feature recovery (third and fifth columns from left). The first column shows isosurfaces with selected regions indicated with
red boxes. The second and fourth rows show a zoomed-in isosurface with (transparent orange) and without (blue) hidden feature recovery.
The third and fifth columns show a zoomed-in isosurface from dual counting. The results indicate possible new interesting features and
topological connections by semitransparent orange surfaces that are missed by the state-of-the-art MC feature extraction method.

sual comparison of two possible isosurfaces from MC with different
features and topological structures, as shown in Fig. 1. Figure 11
shows that our method for hidden feature reconstruction leads to a
smoother connection between broken pieces compared to dual con-
touring which introduces sharp edges and corners.

It is important to note that the techniques introduced have some
limitations that we plan to address as this work continues. Even
though we didn’t observe these issues in the datasets used, the cu-
bic, WENO, and other high-order interpolation methods may intro-
duce undesirable oscillations. These oscillations may be reduced
without comprising the possible hidden features with bounded in-
terpolation methods [39, 40]. In addition, non-polynomial-based
methods could provide more accurate error approximation for data
that are generated from processes that don’t rely on polynomials.

7 CONCLUSION

In this paper, we presented an efficient method for estimating and
visualizing isosurface uncertainty from Marching Cubes (MC) al-
gorithms. We introduce a closed-form approximation of edge-
crossing error using polynomial interpolation and develop a tech-
nique for detecting and reconstructing uncertain hidden features.
These approaches provide valuable insights into isosurface uncer-
tainty and highlight the limitations of linear interpolation. In ad-
dition, we developed an integrated visualization system for the ex-
ploration and analysis of these uncertainties. Our examples and
results demonstrate the effectiveness of our methods in estimating
and visualizing isosurface uncertainty associated with linear inter-
polation. This work focused on error estimations for linear, cubic,
and WENO interpolation methods. Extending the error analysis to
include higher-order polynomial and non-polynomial interpolation
techniques in future work could further improve error characteriza-
tion across a broader range of interpolation models. Additionally,
the current framework visualizes errors and potential hidden fea-

tures separately. Integrating these into a unified visualization could
provide a more comprehensive analysis of isosurface uncertainty.

8 APPENDIX

List of Synthetic examples used in this paper.
Tangle:

f1(x,y,z) = x4 + y4 + z4 − (x2 + y2 + z2 −0.4), x,y,z ∈ [−1,1].
(12)

Torus:

f2(x,y,z) = r1 −
(√

x2 + y2
)2

+ z2 − r2
0,x,y,z ∈ [−1,1],

r0 = 0.1, r1 = 0.3. (13)

Marschner and Lobb:

f3(x,y,z)=

(
1− sin( πz

2 )+α(1+ρr(
√

x2 + y2)

)
2(1+α)

, x,y,z∈ [−1,1]

where: ρr(r) = cos
(
2π fMcos(

πr
2
)
)
, fM = 6 and α = 0.25. (14)

Teardrop:

f4(x,y,z) = 0.5x5 +0.5x4 − y2 − z2, x,y,z ∈ [−1,1] (15)

Tubey:

f5(x,y,z) =−3x8 −3y8 −2z8 +5x4y2z2 +3x2y4z2

−4(x3 + y3 + z3 +1)+(x+ y+ z+1)4 +1, x,y,z ∈ [−3,3] (16)
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