
Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software
for Structured Meshes

TIMBWOGA A. J. OUERMI, ROBERT M. KIRBY, and MARTIN BERZINS, University of Utah Scientific

Computing Imaging Institute, USA

Polynomial interpolation is an important component of many computational problems. In several of these computational problems,

failure to preserve positivity when using polynomials to approximate or map data values between meshes can lead to negative

unphysical quantities. Currently, most polynomial-based methods for enforcing positivity are based on splines and polynomial

rescaling. The spline-based approaches build interpolants that are positive over the intervals in which they are defined and may

require solving a minimization problem and/or system of equations. The linear polynomial rescaling methods allow for high-degree

polynomials but enforce positivity only at limited locations (e.g., quadrature nodes). This work introduces open-source software

(HiPPIS) for high-order data-bounded interpolation (DBI) and positivity-preserving interpolation (PPI) that addresses the limitations of

both the spline and polynomial rescaling methods. HiPPIS is suitable for approximating and mapping physical quantities such as mass,

density, and concentration between meshes while preserving positivity. This work provides Fortran and Matlab implementations of

the DBI and PPI methods, presents an analysis of the mapping error in the context of PDEs, and uses several 1D and 2D numerical

examples to demonstrate the benefits and limitations of HiPPIS.

CCS Concepts: •Mathematics of computing → Computations on polynomials.

Additional Key Words and Phrases: positivity-preserving, data-bounded, polynomial interpolation, vectorization

ACM Reference Format:
Timbwoga A. J. Ouermi, Robert M. Kirby, and Martin Berzins. 2023. Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving

Mapping Software for Structured Meshes. 1, 1 (October 2023), 31 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Mapping data values from one grid to another is a fundamental part of many computational problems. Preserving certain

properties such as positivity when interpolating solution values between meshes is important. In many applications [1,

24, 33, 40, 41, 45], failure to preserve the positivity of quantities such as mass, density, and concentration results in

negative values that are unphysical. These negative values may propagate to other calculations and corrupt other

quantities. Many polynomial-based methods have been developed to address these limitations.

Positivity-preserving methods based on linear polynomial rescaling are introduced in [15, 23, 24, 45, 46]. These

polynomial rescaling methods are often used in the context of hyperbolic PDEs, in numerical weather prediction

(NWP) [23], combustion simulation [15, 24], and other applications. These methods introduce rescaling parameters

obtained from quadrature weights that are used to linearly rescale the polynomial to ensure positivity at the quadrature

Authors’ address: Timbwoga A. J. Ouermi, touermi@cs.utah.edu; Robert M. Kirby, kirby@cs.utah.edu; Martin Berzins, mb@sci.utah.edu, University of

Utah Scientific Computing Imaging Institute, 72 Central campus Drive, Salt Lake City, Utah, USA, 84112.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/1234-5678-9012
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/1234-5678-9012

2 Ouermi et al.

nodes and conserve mass. These approaches ensure positivity only at the set of mesh points used for the simulation but

do not address the case of mapping data values between different meshes, which is the focus of HiPPIS.

Other approaches for preserving positivity that are based on splines can be found in computer-aided design (CAD),

graphics, and visualization [10, 18, 20, 34–36]. Several positivity- and monotonicity-preserving cubic splines have been

developed. A widely used example of such an approach is the piecewise cubic Hermite interpolation (PCHIP) [10],

which is available as open-source code in [27]. In addition, quartic and quintic spline-based approaches have been

introduced in [14, 16, 17, 25, 26]. These methods impose some restrictions on the first and second derivatives to ensure

monotonicity, positivity, and continuity. For instance, the monotonic quintic spline interpolation (MQSI) methods

in [26] and [25] use the sufficient conditions stated in [36] and [44] to check for monotonicity and iteratively adjust the

first and second derivative values to enforce monotonicity.

Positivity can also be enforced using ENO-type methods [2, 3, 29, 33], which enforce data-boundedness and positivity

by adaptively selecting mesh points to build the stencil used to construct the positive interpolant for each interval.

ENO-type methods use divided differences to develop a sufficient condition for data-boundedness or positivity that is

used to guide the stencil selection process. The software introduced in this work is based on the high-order ENO-type

data-bounded interpolation (DBI) and positivity-preserving interpolation (PPI) methods in [29]. The work in [29]

provides a positivity-preserving method that uses higher degree polynomials compared to the other ENO-type methods

in [2, 3, 33] and the spline-based methods.

Given that polynomial interpolation is well-established and widely used, several implementations of the different

polynomial approximation algorithms are available. For example, FunC by Green et al. [12] uses polynomial interpolation

with a lookup table for faster approximation of a given function compared to direct evaluation. However, most of these

implementations, including FunC, do not preserve data-boundedness and positivity. The implementations available for

positivity preservation are based on splines [10, 14] and polynomial rescaling [23, 45]. The spline-based approaches

often require solving a linear system of equations to ensure continuity and an optimization problem in the case of quartic

and quintic splines. These spline approaches are often limited to fifth-order polynomials and can be computationally

expensive in cases where solving a global optimization problem is required. A full suite of test problems comparing the

DBI and PPI methods against different spline-based methods including PCHIP [10], MQSI [26], and shape-preserving

splines (SPS) [6] has been undertaken by the authors in [28]. The different polynomial rescaling methods allow for

polynomial degrees higher than five and are built as part of larger partial differential equation (PDE) solvers [23, 45].

As previously mentioned, the polynomial rescaling approaches guarantee positivity only at a given set of points, not

over the entire domain. The present work provides an implementation of a high-order software (HiPPIS) based on [29]

that guarantees positivity over the entire domain where the interpolant is defined. In addition, this work evaluates

the use of HiPPIS in the context of function approximation and mapping between different meshes. This evaluation

provides an analysis of the mapping error in the case of PDEs and numerical examples demonstrating the benefits and

limitations of HiPPIS.

The remaining parts of the paper are organized as follows: Section 2 presents the background for the mathematical

framework required for the DBI and PPI methods. Section 3 provides the algorithms used to build the software, and

the descriptions of the different components of HiPPIS. Section 4 provides several 1D and 2D numerical examples,

while Section 5 conducts an analysis and evaluation of the mapping error in the context of time-dependent PDEs. A

discussion and concluding remarks are presented in Section 6.

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 3

2 MATHEMATICAL FRAMEWORK

This section provides a summary and the theoretical background of both the DBI and PPI methods.

2.1 Adaptive Polynomial Construction

Both the DBI and PPI methods rely on the Newton polynomial [21, 43] representation to build interpolants that are

positive or bounded by the data values. The ability to adaptively choose stencil points to construct the interpolation, as

in ENO methods [13], is the key feature employed to develop the data-bounded and positivity-preserving interpolants.

Consider a 1D mesh defined as follows:

M = {𝑥𝑖− 𝐽 , · · · , 𝑥𝑖 , 𝑥𝑖+1, · · · , 𝑥𝑖+𝐿}, (1)

where 𝑥𝑖− 𝐽 < · · · < 𝑥𝑖 < 𝑥𝑖+1 < · · · < 𝑥𝑖+𝐿 , and {𝑢𝑖− 𝐽 , · · · , 𝑢𝑖+𝐿} is the set of data values associated with the mesh

points in Equation (1). The subscripts 𝐽 , 𝐿, 𝑖, ∈ N0 = N ∪ {0}, and 𝑥𝑘 , 𝑢𝑘 ∈ R for 𝑖 − 𝐽 ≤ 𝑘 ≤ 𝑖 + 𝐿. The DBI and PPI

procedure starts by setting the initial stencilV0,

V0 = {𝑥𝑖 , 𝑥𝑖+1} = {𝑥𝑙
0
, 𝑥𝑟

0
}. (2)

The stencilV0 in Equation (2) is expanded by successively appending a point to the right or left ofV𝑗 to formV𝑗+1.

Once the final stencilV𝑛−1 is obtained, the interpolant of degree 𝑛 defined on 𝐼𝑖 = {𝑥𝑖 , 𝑥𝑖+1} can be written as

𝑈𝑛 (𝑥) = 𝑢𝑖 +𝑈 [𝑥𝑙
0
, 𝑥𝑟

0
]𝜋0,𝑖 (𝑥) +𝑈 [𝑥𝑙

1
, · · · , 𝑥𝑟

1
]𝜋1,𝑖 (𝑥) + · · · +𝑈 [𝑥𝑙𝑛−1

, · · · , 𝑥𝑟𝑛−1
]𝜋𝑛−1,𝑖 (𝑥), (3)

where 𝜋0,𝑖 (𝑥) = (𝑥 − 𝑥𝑖), 𝜋1,𝑖 (𝑥) = (𝑥 − 𝑥𝑖) (𝑥 − 𝑥𝑒
1
), · · · are the Newton basis functions. 𝑥𝑒

𝑗
is the point added to expand

the stencilV𝑗−2 toV𝑗−1 and can be explicitly expressed as
𝑥𝑒

0
= 𝑥𝑖 ,

𝑥𝑒
1
= 𝑥𝑖+1,

𝑥𝑒
𝑗
= V𝑗−1 \ V𝑗−2, 2 ≤ 𝑗 ≤ 𝑛 − 1.

The divided differences are recursively defined as follows:
𝑈 [𝑥𝑖] = 𝑢𝑖
𝑈 [𝑥𝑖 , · · · , 𝑥𝑖+𝑗] =

𝑈 [𝑥𝑖+1,· · · ,𝑥𝑖+𝑗]−𝑈 [𝑥𝑖 ,· · · ,𝑥𝑖+𝑗−1]
𝑥𝑖+𝑗−𝑥𝑖 .

The polynomial𝑈𝑛 (𝑥) can be compactly expressed as

𝑈𝑛 (𝑥) = 𝑢𝑖 + (𝑢𝑖+1 − 𝑢𝑖)𝑆𝑛 (𝑥) . (4)

𝑆𝑛 (𝑥) in Equation (4) is defined as

𝑆𝑛 (𝑥) = 𝑠
(
1 + (𝑠 − 1)

𝑑1

𝜆1

(
1 + (𝑠 − 𝑡2)

𝑑2

𝜆2

(
· · ·

(
1 + (𝑠 − 𝑡𝑛−1)

𝑑𝑛−1

𝜆𝑛−1

)
· · ·

)
, (5)

where 𝑠 , 𝑡 𝑗 , and 𝑑 𝑗 are expressed as follows:

0 ≤ 𝑠 = 𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

=
𝑥 − 𝑥𝑒

0

𝑥𝑟
0
− 𝑥𝑙

0

≤ 1, (6)

𝑡 𝑗 = −
𝑥𝑖 − 𝑥𝑒𝑗
𝑥𝑟

0
− 𝑥𝑙

0

, and (7)

Manuscript submitted to ACM

4 Ouermi et al.

0 ≤ 𝑑 𝑗 =
𝑥𝑟
𝑗
− 𝑥𝑙

𝑗

𝑥𝑟
0
− 𝑥𝑙

0

. (8)

𝑠 and 𝑑 𝑗 in Equations (5), (6), and (8) are defined such that 𝑠 ∈ [0, 1] and 𝑑 𝑗 ≥ 0. The positivity-preserving and

data-bounded interpolants are obtained by imposing some bounds on
¯𝜆 𝑗 , defined as

¯𝜆 𝑗 =

𝑗∏
𝑘=1

𝜆 𝑗 = 𝜆 𝑗 ¯𝜆 𝑗−1 =

𝑗∏
𝑘=1

𝜆𝑘 =


1 𝑗 = 0

𝑈 [𝑥𝑙
𝑗
,· · · ,𝑥𝑟

𝑗
]

𝑈 [𝑥𝑙
0
,𝑥𝑟

0
]

∏𝑗

𝑘=1
(𝑥𝑟

𝑘
− 𝑥𝑙

𝑘
), 1 ≤ 𝑗 ≤ 𝑛 − 1.

(9)

2.2 Positivity-Preserving and Data-Bounded Interpolation

For a given interval inside a mesh, the DBI and PPI polynomial interpolant is constructed by adaptively selecting

points near the target interval to build an interpolation stencil and polynomial that together meet the requirements for

positivity or data-boundedness. Requiring positivity alone can lead to large oscillations and extrema that degrade the

approximation. Positivity alone does not restrict how much the interpolant is allowed to grow beyond the data values.

The large oscillations can be removed with the PCHIP, MQSI, and DBI methods. However, in the case where a given

interval 𝐼𝑖 has a hidden extremum, PCHIP, MQSI, and DBI will truncate the extremum. As in [3, 37], the interval 𝐼𝑖 has

an extremum when two of the three divided differences 𝜎𝑖−1 = 𝑈 [𝑥𝑖−1, 𝑥𝑖], 𝜎𝑖 = 𝑈 [𝑥𝑖 , 𝑥𝑖+1], and 𝜎𝑖+1 = 𝑈 [𝑥𝑖+1, 𝑥𝑖+2]
of neighboring intervals are of opposite signs. The constrained PPI algorithm addresses these limitations by allowing

the constructed interpolant to grow beyond the data values but not produce extrema that are too large.

The positive polynomial interpolant is constrained as follows:

𝑢𝑚𝑖𝑛 ≤ 𝑈 𝑝 (𝑥) = 𝑢𝑖 + (𝑢𝑖+1 − 𝑢𝑖)𝑆𝑛 (𝑥) ≤ 𝑢𝑚𝑎𝑥 . (10)

The bounds 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 in Equation (10) are defined as
𝑢𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑢𝑖 , 𝑢𝑖+1) − Δ𝑚𝑖𝑛,

𝑢𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑢𝑖 , 𝑢𝑖+1) + Δ𝑚𝑎𝑥 .
(11)

The parameters Δ𝑚𝑖𝑛 and Δ𝑚𝑎𝑥 in Equation (11) are positive, and the data-bounded interpolant is obtained for

Δ𝑚𝑖𝑛=Δ𝑚𝑎𝑥 = 0.0. These parameters are chosen according to

Δ𝑚𝑖𝑛 =


𝜖1

��𝑚𝑖𝑛 (𝑢𝑖 , 𝑢𝑖+1

) ��
if 𝜎𝑖−1𝜎𝑖+1 < 0 and 𝜎𝑖−1 < 0 or 𝜎𝑖−1𝜎𝑖+1 ≥ 0 and 𝜎𝑖−1𝜎𝑖 < 0

𝜖0

��𝑚𝑖𝑛 (𝑢𝑖 , 𝑢𝑖+1

) ��
otherwise,

(12)

and

Δ𝑚𝑎𝑥 =


𝜖1

��𝑚𝑎𝑥 (𝑢𝑖 , 𝑢𝑖+1

) ��
if 𝜎𝑖−1𝜎𝑖+1 < 0 and 𝜎𝑖−1 > 0 or 𝜎𝑖−1𝜎𝑖+1 ≥ 0 and 𝜎𝑖−1𝜎𝑖 < 0

𝜖0

��𝑚𝑎𝑥 (𝑢𝑖 , 𝑢𝑖+1

) ��
otherwise.

(13)

The positive parameters 𝜖0 and 𝜖1, used for intervals with and without extrema, respectively, are introduced to adjust

Δ𝑚𝑖𝑛 and Δ𝑚𝑎𝑥 . This work extends the bounds in [29] by introducing the parameter 𝜖1 to allow for more flexibility on

how to bound the interpolants in cases where an extremum is detected. The choice for the positive parameters 𝜖0 and

𝜖1 depends on the underlying function and the input data used for the approximation. As both 𝜖0 and 𝜖1 get smaller, the

upper and lower bounds get tighter and the PPI method converges to the DBI method. The choices for 𝜖0 and 𝜖1 are

further discussed in Section 3.2. In Equation (12), the interval 𝐼𝑖 has a local maximum if 𝜎𝑖−1𝜎𝑖+1 < 0 and 𝜎𝑖−1 < 0.

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 5

Correspondingly, in Equation (13), the interval 𝐼𝑖 has a local minimum if 𝜎𝑖−1𝜎𝑖+1 < 0 and 𝜎𝑖−1 > 0. In both Equations

(12) and (13), the type of extremum is ambiguous if 𝜎𝑖−1𝜎𝑖+1, and 𝜎𝑖−1𝜎𝑖 < 0.

Equation (10) is equivalent to bounding 𝑆𝑛 (𝑥) as follows:

𝑚ℓ ≤ 𝑆𝑛 (𝑥) ≤ 𝑚𝑟 , (14)

where the factors𝑚ℓ and𝑚𝑟 in Equation (14) are expressed as

(1) : 𝑢𝑖+1 > 𝑢𝑖

𝑚ℓ =𝑚𝑖𝑛

(
0,
𝑢𝑚𝑖𝑛 − 𝑢𝑖
𝑢𝑖+1 − 𝑢𝑖

)
, and𝑚𝑟 =𝑚𝑎𝑥

(
1,
𝑢𝑚𝑎𝑥 − 𝑢𝑖
𝑢𝑖+1 − 𝑢𝑖

)
(15)

(2) : 𝑢𝑖+1 < 𝑢𝑖

𝑚ℓ =𝑚𝑖𝑛

(
0,
𝑢𝑚𝑎𝑥 − 𝑢𝑖
𝑢𝑖+1 − 𝑢𝑖

)
, and𝑚𝑟 =𝑚𝑎𝑥

(
1,
𝑢𝑚𝑖𝑛 − 𝑢𝑖
𝑢𝑖+1 − 𝑢𝑖

)
. (16)

The DBI method can be recovered from the PPI methods by setting𝑚ℓ = 0 and𝑚𝑟 = 1. For 𝑢𝑖 = 𝑢𝑖+1,𝑚ℓ ,𝑚𝑟 and𝑈𝑛 (𝑥)
as written in Equations (15), (16), and (4) are not defined. This limitation is addressed by re-writing𝑈𝑛 (𝑥) as

𝑈𝑛 (𝑥) = 𝑢𝑖 +𝑈 [𝑥𝑙
1
, · · · , 𝑥𝑟

1
] (𝑥𝑖+1 − 𝑥𝑖) (𝑥𝑟1 − 𝑥𝑙

1
)𝑆𝑛 (𝑥),

where 𝑆𝑛 (𝑥) is expressed as follows:

𝑆𝑛 (𝑥) =
𝑛−1∑︁
𝑗=1

𝑠 𝑗 .

The summation starts at 𝑗 = 1 because the linear term
𝑢𝑖+1−𝑢𝑖
𝑥𝑖+1−𝑥𝑖 (𝑥 − 𝑥𝑖) = 0. Let

𝑤 = 𝑈 [𝑥𝑙
1
, · · · , 𝑥𝑟

1
] (𝑥𝑖+1 − 𝑥𝑖) (𝑥𝑟1 − 𝑥𝑙

1
).

¯𝜆 𝑗 in this context is defined as

¯𝜆 𝑗 =
𝑈 [𝑥𝑙

𝑗
, · · · , 𝑥𝑟

𝑗
]

𝑤

𝑗∏
𝑘=0

(𝑥𝑟
𝑘
− 𝑥𝑙

𝑘
).

For 𝑢𝑖 = 𝑢𝑖+1, the parameters𝑚ℓ and𝑚𝑟 in Equation (14) are then defined according to

(1) : 𝑈 [𝑥𝑙
1
, · · · , 𝑥𝑟

1
] > 0

𝑚ℓ =𝑚𝑖𝑛

(
0,
𝑢𝑚𝑖𝑛 − 𝑢𝑖

𝑤

)
, and𝑚𝑟 =𝑚𝑎𝑥

(
1,
𝑢𝑚𝑎𝑥 − 𝑢𝑖

𝑤

)
(17)

(2) : 𝑈 [𝑥𝑙
1
, · · · , 𝑥𝑟

1
] < 0

𝑚ℓ =𝑚𝑖𝑛

(
0,
𝑢𝑚𝑎𝑥 − 𝑢𝑖

𝑤

)
, and𝑚𝑟 =𝑚𝑎𝑥

(
1,
𝑢𝑚𝑖𝑛 − 𝑢𝑖

𝑤

)
. (18)

For𝑈 [𝑥𝑖 , 𝑥𝑖+1] = 𝑈 [𝑥𝑙
1
, · · · , 𝑥𝑟

1
] = 0, the data 𝑢𝑖−1, 𝑢𝑖 , 𝑢𝑖+1, and 𝑢𝑖+2 have the same value (𝑢𝑖−1 = 𝑢𝑖 = 𝑢𝑖+1 = 𝑢𝑖+2). In

this case, the algorithm approximates the function in the interval 𝐼𝑖 with a linear interpolant.

The positivity-preserving result in Equation (10) is obtained by successively imposing bounds on the quadratic, cubic,

and higher order terms in the expression of 𝑆𝑛 (𝑥) defined in Equation (5). The reconstruction procedure begins by

considering the linear and quadratic terms from 𝑆𝑛 (𝑥) in Equation (5) and imposing the following bounds:

𝑚ℓ ≤ 𝑠 +
𝑠 (𝑠 − 1)
𝑑1

¯𝜆1 ≤ 𝑚𝑟 . (19)

Manuscript submitted to ACM

6 Ouermi et al.

Equation (19) can be reorganized to obtain(
𝑚𝑟 − 1

𝑠 (𝑠 − 1) −
1

𝑠

)
𝑑1 ≤ ¯𝜆1 ≤

(
𝑚ℓ

𝑠 (𝑠 − 1) −
1

(𝑠 − 1)

)
𝑑1 .

Noting that
1

𝑠 (𝑠−1) ≤ −4,
1

𝑠 ≥ 1, and
1

𝑠−1
≤ −1, we obtain(

− 4(𝑚𝑟 − 1) − 1

)
𝑑1 ≤ ¯𝜆1 ≤

(
− 4𝑚ℓ + 1

)
𝑑1 . (20)

The bounds from Equation (20) are extended to bound the cubic form by requiring that what multiplies
¯𝜆1 must fit into

the inequality in Equation (20). Thus, for the cubic case, Equation (20) becomes(
− 4(𝑚𝑟 − 1) − 1

)
𝑑1 ≤ ¯𝜆1

(
1 + (𝑠 − 𝑡2)

𝑑2

𝜆2

)
≤ 𝑑1

(
− 4𝑚ℓ + 1

)
.

When 𝑡2 defined in Equation (7) is negative, 𝑠 − 𝑡2 has a maximum value at 𝑠 = 1 and a minimum value at 𝑠 = 0.
¯𝜆2 is

then bounded by

𝑑2

(1 − 𝑡2)

((
− 4(𝑚𝑟 − 1) − 1

)
𝑑1 − ¯𝜆1

)
≤ ¯𝜆2 ≤

(
𝑑1

(
− 4𝑚ℓ + 1

)
− ¯𝜆1

)
𝑑2

(1 − 𝑡2)
.

When 𝑡2 is positive,
1

1−𝑡2

is substituted by
1

−𝑡2

and the inequalities ≤ with ≥ and vice versa are swapped.

This procedure is continued to quartic and higher order interpolants to produce the recursive expression for the

bounds on
¯𝜆 𝑗 for the PPI and DBI methods as follows:

𝐵−𝑗 =


(−4(𝑚𝑟 − 1) − 1)𝑑1 𝑗 = 1

(𝐵−
𝑗−1

− ¯𝜆 𝑗−1)
𝑑 𝑗

1−𝑡 𝑗 , if 𝑡 𝑗 ∈ (−∞, 0] 𝑗 > 1

(𝐵+
𝑗−1

− ¯𝜆 𝑗−1)
𝑑 𝑗

−𝑡 𝑗 , if 𝑡 𝑗 ∈ (0, +∞) 𝑗 > 1,

(21a)

and

𝐵+𝑗 =


(−4𝑚ℓ + 1)𝑑1, 𝑗 = 1

(𝐵+
𝑗−1

− ¯𝜆 𝑗−1)
𝑑 𝑗

1−𝑡 𝑗 , if 𝑡 𝑗 ∈ (−∞, 0] 𝑗 > 1

(𝐵−
𝑗−1

− ¯𝜆 𝑗−1)
𝑑 𝑗

−𝑡 𝑗 , if 𝑡 𝑗 ∈ (0, +∞) 𝑗 > 1.

(21b)

𝐵−
1
and 𝐵+

1
are defined as −𝑑1 and 𝑑1 for the DBI method, whereas for the PPI method, they are defined as (−4(𝑚𝑟 −

1) − 1)𝑑1 and (−4𝑚ℓ + 1)𝑑1, respectively. We refer the reader to Theorems 1 and 2 in [29] for more details on the

mathematical foundation used to build the positivity-preserving software.

3 ALGORITHMS AND SOFTWARE

This section describes the algorithms and different components used in the data-bounded and positivity-preserving

software. The software developed in this work provides 1D, 2D, and 3D implementations of the DBI and PPI methods

for uniform and nonuniform structured meshes. The 1D implementation is constructed based on the mathematical

framework provided in Section 2. The 2D and 3D implementations are obtained via a tensor product of the 1D version.

3.1 Algorithms

The algorithms provide the necessary elements to construct the data-bounded or positive interpolants. Rogerson and

Meiburg [31] showed that the ENO reconstruction can lead to a left- or right-biased stencil that causes stability issues

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 7

when used to solve hyperbolic equations. Shu [38] addressed this limitation by introducing a bias coefficient used to

target a preferred stencil. As indicated in [29], the left- and right-biased stencil can fail to recover hidden extrema. For a

given interval 𝐼𝑖 , the left- and right-biased stencil does not include the points 𝑥𝑖−1 or 𝑥𝑖+1, respectively. Algorithm
I addresses these limitations by extending the algorithm in [29] to introduce more options for the adaptive stencil

selection process described below. In addition to the symmetry-based points selection in [29], Algorithm I includes
ENO-type and locality-based point selection processes.

At any given step 𝑗 , the next point inserted into V𝑗 can be to the left or right. Let 𝑥𝑝 and 𝑥𝑞 be the mesh points

immediately to the left and right ofV𝑗 , respectively.

We define
¯𝜆−
𝑗+1

and
¯𝜆+
𝑗+1

as follows: 
¯𝜆−
𝑗+1

= ¯𝜆 𝑗+1 withV𝑗+1 = {𝑥𝑝 } ∪ V𝑗

¯𝜆+
𝑗+1

= ¯𝜆 𝑗+1 withV𝑗+1 = V𝑗 ∪ {𝑥𝑞}.
(22)

The terms
¯𝜆−
𝑗+1

and
¯𝜆+
𝑗+1

in Equation 22 correspond to the case where the stencil inserted is to the left and right,

respectively. Given V𝑗 , let 𝜇
𝑙
𝑗
be the number of points to the left of 𝑥𝑖 and 𝜇

𝑟
𝑗
the number of points to the right.

Algorithm I extends the algorithm in [29] by introducing a user-supplied parameter 𝑠𝑡 used to guide the procedure for

stencil construction. In the cases where adding both 𝑥𝑝 (to the left) or 𝑥𝑞 (to the right) are valid, the algorithm makes

the selection based on the three cases below:

• If 𝑠𝑡 = 1 (default), the algorithm chooses the point with the smallest divided difference, as in the ENO stencil.

• If 𝑠𝑡 = 2, the point to the left of the current stencil is selected if the number of points to the left of 𝑥𝑖 is smaller

than the number of points to the right. Similarly, the point to the right is selected if the number of points to the

right of 𝑥𝑖 is smaller than the number of points to the left. When both the number of points to the right and left

are the same, the algorithm chooses the point with the smallest
¯𝜆 𝑗+1.

• If 𝑠𝑡 = 3, the algorithm chooses the point that is closest to the starting interval 𝐼𝑖 . It is important to prioritize the

closest points in cases where the intervals surrounding 𝐼𝑖 vary significantly in size. These variations are found in

computational problems for which different resolutions are used for different parts of the domain.

Algorithm II describes the 1D DBI and PPI methods built using the mathematical framework in Section 2 and

Algorithm I. Algorithm II further extends the constraints in [29] by introducing the user-supplied positive parameter

𝜖1 that is used to impose upper and lower bounds on the interpolants according to Equations (12) and (13). The positive

parameters 𝜖0 and 𝜖1 are used for intervals without and with an extremum, respectively. The user-supplied parameter

𝑖𝑚 is used to choose between the DBI and PPI methods. Algorithm III and Algorithm IV describe the extension

from 1D to 2D and 3D, respectively. Both Algorithm III and IV are constructed by successively applying Algorithm
II to each dimension. Given that the DBI and PPI methods are nonlinear, the order in which Algorithm II is used
can lead to different approximation results. In this paper and in [29], the 1D DBI and PPI are first applied to 𝑥 , then

the 𝑦 dimension, and finally the 𝑧 dimensions, as indicated in Algorithm III and IV. In Algorithm III and IV, the
input and intermediate data values are modified only by Algorithm I, which preserves data-boundedness or positivity.

Therefore, the resulting solutions from the 2D and 3D extensions will preserve data-boundedness and positivity. Similar

to Algorithm II, the choices of parameters 𝑠𝑡 , 𝜖0, and 𝜖1 influence the quality of the approximation in Algorithm III
and IV. In the 1D, 2D, and 3D cases, the choice for parameters 𝑠𝑡 , 𝜖0, and 𝜖1 is dependent on the data. In the case of 2D

and 3D, applying the 1D PPI method (Algorithm II) along the 𝑥 and/or 𝑦 dimensions may introduce oscillations that

could be amplified when applying the 1D PPI in the subsequent dimensions. These oscillations can be significantly

Manuscript submitted to ACM

8 Ouermi et al.

reduced with small values for 𝜖0 and 𝜖1. The parameters 𝜖0 and 𝜖1 should be chosen to be small enough such that hidden

extrema are recovered without introducing new large oscillations. In Algorithm II and IV, M□𝑥×□𝑦 and M□𝑥×□𝑦□𝑧
represent 2D and 3D meshes obtained by taking the tensor product of the 1D mesh along the 𝑥 and 𝑦 dimensions for

the 2D mesh, and along the 𝑥 , 𝑦, and 𝑧 dimensions for the 3D mesh. The square □ represents 𝑛 or𝑚.

Algorithm I
Input: 𝜇𝑙

𝑗
, 𝜇𝑙

𝑗
, 𝑥𝑝 , 𝑥𝑖 , 𝑥𝑞 , 𝑥𝑖+1,𝑈 [𝑥𝑝 , · · · , 𝑥𝑟𝑗],𝑈 [𝑥𝑙

𝑗
, · · · , 𝑥𝑞] ¯𝜆−

𝑗+1
,

¯𝜆+
𝑗+1

, and 𝑠𝑡 .

(1) if 𝑠𝑡 = 1

• if |𝑈 [𝑥𝑝 · · · , 𝑥𝑟𝑗] | < |𝑈 [𝑥𝑙
𝑗
, · · · , 𝑥𝑞] |, then insert a new stencil point to the left;

• else if |𝑈 [𝑥𝑝 · · · , 𝑥𝑟𝑗] | > |𝑈 [𝑥𝑙
𝑗
, · · · , 𝑥𝑞] |, then insert a new stencil point to the right;

• else insert a new stencil point to the right if | ¯𝜆−
𝑗+1

| ≥ | ¯𝜆+
𝑗+1

|; otherwise, insert a new point to left;

(2) if 𝑠𝑡 = 2

• if 𝜇𝑙
𝑗
< 𝜇𝑟

𝑗
, then insert a new stencil point to the left;

• else if 𝜇𝑙
𝑗
> 𝜇𝑟

𝑗
, then insert a new stencil point to the right;

• else insert a new stencil point to the right if | ¯𝜆−
𝑗+1

| ≥ | ¯𝜆+
𝑗+1

|; otherwise, insert a new point to left;

(3) else 𝑠𝑡 = 3

• if |𝑥𝑝 − 𝑥𝑖 | < |𝑥𝑞 − 𝑥𝑖+1 |, then insert a new stencil point to the left;

• else if |𝑥𝑝 − 𝑥𝑖 | > |𝑥𝑞 − 𝑥𝑖+1 |, then insert a new stencil point to the right;

• else insert a new stencil point to the right if | ¯𝜆−
𝑗+1

| ≥ | ¯𝜆+
𝑗+1

|; otherwise, insert a new point to left;

Algorithm II (1D)
Input: {𝑥𝑖 }𝑛𝑖=0

, {𝑢𝑖 }𝑛𝑖=0
, {𝑥𝑖 }�̃�𝑖=0

, 𝑑 , 𝑠𝑡 𝜖0, 𝑖𝑚, and 𝜖1. Output: {�̃�𝑖 }�̃�𝑖=0
.

(1) Select an interval [𝑥𝑖 , 𝑥𝑖+1]. Let V0 = {𝑥𝑖 , 𝑥𝑖+1} = {𝑥𝑙
0
, 𝑥𝑟

0
}.

(2) If 𝜎𝑖−1𝜎𝑖+1 < 0 or 𝜎𝑖−1𝜎𝑖 < 0, then the interval 𝐼𝑖 has a hidden local extremum. For the boundary intervals, we

assume that the divided differences to the left and right have the same sign.

(3) Compute 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 using Equations (11), (12), and (13).

(4) Compute𝑚𝑟 and𝑚ℓ based on Equations (15) and (16) or Equations (17) and (18). For DBI, set𝑚𝑟 = 1 and𝑚ℓ = 0.

(5) Given a stencil V𝑗 ,

• if 𝐵−
𝑗+1

≤ ¯𝜆+
𝑗+1

≤ 𝐵+
𝑗+1

and 𝐵−
𝑗+1

≤ ¯𝜆−
𝑗+1

≤ 𝐵+
𝑗+1

, choose the point to add based on Algorithm I
• else if 𝐵−

𝑗+1
≤ ¯𝜆−

𝑗+1
≤ 𝐵+

𝑗+1
, then insert a new stencil point to the left;

• else if 𝐵−
𝑗+1

≤ ¯𝜆+
𝑗+1

≤ 𝐵+
𝑗+1

, then insert a new stencil point to the right;

(6) This process (Steps 3) iterates until the halting criterion that the ratio of divided differences lies outside the

required bounds stated above or the stencil has 𝑑 + 1 points, with 𝑑 being the target degree for the interpolant.

(7) Evaluate the final interpolant 𝑈 𝑙 (𝑥) (for DBI) or𝑈 𝑝 (𝑥) (for PPI) at the output points 𝑥𝑖 that are in 𝐼𝑖 .
(8) Repeat Steps 1–7 for each interval in the input 1D mesh.

Algorithm III (2D)
Input:{𝑥𝑖 }𝑛𝑥𝑖=0

,{𝑦𝑖 }𝑛𝑦𝑖=0
{𝑢𝑖, 𝑗 }𝑛𝑥,𝑛𝑦𝑖,𝑗=0

, 𝑑 , 𝑠𝑡 𝜖0, {𝑥𝑖 }𝑚𝑥
𝑖=0

, {𝑦 𝑗 }𝑚𝑦

𝑗=0
, 𝑖𝑚, and 𝜖1. Output: {�̃�𝑖, 𝑗 }𝑚𝑥,𝑚𝑦

𝑖,𝑗=0
.

(1) Interpolate from the meshM𝑛𝑥×𝑛𝑦 toM𝑚𝑥×𝑛𝑦 by applying the Algorithm II (1D) along the x dimension for

each index 𝑗 along the y direction. More precisely, for each index 𝑗 (0 ≤ 𝑗 ≤ 𝑛𝑥), Algorithm II (1D) uses {𝑥𝑖 }𝑛𝑥𝑖=0
,

{𝑢𝑖, 𝑗 }𝑛𝑥𝑖=0
to interpolate from {𝑥𝑖 , 𝑦 𝑗 }𝑛𝑥𝑖=0

to {𝑥𝑖 , 𝑦 𝑗 }𝑚𝑥
𝑖=0

. The interpolation solution is saved in {𝑞𝑖, 𝑗 }𝑚𝑥,𝑛𝑦

𝑖,𝑗=0

(2) Use the solution{𝑞𝑖, 𝑗 }𝑚𝑥,𝑛𝑦

𝑖,𝑗=0
from step (1) to interpolate from M𝑚𝑥×𝑛𝑦 to the final output mesh M𝑚𝑥×𝑚𝑦 by

applying the Algorithm II (1D) along the y dimension for each index 𝑖 along the x direction. For each index

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 9

𝑖 (0 < 𝑖 < 𝑚𝑥), Algorithm II (1D) uses ({𝑦 𝑗 }𝑛𝑦𝑗=0
, {𝑞𝑖, 𝑗 }𝑛𝑦𝑗=0

) to interpolate from {𝑥𝑖 , 𝑦 𝑗 }𝑛𝑦𝑗=0
to {𝑥𝑖 , 𝑦 𝑗 }𝑚𝑦

𝑗=0
. The

interpolation final results are saved in {�̃�𝑖, 𝑗 }𝑚𝑥,𝑚𝑦

𝑖,𝑗

Algorithm IV (3D)
Input:{𝑥𝑖 }𝑛𝑥𝑖=0

,{𝑦𝑖 }𝑛𝑦𝑖=0
, {𝑧𝑘 }𝑛𝑧𝑘=0

, {𝑢𝑖, 𝑗,𝑘 }
𝑛𝑥,𝑛𝑦,𝑛𝑧

𝑖,𝑗,𝑘=0
,𝑑 , 𝑠𝑡 𝜖0, {𝑥𝑖 }𝑚𝑥

𝑖=0
, {𝑦 𝑗 }𝑚𝑦

𝑗=0
, {𝑧𝑘 }𝑚𝑧

𝑘=0
, 𝑖𝑚, and 𝜖1.Output: {�̃�𝑖, 𝑗,𝑘 }

𝑚𝑥,𝑚𝑦,𝑚𝑧

𝑖,𝑗=0
.

(1) Interpolate from the meshM𝑛𝑥×𝑛𝑦×𝑛𝑧 toM𝑚𝑥×𝑛𝑦×𝑛𝑧 by applying theAlgorithm II (1D) along the x dimension

for each pair 𝑗, 𝑘 . More precisely, for each each pair 𝑗, 𝐾 (0 ≤ 𝑗 ≤ 𝑛𝑥 and 0 ≤ 𝑘 ≤ 𝑛𝑧), Algorithm II (1D)
uses {𝑥𝑖 }𝑛𝑥𝑖=0

, {𝑢𝑖, 𝑗,𝑘 }𝑛𝑥𝑖=0
to interpolate from {𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘 }𝑛𝑥𝑖=0

to {𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘 }𝑚𝑥
𝑖=0

. The interpolation solution is saved

in {𝑞𝑖, 𝑗,𝑘 }
𝑚𝑥,𝑛𝑦,𝑛𝑧

𝑖,𝑗,𝑘=0

(2) Use the solution{𝑞𝑖, 𝑗,𝑘 }
𝑚𝑥,𝑛𝑦,𝑛𝑧

𝑖, 𝑗,𝑘=0
from step (1) to interpolate from M𝑚𝑥×𝑛𝑦×𝑛𝑧 to M𝑚𝑥×𝑚𝑦×𝑛𝑧 by applying the

Algorithm II (1D) along the 𝑦 dimension. For each pair 𝑖, 𝑘 (0 ≤ 𝑖 ≤ 𝑚𝑥 and 0 ≤ 𝑘 ≤ 𝑛𝑧), Algorithm II (1D)
uses ({𝑦 𝑗 }𝑛𝑦𝑗=0

, {𝑞𝑖, 𝑗,𝑘 }
𝑛𝑦

𝑗=0
) to interpolate from {𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘 }

𝑛𝑦

𝑗=0
to {𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘 }

𝑚𝑦

𝑗=0
. The interpolation results are saved

in {𝑔𝑖, 𝑗,𝑘 }
𝑚𝑥,𝑚𝑦,𝑛𝑧

𝑖,𝑗
.

(3) Use the solution{𝑞𝑖, 𝑗,𝑘 }
𝑚𝑥,𝑛𝑦,𝑛𝑧

𝑖, 𝑗,𝑘=0
from step (1) to interpolate from M𝑚𝑥×𝑛𝑦×𝑛𝑧 to M𝑚𝑥×𝑚𝑦×𝑛𝑧 by applying the

Algorithm II (1D) along the 𝑦 dimension. For each pair 𝑖, 𝑗 (0 ≤ 𝑖 ≤ 𝑚𝑥 and 0 ≤ 𝑗 ≤ 𝑚𝑦), Algorithm II (1D)
uses ({𝑧𝑘 }𝑛𝑧𝑘=0

, {𝑔𝑖, 𝑗,𝑘 }𝑛𝑧𝑘=0
) to interpolate from {𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘 }𝑛𝑧𝑘=0

to {𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘 }𝑚𝑧
𝑘=0

. The interpolation final results are

saved in {�̃�𝑖, 𝑗,𝑘 }
𝑚𝑥,𝑚𝑦,𝑚𝑧

𝑖,𝑗
.

3.2 Software Description

The DBI and PPI software implementation is guided by the algorithms described above. HiPPIS is available at https:

//github.com/ouermijudicael/HiPPIS. The software can be organized into four major parts: (1) computation of divided

differences, (2) calculations of upper and lower bounds for each interval, (3) a stencil construction procedure, and (4)

1D, 2D, and 3D DBI and PPI implementations.

The divided differences are essential to the DBI and PPI methods because they are used in the calculations of
¯𝜆 𝑗 and

the stencil selection process. The divided differences are computed using the standard recurrence form in Equation (2.1)

and stored in a table of dimension 𝑛 × (𝑑 + 1) where 𝑑 is the maximum polynomial degree for each interpolant. Given

that the maximum degree is 𝑑 , it is sufficient to consider the 𝑑 + 1 divided differences for the stencil selection process

and the construction of the final polynomial interpolant for each interval.

The bounds on each interpolant are obtained from Equation (11), (12), and (13) where the positive parameters 𝜖0 and

𝜖1 are user-supplied values used to adjust the bounds for the interval with and without extremum, respectively. The

adjustment focuses on removing large oscillations as much as possible while still allowing high-degree polynomial

interpolants that meet the positivity requirements.

The stencil selection process requires the computation of 𝐵+
𝑗
and 𝐵−

𝑗
, which are both dependent on 𝑑 𝑗 , 𝑡 𝑗 , and ¯𝜆 𝑗 .

The stencil V𝑗 is constructed fromV𝑗−1 by appending a point to the left or right ofV𝑗−1. When appending to either

the right or left meets the requirements for positivity, the software offers three possible options for choosing from both

points that can be set by the user. The first and default option (𝑠𝑡 = 1) chooses the stencil with the smallest divided

difference, similar to the ENO-like approach. The second option (𝑠𝑡 = 2) prioritizes the choice that makes the stencil

more symmetric around 𝑥𝑖 . The third option (𝑠𝑡 = 3) chooses the point closest to the starting interval 𝐼𝑖 , thus prioritizing

locality.

The 1D DBI and PPI methods use (1), (2), and (3) as building blocks to construct the final approximation. Once the

final stencil has been selected, the interpolant is built using a Newton polynomial representation and then evaluated at

Manuscript submitted to ACM

https://github.com/ouermijudicael/HiPPIS
https://github.com/ouermijudicael/HiPPIS

10 Ouermi et al.

the corresponding output points. The Newton polynomial is used here because its coefficients/divided differences are

available. The 2D and 3D implementations successively use the 1D version along each dimension to construct the final

approximation on uniform and nonuniform structured meshes.

The interfaces for the 1D, 2D, and 3D DBI and PPI subroutines are designed to be similar to widely used interfaces for

polynomial interpolation such as PCHIP, and can be incorporated into larger application codes. The interfaces require

• the input mesh points and the data values associated with those points,

• the maximum polynomial degree to be used for each interpolant,

• the interpolation method to be used (DBI or PPI), and

• the output mesh points.

Listing 1 shows examples of how to use the 1D, 2D, and 3D interfaces for DBI and PPI in HiPPIS. The variables x, y, and

z are 1D arrays used to define the input meshes, and xout, yout, and zout are used to define the output meshes. The

variables v, v2D, and v3D correspond to the input data values associated with the input meshes. The parameters d and

im (1, or 2) are used to indicate the target polynomial degree and the interpolation method to be used. For DBI and PPI,

the parameter im is set to 1 and 2, respectively. The parameters 𝑠𝑡 , 𝜖0, and 𝜖1 are optional parameters that are set to 3,

0.01, and 1 by default, as explained below. The choice of the optional parameters depends on the underlying function

and the input data.

In problems for which different resolutions are used for different parts of the computational domain, st=3 is a

preferable choice. The algorithm prioritizes the closest points to the starting interval 𝐼𝑖 if st=3. This choice is particularly

important in regions where the size of the intervals varies significantly. For cases when smoothness is the primary goal,

st=1 is a suitable choice. For st=1, the Algorithm I prioritizes smoothness by choosing the points with the smallest

divided differences during the stencil construction process. Both the st=1 and st=3 can lead to a left- or right-biased

stencil. In these instances, st=2 can be used to remove the bias. For st=2, the algorithm prioritizes a symmetric stencil.

The default value of st is set to 3 because the examples in this study indicate that st=3 leads to better approximations

compared to st=1 or 2 and locality is often a highly desired property in many computational problems.

The positive parameters 𝜖0 and 𝜖1 are used to bound the interpolants for the intervals with and without extrema,

respectively. The configurations in [29] and [28] correspond to setting the parameters 𝜖0 and 𝜖1 to the default values of

0.01 and 1, respectively. The values of 𝜖0 and 𝜖1 are chosen such that the lower and upper bounds on each interpolant

are relaxed enough to allow for a high-order polynomial that does not introduce undesirable oscillations. For profiles

that are prone to oscillation such as the logistic functions, it is important to choose small values for 𝜖0 and 𝜖1. For

𝑁 × 𝑁 = 17 × 17, the approximation leads to large oscillations if 𝜖0 and 𝜖1 are greater than 10
−4
. For intervals without

extrema, it is important to keep 𝜖0 small to not introduce new extrema. For the intervals with extrema, 𝜖1 needs to

be large enough to allow for recovery of hidden extrema but small enough to not cause undesired large oscillations.

This is very challenging given that the sizes of the peaks are not known a priori. The default values of 𝜖1 = 1 are such

that the interpolant maximum value is twice𝑚𝑎𝑥 (𝑢𝑖 , 𝑢𝐼+1). This default value of one is sufficient for the modified

Runge and TWP-ICE examples. However, in the case of BOMEX, smaller values of 𝜖1 ≤ 10
−5

are required to remove

undesired oscillations. In practice, it is prudent to start with a small value for 𝜖0 and 𝜖1 and increase them as needed if

the approximation fails to recover hidden extrema or uses low-degree polynomial interpolants.

Figure 1 is a diagram of the different components of the main module of HiPPIS. The function divdiff(...) is used to

calculate the divided differences needed for Algorithms I and II. Once the final stencil is constructed, the function
newtonPolyVal(...) is used to build and evaluate the positive interpolant at the corresponding output points. The

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 11

major part of the data-boundedness and positivity preservation including Algorithms I and II is in the function

adaptiveInterpolation1D(...). This function is used for the 1D approximation or mapping problems and depends on

the function divdiff(...) and newtonPolyVal(...). The functions adaptiveIterpolation2D(...) and adaptiveInterpolation3D(...)

use adaptiveInterpolation1D(..) to construct the data-bounded or positive polynomial approximations on 2D and 3D

structured tensor product meshes, respectively. The interfaces for the 1D, 2D, and 3D interpolations, in bold, require the

parameter 𝑖𝑚, which is used to indicate the interpolation method chosen. For the DBI and PPI methods, the parameter

𝑖𝑚 is set using 1 and 2, respectively. HiPPIS does not allow for any other choices for the parameter 𝑖𝑚.

1 % 1D example

2 vout = adaptiveInterpolation1D(x, v, xout , d, im, st, 𝜖0, 𝜖1);

3

4 %2D example

5 vout2D = adaptiveInterpolation2D(x, y, v2D , xout ,yout , d, im, st, 𝜖0, 𝜖1);

6

7 %3D example

8 vout3D = adaptiveInterpolation3D(x, y, z, v3D , xout , yout , zout , d, im, st, 𝜖0, 𝜖1);

9

Listing 1. Interface examples

adaptiveInterpolation1D(...)

adaptiveInterpolation3D(...)adaptiveInterpolation2D(...)

divdiff(…) newtonPolyVal(…)

HiPPIS

Fig. 1. Diagram showing the components of the main module used to build the HiPPIS software.

4 NUMERICAL EXAMPLES FOR FUNCTION APPROXIMATION

This section provides 1D and 2D numerical examples used to evaluate the PCHIP, MQSI, DBI, and PPI methods. The

results are based on the Fortran implementation of the software. These examples include a subset of the full suite of

test problems considered in [28]. The interpolation methods are used to approximate positive functions from provided

data values that are obtained by evaluating the 1D and 2D functions on a given set of mesh points. The function

approximations in 2D examples use the 2D extension of the DBI and PPI methods described in Algorithm III. The 2D
PCHIP and MQSI methods are obtained by successively applying the 1D PCHIP and MQSI algorithms to each dimension,

similar to the steps described in Algorithm III. The 1D PCHIP and MQSI are first applied to 𝑥 , then the 𝑦 dimension,

and finally the 𝑧 dimension. Similar to 2D and 3D DBI and PPI, the order in which 1D PCHIP or MQSI is applied can lead

to different results, as both methods are nonlinear and non-commutative. Using a standard polynomial interpolation to

Manuscript submitted to ACM

12 Ouermi et al.

approximate the different functions leads to negative values and oscillations. In this section, the 𝐿2
-norms in the tables

below are approximated using the trapezoidal rule with, 10
4
and 10

3 × 10
3
uniformly spaced points for the 1D and 2D

examples, respectively. For the numerical examples in Sections 4.1 - 5.3, the errors from using 𝑠𝑡 = 1, 2, and 3 are similar,

with 𝑠𝑡 = 3 leading to slightly smaller errors compared to 𝑠𝑡 = 1 and 𝑠𝑡 = 2. Given that the results are similar, Tables 1 -

8 show errors with the parameter 𝑠𝑡 set to 3. For the BOMEX example, the errors from the three choices are significantly

different. Therefore, the results from all three choices are included. More test examples can be found in [28].

4.1 Example I: Modified Runge Function

This example uses a modified version of the canonical Runge function defined as

𝑓1 (𝑥) =
0.1

0.1 + 25𝑥2
, 𝑥 ∈ [−1, 1] . (23)

Approximating the modified Runge function in Equation (23) with a global standard polynomial leads to large oscillations.

Table 1 shows the 𝐿2
-errors norms when using the PCHIP, MQSI, DBI, and PPI methods to approximate 𝑓1 (𝑥). The

DBI and PPI methods lead to better approximation results compared to the PCHIP and MQSI methods. The errors

from PCHIP and MQSI are comparable. In this example, the algorithms used in MQSI to approximate and adjust the

derivatives to enforce monotonicity do not produce more accurate results compared to PCHIP. As the target polynomial

degree increases from 𝑑 = 4 to 𝑑 = 8, the DBI approximation does not improve significantly compared to the PPI

method. The relaxed nature of the PPI method allows for higher degree polynomial interpolants compared to DBI,

PCHIP, and MQSI which lead to better approximations.

𝑁 PCHIP MQSI DBI PPI

P3 P5 P3 P4 P8 P3 P4 P8

17 3.99E-2 3.63E-2 5.10E-2 2.91E-2 4.61E-2 5.10E-2 2.91E-2 4.61E-2

33 4.52E-3 4.32E-3 6.31E-3 9.57E-3 3.05E-3 6.31E-3 9.57E-3 3.05E-3

65 2.79E-3 2.67E-3 2.44E-3 2.49E-3 1.33E-3 2.44E-3 2.49E-3 9.92E-4

129 6.23E-4 6.71E-4 2.22E-4 1.21E-4 1.05E-4 2.22E-4 1.21E-4 2.43E-5

257 1.17E-4 9.89E-5 1.51E-5 1.15E-5 1.07E-5 1.51E-5 4.68E-6 9.89E-8

Table 1. 𝐿2-errors when using the PCHIP, MQSI, DBI, and PPI methods to approximate the function 𝑓1 (𝑥) . 𝑁 represents the number
of input points used to build the approximation. The parameters 𝜖0, 𝜖1, and 𝑠𝑡 are set to 0.01, 1.0, and 3, respectively.

4.2 Example II: 1D Logistic Function

This test case uses a logistic function defined as

𝑓2 (𝑥) =
1

1 + 𝑒−2𝑘𝑥
, 𝑘 = 100, and 𝑥 ∈ [−0.2, 0.2] . (24)

This function is a smoothed analytical approximation of the Heaviside step function. The logistic function in Equation

(24) is challenging because of the steep gradient at about 𝑥 = 0. Approximating 𝑓2 (𝑥) with a standard polynomial

interpolation leads to large oscillations to the left and right of the gradient. In addition, the oscillations to the left

produce negative values.

Table 2 shows 𝐿2
-error norms when using the PCHIP, MQSI, DBI, and PPI methods to approximate the smoothed

logistic function 𝑓2 (𝑥). The MQSI method has larger errors compared to the other methods. In this case, the algorithms

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 13

employed by MQSI to approximate and adjust derivatives values used to construct the monotonic quintic splines are

less accurate than the one used in PCHIP. For a target polynomial degree 𝑑 = 3, the approximation errors using PCHIP,

DBI, and PPI are comparable. Increasing the target polynomial degree improves the approximations for DBI and PPI,

as shown in Table 2. The errors from both the DBI and PPI methods are similar because the logistic example has no

hidden extrema, and the stencils used for both methods are the same, around 𝑥 = 0. The global error is dominated by

the local errors in the region with steep gradients around 𝑥 = 0.

Figure 2 shows approximation plots of 𝑓2 (𝑥) using 𝑁 = 17 uniformly spaced points with different values of 𝜖0 and

𝜖1 = 1. The target polynomial degree is set to 𝑑 = 8. For 𝜖0 = 1, we observe oscillations, as shown in the right part of

Figure 2. As 𝜖0 decreases, the oscillations decrease. For 𝜖0 ≤ 0.01, the errors and oscillations are negligible compared to

errors in the region with the steep gradient. The oscillations are completely removed for 𝜖0 = 0.0.

𝑁 PCHIP MQSI DBI PPI

P3 P5 P3 P4 P8 P3 P4 P8

17 2.02E-2 1.92E-2 2.41E-2 2.41E-2 2.08E-2 2.41E-2 2.41E-2 2.08E-2

33 3.38E-3 3.72E-3 4.89E-3 4.86E-3 3.59E-3 4.90E-3 4.86E-3 3.57E-3

65 3.59E-4 1.61E-3 4.17E-4 1.89E-4 1.47E-4 4.17E-4 1.89E-4 1.47E-4

129 4.21E-5 1.71E-4 3.09E-5 1.55E-5 1.70E-6 3.09E-5 1.55E-5 1.70E-6

257 5.12E-6 1.75E-5 2.04E-6 5.31E-7 5.22E-9 2.04E-6 5.31E-7 5.22E-9

Table 2. 𝐿2-errors when using the PCHIP, MQSI , DBI, and PPI methods to approximate the function 𝑓2 (𝑥) . 𝑁 represents the number
of input points used to build the approximation. The parameters 𝜖0, 𝜖1, and 𝑠𝑡 are set to 0.01, 1, and 3, respectively.

4.3 Example III: 1D Discontinuous Function

This example uses a modified version of a function introduced by Tadmor and Tanner [42] and used by Berzins [2] in

the context of bounded interpolation methods. The value one is added to the original function in [42] to ensure that the

function is positive over the interval [-1,1]. The modified function is defined as

𝑓3 (𝑥) =


1 + 2𝑒2𝜋𝑥−1−𝑒𝜋

𝑒𝜋 −1
, 𝑥 ∈ [−1,−0.5)

1 − 𝑠𝑖𝑛
(

2𝜋𝑥
3

+ 𝜋
3

)
, 𝑥 ∈ [−0.5, 1] .

(25)

Table 3 shows 𝐿2
-error norms when using the PCHIP, MQSI, DBI, and PPI methods to approximate the function

in Equation (25). Approximating 𝑓3 (𝑥) is challenging because 𝑓3 (𝑥) is a piecewise function with a discontinuity at

𝑥 = 0.5. The global error is dominated by the local errors around the discontinuity. The PCHIP, MQSI, DBI, and PPI

approximation results are comparable. Increasing the target polynomial degree does not decrease the 𝐿2
-error norms.

The approximations in the smooth regions improve as we increase the target polynomial degree, but the global error is

dominated by the error around the discontinuity. The error around the discontinuity does not decrease with higher

polynomial degrees.

Figure 3 shows approximation plots of 𝑓3 (𝑥) using 𝑁 = 17 uniformly spaced points with different values of 𝜖0. The

target polynomial degree is set to 𝑑 = 4, 8. The bottom right part of Figure 3 shows oscillations at the left boundary

Manuscript submitted to ACM

14 Ouermi et al.

-0.2 -0.1 0 0.1 0.2

x

0

0.2

0.4

0.6

0.8

1

y

True

PCHIP

MQS

DBI

0.05 0.1 0.15 0.2

x

0.96

0.98

1

1.02

1.04

1.06

y
(a) PCHIP, MQSI, and DBI with 𝑑 = 8.

(b) PPI with 𝑑 = 4 and 𝑑 = 8.

Fig. 2. Approximation of 𝑓2 (𝑥) from 𝑁 = 17 uniformly spaced points with different interpolation methods. The top row (Figure 2a)
shows approximation results using PCHIP, MQSI, and DBI. The bottom row (Figure 2b) shows approximation results using PPI with
𝑑 = 4, 8 and 𝜖0 = 1.0, 0.01. An enlarged version of the region in the red rectangle is shown on the right of each row. The value of 𝜖1 is
set to 1.0.

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 15

for 𝜖0 = 1. The oscillations are removed for 𝜖0 ≤ 0.1. As expected, all the interpolation methods have difficulties

approximating the function around the discontinuity, as shown in Figure 3.

𝑁 PCHIP MQSI DBI PPI

P3 P5 P3 P4 P8 P3 P4 P8

17 1.77E-1 1.76E-1 1.82E-1 1.83E-1 1.82E-1 1.73E-1 1.72E-1 1.70E-1

33 1.39E-1 1.41E-1 1.35E-1 1.39E-1 1.36E-1 1.35E-1 1.39E-1 1.36E-1

65 1.03E-1 1.06E-1 9.95E-2 1.04E-1 1.02E-1 9.95E-2 1.04E-1 1.02E-1

129 7.42E-2 7.63E-2 7.12E-2 7.54E-2 7.35E-2 7.15E-2 7.55E-2 7.38E-2

257 5.28E-2 5.43E-2 5.06E-2 5.38E-2 5.24E-2 5.07E-2 5.39E-2 5.26E-2

Table 3. 𝐿2-errors when using the PCHIP, MQSI DBI, and PPI methods to approximate the function 𝑓3 (𝑥) . 𝑁 represents the number
of input points used to build the approximation. The parameters 𝜖0, 𝜖1, and 𝑠𝑡 are set to 0.01, 1, and 3, respectively.

4.4 Example IV: 2D Modified Runge Function

This example extends the previously modified 1D Runge function to 2D as follows:

𝑓4 (𝑥,𝑦) =
0.1

0.1 + 25(𝑥2 + 𝑦2)
, 𝑥,𝑦 ∈ [−1, 1] . (26)

Table 4 shows 𝐿2
-error norms when using the PCHIP, MQSI, DBI, and PPI methods to approximate the 2D modified

Runge function in Equation (26). In this example, as in Example I, the MQSI and PCHIP methods have comparable

errors. The approaches used to approximate the derivatives and construct the quintic splines are not more accurate than

the approximation obtained from PCHIP. The DBI and PPI methods with 𝑑 = 3 lead to better approximation results

compared to the PCHIP and MQSI. As the target polynomial degree 𝑑 increases, the approximation errors from PPI

decrease much faster than from DBI. The relaxed nature of the PPI methods allows for higher degree polynomials

compared to DBI. The bounds for data-boundedness, which are based on Equation (11) with Δ𝑚𝑖𝑛 = Δ𝑚𝑎𝑥 = 0.0, are

more restrictive than positivity for which Δ𝑚𝑖𝑛 > 0.0 and Δ𝑚𝑎𝑥 > 0.0. In addition, the approximation does not lead to

oscillations for 𝜖0 and 𝜖1 ∈ [0, 1]

𝑁 2
PCHIP MQSI DBI PPI

P3 P5 P3 P4 P8 P3 P4 P8

17 1.76E-2 1.67E-2 2.12E-2 9.09E-3 1.91E-2 2.12E-2 9.09E-3 1.91E-2

33 2.05E-3 2.84E-3 2.45E-3 4.61E-3 1.25E-3 2.45E-3 4.61E-3 1.24E-3

65 1.05E-3 8.01E-4 8.59E-4 9.33E-4 4.99E-4 8.59E-4 9.33E-4 3.51E-4

129 2.23E-4 2.57E-4 7.47E-5 4.76E-5 4.12E-5 7.47E-5 4.64E-5 7.16E-6

257 4.19E-5 3.53E-5 5.05E-6 4.20E-6 3.80E-6 5.05E-6 1.62E-6 2.91E-8

Table 4. 𝐿2-errors when using the PCHIP, MQSI, DBI, and PPI methods to approximate the function 𝑓4 (𝑥, 𝑦) . 𝑁 represents the
number of input points used to build the approximation. The parameters 𝜖0, 𝜖1, and 𝑠𝑡 are set to 0.01, 1, and 3, respectively.

Manuscript submitted to ACM

16 Ouermi et al.

-1 -0.5 0 0.5 1

x

0

0.5

1

1.5

2

y

True

PCHIP

MQS

DBI

-1 -0.95 -0.9 -0.85 -0.8

x

0

0.05

0.1

0.15

0.2

0.25

y
(a) PCHIP, MQSI, and DBI with 𝑑 = 8.

(b) PPI with 𝑑 = 4 and 𝑑 = 8.

Fig. 3. Approximation of 𝑓3 (𝑥) from 𝑁 = 17 uniformly spaced points with different interpolation methods. The top row (Figure 3a)
shows approximation results using PCHIP, MQSI, and DBI. The bottom row (Figure 3b) shows approximation results using PPI with
𝑑 = 4, 8 and 𝜖0 = 1.0, 0.01. An enlarged version of the region in the red rectangle is shown on the right of each row. The value of 𝜖1 is
set to 1.0.

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 17

4.5 Example V: 2D Logistic Function

The test case extends the 1D logistic (smoothed Heaviside) function from Example II to 2D.

𝑓5 (𝑥,𝑦) =
1

1 + 𝑒−
√

2𝑘 (𝑥+𝑦)
, 𝑥,𝑦 ∈ [−0.2, 0.2] . (27)

The function 𝑓5 (𝑥,𝑦) is challenging because of the large gradient at 𝑦 = −𝑥 . Approximating 𝑓5 (𝑥,𝑦) with a standard

polynomial interpolation leads to oscillations and negative values that violate the desired property of positivity.

Table 5 shows 𝐿2
-error norms when using the PCHIP, MQSI, DBI, and PPI methods to approximate the 2D logistic

function 𝑓5 (𝑥,𝑦) defined in Equation (27). The errors from MQSI are larger compared to the other methods. In this

example, the approximated derivatives and quintic splines from MQSI are less accurate than the approximations from

PCHIP. The DBI and PPI methods lead to better approximation results compared to the PCHIP and MQSI approaches.

Increasing the target polynomial degree improves the approximations for DBI and PPI, as shown in Table 5. The global

error is dominated by the local around the steep gradients at 𝑦 = −𝑥 . For 𝑁 2 = 33
2
points and above with 𝜖0 = 0.01,

𝜖1 = 1.0, and 𝑠𝑡 = 3, the DBI and PPI choose the identical stencils for the intervals around the steep gradient. Therefore,

the global error, which is dominated by the local error around the steep gradient, is the same for both DBI and PPI.

However, for 𝑁 2 = 17
2
points with 𝜖0 = 0.01, 𝜖1 = 1.0, and 𝑠𝑡 = 3, the DBI and PPI choose different stencils that lead to

different errors, as indicated in the row with 𝑁 2 = 17
2
of Table 5. Figure 4 shows approximation plots of 𝑓5 (𝑥,𝑦) using

𝑁 × 𝑁 = 17 × 17 uniformly spaced points with PCHIP, MQSI, and PPI. The approximations in Figures 4c and 4e are

obtained using PPI with 𝜖0 = 𝜖1 = 1. The PPI method with 𝜖0 = 𝜖1 = 10
−4

is used for the approximations in Figures

4d and 4f. The target polynomial degrees for the second and third rows are set to 𝑑 = 4 and 𝑑 = 8, respectively. The

oscillations increase when going from P4 to P8 with 𝜖1 = 𝜖2 = 1.0. For 𝜖0 = 𝜖1 = 10
−4
, the oscillations are significantly

reduced, and the approximation is closer to the target solution.

𝑁 2
PCHIP MQSI DBI PPI

P3 P5 P3 P4 P8 P3 P4 P8

17 8.07E-3 7.12E-3 1.05E-2 9.79E-3 8.18E-3 1.05E-2 9.77E-3 8.61E-3

33 1.26E-3 2.62E-3 1.67E-3 1.36E-3 1.06E-3 1.64E-3 1.30E-3 8.87E-4

65 1.44E-4 6.35E-4 1.58E-4 8.84E-5 4.89E-5 1.58E-4 8.84E-5 5.01E-5

129 1.63E-5 6.51E-5 1.13E-5 3.07E-6 2.64E-7 1.13E-5 3.07E-6 2.64E-7

257 1.94E-6 6.74E-6 7.29E-7 1.02E-7 5.39E-10 7.29E-7 1.02E-7 5.39E-10

Table 5. 𝐿2-errors when using the PCHIP, MQSI, DBI, and PPI methods to approximate the function 𝑓5 (𝑥, 𝑦) . 𝑁 represents the
number of input points used to build the approximation. The parameters 𝜖0, 𝜖1, and 𝑠𝑡 are set to 0.01, 1, and 3, respectively.

Manuscript submitted to ACM

18 Ouermi et al.

(a) PCHIP (b) MQSI

(c) PPI with P4, 𝜖0 = 𝜖1 = 1.0 (d) PPI with P4, 𝜖0 = 𝜖1 = 10
−4

(e) PPI with P8, 𝜖0 = 𝜖1 = 1.0 (f) PPI with P8, 𝜖0 = 𝜖1 = 10
−4

Fig. 4. Approximation of 𝑓5 (𝑥, 𝑦) from 𝑁 × 𝑁 = 17
2 uniformly spaced points with different interpolation methods. The parameter

𝑠𝑡 is set to 2. The red ellipses highlight examples regions with large oscillations. The surfaces in the top row Figures 4a and 4b
are obtained using PCHIP and MQSI. Figures 4c (P4, 𝜖0 = 𝜖1 = 1.0), 4d (P4, 𝜖0 = 𝜖1 = 10

−4), 4e (P8, 𝜖0 = 𝜖1 = 1.0), and 4f (P8,
𝜖0 = 𝜖1 = 10

−4) are obtained using PPI.

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 19

4.6 Example VI: 𝐶0-continuous Surface Function

This example is based on a 2D function used to study positive and monotonic splines [5, 30]. The function is defined as

follows:

𝑓6 (𝑥,𝑦) =



2(𝑦 − 𝑥) if 0 ≤ 𝑦 − 𝑥 ≤ 0.5

1 if 𝑦 − 𝑥 ≥ 0.5

𝑐𝑜𝑠

(
4𝜋

√︁
(𝑥 − 1.5)2 + (𝑦 − 0.5)2

)
if (𝑥 − 1.5)2 + (𝑦 − 0.5)2 ≤ 1

16

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(28)

The function 𝑓6 (𝑥,𝑦) is challenging because it is only C0
-continuous at various locations.

Table 6 shows 𝐿2
-error norms when using the PCHIP, MQSI, DBI, and PPI methods to approximate the 2D function

𝑓6 (𝑥,𝑦) defined in Equation (28). The PCHIP, MQSI, DBI, and PPI methods lead to comparable 𝐿2−error norms. Increasing

the target polynomial degree does not significantly improve the approximation for DBI and PPI, as shown in Table 6.

The global error is dominated by the local around the C0
. The approximation for both DBI and PPI can be improved by

using an underlying mesh that better captures the C0
-continuity.

Figure 5 shows approximation plots of 𝑓6 (𝑥,𝑦) using 𝑁 × 𝑁 = 17 × 17 uniformly spaced points with PCHIP, MQSI,

and PPI. The left and right approximation plots show approximated solutions using the PPI method. For the left plot

using PPI, 𝜖0 = 𝜖1 = 1.0, and for the right plot using PPI, 𝜖0 = 𝜖1 = 10
−4

The target polynomial degree is set to 𝑑 = 4 and

𝑑 = 8 for the second and third rows, respectively. For 𝜖0 = 𝜖1 = 1.0, the oscillations increase as the target polynomial

degree increases from 𝑑 = 4 to 𝑑 = 8. The oscillations observed for 𝜖1 = 𝜖0 = 1 are removed for small values of 𝜖0 and

𝜖1, shown in Figures 5d and 5f.

𝑁 2
PCHIP MQSI DBI PPI

P3 P5 P3 P4 P8 P3 P4 P8

17 1.91E-2 2.19E-2 1.72E-2 1.69E-2 1.63E-2 1.72E-2 1.68E-2 1.59E-2

33 6.92E-3 7.44E-3 6.16E-3 5.81E-3 5.88E-3 6.16E-3 5.80E-3 5.87E-3

65 2.47E-3 2.45E-3 2.24E-3 2.14E-3 2.11E-3 2.24E-3 2.14E-3 2.11E-3

129 8.99E-4 8.69E-4 8.21E-4 7.77E-4 7.63E-4 8.20E-4 7.77E-4 7.63E-4

257 3.23E-4 3.04E-4 2.97E-4 2.81E-4 2.76E-4 2.96E-4 2.81E-4 2.76E-4

Table 6. 𝐿2-errors when using the PCHIP, MQSI, DBI, and PPI methods to approximate the function 𝑓6 (𝑥, 𝑦) . 𝑁 represents the
number of input points used to build the approximation. The parameters 𝜖0, 𝜖1, and 𝑠𝑡 are set to 0.01, 1, and 3, respectively.

5 MAPPING ERROR ANALYSIS AND EXAMPLES

This section provides an analysis of the mapping error between two different meshes in the context of time-dependent

PDEs when DBI and PPI are employed to interpolate data values between the meshes. In addition to the error analysis, the

Runge, tropical warm pool international cloud experiment (TWP-ICE), and Barbados oceanographic and meteorological

experiment (BOMEX) examples are used to evaluate the use of the PPI and DBI to map data values between two meshes.

The Runge and TWP-ICE examples use meshes that emulate the advection and reaction meshes used in NEPTUNE.

These meshes are constructed by linearly scaling the NEPTUNE vertical mesh points to the desired interval for the

Manuscript submitted to ACM

20 Ouermi et al.

(a) PCHIP (b) MQSI

(c) PPI with P4, 𝜖0 = 𝜖1 = 1.0 (d) PPI with P4, 𝜖0 = 𝜖1 = 10
−4

(e) PPI with P8, 𝜖0 = 𝜖1 = 1.0 (f) PPI with P8, 𝜖0 = 𝜖1 = 10
−4

Fig. 5. Approximation of 𝑓5 (𝑥, 𝑦) from 𝑁 × 𝑁 = 17
2 uniformly spaced points with different interpolation methods. The parameter

𝑠𝑡 is set to 2. The red ellipses highlight examples regions with large oscillations. The surfaces in the top row Figures 5a and 5b
are obtained using PCHIP and MQSI. Figures 5c (P4, 𝜖0 = 𝜖1 = 1.0), 5d (P4, 𝜖0 = 𝜖1 = 10

−4), 5e (P8, 𝜖0 = 𝜖1 = 1.0), and 5f (P8,
𝜖0 = 𝜖1 = 10

−4) are obtained using PPI.

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 21

Runge and TWP-ICE examples. In the BOMEX example, the advection mesh is composed of uniformly spaced points,

and the reaction mesh is constructed using the mid-point of each interval from the advection mesh.

5.1 Mapping Error Analysis

In addition to the development and study of the DBI and PPI methods, it is important to provide some insight into

the behavior of the mapping error in the context of time-dependent PDEs. An example of a time-dependent problem

where a positivity-preserving mapping is required is the US Navy Environmental Prediction System Using the NUMA

Core (NEPTUNE) [19]. NEPTUNE is a next-generation global NWP system being developed at the Naval Research

Laboratory (NRL) and the Naval Postgraduate School (NPS). In NEPTUNE, the physics and dynamics are calculated

using different meshes and require mapping the solution values between both meshes. NEPTUNE uses nonuniform

structured meshes that have vertical columns with nonuniformly spaced points inside each column. The mapping

must preserve positivity for quantities such as density and cloud water mixing ratio. The cloud water mixing ratio is

the amount of cloud water in air. At each time step, the dynamics (advection) solutions, which are calculated on the

advection mesh, are mapped to the reaction mesh to be used as input for the physics calculations. The physics results

are then mapped back to the dynamics to be used as input for the next time step. Enforcing positivity alone may still

lead to large oscillations and approximation errors. Using the DBI method will remove the large oscillations but will

truncate any hidden extremum and may be too restrictive for high-order accuracy in some cases. For simulations in

which different structured meshes are used and mapping is required, the errors from both the DBI and unconstrained

PPI will propagate into other calculations and may even cause the simulation to fail. This section provides an analysis

of the mapping error when interpolating from one mesh to another and back to the starting mesh. The mapping error

is considered within time-dependent PDEs. For example, when interpolating the data values between the advection and

reaction mesh in NEPTUNE, a mapping error is introduced in addition to the physics and time integration errors. The

error in approximating a function 𝑢 (𝑥) with the Newton polynomial𝑈𝑛 (𝑥) over the interval 𝐼𝑖 is

𝐸𝑛 (𝑥) = 𝑢 (𝑥) −𝑈𝑛 (𝑥) =
𝑢 (𝑛+1) (𝜉)
(𝑛 + 1)!

𝑛∏
𝑘=0

(𝑥 − 𝑥𝑒
𝑘
), 𝑥 ∈ 𝐼𝑖 (29)

where 𝜉 ∈ [𝑥𝑙𝑛, 𝑥𝑟𝑛]. Given that 𝜉 and 𝑢 (𝑛+1)
are not known, the local interpolation error in Equation (29) can approxi-

mated as follows:

𝐸𝑛 = 𝑈 [𝑥𝑙𝑛 · · · 𝑥𝑟𝑛]
𝑛∏

𝑘=0

Δ𝑥𝑘 , (30)

where

Δ𝑥𝑘 =𝑚𝑎𝑥

(
|𝑥 (𝑖) − 𝑥𝑒

𝑘
|, |𝑥 (𝑖 + 1) − 𝑥𝑒

𝑘
|
)
.

The error approximation in Equation (30) is based on the mean value theorem for divided differences, which states that

there exist 𝜉0 ∈ [𝑥𝑙𝑛, 𝑥𝑟𝑛] such that

𝑈 [𝑥𝑙𝑛 · · · 𝑥𝑟𝑛] =
𝑢 (𝑛+1) (𝜉0)
(𝑛 + 1)! .

Equation (30) approximates the local interpolation error for each interval when mapping from one set of points to

another. To consider a mapping error for interpolating from one mesh to another and back to the starting mesh, letM𝐴

andM𝑅 be the advection and reaction mesh, respectively. In addition, let 𝐼𝐴𝑅 and 𝐼𝑅𝐴 be the interpolation operators that

map a given set of data values from M𝐴 to M𝑅 and from M𝑅 to M𝐴 , respectively. We consider an advection-reaction

problem where the advection part is calculated onM𝐴 and the reaction onM𝑅 . A simple forward Euler time integration

Manuscript submitted to ACM

22 Ouermi et al.

is used. Let 𝑢𝜏 and 𝑢𝜏 be the approximate and the exact solution at time 𝜏 . The dynamics/advection part is written as

𝑢1

𝜏+Δ𝜏 = 𝑢𝜏 + Δ𝜏𝐹
(
𝑢𝜏

)
, (31)

and the physics/reaction �̄�𝜏+Δ𝜏 is expressed as

�̄�𝜏+Δ𝜏 = 𝐻𝑢1

𝜏+Δ𝜏 , (32)

where 𝐻𝑢1

𝜏+Δ𝜏 = 𝐼𝐴𝑅𝐺 (𝐼𝑅𝐴𝑢1

𝜏+Δ𝜏). Let 𝐸𝜏+Δ𝜏 be the global space and time error accumulated up to 𝜏 + Δ𝜏 after the

advection in Equation (31) and before mapping the solution values to M𝑅 . 𝐸𝜏+Δ𝜏 does not include the mapping errors

at 𝜏 + Δ𝜏 . The final solution after applying the operator 𝐻 in Equation (32) is

𝑢𝜏+Δ𝜏 = 𝑢1

𝜏+Δ𝜏 + 𝐻𝑢
1

𝜏+Δ𝜏 . (33)

The true solution 𝑢𝜏+Δ𝜏 at the end of time step 𝜏 + Δ𝜏 and after the mapping from M𝐴 to M𝑅 and back M𝐴 to can be

expressed as

𝑢𝜏+Δ𝜏 = 𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏 + �̂�
(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
, (34)

where �̂� is assumed to be the corresponding “exact" operator for 𝐻 . Subtracting Equation (34) from (33) gives an

expression for the true error that can be written as

𝐸𝐺𝜏+Δ𝜏 = 𝐸𝜏+Δ𝜏 + �̂�
(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
− 𝐻𝑢1

𝜏+Δ𝜏 ,

where 𝐸𝐺 is the global space and time error including the mapping errors at 𝜏 + Δ𝜏 . Adding and subtracting 𝐻
(
𝑢1

𝜏+Δ𝜏 +
𝐸𝜏+Δ𝜏

)
yields

𝐸𝐺𝜏+Δ𝜏 = 𝐸𝜏+Δ𝜏 + �̂�
(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
− 𝐻

(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
+ 𝐻

(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
− 𝐻𝑢1

𝜏+Δ𝜏 .

Using a Taylor expansion of 𝐻
(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
about 𝑢1

𝜏+1
and dropping the high-order terms, we can approximate the

total errors as

𝐸𝐺𝜏+1
≈ 𝐸𝜏+Δ𝜏 + �̂�

(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
− 𝐻

(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
+ 𝜕𝐻

𝜕𝑢
(𝑢1

𝜏+Δ𝜏)𝐸𝜏+Δ𝜏 . (35)

The results in Equation (35) indicate that the total error is dependent on

• the existing global space and time error 𝐸𝜏+Δ𝜏 , which does not include the mapping error at 𝜏 + Δ𝜏 ,

• the mapping error 𝐸𝑀
𝜏+Δ𝜏 at 𝜏 + Δ𝜏 ,

𝐸𝑀𝜏+Δ𝜏 = �̂�
(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)
− 𝐻

(
𝑢1

𝜏+Δ𝜏 + 𝐸𝜏+Δ𝜏
)

= �̂�𝑢1

𝜏+Δ𝜏 − 𝐻𝑢
1

𝜏+Δ𝜏 , and

• a multiplier of the existing global space and time error 𝐸𝜏+Δ𝜏 ,

𝐸𝑁𝜏+Δ𝜏 =
𝜕𝐻

𝜕𝑢
(𝑢1

𝜏+Δ𝜏)𝐸𝜏+Δ𝜏 .

Mapping data values from M𝐴 to M𝑅 and back to M𝐴 introduces the interpolation errors that degrade the solution if

𝐸𝑀
𝜏+Δ𝜏 is greater than the existing global space and time error 𝐸𝜏+Δ𝜏 . This problem is resolved when the mapping error

is kept smaller than the existing global space and time error. Similar ideas in the context of time dependent differential

equations are explored in [4, 11, 22]. The studies in [11] and [22] develop strategies for balancing the space and time

error for better error control and improved performance while [4] show that in mesh adaptivity the spatial interpolation

error must be controlled and kept smaller than the temporal error.

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 23

5.2 1D Modified Runge Function

This example is based on the modified version of the Runge function defined in Equation (23) and two meshes that

emulate the dynamics/advection (M𝐴) and physics/reaction (M𝑅) meshes used in NEPTUNE. No actual PDE is solved

in this example. Here, we consider the advection time step of the trivial case where the identity operator is used to

represent the advection and reaction. The function 𝑓1 (𝑥) is evaluated on advection mesh M𝐴 to create the initial data

values. Given that the identity operator is used for both the advection and reaction, these initial data values are mapped

to the reaction mesh M𝑅 and back to the starting mesh 𝑀𝐴 . Using the identity operator allows for a study of the

mapping error without the influence of the advection and reaction.

Table 7 shows 𝐿2
-norms of the mapping errors over the grid points for 𝑓1 (𝑥) when using the PCHIP, MQSI, DBI, and

PPI methods to map the data values from the advection mesh to the reaction mesh and back to the advection mesh. For

𝑁 = 64 points, increasing the interpolant degree does not significantly improve the approximation. The global error

is dominated by the local error in the regions with steep gradients that are to the left and right of the peak at 𝑥 = 0.

The mapping errors can be improved by increasing the resolution and adding more points in the regions with steep

gradients. The resolution is increased by adding one or three uniformly spaced points in each interval from the initial

profile with 64 points. Increasing the resolution leads to better approximations when mapping data values between

both meshes, and the error decreases as we increase the polynomial degree from 3 to 7. This example demonstrates

that in cases with steep gradients, using the PPI method with high-order interpolants may not significantly improve

the approximation unless there is sufficient resolution. In order to benefit from the positivity and the high-order

interpolants, it is important to be in the regime where the problem has sufficiently many points to observe convergence

as the polynomial degree increases. Overall, the PPI method leads to smaller errors compared to the other methods as

the resolution and polynomial degree increase.

𝑁 PCHIP MQSI DBI PPI

P3 P5 P3 P5 P7 P3 P5 P7

64 2.92E-03 1.93E-03 4.93E-03 4.78E-04 7.12E-05 3.99E-03 3.13E-04 2.85E-05

127 3.81E-04 5.57E-04 3.58E-03 3.81E-04 6.50E-05 2.85E-03 1.02E-04 3.65E-06

253 6.71E-05 1.48E-04 3.41E-03 3.69E-04 6.49E-05 2.46E-03 3.50E-05 8.62E-07

Table 7. 𝐿2-norm of mapping errors for the modified Runge function 𝑓4 (𝑥) when using the PCHIP, MQSI, DBI, and PPI methods to
map the data values from the advection mesh to the reaction mesh and back to the advection mesh. The target polynomials are set to
𝑑 = 3, 𝑑 = 5, and 𝑑 = 7. 𝑁 represents the number of input points used for both meshes. The parameter 𝑠𝑡 is set to 3.

5.3 TWP-ICE Example

This study uses the tropical warm pool international cloud experiment (TWP-ICE) test case from the common community

physics package (CCPP) [8]. The input mesh for the simulation is configured to emulate a vertical column in NEPTUNE.

The simulation result at time 𝑡 = 1440 sec is extracted and scaled, and used to evaluate different interpolation approaches

when mapping solution values between advection and reaction meshes. The domain and range are scaled to [−1, 1] and
[0, 1], respectively. This study considers the cloud water mixing ratio profile, which represents the amount of cloud water

in air. The extracted profile is then fitted using a radial basis function interpolation to construct an analytical function

that can be used as the starting point of the mapping evaluation. The radial basis function is based on multiquadrics:

𝑏𝑖 =
√︁

1 + (𝜖 |𝑥 − 𝑥𝑖 |)2 .

Manuscript submitted to ACM

24 Ouermi et al.

The parameter 𝜖 is approximated using cross validation [7]. The initial values are obtained by evaluating the analytical

function on the advection mesh. These values are then mapped to the reaction mesh and back to the advection mesh.

Table 8 shows 𝐿2−norms of the mapping errors for the extracted profile when using the PCHIP, DBI, and PPI methods

to map the data values from the advection to physics mesh and back to advection mesh. For 𝑁 = 64, the global error is

dominated by the local error at a few points located in the regions with steep gradients. Increasing the polynomial

degree does not significantly improve the approximation compared to using PCHIP for 𝑁 = 64. More points are required

to better approximate the underlying profile in the regions with steep gradients. The resolutions are increased by

adding one and three uniformly spaced points in each interval from the initial 𝑁 = 64 mesh points. Table 8 shows that

with the increased resolution, the approximation improves as the polynomial degree increases. The number of points

used in each region with steep gradients increased as more points were added. This example provides an application

example using simulation data from TWP-ICE. In cases of coarse resolution (64 points), the PCHIP and MQSI results

are comparable and going to higher degree interpolants doesn’t significantly improve the approximation for DBI and

PPI. The approximation improves with higher degree interpolants when the resolution is increased, as shown in Table

8. The results from this experiment suggest that increasing the resolution is needed for the mapping between meshes to

benefit from the high-order interpolants from the PPI methods.

𝑁 PCHIP MQSI DBI PPI

P3 P5 P3 P5 P7 P3 P5 P7

64 4.66E-03 3.25E-03 1.17E-02 3.15E-03 6.77E-04 5.11E-03 9.86E-04 1.12E-04

127 1.56E-03 2.05E-03 1.12E-02 3.10E-03 6.49E-04 2.30E-03 3.10E-04 1.83E-05

253 4.89E-04 6.92E-04 1.11E-02 3.11E-03 6.46E-04 1.41E-03 1.45E-04 3.70E-06

Table 8. 𝐿2−norm of mapping errors for the TWP-ICE profile when using the PCHIP, MQSI, DBI, and PPI methods to map the data
values from the advection mesh to the reaction mesh and back to the advection mesh. The target polynomials are set to 𝑑 = 3, 𝑑 = 5,
and 𝑑 = 7. 𝑁 represents the number of input points used for both meshes. The parameter 𝑠𝑡 is set to 3.

5.4 BOMEX Example

Here, a maritime shallow convection example based on the 1D Barbados Oceanographic and Meteorological Experiment

(BOMEX) [9] is used to study the effects of the different interpolation methods in an application. BOMEX is a single-

column shallow convection test case used to measure and study changes in temperature, wind, water vapor mixing

ratio, rain water mixing ratio, and cloud water mixing ratio. The mixing ratios represent the amount of water vapor,

rain water, and cloud water in air. In this simulation, the dynamics/advection is modeled by

𝜕𝑋

𝜕𝑡
= L𝑋,

where𝑋 is the state variable that contains the wind, temperature, water vapor mixing ratio, cloud water mixing ratio, and

rain water mixing ratio. The dynamics are approximated using fifth-order weighted essentially nonoscillatory (WENO)

and third-order Runge-Kutta methods [39]. The physics component of the simulation uses the hybrid eddy-diffusivity

mass-flux and free atmospheric turbulence (hybrid EDMF) and Kessler microphysics schemes from [8] to alter the results

of the dynamics and incorporate the physics properties. The dynamics and physics results are calculated on different

meshes. At each time step, the dynamics are calculated on the advection mesh M𝐴 , and the results are interpolated to

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 25

the reaction meshM𝑅 for the use of the physics routines. The physics terms are calculated using the reaction mesh

M𝑅 , and the results are interpolated back to the advection meshM𝐴 .

As in [32], let 𝑞𝑐 be the cloud water mixing ratio profile in the different experiments. Figures 6a - 7f show the cloud

mixing ratio profile 𝑞𝑐 at 𝑡 = 5 hours that is used as input for the physics routines. The physics calculations require

positive input values for 𝑞𝑐 . Figure 6a shows the target profile for 𝑞𝑐 . This target profile is obtained by using the same

mesh for both dynamics and physics calculations where mapping is not required and 𝑞𝑐 remains positive during the

simulation. In addition, as the temporal and spatial resolution increases, 𝑞𝑐 converges to the profile shown in Figure 6a.

Figures 6b - 7f are used to investigate different interpolation methods for mapping the solution values between meshes

in the case where the dynamics and physics are calculated using different meshes.

Figure 6b shows the cloud mixing ratio profiles 𝑞𝑐 for the target and approximated solution at 𝑡 = 5 hours. In the

case of the approximated solution, a fifth-order standard polynomial interpolation is used when mapping between

the advection and reaction meshes. For a given interval 𝐼𝑖 , the polynomial interpolant is constructed using the stencil

V4 = {𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3}. At the boundary and nearby boundary intervals, the stencilV4 is biased toward

the interior of the domain. The results in Figure 6b demonstrate that using the standard polynomial interpolation leads

to oscillations, negative values, and an overestimation of the peak and total cloud mixing ratio of the profile 𝑞𝑐 . Using

standard polynomial interpolation leads to an overproduction of the total cloud mixing ratio by 93.45%. The peak is

𝑚𝑎𝑥 (𝑞𝑐) = 0.46𝑔/𝑘𝑔, which is larger than the target peak𝑚𝑎𝑥 (𝑞𝑐) = 0.28𝑔/𝑘𝑔.
The negative values in Figure 6b can be removed via “clipping", which is a procedure that consists of removing the

negative values by setting them to zero. Figure 6c shows the cloud mixing ratio profiles for the target solution and an

approximated solution that uses “clipping" to remove the negative values at each time step. The approximated solution

uses a standard interpolation to map the data values from one mesh to another. The interpolant for each interval is

constructed using the stencil V4 = {𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3} with a fifth-order polynomial. Once the interpolation

is completed, “clipping" is used to remove the negative values. Figure 6c shows that using “clipping" still allows for

oscillations and a positive bias in the prediction of the cloud mixing ratio 𝑞𝑐 . The total cloud mixing ratio is 2.09 times

greater than the target solution, and the peak𝑚𝑎𝑥 (𝑞𝑐) = 0.46𝑔/𝑘𝑔 is larger than the target peak𝑚𝑎𝑥 (𝑞𝑐) = 0.28𝑔/𝑘𝑔.
Using PCHIP to map between the advection and reaction meshes eliminates the negative values, removes oscillations,

and reduces the positive bias in the cloud mixing ratio prediction compared to the standard interpolation with and

without “clipping". Figure 6d shows the target profile 𝑞𝑐 and an approximated profile that uses PCHIP for mapping

solution values between advection and reaction meshes. The total cloud mixing ratio is now 27.21% less than the target

with a peak𝑚𝑎𝑥 (𝑞𝑐) = 0.21𝑔/𝑘𝑔. In the BOMEX test case, NEPTUNE, and similar codes, using PCHIP for mapping data

values from one mesh to another can degrade the high-order accuracy obtained from the high-order methods used for

the dynamics calculations. PCHIP is only third-order whereas the dynamics calculations use a fifth-order method. This

limitation can be addressed via high-order DBI and PPI. Here, the MQSI method is not used because it oversmoothes

the state variable 𝑋 at each time step and leads to no production of cloud mixing ratio.

Figures 7a-7f show cloud mixing ratio profiles for the target and approximated solutions that use the DBI and PPI

methods to map the solution values between meshes. The maximum polynomial degree for the DBI and PPI methods is

set to 5 and 7, and the parameters 𝜖0 and 𝜖1 are both set a value of 10
−5

. For larger values of 𝜖0 and 𝜖1, the PPI approach

introduces oscillations that lead to positive bias prediction of the cloud mixing ratio. These oscillations are caused by

the relaxed nature of the PPI approach, which still allows the interpolants to oscillate while remaining positive. The

positive bias and oscillations can be removed using the DBI or PPI method with small values for 𝜖0 and 𝜖1. When using

the PPI method for mapping, the total amount of the cloud mixing ratio is less than the target for 𝑠𝑡 = 1 and more than

Manuscript submitted to ACM

26 Ouermi et al.

the target for 𝑠𝑡 = 2 and 𝑠𝑡 = 3. Figures 7a-7f show that using the DBI and PPI methods with 𝜖0 = 𝜖1 = 10
−5

to map

data values between the advection and reaction meshes eliminates the negative values, removes the oscillations, and

significantly reduces the positive bias in the cloud mixing ratio prediction. Using the DBI and PPI methods leads to a

better approximation of the peak value of the total cloud mixing ratio compared to using the standard interpolation

and PCHIP approaches. The best approximation of the total amount of the cloud mixing ratio is with the DBI method,

which is 7.57% more than the target with a peak of𝑚𝑎𝑥 (𝑞𝑐) = 0.28𝑔/𝑘𝑔.
In summary, using DBI and PPI methods to map data values between both the advection and reaction meshes

produces better approximation results compared to the standard interpolation and PCHIP methods. Tables 9 and 10

provide a summary of the maximum values and the total amount of cloud mixing ratios for each case. The DBI and PPI

methods with a target polynomial set to 𝑑 = 7 lead to a better approximation of the peak and the total cloud mixing

ratios compared to the standard interpolation and PCHIP approaches. The results from Tables 9 and 10 indicate that the

DBI method is the most suitable approach to map data values between meshes for the BOMEX test case. This study

provided an example demonstrating how to use the DBI and PPI methods for mapping data values between meshes in

the context of NWP. The BOMEX example also demonstrated that positivity alone may not be sufficient to remove

oscillations in the solution, and the interpolants may need to be constrained to be between the data values for a better

approximation.

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 27

0 0.1 0.2 0.3

g/kg

0.5

1

1.5

2

z
 (

k
m

)

(a) Target (no mapping required).

0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10 -3

1.5

1.505

1.51

1.515

1.52

1.525

1.53

1.535

1.54

1.545

1.55

(b) Standard interpolation.

0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10 -3

1.51

1.515

1.52

1.525

1.53

1.535

1.54

1.545

1.55

(c) Standard interpolation with “clipping".

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)
-5 0 5

10 -3

1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

(d) PCHIP.

Fig. 6. Cloud mixing ratio 𝑞𝑐 profile from the BOMEX test case at 𝑡 = 5 hours with 𝑛𝑧 = 600 points. A fifth-order WENO and
third-order Runge-Kutta schemes with𝐶𝐹𝐿 = 0.1 are used for the dynamics (advection). 6a. The black plot in 6b, 6c, and 6d represents
the target profile where the same mesh is used for the dynamics and physics calculations. In 6b, 6c, and 6d, the profiles in blue
use different meshes for the dynamics and physics calculations which require mapping the solution values between both meshes.
A standard polynomial interpolation, a standard polynomial interpolation with “clipping", and PCHIP methods are used for the
mapping in 6b, 6c, and 6d, respectively.

Manuscript submitted to ACM

28 Ouermi et al.

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.35

1.4

1.45

(a)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.37

1.38

1.39

1.4

1.41

1.42

(b)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.4

1.42

1.44

1.46

1.48

1.5

(c)

0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.42

1.43

1.44

1.45

1.46

1.47

1.48

1.49

(d)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.4

1.41

1.42

1.43

1.44

1.45

(e)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

(f)

Fig. 7. Cloud mixing ratio 𝑞𝑐 profile from the BOMEX test case at 𝑡 = 5 hours with 𝑛𝑧 = 600 points with 𝜖0 = 𝜖1 = 10
−5. The profile

in black is the target solution. The profiles on the left (7a, 7c, 7e) and right (7b, 7d, 7f) are obtained using the DBI and PPI methods,
respectively, to map solution values between meshes. The maximum polynomial degrees are set to 𝑑 = 5 and 𝑑 = 7 for the blue and
red plots, respectively. The input parameter 𝑠𝑡 is set to 1, 2, and 3 for the advection (7a, 7b), reaction (7c, 7d), and third (7e, 7e, 7f) row,
respectively. A fifth-order WENO and third-order Runge-Kutta schemes with𝐶𝐹𝐿 = 0.1 are used for the dynamics (advection).

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 29

Target STD Clipping PCHIP

maximum 𝑞𝑐 0.28 0.46 0.46 0.21

total 𝑞𝑐 69.82 135.07 145.89 50.82

Table 9. Maximum values of 𝑞𝑐 and the total amount of the cloud mixing ratio at 𝑡 = 5 hours with 𝑛𝑧 = 600 points. The total amount
of the cloud mixing ratio is calculated by estimating the integral 𝑞𝑐 . The units of 𝑞𝑐 are 𝑔/𝑘𝑔.

𝑠𝑡 = 1 𝑠𝑡 = 2 𝑠𝑡 = 3 𝑠𝑡 = 1 𝑠𝑡 = 2 𝑠𝑡 = 3

P5 P7 Target

DBI

maximum 𝑞𝑐 0.20 0.20 0.31 0.30 0.30 0.28 0.28

total 𝑞𝑐 45.91 47.74 87.98 86.57 82.67 75.11 69.82

PPI

maximum 𝑞𝑐 0.20 0.21 0.33 0.32 0.29 0.29 0.28

total 𝑞𝑐 47.87 50.09 97.60 92.54 81.44 78.85 69.82

Table 10. Maximum values of𝑞𝑐 and the total amount of the cloud mixing ratio at 𝑡 = 5 hours with𝑛𝑧 = 600 points and 𝜖0 = 𝜖1 = 10
−5.

The total amount of the cloud mixing ratio is calculated by estimating the integral 𝑞𝑐 . The units of 𝑞𝑐 are 𝑔/𝑘𝑔.

6 DISCUSSION AND CONCLUDING REMARKS

In this work we introduced HiPPIS: a high-order 1D, 2D, and 3D data-bounded and positivity-preserving interpolation

software for structured meshes. The software implementation is based on the mathematical framework in Section 2

and the algorithms in Section 3. The software is self-contained and can be incorporated into larger codes that require

data-bounded or positivity-preserving interpolation. The interface is designed to be similar to commonly used PCHIP

and splines interfaces. The algorithms used in the software extend the DBI and PPI methods introduced in [29] by

adding more options for the stencil construction process that can be set by the user with the parameter 𝑠𝑡 . For a given

interval 𝐼𝑖 , the algorithm starts with the stencil V0 = {𝑥𝑖 , 𝑥𝑖+1} and successively appends points to the left and/or right

of V0 to form the final stencil. The stencil construction is done in accordance with the DBI and PPI conditions outlined

in Equations (21a) and (21b). In addition to the different options for the stencil selection process, the software introduces

a parameter 𝜖1 that can be used to adjust the bounds of the interpolants in the intervals where extrema are detected.

Various 1D and 2D examples are employed to evaluate the use of the DBI and PPI software in different contexts.

The results in Section 4 show that for Examples I, II, IV, and V, which are based on underlying smooth functions, the

DBI and PPI methods produce more accurate results compared to PCHIP and MQSI. For Example III, and VI which are

obtained from discontinuous and 𝐶0
-continuous functions, all the methods have comparable errors. Figures 2-5 show

that the parameters 𝜖0 and 𝜖1 can be used to reduce undesired oscillations from the PPI method. We only report the

results for 𝑠𝑡 = 3 because the differences between 𝑠𝑡 = 1, 𝑠𝑡 = 2, and 𝑠𝑡 = 3 are negligible for the examples in Section 4.

Section 5 provides an analysis and numerical comparison of the mapping error when the DBI and PPI methods are

used to map data values between different meshes. The error analysis in Section 5.1 shows that it is important to keep

mapping errors smaller than the already existing global errors from other calculations. Removing negative values and

spurious oscillations can help reduce the mapping error.

Manuscript submitted to ACM

30 Ouermi et al.

The results in Tables 7 and 8 show that using small values for parameters 𝜖0 and 𝜖1 improves the approximation in

cases where the input data are coarse. Small values of 𝜖0 and 𝜖1 further restrict how much the interpolant is allowed

to grow beyond the data values. The parameters 𝜖0 and 𝜖1 are used to adjust the lower and upper bounds on each

interpolant according to Equations (12) and (13). The study of the modified Runge example in Section 5.2 and TWP-ICE

example in Section 5.3 demonstrated that for a profile with steep gradients or fronts, more points are required to better

take advantage of the DBI and PPI algorithm. If there are not sufficiently many points in the regions with steep gradients

or fronts, increasing the polynomial degree may not improve the accuracy. The results in Tables 7 and 8 show that once

the resolution is sufficiently increased, the approximations improve as the polynomial degree increases.

In the BOMEX test case, prioritizing a symmetry (𝑠𝑡 = 2) or locality (𝑠𝑡 = 3) leads to better approximations compared

to the ENO stencil (𝑠𝑡 = 1) using the DBI and PPI methods. Using the ENO stencil (𝑠𝑡 = 1) produces significantly less

cloud mixing ratio compared to both the prioritizing symmetry and locality. In the BOMEX example with parameters 𝜖0

and 𝜖1 greater than 10
−5
, the PPI method allows for oscillations that degrade the approximation compared to the DBI

and PCHIP approaches. The MQSI method is not used for the BOMEX example because it oversmoothes the different

variables at each time step and leads to no production of cloud mixing ratio.

In summary, this work provided (1) a high-order DBI and PPI software for 1D, 2D, and 3D structured meshes; (2) an

analysis of the mapping error when using the DBI or PPI to map data values between meshes; and (3) an evaluation of

the DBI and PPI methods in the context of function approximation and interpolating data values between different

meshes. As this work continues, we plan to investigate different approaches for extending the DBI and PPI methods to

unstructured 2D and 3D meshes.

ACKNOWLEDGMENTS

This work has been supported by the US Naval Research Laboratory (559000669), the National Science Foundation

(1521748), and the Intel Graphics and Visualization Institute at the University of Utah’s Scientific Computing and

Imaging (SCI) Institute (29715).

REFERENCES
[1] Balsara, D. S. Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. Journal of Computational

Physics 231, 22 (2012), 7504–7517.
[2] Berzins, M. Adaptive polynomial interpolation on evenly spaced meshes. SIAM Review 49, 4 (2007), 604–627.
[3] Berzins, M. Nonlinear data-bounded polynomial approximations and their applications in eno methods. Numerical Algorithms 55, 2 (2010), 171–189.
[4] Berzins, M., Capon, P. J., and Jimack, P. K. On spatial adaptivity and interpolation when using the method of lines. Applied Numerical Mathematics

26, 1 (1998), 117–133.
[5] Chan, E., and Ong, B. Range restricted scattered data interpolation using convex combination of cubic bézier triangles. Journal of Computational

and Applied Mathematics 136, 1 (2001), 135 – 147.

[6] Costantini, P. Algorithm 770: Bvspis–a package for computing boundary-valued shape-preserving interpolating splines. ACM Trans. Math. Softw.
23, 2 (jun 1997), 252–254.

[7] Fasshauer, G. E., and Zhang, J. G. On choosing “optimal" shape parameters for rbf approximation. Numerical Algorithms 45, 1 (2007), 345–368.
[8] Firl, G., Carson, L., Harrold, M., Bernardet, L., and Heinzeller, D. Common community physics package single column model (scm), Sept 2020.

[9] Friedman, H. A., Conrad, G., and McFadden, J. D. Essa research flight facility aircraft participation in the barbados oceanographic and

meteorological experiment. Bulletin of the American Meteorological Society 51, 9 (1970), 822–834.
[10] Fritsch, F. N., and Carlson, R. E. Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis 17, 2 (1980), 238–246.
[11] Goodyer, C. E., and Berzins, M. Adaptive timestepping for elastohydrodynamic lubrication solvers. SIAM Journal on Scientific Computing 28, 2

(2006), 626–650.

[12] Green, K. R., Bohn, T. A., and Spiteri, R. J. Direct function evaluation versus lookup tables: When to use which? SIAM Journal on Scientific
Computing 41, 3 (2019), C194–C218.

[13] Harten, A., Engqist, B., Osher, S., and Chakravarthy, S. R. Uniformly high order accurate essentially non-oscillatory schemes, iii. Journal of

Manuscript submitted to ACM

Algorithm xxxx: HiPPIS A High-Order Positivity-Preserving Mapping Software for Structured Meshes 31

Computational Physics 131, 1 (1997), 3 – 47.

[14] Hess, W., and Schmidt, J. W. Positive quartic, monotone quintic c2-spline interpolation in one and two dimensions. Journal of Computational and
Applied Mathematics 55, 1 (1994), 51 – 67.

[15] Hu, X. Y., Adams, N. A., and Shu, C.-W. Positivity-preserving method for high-order conservative schemes solving compressible euler equations.

Journal of Computational Physics 242 (2013), 169–180.
[16] Hussain, M., Hussain, M. Z., and Cripps, R. J. C2 rational quintic function. Journal of Prime Research in Mathematics 5 (2009), 115–123.
[17] Hussain, M. Z., Hussain, M., and Yameen, Z. A C2-continuous rational quintic interpolation scheme for curve data with shape control. Journal of

The National Science Foundation of Sri Lanka 46 (2018), 341.
[18] Hussain, M. Z., and Sarfraz, M. Positivity-preserving interpolation of positive data by rational cubics. Journal of Computational and Applied

Mathematics 218, 2 (2008), 446 – 458. The Proceedings of the Twelfth International Congress on Computational and Applied Mathematics.

[19] James D. Doyle and P. A. Reinecke, K. C. Viner, S. Gabersek, M. Martini, D. D. Flagg, J. Michalakes, D. R. Ryglicki, and F. X. Giraldo. Next

generation nwp using a spectral element dynamical core, January 2017.

[20] Karim, A., Ariffin, S., Voon Pang, K., and Saaban, A. Positivity preserving interpolation using rational bicubic spline. Journal of Applied
Mathematics 2015 (2015).

[21] Krogh, F. T. Efficient algorithms for polynomial interpolation and numerical differentiation. Mathematics of Computation 24, 109 (1970), 185–190.
[22] Lawson, J., Berzins, M., and Dew, P. M. Balancing space and time errors in the method of lines for parabolic equations. SIAM Journal on Scientific

and Statistical Computing 12, 3 (1991), 573–594.
[23] Light, D., and Durran, D. Preserving nonnegativity in discontinuous galerkin approximations to scalar transport via truncation and mass aware

rescaling (tmar). Monthly Weather Review 144, 12 (2016), 4771–4786.
[24] Liu, H., Gao, Z., Jiang, C., and Lee, C. Numerical study of combustion effects on the development of supersonic turbulent mixing layer flows with

weno schemes. Computers and Fluids 189 (2019), 82–93.
[25] Lux, T., Watson, L. T., Chang, T., and Thacker, W. Algorithm 1031: Mqsi–monotone quintic spline interpolation. ACM Trans. Math. Softw. 49, 1

(mar 2023).

[26] Lux, T. C. H., Watson, L. T., and Chang, T. H. An algorithm for constructing monotone quintic interpolating splines. In SpringSim ’20: Proceedings
of the 2020 Spring Simulation Conference, May 2020 (2019), pp. 1–12.

[27] Moler, C. B. Numerical computing with MATLAB. SIAM, 2004.

[28] Ouermi, T. A. J., Kirby, R. M., and Berzins, M. Numerical testing of a new positivity-preserving interpolation algorithm, 2020.

[29] Ouermi, T. A. J., Kirby, R. M., and Berzins, M. Eno-based high-order data-bounded and constrained positivity-preserving interpolation. Numerical
Algorithms (2022).

[30] Piah, A. R. M., Goodman, T. N. T., and Unsworth, K. Positivity-preserving scattered data interpolation. In Mathematics of Surfaces XI (Berlin,
Heidelberg, 2005), R. Martin, H. Bez, and M. Sabin, Eds., Springer Berlin Heidelberg, pp. 336–349.

[31] Rogerson, A., and Meiburg, E. A numerical study of the convergence properties of eno schemes. Journal of Scientific Computing 5, 2 (1990),
151–167.

[32] Rotstayn, L. D., Ryan, B. F., and Katzfey, J. J. A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale

models. Monthly Weather Review 128, 4 (2000), 1070–1088.
[33] Sahasrabudhe, D., Berzins, M., and Schmidt, J. Node failure resiliency for uintah without checkpointing. Concurrency and Computation: Practice

and Experience (2019), e5340.
[34] Sarfraz, M. A c2 rational cubic spline alternative to the nurbs. Computers and Graphics 16, 1 (1992), 69 – 77.

[35] Schmidt, J. W., and Hess, W. Positive interpolation with rational quadratic splines. Computing 38, 3 (Sep 1987), 261–267.

[36] Schmidt, J. W., and Hess, W. Positivity of cubic polynomials on intervals and positive spline interpolation. BIT 28, 2 (feb 1988), 340–352.
[37] Sekora, M., and Colella, P. Extremum-preserving limiters for muscl and ppm, 2009.

[38] Shu, C.-W. Numerical experiments on the accuracy of eno and modified eno schemes. Journal of Scientific Computing 5, 2 (1990), 127–149.
[39] Shu, C.-W. High-order finite difference and finite volume weno schemes and discontinuous galerkin methods for cfd. International Journal of

Computational Fluid Dynamics 17, 2 (2003), 107–118.
[40] Skamarock, W. C., and Weisman, M. L. The impact of positive-definite moisture transport on nwp precipitation forecasts. Monthly Weather Review

137, 1 (2009), 488–494.
[41] Subbareddy, P. K., Kartha, A., and Candler, G. V. Scalar conservation and boundedness in simulations of compressible flow. Journal of

Computational Physics 348 (2017), 827–846.
[42] Tadmor, E., and Tanner, J. Adaptive mollifiers for high resolution recovery of piecewise smooth data from its spectral information. Foundations of

Computational Mathematics 2, 2 (Jan 2002), 155–189.

[43] Tal-Ezer, H. High degree polynomial interpolation in newton form. SIAM Journal on Scientific and Statistical Computing 12, 3 (1991), 648–667.
[44] Ulrich, G., and Watson, L. T. Positivity conditions for quartic polynomials. SIAM Journal on Scientific Computing 15, 3 (1994), 528–544.
[45] Zhang, X. On positivity-preserving high order discontinuous galerkin schemes for compressible navier–stokes equations. Journal of Computational

Physics 328 (2017), 301 – 343.

[46] Zhang, X., and Shu, C.-W. Positivity-preserving high order finite difference weno schemes for compressible euler equations. J. Comput. Phys. 231,
5 (Mar. 2012), 2245–2258.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Mathematical Framework
	2.1 Adaptive Polynomial Construction
	2.2 Positivity-Preserving and Data-Bounded Interpolation

	3 Algorithms and Software
	3.1 Algorithms
	3.2 Software Description

	4 Numerical Examples for Function Approximation
	4.1 Example I: Modified Runge Function
	4.2 Example II: 1D Logistic Function
	4.3 Example III: 1D Discontinuous Function
	4.4 Example IV: 2D Modified Runge Function
	4.5 Example V: 2D Logistic Function
	4.6 Example VI: TEXT-continuous Surface Function

	5 Mapping Error Analysis and Examples
	5.1 Mapping Error Analysis
	5.2 1D Modified Runge Function
	5.3 TWP-ICE Example
	5.4 BOMEX Example

	6 Discussion and Concluding Remarks
	Acknowledgments
	References

