
ACCELERATING PHYSICS SCHEMES IN NUMERICAL

WEATHER PREDICTION CODES AND PRESERVING

POSITIVITY IN THE PHYSICS-DYNAMICS COUPLING

by

Timbwaoga Aime Judicael Ouermi

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

December 2022

Copyright c© Timbwaoga Aime Judicael Ouermi 2022

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Timbwaoga Aime Judicael Ouermi

has been approved by the following supervisory committee members:

Martin Berzins , Chair(s) 08/22/2022
Date Approved

Robert M. Kirby II , Member 08/23/2022
Date Approved

Hari Sundar , Member
Date Approved

Zhaoxia Pu , Member 08/23/2022
Date Approved

Patrick Alexander Reinecke , Member 08/25/2022
Date Approved

by Mary Hall , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

Accurate forecasts have a direct impact on how we prepare for different weather events

at personal, regional, and global levels. Many of the current numerical weather prediction

(NWP) systems use legacy codes that are not adequately designed to take advantage of

current and future modern compute resources. As we prepare for the Exascale era and the

next generation of weather forecast systems, the ability of theses codes to efficiently use

the compute resources is paramount for meeting the time requirement of forecasting and

the desired resolution of 1 km. Many of the NWP codes are multidisciplinary in nature,

combining building blocks from various areas of physics and atmospheric sciences that

introduces the challenge of stitching these building blocks together. For example, some

NWP systems use different meshes for the dynamics and the physics. This difference

introduces negative and nonphysical quantities when mapping between physics and

dynamics meshes. In this context, a mapping that does not preserve positivity leads

to unstable simulation and a positive bias in the prediction of quantities such as moisture.

This research focuses on 1) investigating different approaches for accelerating the physics

schemes in NWP codes; and 2) developing a high-order positivity-preserving method

(https://github.com/ouermijudicael/HiPPIS) for mapping solution values between dif-

ferent meshes.

https://github.com/ouermijudicael/HiPPIS

For Zambende (father), Rosalie (mother), and Melissa (wife)

CONTENTS

ABSTRACT . iii

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Overview of WRF/NEPTUNE . 3
1.3 Contributions . 5
1.4 Outline . 7

2. PARALLELISM CHALLENGES IN WRF CODES . 9

2.1 Background . 9
2.2 Experimental Setup and Methodology . 11
2.3 Standalone OpenMP Fortran Experiments . 12
2.4 Modernization of WSM6 . 20
2.5 Summary and Discussion . 22

3. PERFORMANCE OPTIMIZATION APPROACHES FOR PHYSICS SCHEMES
IN NWP . 29

3.1 Background . 30
3.2 Experimental Setup and Methodology . 31
3.3 Standalone Experiments . 35
3.4 Optimization Results with WSM6 and GFS-Physics . 38
3.5 Summary and Discussion . 41

4. ADAPTIVE HIGH-ORDER DATA-BOUNDED AND POSITIVITY-PRESERVING
INTERPOLATION . 59

4.1 Introduction . 59
4.2 Background . 63
4.3 Data-Bounded Interpolation . 65
4.4 Constrained Positivity-Preserving Interpolation . 71
4.5 Numerical Experiments . 80
4.6 Summary and Discussion . 83

5. NUMERICAL TESTING OF THE POSITIVITY-PRESERVING AND DATA-
BOUNDED INTERPOLATION . 93

5.1 Examples of Existing Interpolation Methods . 94
5.2 Comparison Methodology . 98
5.3 Positivity-Preserving Interpolants . 99

5.4 Convergence . 102
5.5 Results . 103
5.6 Discussion and Conclusion . 107

6. HIPPIS: A HIGH-ORDER POSITIVITY-PRESERVING MAPPING SOFTWARE
FOR STRUCTURED MESHES . 132

6.1 Introduction . 132
6.2 Mathematical Framework . 134
6.3 Algorithms and Software . 138
6.4 Numerical Examples . 146
6.5 Mapping Error in an Application Example . 150
6.6 Mapping Examples . 153
6.7 Discussion and Concluding Remarks . 158

7. SUMMARY AND FUTURE WORK . 170

7.1 Summary and Contributions . 170
7.2 Lessons Learned . 172
7.3 Future Directions . 173
7.4 Publications . 174

REFERENCES . 176

vi

CHAPTER 1

INTRODUCTION

1.1 Motivation
Accurate weather forecasting has a direct impact on how we prepare for different

weather events at personal, regional, and global levels. For example, accurately predicting

severe weather events helps save lives, minimize economic losses, and support emergency

management and mitigation. The Weather Research and Forecasting (WRF) [96] model is

an example of a widely adopted numerical weather prediction (NWP) software suite used

by atmospheric researchers and weather forecasters at operational centers worldwide. WRF

was developed to help scientists study and better understand weather phenomena.

The improvements to NWP and the WRF model have been made possible because

of the advances in science and technology over several decades. These advances are

tightly coupled with the availability and improvement of computational resources. Fig.

1.1, taken from [73], shows the computational performances required for weather and

climate prediction at different scales. For example, running global NWP models with 1 km

resolution requires solving about 1000 prognostic variables over 108 grid points with small

time steps for multiple ensemble members [2]. The increase in resolution allows for physical

processes to be replaced by explicit representations based on fundamental principles. These

simulations require extremely large computational resources, sophisticated computational

techniques, and numerical methods to efficiently utilize large-scale systems. The Exascale

systems such as Frontier are possible candidates for reaching the desired resolution of 1 km.

However, running NWP codes on such systems presents several performance challenges

that need to be addressed to be able to reach the desired resolution. As a part of the effort to

modernize and advance NWP for exascale systems and beyond, this dissertation focuses on:

1) investigating different approaches for accelerating the physics schemes in NWP codes;

and 2) developing a positivity-preserving mapping between the physics and dynamics

2

coupling (PDC) in NWP.

1.1.1 Optimization of Physics Schemes

As part of the effort to prepare NWP for the exascale era and beyond, the first part

of this dissertattion focuses on developing performance optimization techniques to help

accelerate the physics schemes in NWP codes. The physics schemes represent the physical

parameterization of processes that are unresolved at the grid resolution. These legacy

physics codes are often written with complex control flow and key words such as exit,

goto, and cycle that prevent thread and vector parallelism at the node level. Traditionally,

message passing interface level (MPI-level) [31] distribution of serial codes has been the

primary vehicle for exploiting parallelism weather codes. In the last decade, various

computational architectures have increased the core counts per node, decreased the clock

frequency, and adopted wide single instructions multiple data (SIMD) vector units. This

growing complexity of computing architectures makes it difficult to develop and maintain

performance-portable codes. For this reason, codes such as WRF must be restructured to

leverage thread and SIMD parallelism on modern architectures while maintaining data and

temporal locality.

One example of a modern code written with future architectures in mind is the Navy

Environmental Prediction System Utilizing a Nonhydrostatic Engine (NEPTUNE) [49].

NEPTUNE couples the scalable dynamical core, proposed by Giraldo et al. [34], with

physics schemes, such as the WRF single-moment 6-class microphysics scheme (WSM6)

and global forcast system (GFS), for unresolved physical processes. For instance, WSM6

uses a physical parameterization that simulates processes in the atmosphere that cause

precipitation in the form of rain, snow, graupel, water vapor, cloud water, and cloud ice. The

dynamics part of NEPTUNE is both fast and scalable [72], but one of a number of remaining

challenges is the performance of the physics routines. For this reason, the work in this

dissertation focuses on optimizing GFS and WSM6 using approaches that have applications

to other numerical methods. These performance optimizations focus on restructuring

the legacy physics code to enable and improve parallelism on computational nodes. The

optimization efforts described here target the Intel multicore systems and potential future

computer architectures, which may employ similar multicore architectures that achieve

3

performance through vector units. This work employs OpenMP 4 as a vehicle for portability

across various platforms, as OpenMP 4 is a well-established and widely adopted interface

for shared-memory parallelism. Node level performance is necessary for efficiently using

large-scale systems to help reach the desired 1 Km resolution for global NWP.

1.1.2 Positivity-Preserving Mapping

The second part of this dissertation introduces a novel high-order data-bounded and

positivity-preserving interpolation and evaluates the use of both methods for mapping

solutions values between physics and dynamics meshes. A number of key scientific

computing applications that are based upon high-order methods over tensor-product grid

constructions, such as numerical weather prediction (NWP) and combustion simulations,

require property-preserving interpolation. Property preservation often manifests itself

as a requirement for either data boundedness or positivity preservation. The particular

application motivating this work is the NWP code NEPTUNE. NEPTUNE makes use of

the Nonhydrostatic Unified Model of the Atmosphere (NUMA) [34] three-dimensional

spectral element dynamical core, but currently uses physics routines that were developed

assuming uniform grid spacing. At least two options are available for combining these two

NWP building blocks: either 1) evaluate the physics routines at the (nonuniformly spaced)

quadrature points on the spectral element with an acknowledgment that a modeling “crime"

has been accomplished; or 2) interpolate between the grid (quadrature points) on which

the dynamics is calculated to a grid on which the physics is calculated, and hence incur an

interpolation error. Since there is a long-standing history of using the validated physics

routines designed for use on uniformly spaced grids, there is a strong incentive to apply

the second option. However, interpolating density or other key physical quantities without

accounting for property preservation may lead to negative values that are nonphysical

and result in inaccurate representations and/or interpretations of the physical data. For

example, Skamrock et al. [97] demonstrated that not preserving positivity may lead to a

positive bias in a predicted physical quantity of interest (e.g., prediction of moisture).

1.2 Overview of WRF/NEPTUNE
The Weather Research and Forecasting (WRF) [96] Model is open-source NWP software

developed for both atmospheric research and operational forecasting needs. WRF uses

4

different dynamical cores to solve to fundamental governing equations in NWP. The

advanced research model (ARW) [96] and the nonhydrostatic mesoscale model (NMM) are

example of widely used dynamical cores/solvers in WRF. The WRF model include several

physics packages used for parameterization. As with many other computational models,

significant effort is put into modernizing numerical weather codes for current and future

architectures. In the case of weather codes, the goals are to improve the accuracy and reduce

the time requirements of forecasts.

The code optimization work described here is related to an activity to improve the

performance of the Navy Environmental Prediction System Utilizing a Nonhydrostatic

Engine (NEPTUNE) [49]. The NEPTUNE code couples the Nonhydrostatic Unified Model

of the Atmosphere (NUMA), of Giraldo et al. [34], with physics schemes such as the

WSM6 and GFS schemes considered here. The same physics schemes are used in both

NEPTUNE and WRF. NUMA is novel in that it makes use of a three-dimensional hexahedral

spectral element technique with a sphere-centered Cartesian coordinate system. The NUMA

spectral element method is potentially a good choice for modern computer architectures as

it has relatively large floating point operations count for a relatively small communication

footprint, which helps with large scalability. However, to make use of this potential for

good performance, it is important to ensure that the appropriate physics schemes, such as

WSM6 and GFS, perform well. The first part of this dissertation evaluates and develops

performance approaches for the physics schemes in NEPTUNE. Given the same physics

routines are used in both NEPTUNE and the WRF models, the performance optimization

strategies developed for the physics routines are suitable for both NEPTUNE and WRF.

The dynamical core used in NEPTUNE is different from the one in the WRF model. For

example, the AWR model uses weighted essentially non-oscillatory methods to solve the

fundamental PDE equations whereas NUMA, used in NEPTUNE, is based on high-order

spectral methods [34]. Whereas the same mesh is used for the physics and dynamics

calculations in the WRF model, NEPTUNE uses different meshes and the solution values

are mapped from between the meshes. The interpolation methods developed in this

dissertation for preserving positivity when mapping solution values between meshes is not

required for the WRF models because the same mesh is used for both Physics and Dynamics.

However, a positivity-preserving method is required used in cases where the meshes are

5

different, and preserving positivity of quantities such mass, density, and concentration are

required.

1.3 Contributions
We propose to advance NWP forecasting and accuracy by: 1) developing techniques

to improve computational performance of physics schemes on current and emerging

architecture; and 2) introducing an interpolation method to preserve positivity and improve

accuracy in physics-dynamics coupling.

• The first contribution, presented in Chapter 2, outlines code transformations necessary

to enable thread vector parallelism in NWP. This research effort resulted in the

publication of [78]. Legacy codes often use complex control flow and keywords

such as exit and goto that prevent parallelism because in these cases the termination

criteria are not known a priori. Ouermi et al. [78] use WSM6 to demonstrate the

transformation required to enable parallelism without a full rewrite of the routines.

Chapter 2 dissects WSM6, a micro-physics scheme used in NEPTUNE, and examines

OpenMP optimization of individual, using synthetic examples and subsequently in

WSM6. This study incorporates the overhead associated with thread invocation and

uses OpenMP directives for thread and vector parallelism on Knights Landing (KNL).

Extending the lessons learned from the synthetic examples to WSM6 delivers over

50x speed-up over serial for several loops.

• The second contribution, presented in Chapter 3, introduces optimization approaches

that consist of further code restructuring and data layout transformations to improve

shared memory parallelism. This effort has led to the publication of [79] and [80].

Parallelization of physics schemes is challenging because of different parameterization

models and the adaptive state transition in each model that leads to load imbalances.

Both [79] and [80] couple the thread-local structure of arrays (thread-local SOA) with

code and data reorganization to expose more parallelism and locality and reduce

memory traffic. The studies and examples in Chapter 3 demonstrate the benefits

of a high-level optimization using thread-local SOA, coupled with low-level SIMD

using OMP SIMD. The optimized versions of WSM6, GFS physics, and GFS radiation

run 70, 27, and 23 times faster, respectively, on KNL, and 26, 18, and 30, times

6

faster, respectively, on Haswell compared to their respective original serial versions.

Although this work targets WRF physics schemes, the findings are transferable to

other performance optimization contexts and provide insight into the optimization of

codes with complex physical model models for present and near-future architectures

with many core and vector units.

• The third contribution, presented in Chapter 4, develops new data-bounded inter-

polation (DBI) and positivity-preserving interpolation (PPI) methods that preserve

data boundedness and positivity for function approximation and mapping solution

values between different meshes. This research is published in [81]. Due to physical

constraints, quantities such as mass, concentration, density, and the cloud mixing ratio

must remain positive when mapping between different meshes. Building on previous

work by Berzins [5], the work in Chapters 4 improves upon the DBI method and

introduces a new constrained PPI approach that can be used to ensure that positivity

is preserved when mapping solution values between nonuniform structured meshes.

The DBI and PPI methods provide theoretical estimates for sufficient conditions used

to ensure data boundedness and positivity preservation. The new approach used here

both generalizes the DBI method to nonuniform meshes and extends the approach

to preserve positivity (positivity-preserving interpolation PPI) rather than the more

restrictive data-bounded approach in [5].

• The fourth contribution, presented in Chapter 5 and 6, is open-source software for

high-order data-bounded and positivity-preserving interpolation (HPPIS) and an

extensive evaluation of the DBI and PPI methods for function approximation and

mapping data values between meshes with examples pertaining to NWP. This effort

led to a technical report [76] and a manuscript submitted for publication [77]. The new

approaches are compared against several typical algorithms in use on a range of test

problems. The results obtained show that the new methods are competitive in terms

of observed accuracy while at the same time preserving the underlying positivity

of the functions being interpolated. The different test functions include smooth, C0-

continuous, discontinuous, and steep-gradients. The comparison undertaken in this

chapter focuses on how accurately the different methods can represent this underlying

7

set of test examples, including representative weather examples. In addition to the

software, this work provides an analysis of the mapping error in the context of

PDEs, uses several one-dimensional and two-dimensional numerical examples to

demonstrate the benefits and limitations of HPPIS, and introduces different strategies

to improve locality, vectorization, and overall, the performance of the data-bounded

and positivity-preserving interpolation methods in HPPIS.

1.4 Outline
The remaining chapters of the dissertation are organized as follows: Chapter 2 investi-

gates parallelism challenges in NWP codes using WSM6 as a starting example. These chal-

lenges are addressed by developing and evaluating different code restructuring approaches

to enable thread and vector parallelism in NWP codes. In addition, Chapter 2 evaluates

the overhead associated with using OpenMP directives for thread and vector parallelism.

Chapter 3 focuses on improving the performance of NWP physics scheme by refining

the data and temporal locality and further extending the code restructuring to expose

more parallelism. These data structures and code transformations employ thread-local

structure of arrays to increase locality vectorization. The second part of this dissertation

starts with Chapter 4, which introduces the mathematical framework developed to build a

new data-bounded and constrained positivity-preserving method. Chapter 5 presents a set

of test examples used to compare both the data-bounded and positivity-preserving methods

against other interpolation methods. Chapter 6 provides a description of an open-source

software implementation of the DBI and PPI methods and evaluates both methods for

function approximation and for mapping solutions values between meshes with examples

pertaining to NWP. Chapter 7 provides concluding remarks and potential future research

directions in preparation for NWP codes for Exascale systems and beyond.

8

Figure 1.1: Scales in weather and climate prediction versus computational resources
required to resolve them [73].

CHAPTER 2

PARALLELISM CHALLENGES IN WRF CODES

This chapter investigates the parallelism challenges encountered in WRF physics schemes

with a particular focus on WSM6 single-moment 6-class [44], as a starting example. We

dissect the WSM6 single-moment 6-class [44] microphsyics code in the context of NEPTUNE

[49] and examine OpenMP optimization of individual loops, first using synthetic examples

and subsequently in WSM6 itself. The experiments suggest several interesting findings –

particularly involving thread invocation time on Xeon and KNL and the effectiveness of

OMP SIMD on code with branching and nested subroutines. Extending these lessons to

WSM6, straightforward OMP DO SIMD constructs can deliver greater than 50x speed-up

over the serial versions for several loops. Moreover, although not the most effective,

low-level OpenMP with OMP DO SIMD can be a valid approach for accelerating serial

codes with minimal changes to the source code.

The WRF single-moment 6-class microphysics scheme (WSM6) is a physical parameter-

ization that simulates processes in the atmosphere that cause rain, snow, graupel, water

vapor, cloud water, and cloud ice. WSM6 is an improved version of WSM5 that introduces

graupel particles and other variables to better model the precipitation of hydrometeors.

The computation in the scheme is organized along both horizontal and vertical directions.

There is no interaction among the horizontal grid points, which allows straightforward

parallelism cases.

2.1 Background
Traditionally, MPI-level [31] distribution of serial codes has been the primary vehicle

for exploiting parallelism in these predominately serial Fortran weather codes. However,

in the last decade in particular, computational architectures have increased core counts,

decreased clock speeds, and adopted wide SIMD vector units. The Intel Xeon Phi Knights

10

Landing (KNL) [50] architecture, for example, employs dual 8-lane double precision (DP)

floating point units on each of 64 cores running at 1.3 GHz. MPI alone is not suited for this

fine granularity; codes must be rearchitected to exploit thread and SIMD parallelism.

OpenMP [75] is a compelling model for portable parallelism in that it requires relatively

little modification of potentially large, complex codes. However, actual best practices for

OpenMP vary widely with the code in question, compiler implementation, and underlying

architecture. In the past, most effective OpenMP optimizations have used high-level

parallel constructs for threading (i.e., mirroring MPI-level parallelism), carefully aligned

arrays, and explicit rewrites to eliminate branching. These optimizations are no doubt

effective, but require significant modification of existing codes. However, new architectures

such as KNL boast lower thread creation times and no longer carry the same penalty for

unaligned memory access. OpenMP 4 features such as OMP SIMD promise control over

how vectorization is expressed, beyond the autovectorization capabilities of the compiler.

Consequently, as OpenMP matures, “naive" approaches may prove almost as effective as

wholesale rewrites.

Various optimization approaches have been applied to different components of NEP-

TUNE and other weather prediction systems. Michalakes et al. [66] optimized the Weather

Model Radiative Transfer Physics by restructuring the code to expose concurrency, vector-

ization, and locality. In this approach, they explicitly reorganized the arrays dimension,

and lowered the inner loop size to fit into the vector lane in order to take advantage of the

vector units. These optimizations yielded about 3x speed-up.

OpenMP is increasingly becoming the standard for shared memory parallelism. It

offers a simple high-level abstraction for thread and vector parallelism. In order to

leverage OpenMP features, different groups had investigated the overheads associated with

OpenMP directives [6], [7], [8], [57]. The overheads are dependent not only on the OpenMP

implementation but also on the architecture. LaGrone et al. [57] developed a benchmark

for measuring the overhead associated with the tasking model and the synchronization

in OpenMP on 2.27 GHz 8-core Intel Xeon Nethalem E5520 processors. Dimakopoulos et

al. [20] studied OpenMP overheads under nested parallelism for different compilers. In

both these studies, the authors extended the EPCC benchmark to include the OpenMP

directives of interest. In this work, we investigated the overheads on the Intel Knights

11

Landing and the effort necessary to minimize such overhead.

2.2 Experimental Setup and Methodology
2.2.1 Methodology and Measurement Parameters

In order to systematically and rigorously investigate the performance bottlenecks in

WSM6, this work used a methodology that consisted of four steps.

1. Understanding code: This consisted of analyzing the loop structures and the data

dependencies that exist among the loops.

2. Identifying bottlenecks: This step profiles the code using Intel VTune and wall clock

timers to identify the bottlenecks.

3. Building and testing standalone experiments base on bottlenecks: We designed

standalone experiments to address the bottlenecks identified in the previous steps.

These experiments allow us to identify which approach is better suited for a specific

bottleneck in WSM6.

4. Applying findings to WSM6: The findings in step three guide the different optimiza-

tion decision in WS6 loops.

This section summarizes experiments conducted to explore various optimization strate-

gies for the WRF WSM6 module on the Intel Knights Landing (KNL). This effort focuses

on understanding the KNL and the steps necessary to effectively exploit the resources

offered by the KNL architecture. Performance of a given code is evaluated using seven

attributes: number of threads, serial time, parallel time, work/thread, overhead, speed-up,

and efficiency.

• Overhead: the overhead associated with thread creation, thread binding, scheduling,

etc. can be defined as in [57]:

Overhead =
n× Tp − Ts

n
(2.1)

where n is the number of threads, Ts is the serial time, and Tp is the parallel time.

12

• Work/thread: this corresponds to the average work, in Floating Point Operations Per

Second (FLOPS), per thread. The work per thread is calculated by dividing the total

amount of work in a loop by the number of threads used:

wthread =
work in loop

number of threads
. (2.2)

• Efficiency:

E f f icency =
Ts

n · Tp
(2.3)

where n is the number of threads, Ts is the serial time, and Tp is the parallel time.

2.2.2 KNL Architecture

This study used KNL because it was the intended architecture to be used for NEPTUNE.

The insights and code transformations required for parallelism are transferable to other

multicore systems. The Intel Knights Landing architecture consists of 36 tiles interconnected

with a 2D mesh, MCDRAM of 16G High Bandwidth, and one socket. It has a clock frequency

of 1.3 GHz, which is lower than the 2.5 GHz of Haswell. The Knights Landing tile is the basic

unit that is replicated across the entire chip. The tile consist of two cores, each connected to

two vector processing units (VPUs). Both cores share a 1 MB L2 cache. Two AVX-512 vector

units process eight double-precision lanes each; a single core can execute two 512-bit vector

multiply-add instructions per clock cycle. The results and experiments presented in this

chapter use the default thread and processor binding.

2.3 Standalone OpenMP Fortran Experiments
This section describes standalone experiments designed to verify the functionality of

OpenMP, and mimic the behavior of WSM6 in a minimal reproducible fashion. In the

following pseudocode, work(i, j) denotes computations similar to

a(i, j, 1) = 0.1 ∗ b(i, j, 1) + c(i, j, 1)/d(i, j, 1).

The computation is always the same, but different outer dimensions are used to simulate

access of multiple arrays. This behavior is similar to the array operations in WSM6.

13

2.3.1 Overhead Associated with OpenMP on KNL

2.3.1.1 Overhead Per Thread Minimization

This experiment analyzes different methods that aim to minimize the overhead/thread.

It determines the amount of work in FLOPS per thread required to minimize the overhead

and maximize the speed-up. Synthetic examples similar to the loops in WSM6 are used for

this experiment. Code 1, shown below, is used to measure a baseline overhead. Code 2 is

used to analyze the overhead/thread of a WSM6-like loop. The variables ie and je are 10592,

and 39, respectively. In theory, given “sufficient" work for each thread, the performance

results from Code 2 should be comparable to Code 1 results.

Code 1: Code2:
1 !$OMP PARALLEL 1 !$OMP PARALLEL
2 !$OMP DO 2 !$OMP DO
3 DO i=1,100 3 do j=1, je
4 work(i) 4 do i=1, ie
5 ENDDO 5 work(i,j)
6 !$OMP END DO 6 end do
7 !$OMP END PARALLEL 9 end do

7 !$OMP END DO
8 !$OMP END PARALLEL

The results from Table 2.1 show that the average overhead/thread is less than 1 microsecond.

By increasing the number of threads, the number of FLOPS per thread decreases. This

decrease causes the overhead per thread to increase. The minimal overhead/thread, 0.1

microsecond, is observed at about 1 million FLOPS per thread. However, with 0.03 million

FLOPS per thread, the measured overhead remains below 1 microsecond.

The results from Table 2.2 show higher overheads and lower speed-ups compared to the

Table 2.1 results’. Code 2 is structured differently compared to Code 1. The computation in

work(i) is done with a 1D array, and the computation in work(i,j) is done with a 2D array.

Furthermore, the dimensions of the arrays are different. These differences explain different

observed overheads and speed-ups.

When the !$OMP PARALLEL and !$OMP DO are moved to the i loop or !$OMP

PARALLEL at the j loop and !$OMP DO at the i loop, larger overheads and lower speed-ups

occur, compared to the results from Tables 2.1 and 2.2.

14

2.3.1.2 Keeping Threads Active/Alive

Keeping threads active/alive during computation reduces thread creation and can-

cellation overheads. !$OMP PARALLEL is the directive that creates the pool of threads

(fork), and !$OMP END PARALLEL cancels the created threads (join). Thus, creating

threads at the beginning of a computation and canceling them at the end should reduce

the overhead associated with the creation and cancellation of threads. Furthermore, the

OpenMP environment variable KMP_BLOCKTIME can be used to keep threads alive for

a certain time. This experiment compares a single parallel block performance against

multiple parallel blocks. One would expect Code 4 to outperform Code 3. Because Code 4

is constructed with a single parallel block, it does not incur the thread creation overhead

caused by the multiple !$OMP PARALLEL blocks.

Code 3: Code 4:
1 !$OMP PARALLEL 1 !$OMP PARALLEL
2 !$OMP DO 2 !$OMP DO
3 do j=1, je 3 do j=1, je
4 do i=1, ie 4 do i=1, ie
5 3 x work(i,j) 5 3 x work(i,j)
6 end do 6 end do
7 end do 7 end do
8 !$OMP END DO 8 !$OMP END DO
9 !$OMP END PARALLEL

9 !$OMP DO
10 !$OMP PARALLEL 10 do j=1, je
11 !$OMP DO 11 do i=1, ie
12 do j=1, je 12 3 x work(i,j)
13 do i=1, ie 13 end do
14 3 x work(i,j) 14 end do
15 end do 15 !$OMP END DO
16 end do
17 !$OMP END DO 16 !$OMP DO
18 !$OMP END PARALLEL 17 do j=1, je

18 do i=1, ie
19 !$OMP PARALLEL 19 3 x work(i,j)
20 !$OMP DO 20 end do
21 do j=1, je 21 end do
22 do i=1, ie 22 !$OMP END DO
23 3 x work(i,j) 23 !$OMP END PARALLEL
24 end do
25 end do
26 !$OMP END DO
27 !$OMP END PARALLEL

15

Table 2.3 and Table 2.4 show performance results for multiple parallel blocks and a single

parallel block, respectively. The single parallel block from Code 4 performs slightly better

than the multiple blocks case from Code 3, which supports the initial assumptions.

2.3.1.3 OpenMP Versus Pthreads Overhead

This experiment analyzes the overhead associated with thread creation and context

switches in the OpenMP and Pthreads libraries. In order to establish a fair comparison of

both libraries, the synthetic experiment has been done in C, because Pthreads does not have

an equivalent in Fortran.

Table 2.5 shows the thread creation overhead and context switches measurements for

Pthreads and OpenMP. These results indicate that OpenMP has significantly higher thread

creation overhead compared to Pthreads. The context switch measurements observed

in OpenMP are slightly but not significantly higher than the ones in Pthreads but not

significant. These experiments show that the use of a single parallel block coupled with

the environment variable KMP_BLOCKTIME contributes to reducing the overheads and

increasing the speed-ups slightly.

2.3.1.4 KNL versus Haswell Overhead

Thread overhead is dependent on the implementation of OpenMP and the architecture

used. Here, performances of Code 1 on KNL and Haswell are compared. The results from

Tables 2.1 and 2.6 indicate that KNL has a lower overhead than Haswell. The average

overhead on KNL is about 0.51 whereas the overhead on Haswell is about 0.61. In addition,

the speed-ups observed on KNL are greater than the ones on Haswell.

2.3.2 Thread Scalability

2.3.2.1 Base Case

The previous section analyzed examples of loops that do not exhibit significant com-

plexity. This section focuses on understanding the performance impact of function calls.

The example examined here is a loop with nested functions calls. This experiment analyzes

a base case that is used as a reference. Code 5 measures how its performance scales with

the number of threads before transformation.

Code 5 : WSM6 loop with conditionals and function calls

16

1 do k = kte, kts, -1
2 do i = its, ite
3 ...
4 if(t(i,k).gt.t0c) then
5 ...
6 work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
7 if(qrs(i,k,2).gt.0.) then
8 ...
9 psmlt(i,k) = xka(t(i,k),den(i,k))
10 ...
11 endif
12 if(qrs(i,k,3).gt.0.) then
13 ...
14 pgmlt(i,k) = xka(t(i,k),den(i,k))
15 ...
16 endif
17 endif
18 enddo
19 enddo

A close analysis of Code 5 shows two function calls: xka and venfac. These functions are

implemented by calling two other functions, viscos and diffus. Furthermore, all the functions

call intrinsic math functions such as sqrt, for which most current compilers now emit vector

instructions.

Table 2.7 shows that Code 5 scales up to eight threads. After eight threads, the overhead

increases drastically and the speed-up plateaus at about 9x. As mentioned before, Code 5 has

nested functions and conditionals. Such complexities may cause performance limitations

for threading and vectorization. Table 2.8 shows performance results from Code 5 with all

function calls and conditionals removed. By removing the function calls, the amount of

computation in the loop is significantly reduced. This reduction resulted in the serial time

in Table 2.8 being much smaller than that in Table 2.7. Table 2.8 has significantly higher

speed-ups and lower overheads than Table 2.7. These results indicate that the conditionals

and the function calls are responsible for the performance limitations observed.

2.3.2.2 Function Calls Performance Analysis

As mentioned above, Code 5 has nested function calls. This experiment compares the

performance of a modified version of Code 5 against Code 6. In the modified version of

17

Code 5, the conditionals have been removed but the function calls are left intact. In Code 6,

the function calls are replaced by some code that performs the same task as the functions.

Code 6 : WSM6 complex Code with no function calls.
1 !$OMP PARALLEL DEFAULT(shared) PRIVATE(i, k)
2 !$OMP DO
3 do k = kte, kts, -1
4 do i = its, ite
5 ...
6 !!--work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
7 temp0 = 1.496e-6 * (t(i,k)*sqrt(t(i,k))) / &

(t(i,k)+120)/den(i, k)
8 temp1 = 8.794e-5 * exp(log(p(i,k))* (1.81)) / t(i,k)
9 work2(i,k) = exp(log((temp0/temp1))* ((.3333333))) &
10 /sqrt(temp0)*sqrt(sqrt(den0/den(i,k)))

11 !!-- xka(t(i, k), den(i, k))
12 temp3 = 1.414e3*1.496e-6 * (t(i,k)*sqrt(t(i,k)))/

(t(i,k)+120)/den(i, k)*den(i,k)
13 ...
14 enddo
15 enddo
16 !$OMP END DO
17 !$OMP END PARALLEL

The modified version of Code 5 yielded a maximum speed-up of about 3x whereas Code 6

yielded a maximum speed-up of 62x. Table 2.9 report the results from Code 6.

2.3.2.3 Subroutine Calls Performance Analysis

This experiment measures the performance impact of subroutine calls. Code 7 below

contains a subroutine call and a few conditionals.

Code 7
1 !$OMP PARALLEL DEFAULT(shared) PRIVATE(i,j,m,thread_id)
2 do j=1, je
3 thread_id = OMP_GET_THREAD_NUM()

4 !$OMP DO SIMD
5 do i=1, ie
6 do m=1, M_LOOPS
7 #if OMPTEST_SUBROUTINE
8 call do_work(i,j)

18

9 #else
10 3 x work(i,j)
11 if (b(i,j,1) .gt. 0.0) then
12 3 x work()
13 endif
14 #endif
15 enddo
16 enddo
17 !$OMP END DO SIMD NOWAIT
18 end do
19 !$OMP END PARALLEL

20 subroutine do_work(i,j)
21 !$OMP DECLARE SIMD(do_work)
22 integer :: i,j
23 3 x work()
24 if (b(i,j,1) .gt. 0.0) then
25 3 x work(i,j)
26 endif
27 end subroutine do_work

Table 2.10 reports the following experimental cases:

• case 1 represents results from Code 7 with OMP PARALLEL + OMP DO SIMD;

• case 2 represents results from Code 7 with OMP PARALLEL + OMP DO SIMD and

subroutine; and

• case 3 represents results from Code 7 with OMP PARALLEL + OMP DO SIMD,

subroutine and DECLARE SIMD on functions.

Table 2.10 shows the performance results from Code 7. The DECLARE SIMD use in

this experiment does not have a significant performance impact. Table 2.10 cases 2 and 3

report additional variations that were tested, as indicated by their captions. These results

show significant speed-ups, which indicates that a single-level (no nesting) subroutine

and conditionals are not a performance bottleneck, and various combinations of !$OMP

PARALLEL and !$OMP SIMD yield significant speed-ups.

2.3.2.4 Nested Conditionals

This experiment focuses on studying the performance impact of conditionals. It com-

pares the performance of Code 9 against a modified versions of Code 6. The modified

19

version of Code 6 includes nested conditionals.

Code 9 : WSM6 loop with masking and no function calls.
1 compute bool_val1, bool_val2, and bool_val3
2 !$OMP PARALLEL DEFAULT(shared) PRIVATE(i, k)
3 !$OMP DO
4 do k = kte, kts, -1
5 do i = its, ite
6 ...
7 temp0 = 1.496e-6 * (t(i,k)*sqrt(t(i,k)))/(t(i,k)+120) &

/den(i, k)
8 temp1 = 8.794e-5*exp(log(p(i,k))*(1.81))/t(i,k)
9 work2(i,k) = exp(log((temp0/temp1))* ((.3333333))) &
10 /sqrt(temp0)*sqrt(sqrt(den0/den(i,k)))
11 ...
12 compute result1
13 ...
14 temp3 = 1.414e3*1.496e-6 * (t(i,k)*sqrt(t(i,k))) &

/(t(i,k)+120)/den(i, k)
15 ...
16 compute result2
17 final_result = (result1*bool_val1 + result2*bool_val2)&

*bool_val0
18 enddo
19 enddo
20 !$OMP END DO
21 !$OMP END PARALLEL

The modified version of Code 6 obtains a maximum speed-up of about 8x. Using

SIMD decreases the speed-up to about 3x. SIMD fails to vectorize because of the nested

conditionals. Moving the conditionals outside the loops, as shown in Code 9, to address the

bottleneck yielded significant speed-ups and low overheads, as shown in Table 2.11. These

experiments indicate that nested conditionals hurt performance. Eliminating branching

yields significant improvements. This approach can be used in many of the WSM6 codes

that exhibit similar patterns.

2.3.3 Vectorization

2.3.3.1 OMP SIMD

This section analyzes the performance impact of SIMD. In this experiment, a simple

compute-only code is considered. It compares the performance of various parallel versions

20

and Code 8 against the serial version. Furthermore, the thread binding is done manually.

Code 8 : WSM6 loop with masking and no function calls
1 !$OMP PARALLEL DEFAULT(none) SHARED(a, b, c, d, je, ie,num_tasks)

!$OMP PRIVATE(i,j,m,its,ite,Thread_id)
2 thread_id = omp_get_thread_num()
3 its = 1 + thread_id * num_tasks * VLEN
4 ite = min(its + num_tasks * VLEN - 1, ie)
5 do j=1, je
6 !$OMP SIMD
7 do i=its, ite
8 do m=1, 10

3 x work(i,j)
12 enddo
13 if (b(i,j,1) .gt. 0.0) then
14 3 x work(i,j)
17 endif
18 enddo

Table 2.12 reports the following experimental cases:

• case 1 represents results from Code 8 with OMP DO placed right before the i loop;

• case 2 represents results from Code 8 with only manual implementation of thread

binding;

• case 3 represents results from Code 8 withwith OMP DO SIMD at the i loop; and

• case 4 represents results from Code 8 SIMD and manual implementation of thread

binding.

Table 2.12 shows the speed-ups when the different directives are placed right before the

i loop. OMP PARALLEL + OMP SIMD yields the highest speed-up among the different

experiments.

2.4 Modernization of WSM6
2.4.1 Code Overview

The WSM6 supercell test case of WSM6 consists of 27 loops around 10K (i) rows, with

three subroutines (slope_wsm6, nislfv_rain_plm, nislfv_rain_plm6) [52]. The last two

subroutines contain nontrivial control flow (cycle/goto statements). The other loops are

21

generally memory intensive, with significant branching. Applying the findings of the

standalone tests, WSM6 was modified with OpenMP directives as follows:

• OpenMP initialization code in init_microphysics() in mod_microphysics.f90;

• Consistent use of OMP PARALLEL and OMP DO SIMD as presented in case 3 of

Table 2.12;

• Minor code modification to remove nested conditionals and function calls as demon-

strated in Code 9;

• Use of OMP PARALLEL sections around multiple loops as shown in Code 3 to reduce

thread invocation overhead;

• Elimination of false sharing and specification of PRIVATE variables ;

• Merging smaller loops involving the same arrays, to mitigate thrashing; and

• Using C preprocessor macros to enable and measure runtime of parallel, serial or both

implementations.

The decision to first pursue OMP DO SIMD, despite worse performance than OMP

SIMD with manual indices from Table 2.12, was due to the presence of many temporary

arrays in between loops and dependency-heavy subroutines in WSM6. Moreover, the aim is

to first explore what naive “low-level" OpenMP parallelization could deliver with minimal

reorganization of the code.

2.4.2 WSM6 Results

Tests were conducted on a four-socket (Haswell) Intel Xeon E7-8890 v3 with 3 TB RAM,

and Intel Xeon Phi 7210 (“Knights Landing", or KNL) with 16 GB MCDRAM and 96 GB

DRAM. The compiler was Intel Parallel Studio 2016, update 3 (build 67), due to issues

with Parallel Studio 2017 in other modules within NEPTUNE. Results up to all cores (64

cores on KNL, 72 on Haswell) on these respective systems are shown in Table 2.13 for

different values of OMP_NUM_THREADS. We see limited benefit from hyperthreading on

either platform. Though not shown in the table, we found that 18 cores of KNL performed

2.12x better than a single-socket equivalent Haswell (with OMP_NUM_THREADS=18).

22

Moreover, using the default maximum number of threads (144 on Haswell, 256 on KNL),

KNL performs roughly 2x faster than Haswell core-for-core, which suggests better scalability

on KNL than on Haswell. We note, however, that we used default thread affinity settings

(i.e., KMP_AFFINITY). Our Brickland-EX Haswell system has a nonconventional memory

architecture supporting up to 6 TB RAM, generally exhibiting higher intersocket latencies

than comparable Xeon workstations, which could affect performance. Further work may be

required to scale specifically on this platform.

2.5 Summary and Discussion
2.5.1 Scalability Challenges

Although these results show good performance on KNL, the current implementation

does not scale well beyond 36 cores (two-socket equivalent) on Xeon. This scaling problem

is perhaps a result of slightly higher thread invocation time on Xeon, but is more likely

due to the higher clock speed of that architecture and worse “base" speed-up of threads

compared to the serial version. Although multiple parallel sections scale well on KNL,

these standalone experiments with thread overhead suggest that fewer parallel sections

and use of manual indexing (i.e., OMP PARALLEL and OMP SIMD instead of OMP DO

SIMD directives) are necessary for better Xeon performance.

2.5.2 Remaining Bottlenecks

Nonparallelizable and poorly parallelizable subroutines in WSM6 and mod_microphysics

remain a bottleneck. Complicated subroutines with dependencies such as nislfv_rain_plm

and nislfv_rain_plm6 require extensive rewrites to achieve speed-up; currently only 2x

speed-up is achieved for the former. More significantly, horizontal-to-vertical memory

copies of arrays in both WSM6 and mod_microphysics in Neptune are difficult to parallelize,

achieving at best a 2x speed-up. These require further investigation. In addition to

bottlenecks originating from loops with dependencies, the microphysics code as a whole

remains bottlenecked by horizontal-to-vertical copying and integration of arrays. To

address this problem, one should consider interleaving these copy statements with parallel

computation, and re-evaluating how data are warehoused in the calling code. With

bottlenecks, the entire microphysics module achieves only a modest 3x improvement

over serial on KNL, and 2x on Xeon. Ultimately, we would like to restructure all WSM6

23

directives, moving from OMP DO SIMD to chunks with OMP SIMD and a single high-level

OMP PARALLEL section, similar to the approach of Michalakes et al. [66]. This approach

will require parallelizing all remaining sections and eliminating copies of full arrays within

WSM6.

2.5.3 Flat Versus Cache Mode on KNL

The memory modes of the Xeon Phi KNL architecture are of significant interest in

many code modernization efforts. In “flat mode", the 16 GB MCDRAM are treated as

main memory by the OS; in “cache mode", the MCDRAM serve as a cache for larger pool

of DRAM (96 GB on the workstation). In principle, KNL hosts deployed in cache mode

incur higher cache miss costs, as memory is pulled from DRAM. WSM6 results showed a

negligible difference between flat and cache modes (in fact, an unexpected 1% advantage

for cache mode, which is within the 5% margin of error between individual time steps of the

microphysics code). The flat and cache configurations merit further investigations, but for

the current work we conclude the difference between flat and cache modes is not a major

factors in the runtime of WSM6.

2.5.4 Summary

Tables 2.14 and 2.15 provide a summary of the different performance results. Overall

speed-ups achieved compared to serial versions are convincing: 57x over serial version on

KNL suggests 5.6% of peak (1024x, 64 cores x 16 SIMD lanes). Although these results

correspond only to easily parallelizable loops within WSM6, this study encompasses

nontrivial code with branching, subroutines, and incoherent memory access. In all, the

WSM6 work is encouraging in that significant speed-up was possible with relatively small

changes to code – exactly what is desired in a code portability effort.

We have examined the impact of OpenMP directives on a Fortran-based WSM6 mi-

crophysics code in WRF. In standalone experiments, we measured the cost of thread

overhead and tested the effectiveness of various directives with and without OMP SIMD.

These results suggest that although greater scalability may be possible with high-level

OpenMP constructs, parallelization of dependency-free code sections is possible with few

modifications to the original code. Moreover, we have found cases in which straightforward

low-level OpenMP methodologies may work, delivering satisfactory 50x–100x speed-ups

24

over the serial version. The fact that modern compilers can emit reasonably efficient

threaded and SIMD instructions from complex code with branching, subroutines, and

unaligned arrays suggests the OpenMP methodology holds promise.

Table 2.1: Performance results from Code 1.

n Ts Tp Overhead wthread Speed-up Efficiency
2 92.797 46.500 0.22 1000000 1.995 99.78
4 92.865 23.335 0.51 500000 3.98 99.49
8 92.770 12.209 5.00 250000 7.59 94.98
16 92.826 6.608 12.26 125000 14.05 87.79
32 92.944 3.831 24.27 62500 24.26 75.82

Table 2.2: Modified Code 2 with !$OMP DO placed outside j loop.

n Ts(µs) Tp(µs) Overhead (µs) wthread (FLOPS) Speed-up Efficiency %
2 27.636 15.848 2.03 1858896 1.74 87.19
4 27.352 8.099 1.26 929448 3.38 84.43
8 27.439 4.108 0.68 464724 6.68 83.49
16 27.422 2.586 0.87 232362 10.60 66.27
32 27.507 1.780 0.92 116181 15.45 48.29

Table 2.3: Multiple parallel blocks with KMP_BLOCKTIME in Code 3.

n Ts Tp Overhead Speed-up Efficiency
2 81.597 47.119 6.32 1.73 86.58
4 81.398 24.080 3.73 3.38 84.50
8 81.222 12.360 2.20 6.57 82.14

16 81.357 7.479 2.39 10.87 67.98
32 81.755 5.150 2.59 15.87 49.60

Table 2.4: Single parallel block with KMP_BLOCKTIME in Code 4.

n Ts Tp Overhead Speed-up Efficiency
2 81.597 46.300 5.50 1.76 88.12
4 81.398 23.560 3.21 3.45 86.37
8 81.222 12.021 1.87 6.75 84.46

16 81.930 7.188 2.07 11.39 71.24
32 81.755 5.028 2.47 16.26 50.81

25

Table 2.5: Thread creation and context switch overhead measurements with Pthreads and
OpenMP.

Pthreads OpenMP
n Thread creation Context Thread creation Context
2 199 0.631 14311 6.017
4 183 0.736 8047 3.336
8 121 1.182 4209 1.375
16 107 1.067 4115 1.046
32 102 1.041 1654 0.797
64 99 1.035 1417 0.943
128 120 1.27 653 1.579

Table 2.6: Performance results from Code 1 on Haswell.

n Ts Tp Overhead wthread Speed-up Efficiency
2 67.825 34.225 0.31 1000000 1.981 99.08
4 67.77 17.263 0.32 500000 3.925 98.14
8 67.729 9.079 0.61 250000 7.459 93.25
16 68.099 5.015 0.76 125000 13.579 84.86
32 67.973 2.861 0.73 62500 23.758 74.25

Table 2.7: Performance results from Code 5.

n Ts Tp Overhead Speed-up Efficiency
2 2109.055 944.316 -110.21 2.23 111.67
4 2107.635 499.088 -27.82 4.23 105.57
8 2109.226 262.901 -0.75 8.02 100.27

16 2109.020 234.1 102.28 9.01 56.30
32 2110.18 231.294 165.35 9.12 28.51
40 2109.158 218.183 165.45 9.67 24.16

Table 2.8: Code 5 without function calls and conditionals.

n Ts Tp Overhead Speed-up Efficiency
2 90.567 57.241 11.95 1.58 79.11
4 90.427 29.06 6.45 3.11 77.79
8 90.480 14.7601 3.45 6.13 76.62
16 90.581 8.721 3.06 10.39 64.92
32 90.631 5.882 3.05 15.41 48.15
40 90.973 3.064 0.79 29.69 74.22

26

Table 2.9: Performance results from Code 6.

n Ts Tp Overhead Speed-up Efficiency
2 1909.236 594.708 -359.910 3.21 160.51
4 1909.292 297.209 -180.114 6.42 160.60
8 1909.105 149.470 -89.17 12.77 159.65

16 1909.222 89.801 -29.52 21.26 132.88
32 1910.795 60.320 0.61 31.68 98.99
40 1910.146 30.584 -17.17 62.45 156.15

Table 2.10: Code 7 results.

case n Ts Tp Speed-up Efficiency
case 1 64 69 1.46 47.26 73.84
case 2 64 69 1.45 62.09 74.35
case 3 64 90 1.48 60.81 95.02

Table 2.11: Performance results from Code 9.

n Ts Tp Overhead Speed-up Efficiency
2 2102.487 691.904 -359.34 3.04 151.93
4 2099.805 344.800 -180.15 6.09 152.24
8 2099.784 172.063 -90.41 12.20 154.25
16 2106.650 104.066 -27.60 20.24 126.52
32 2112.524 69.479 3.46 30.40 95.02
40 2100.923 35.199 -17.32 59.69 141.22

Table 2.12: Code 8 results.

case n Ts Tp Speed-up Efficiency
case 1 64 69 2.88 24 37.43
case 2 64 69 0.63 109 171.13
case 3 64 69 0.614 112 175.59
case 4 64 69 0.614 112 175.59

27

Table 2.13: Scalability and speed-up (over serial) on 72-core Haswell-EX and 64-core KNL
with different values of OMP_NUM_THREADS.

Haswell KNL KNL vs HSW
n Tp Speed-up Tp Speed-up KNL vs HSW
1 0.46 1 1.77 1 0.26
4 0.116 4 0.222 8 0.52
16 0.068 6.9 0.067 26 1
32 0.067 7.9 0.04 44 1.7
64 0.064 18 0.031 57 2.1
128 0.06 19 0.035 50 1.7
256 0.19 6 0.037 47 5

Table 2.14: Wall clock time measurements of individual WSM6 loops, in milliseconds, on
72-core Haswell-EX and 64-core KNL, using all available hardware threads.

KNL Haswell
Loop Ts Tp Ts Tp

Init loops 2.88× 10−3 – 2.92× 10−3 –
loop 1 16.8 1.19 6.76 1.58
loop 2 122 1.37 15.6 3.45
loop 5 46.8 1.28 15.9 1.58
loop 7 17.9 1.22 6.56 1.57

slope_wsm6 98.6 1.81 41.5 4.76
loop 8 19.1 1.33 7.77 2.10

rain_plm 260 – 39.0 –
rain_plm 220 – 62 –
loop 9-11 10.3 1.49 11.7 3.12

slope_wsm6 60.7 1.48 13.0 4.51
loop 12-14 176 2.37 36.1 1.86
loop 15-17 2.96 0.859 2.53 0.598
loop 18-19 102 2.26 13.1 2.36

slope_wsm6 59.7 1.77 12.5 4.42
loop 20-21 524 5.32 76.4 5.92

loop 22 246 4.32 119 9.91
loop 23 193 1.95 32.6 6.02

loop 24-26 156 2.99 26.8 3.65
loop 27 4.52 5.85 5.61 6.98

wsm6 total 1860 38.9 440 64.3

28

Table 2.15: Speed-up over serial from Table 2.14.

KNL Haswell
Loop Speed-up Efficiency % Speed-up Efficiency %

Init loops – – – –
loop 1 14.06 21.00 4.91 5.94
loop 2 89.10 139.14 4.53 6.28
loop 5 36.44 56.15 10.07 13.97
loop 7 14.67 22.92 4.16 5.80

slope_wsm6 54.56 85.12 8.71 12.08
loop 8 14.44 22.43 3.70 5.13

rain_plm – – – –
rain_plm – – – –
loop 9-11 6.90 10.80 3.73 5.20

slope_wsm6 40.87 64.08 2.95 4.00
loop 12-14 74.41 116.03 19.36 26.95
loop 15-17 3.45 5.38 4.22 5.87
loop 18-19 45.11 70.51 5.56 7.70

slope_wsm6 33.69 52.70 2.83 3.93
loop 20-21 98.48 153.90 12.93 17.92

loop 22 57.13 88.97 12.01 16.68
loop 23 99.53 154.64 5.42 7.52

loop 24-26 52.26 81.52 7.31 10.19
loop 27 0.77 1.20 0.80 1.11

wsm6 total 47.81 74.71 6.91 9.50

CHAPTER 3

PERFORMANCE OPTIMIZATION

APPROACHES FOR PHYSICS

SCHEMES IN NWP

This chapter introduces high-level and low-level approaches for shared memory paral-

lelism using thread-local structures of arrays (SOA). The thread local SOA is a layout where

a structure local to a thread and the fields inside the structure are arrays. The high-level

approach employed here consists of parallelizing large blocks of code at the parent level in

the call stack, whereas the low-level approach targets individual instructions. Thread-local

SOA and the directive “OMP SIMD" are employed to accelerate computation in GFS and

WSM6 modules by improving data locality and taking advantage of thread and vector

parallelism. In addition, a static memory allocation process is used instead of a dynamic

memory allocation process to help improve the memory performance of the GFS code. As a

result of these optimizations, there has been a significant speed-up over serial versions of

the code and a previously optimized version [78]. For instance, the use of SOA coupled with

OMP SIMD for vectorization has led to significant speed-up improvements. The optimized

versions of WSM6, GFS physics, and GFS radiation run 70, 27, 23 and 26, 18, 30 times

faster on KNL and Haswell, respectively. In addition, these optimizations have enabled a

speed-up of 23.3 over a prior optimized version of WSM6 [78].

WSM6, introduced in the previous chapter, is a physical parameterization that simulates

processes in the atmosphere that cause precipitation in the form of rain, snow, graupel,

water vapor, cloud water, and cloud ice. GFS is a weather forecast model developed by the

National Center for Environmental Prediction (NCEP). GFS is a coupled model composed

of an atmosphere model, an ocean model, a land/soil model, and a sea-ice model. The

optimization efforts target GFS physics and GFS radiation, the two most expensive calls

within the module driver. Similarly to WSM6, GFS has no dependencies along the horizontal

30

direction, thus making it amendable to performance improvement without the concern of

communication.

3.1 Background
There has been significant activity recently on porting and optimizing NWP codes on

various new computer architectures. For example, Mielikainen et al. [68] optimized the

Goddard microphysics scheme on an Intel Xeon phi 7120P Knights Corner (KNC) [12] by

removing temporary variables to reduce the code memory footprint and by refactoring

loops for vectorization, leading to a 4.7 speed-up. Furthermore, Mielikainen et al. [69]

also optimized the Perdu-Lin microphysics scheme using the same approaches. Again,

these approaches resulted in a 4.7 speed-up using vector alignment and SIMD directives.

Similarly, Ouermi et al. [78] used a low-level optimization approach based upon OpenMP

4 [17] directives to improve the performance of WSM6 on the KNL. When combined with

minor code restructuring to enable and improve locality and vectorization, this approach

resulted in a speed-up of three on the whole of WSM6. This speed-up included unoptimized

(serial bottleneck) code sections.

In optimizing the Weather Model Radiative Transfer Physics on Intel KNL, Michalakes

et al. [67] focused on increasing concurrency, vectorization, and locality. Improving

concurrency involved increasing the number of subdomains to be computed by threads.

Vectorization and locality were improved by restructuring the loops to compute over

smaller tiles and exposing vectorizable loops. This effort led to a threefold speed-up over

the original 1.3 speed-up on Xeon Sandybridge.

Data layout plays a key role in performance optimization. The optimal data layout

minimizes the memory footprint, reduces cache misses, and allows better usage of vector

units. This study uses thread-local structures of arrays (SOA) data layout to improve

memory access [43], [105] . The SOA approach and similar approaches have been used

to accelerate many scientific applications on various architectures. Henretty et al. [40]

used data layout transformation to improve the performance of stencil computations.

These optimizations removed alignment conflicts, reduced cache misses, and improved

vectorization. Woodward et al. [60], [104] used briquette data structures to accelerate a

Piecewise Parabolic Method (PPM) code by reducing memory traffic. A briquette is a small

31

sub-block of a uniform grid. The size of the briquette is chosen in relation to the cache

size and vector unit. These data transformations have enabled high performance because

they reduce the memory footprint and traffic. In addition, such transformations improve

vectorization.

The work presented in this chapter relies on the OpenMP runtime system for task

scheduling and OpenMP “pragma" directives for parallelization. Other approaches could

be employed. Mencagli et al. [64] used a runtime support to reduce the effective latency

of interthread cooperation. This latency reduction is done with a “home-fowarding"

mechanism that uses a cache-coherent protocol to reduce cache-to-cache interaction. Buono

et al. [9] proposed a light-weight runtime system as an approach to optimize linear algebra

routines on Intel KNC [12]. This runtime system focuses on efficient scheduling of tasks

from a directed acyclic graph (DAG) that is generated on the fly during execution. Danelutto

et al. [18] suggested a pattern-based framework for parallelization. This parallelization

approach targets known patterns that can be represented with well-known operations such

as map, reduce, scan, etc.

Although this work focuses on the Intel KNL and Haswell architectures, it is important

to point out that efforts have been made to port and optimize WRF physics schemes

for GPUs [70], [65], [83], [22]. GPU-based optimizations show better performance than

Intel KNC and KNL-based optimizations. For instance, Mielikainen et al. [70], using

CUDA [74], were able to achieve a speed-up of two orders of magnitude. However, porting

to GPUs often requires significant code rewrites. The present work is part of larger effort to

develop and optimize a potential US Navy next generation weather code, NEPTUNE. The

optimization strategies introduced in this work target Intel KNL and Haswell because the

operational version of NEPTUNE is intended to run on Intel micro-architectures instead of

GPUs.

3.2 Experimental Setup and Methodology
3.2.1 Strategies for OpenMP Parallelism

3.2.1.1 Task Granularity (High-Level Versus Low-Level OpenMP)

High-level parallelism refers to parallelizing large blocks of code at the parent level in

the function call stack, whereas low-level refers to parallelizing smalls blocks of codes at

32

the instruction level (i.e., loops and arithmetic operations). The high-level approach has

the advantage of using few individual parallel section, and few modifications within these

sections. However, the high-level approach also requires the code blocks to be thread safe

and free of serial bottlenecks.

In contrast, the low-level approach has the advantage of permitting parallelism in

selectively parallelizable code punctuated by serial sections. If these serial bottlenecks are

not easily removed, or if their relative cost is low, this may be a valid approach. Low-level

approaches may also be appropriate for codes that require multiple different parallelization

approaches (i.e., static versus dynamic scheduling, tasking, etc.) within different logical

blocks or subroutines. Whether high-level or low-level parallelism is best depends on the

individual code in question. High-level OpenMP is typically more elegant, but requires

code that is sufficiently independent to be parallelizable at the parent level in the call stack.

A low-level approach requires adding more parallel directives, but allows the original code

structure to be used more or less as is. High-level and low-level approaches relate to task

granularity, i.e., at which level logic is parallelized within a call stack. The length and

the complexity of the logic within each task may have an impact on scheduling and load

balancing, as well as on intertask dependency.

3.2.1.2 Data Granularity, Chunks, and SOA

In the physics schemes in NEPTUNE, data granularity refers to the size of arrays or

subarrays that are processed by each thread. Coarse-grain data parallelism corresponds

to dividing up the input data into the number of worker threads, and fine-grain data

parallelism corresponds to further subdividing input data into smaller chunks. The chunk

size determines the size of the subdivided data, as shown in Fig. 3.1. For instance, an

2D input array (im × jm) is divided into multiple 2D subarrays of sizes chunksize × jm.

Typically input and output data are organized in arrays of structures (AOS) and regular

arrays. AOS is a layout where each array element is a structure with fields inside the

structure. The SOA data layout is more suitable for vectorization compared to the AOS data

layout. WSM6, GFS physics, and GFS radiation use large regular arrays and SOA. These

input and output data are transformed into thread-local SOA. A thread-local SOA is an

SOA that is private to a particular thread. The beneficial chunk size of the thread-local SOA

33

is determined by the SIMD unit length (8 or 16 in the case of KNL and Haswell), or by the

number of cores per block (SM) in a GPU. A more in-depth study of SOA and other data

structures can be found in [43], [105], [42]

In choosing the appropriate chunk size for an optimum data granularity, the goal

is to keep the data as local as possible to each thread. Ideally, within the L1 and L2

caches, it is advantageous to use thread-local data structures and copy to and from global

shared-memory arrays as necessary. The thread-local data are most effective when aligned

to SIMD/chunk size and organized in SOA fashion. This data transformation allows the

data for each thread to be packed closely in memory, thus reducing cache misses, and

requests from L3/MCDRAM (on KNL) and/or main memory.

The input and output data structures in WSM6 and GFS codes are not suitable for

performance optimization because both SOA and regular arrays are large and do not fit into

cache. In addition, the SOA are dynamically allocated, which requires expensive memory

operations. Using thread-local SOA instead of large regular arrays and statically instead

of dynamically allocated arrays enables better memory usage and vectorization. Fig. 3.1

shows examples of the data transformation. Arrays A and B represent original input and

output data. The top halves of A and B are copied into a thread-local SOA that is private to

the thread to which it will be assigned. The same transformation is done for the bottom

halves of A and B. When the original input is a large SOA composed of A and B, the

transformation would be similar, from large shared memory SOA to thread-local SOA. This

thread-local SOA ensures that data required for a calculation are close together in memory,

and hence fit into the cache together. Overall, this modification enables memory locality.

3.2.1.3 GFS Physics Code Modifications

Although GFS physics and GFS radiation have similarities with WSM6, additional code

transformations were applied to GSF code to achieve reasonable speed-ups. Thread-local

SOA, transformation from dynamic to static allocation, and low-level transformation/vec-

torization, described below, are the key changes implemented in GFS physics and GFS

radiation to enable better performance and are now described in turn.

• Data reorganization with thread-local SOA: A thread-local SOA transformation is

applied to the input and output arrays as described in Fig. 3.1. This transformation

34

makes it possible to construct a thread-local SOA that is local to the thread to which it

is assigned and small enough to fit in cache. This transformation requires copying the

original input and output data into the new thread-local SOA before passing it to the

GFS driver function calls. In the work by Ouermi et al. [80], the data reorganization

transformed regular arrays to thread-local SOA. Here, the data converted from large

SOA and regular arrays to thread-local SOA.

• Dynamic to static allocation: With static allocation, the arrays sizes are known at

compile time whereas in the dynamic case the arrays sizes are not known a priori.

The original GFS code employs dynamic allocation for the input and output arrays in

the GFS driver, which does not guarantee contiguous data. However, each array in

the SOA will be contiguously allocated, but the different allocations may be far apart

in memory. Thus, accessing dynamically allocated arrays is often more expensive

than accessing statically allocated arrays. Instead of using the original data or SOA

that are dynamically allocated, the original inputs and outputs are copied to statically

allocated thread-local SOA and then passed to the function calls in the GFS driver.

• Vectorization and low-level code transformations: The GFS physics and GFS radiation

do not have many serial bottlenecks that require major code transformation at a

low-level as in WSM6 with niflv_rain_plm6 and niflv_rain_plm. Auto-vectorization

often fails to vectorize large body loops, or relatively complex code. Given that there

are not many serial bottlenecks, the OpenMP directive OMP SIMD is used at the lower

level in the physics parameterization codes to improve vectorization. This directive

is applied to the innermost loop, the i-loop, which has no dependencies. In the case

of WM6, as shown by Ouermi et al. [80], major code transformation was required in

some cases to enable better vectorization.

3.2.2 Experimental Setup

The methodology used here follows Ouermi et al. [78], [80] to investigate various opti-

mization strategies. This methodology consists of constructing standalone experiments to

study the different approaches for parallelism in a more flexible and controlled environment.

The findings from the standalone experiments inform the optimization decisions in the

modules of interest, such as WSM6, GFS physics, and GFS radiation.

35

The experiments presented in this chapter use the Intel Knights Landing (KNL) [51]

and Xeon CPU E-7-8890 (Haswell). As a reminder, the Intel Knights Landing (KNL) [51]

architecture consists of 36 tiles interconnected with a 2D mesh, MCDRAM of 16GB high

bandwidth memory on one socket. The KNL architecture has a clock frequency of 1.3 GHz,

which is lower than the 2.5 GHz of Haswell. The Knights Landing tile is the basic unit

that is replicated across the entire chip. This tile consists of two cores, each connected

to two vector processing units (VPUs). Both cores share a 1 MB L2 cache. Two AVX-512

vector units process eight double-precision lanes each; a single core can execute two 512-bit

vector multiply-add instructions per clock cycle. The Intel Xeon CPU E-7-8890 (Haswell) is

composed of four sockets and four Non Uniform Memory Access (NUMA) nodes. Each

node is made of 18 cores with 2 threads per core and clock frequency of 2.5 Ghz frequency.

3.3 Standalone Experiments
3.3.1 Synthetic Codes

These experiments analyze the thread-local SOA performance with different array

sizes and dimensions in order to find a suitable structure for the physics schemes. The

thread-local SOA in Code 1 use 1D arrays whereas those in Code 2 use 2D arrays. In Code 1,

the k-loop is vectorized whereas in Code 2 the vectorization is along the i-loop. The access

pattern is more involved in Code 1 compared to Code 2 because of the 1D versus 2D data

layout. The performance results from the data transpose approach, as shown in Fig. 3.2, and

the GFS and WSM6 codes take 2D (im× jm) and 3D (im× jm× km) arrays where im > 800

and jm < 40. For a long rectangular data matrix (im× km) as shown in Fig. 3.2, thread

parallelism across the k loop is limited by the number of iterations, i.e., km. In this case, km <

40, which corresponds to less than 40 threads of the 256 threads on KNL. Transposing the

data matrix from im× km to km× im allows for better thread parallelism while maintaining

a good memory access pattern, as illustrated in Fig. 3.2. This transformation does not

have an impact on computation correctness because both the standalone experiment codes

and target physics codes have no dependencies along the horizontal direction (i-loop).

36

Code 1

!$OMP PARALLEL DEFAULT(shared)
!$OMP PRIVATE (i t s , i t e , i c e ,

tsoa ,thread_id ,c)
!$OMP DO
do c=1,ite

do j=1,je
tsoa%a(j) = a(c,j)
tsoa%b(j) = b(c,j)
tsoa%d(j) = d(c,j)
tsoa%e(j) = e(c,j)

enddo
c a l l work(tsoa%a,tsoa%b,

tsoa%d,tsoa%e,1,ice)
do j=1,je

a(c,j) = tsoa%a(j)
b(c,j) = tsoa%b(j)
d(c,j) = tsoa%d(j)
e(c,j) = tsoa%e(j)

enddo
enddo
!$OMP END DO
!$OMP END PARALLEL

subrout ine work(a, b, c, d)
imlicit none
r e a l , i n t e n t (inout):: a(:),b(:)
r e a l , i n t e n t (inout):: c(:),d(:)
i n t e g e r :: j
!$OMP SIMD
do j=2,je -1

a(j) = 0.1+c(j)/d(j)
b(j) = (0.2+c(j-1)-c(j))

/(c(j)-c(j-1) +0.5)
enddo
end subrout ine work

Code 2

!$OMP PARALLEL DEFAULT(shared)
!$OMP PRIVATE (i t s , i t e , i c e ,

tsoa ,thread_id ,c)
!$OMP DO
do c=1,ite

its = 1+ (c-1)*CHUNK
ite = min(its+CHUNK -1, ie)
ice = ite -its+1
do j=1,je

tsoa%a(1:ice ,j) = a(its:ite ,j)
tsoa%b(1:ice ,j) = b(its:ite ,j)
tsoa%d(1:ice ,j) = d(its:tte ,j)
tsoa%e(1:ice ,j) = e(its:ite ,j)

enddo
c a l l work(tsoa%a,tsoa%b,

tsoa%d,tsoa%e,1,ice)
do j=1,je

a(its:ite ,j) = tsoa%a(1:ice ,j)
b(its:ite ,j) = tsoa%b(1:ice ,j)
d(its:ite ,j) = tsoa%d(1:ice ,j)
e(its:ite ,j) = tsoa%e(1:ice ,j)

enddo
enddo
!$OMP END DO
!$OMP END PARALLEL

subrout ine work(a, b, c, d)
imlicit none
r e a l , i n t e n t (inout):: a(:,:),b

(:,:)
r e a l , i n t e n t (inout):: c(:,:),d

(:,:)
i n t e g e r , i n t e n t (in):: is ,ie
i n t e g e r :: i,j
do j=2,je -1

!$OMP SIMD
do i=is,ie

a(i,j) = 0.1+c(i,j)/d(i,j)
b(i,j) = (0.2+c(i,j-1)-c(i,j))

/(c(i,j)-c(i,j-1) +0.5)
enddo

enddo
end subrout ine work

Fig. 3.3 shows a code example of the transposition. Following the column major

ordering in Fortran, the i-loop becomes the outer loop with im = 10586 after transformation.

Furthermore, there are no dependencies along the i index, which allows parallelism in index

i to be exploited. Table 3.1 shows performance results from SOA with 1D arrays, transposed

data matrices, and unmodified original data. The SOA approach yields significant speed-

ups with a maximum of about 34. The data transpose approach performs the best in this

particular experiment, with a maximum speed-up of about 41. The length of the arrays in

the SOA is 48. This small array length translates to a small amount of work for the innermost

loop in Code 1. In this experiment, the peak performance is observed at 128 threads with

two threads per cores. In hyper-threading, each core resources are shared between the

37

hyper-threads. The instructions from hyper-threads flow through the same pipeline, which

can help improve core utilization as observed in Table 3.1. However, sharing resources

between hyper-threads may lead to performance decrease, as observed with 256 threads.

In addition, after 128 threads the work is not enough to enable further improvement in

speed-up.

Table 3.2 shows performance results similar to those in Table 3.1 with an increased

problem size given by ke = 768. The arrays in the SOA are 16 times larger that those used in

previous experiments. In both cases, these results indicate that the transpose approach for

data organization yields better results. After 64 threads, each core uses hyper-threading,

with two to four threads per core, which a given core, divides the resources between the

hyper-threads causing the performance to decrease. Table 3.3 shows the performance results

from using thread-local SOA with 2D arrays, transposed data matrices, and unmodified

original data. In this experiment, the OpenMP chunk size is set to 8. In contrast to

the previous experiments, these results show that the thread-local SOA approach yields

higher speed-ups than the other methods for data organization. The maximum speed-up

observed is 103 at 32 cores. After 32 threads, there is not enough work per thread to enable

performance scalability. The results from Tables 3.1 – 3.3 indicate that the size and structure

of the arrays in the thread-local SOA play an important role in the performance. Vectorizing

along the k-loop, in the 1D case, has a more involved access pattern than vectorizing along

the i-loop, in the 2D case. In addition, there are no dependencies along the i-loop, which

allows for trivial vectorization. Furthermore, the L2 cache is about 16 times the size of the

input data in each SOA. Thus the thread-local SOA fit in the L2 cache, which allows for

fast memory access. When the thread-local SOA does not fit in the L2 cache, as shown in

Table 3.4, the speed-ups are significantly lower than the ones observed in Table 3.3. In Table

3.4, the peak performance for thread-local SOA is observed at about 16 threads. This is

lower than the previous cases because of the high rate of cache misses. Fig. 3.4 shows the

performance results from choosing different lengths for the index i. All the chunk sizes

considered yield higher speed-ups than using transpose approach. The best performance is

observed when using a chunk size of 32. The chunk size of 32 provides enough work to

make better use of the SIMD units. The choice of the chunk size is application dependent.

38

3.3.2 Rain Routines

The WSM6 module contains semi-Lagrangian routines [53], nisflv_rain_plm6, and

nisflv_rain_plm6 for simulating falling hydrometeors. These semi-Lagrangian routines, an

alternative to a traditional Eulerian scheme, use forward advection to calculate the path of

the falling hydrometeors. Initially, nisflv_rain_plm6, and nisflv_rain_plm6 used Fortran

keywords cycle, goto, and exit. With these keywords, the termination criteria are not

known a priori, which prevents parallelism. This limitation was resolved by substituting

the keywords with carefully engineered logic that performs the same computation. The

exits were replaced by masking, the gotos by loops coupled with conditionals and cycle by

conditionals. After removing these serial bottlenecks, the thread-local SOA and transpose

approaches from Code 2 are applied to the rain routines. As in Code 2, the rain routines

have no dependencies along the i-loop, and the thread-local SOA with a chunk size of 32

now fits into the L2 cache. The results in Fig. 3.5 and Table 3.5 for the optimized rain routine

with chunk = 32 demonstrate that using thread-local SOA produces larger speed-ups than

transposing the input data. In this case, the thread-local SOA are chosen to fit in cache and

designed for contiguous memory access to improve performance. In contrast, transposing

the input data increases parallelism at the thread level but does not improve memory

performance. The optimized, thread-local SOA, version of the rain routine runs 50 times

faster than the original serial version, and two faster than the transpose version.

3.4 Optimization Results with WSM6 and GFS-Physics
3.4.1 WSM6

In addition to the transformations in nisflv_rain_plm6 and nisflv_rain_plm6 routines,

the OMP SIMD directive is applied at the lower level to the innermost loops instead of

relying on the Intel compiler auto vectorization. Thread parallelism is implemented at the

parent level in the WSM6 module. The bar plots in Figs. 3.6 and 3.7 do not show significant

differences in runtime for various thread-local SOA sizes on KNL and Haswell. These

figures indicate that the different chunk sizes used in this experiment achieve about the

same performance improvement with the best speed-up of about 26 when using static

scheduling. Figs. 3.8 and 3.9 compare static versus dynamic scheduling performance on

KNL and Haswell, respectively. In both systems, dynamic scheduling, performs better than

39

static scheduling. The dynamic scheduler helps load balance the work between the threads.

Because of the conditionals and complexity within physics routines, the work distributed

between the threads may be unbalanced, causing some threads to run longer than necessary.

With dynamic scheduling, an internal work queue is used to give a block of iterations to

each thread. When a thread finishes its current task, it retrieves the next ready block for

the top of the queue. This helps reduce the wait time observed in the static scheduling

case. In the case of KNL, the performance can be further improved by enabling the flat

configuration. In the flat configuration, the high band width memory (HBM) MCDRAM is

used as a physical address instead of cache. This flat configuration in WSM6 makes better

use of the HBM compare to cache configuration. Fig. 3.10 and Table 3.6 compare flat versus

cache performance on KNL. The flat KNL configuration provides better performance than

the cache configuration by a factor of 1.6. Overall, the optimized version of WSM6 runs 70

times faster and 26 times faster on KNL and Haswell, respectively. Haswell performs better

than KNL by a factor of by a factor of 1.3. In addition, the optimized version of WSM6 on

KNL runs 23.3 faster than the optimized version presented in [78].

3.4.2 GFS Physics Results

GFS physics does not have many serial bottlenecks that require major code transforma-

tions as in the case of WSM6 with niflv_rain_plm6 and niflv_rain_plm. Thread parallelism

is applied at a high level in the GFS driver using thread-local SOA. OMP SIMD directives

are instrumented at a lower level, the innermost loops, to enable better vectorization. In

addition, static allocation is used for the thread-local SOA instead of dynamic allocation as

in the original input data.

Figs. 3.11 and 3.12 show runtime performance on KNL and Haswell, respectively, with

different chunk sizes. In the case of KNL, the runtime decreases exponentially, indicating

good scalability. As shown in Fig. 3.12, the runtime decreases up to about 16 threads.

The first 16 threads are running in one NUMA node. After 16 threads, more NUMA

nodes are used. Shared memory parallelism is not suitable for parallelism across NUMA

nodes. This limitation is addressed by using four MPI ranks, one for each node. Fig.

3.13 indicates that coupling the four MPI ranks with shared memory parallelism led to

significant improvement on runtimes past the 16 threads. Figs. 3.14–3.16 compare static and

40

dynamic scheduling scalability. In Fig. 3.15, the speed-up increases up to 16 threads and

decreases rapidly after the 16 threads because of difficulties shared memory parallelism

across the NUMA nodes. In both Figs. 3.14 and 3.16 static, scheduling performs better than

dynamic scheduling. The work load between threads is sufficiently balanced that using a

dynamic scheduler does not yield any improvement. Figure 3.17 compares the compares the

cache and flat configuration in KNL. In the case of KNL, the flat configuration improves the

speed-up by a factor of 1.04 compared to the cache configuration. The optimized version of

GFS physics runs about 2.4 times faster on Haswell compared to KNL, which corresponds to

speed-ups of 27 and 18 on KNL and Haswell, respectively, over the original serial versions.

3.4.3 GFS radiation

As in GFS physics, GFS radiation is optimized at a high-level with thread-local SOA

to improve thread parallelism and at a low-level with OMP SIMD to improve utilization

of SIMD units. Static instead of dynamic allocation is used as well to improve memory

accesses. Similarly to WSM6 and GFS physics, the bar plots in Figs. 3.18 - 3.20 are used

to determine the appropriate thread-local SOA size to choose for optimization. Fig. 3.19

indicates the limitations of using OpenMP for parallelism across NUMA nodes. Figs. 3.18

and 3.20 show that the chunk sizes of 8 and 16 yield the lowest runtime on both KNL and

Haswell.

Figs. 3.21 – 3.23 compare static and dynamic performance on KNL and Haswell.

Similarly to the previous case with GFS codes, not using MPI for parallelism across NUMA

nodes does not scale as shown in Fig. 3.22. On both KNL and Haswell, dynamic scheduling

performs better than static scheduling. The use of dynamically assigned work loads to

threads reduces the threads wait time compared to statically distributing work between the

threads. Further performance improvement is observed when using the flat configuration

in the case of KNL by a factor of 1.05, as shown in Fig. 3.24.

The optimized version of GFS physics runs 23 and 30 times faster on KNL and Haswell,

respectively, over the serial times on KNL and Haswell. The runtime on Haswell is 6.5

faster than the runtime on KNL.

41

3.5 Summary and Discussion
The results from the standalone experiments in Section 3.3 demonstrate that the thread-

local SOA approach is suitable for optimizing the physics schemes in NEPTUNE. These

standalone experiments are instrumental in identifying the modifications necessary to

optimize WSM6, GFS physics and GFS radiation on KNL and Haswell. This study exploits

the flexibility and simplicity of the standalone experiments to prototype and test the

different optimization strategies, which are not easily and trivially testable in NEPTUNE.

The transformation of the input and output data into thread-local SOA is the main

approach used in optimizing the WSM6 and GFS codes. The size of the thread-local SOA is

chosen to fit in the L2 cache. Each thread-local SOA is composed of the inputs and outputs

required to calculate the physics for a few columns. This data transformation reduces

memory traffic and increase data locality. In the transpose approach, the data might be far

apart in memory and too large to fit in the L2 cache. This causes cache misses, which limits

performance. In addition, applying the transpose to the entire physics routines requires

significant code modification compared to the thread-local SOA approach.

The OpenMP directive OMP SIMD is used to improve vector parallelism at the low level.

In cases similar to the rain routines, significant low-level code modifications are required to

enable vectorization. Given that there are dependencies along the vertical direction, the

OMP SIMD directive is applied along the horizontal direction (i loop). In the thread-local

SOA, the i-loop corresponding to the chunk size is chosen to be a multiple of the SIMD unit

length.

The original serial version of WSM6, GFS physics, and GFS physics ran for 1.65 sec, 0.130

sec, 4.40 sec on KNL and 0.444 sec, 0.036 sec, and 0.870 sec on Haswell. These runtimes

are about 3.7, 3.6, and 5.05 times faster on Haswell compared to KNL for serial codes. The

original codes rely on auto vectorization, which does not work well with a complex and

large body of code. Haswell has lower runtimes because it has a higher clock frequency

and a turbo boost. Table 3.7 shows a summary of performance improvement from original

codes to optimized thread-local SOA on both KNL and Haswell.

The optimized version of WSM6 yields a speed-up of 70 and 26 on KNL and Haswell,

respectively, over the serial times. In the case of Haswell, the maximum performance is

observed at about 32 cores compared to 64 cores on KNL. Haswell performs better than KNL

42

because it has higher clock speed and transactional synchronization extensions (TSX-NI)

technology to improve threading.

The performance of WSM6 on Haswell could be improved by designing the code to

run with 4 MPI ranks for parallelism across NUMA nodes. On KNL it could be further

improved by better using the SIMD units.

The optimized version of GFS physics runs about 2.4 faster on Haswell compared to

KNL. GFS physics scales up to 72 cores on Haswell and 64 cores on KNL. The large SIMD

units on KNL are not sufficient to outperform Haswell, which has more cores and a higher

clock frequency than KNL. After optimization, GFS physics runs 27 and 18 times faster on

KNL and Haswell, respectively, over the serial times.

The optimized GFS radiation runs 23 times faster on KNL and 30 times faster on Haswell

with respect to their serial times. In this case, Haswell performs about 6.5 better than KNL.

As in the GFS physics optimization, the GFS radiation scales up to 64 cores on KNL and 72

cores on Haswell.

The test cases used in this study have about 10K iterations for WSM6 and 800 iterations

for GFS codes. These test cases are not large enough to provide sufficient work to each

thread and scale well to 64 cores on KNL and 72 cores on Haswell.

With regard to peak performance, some of the challenges faced by physics codes are

illustrated by Code 2 in Section 5. In this case, there are only nine flops in the inner loop.

This is typical of some of the loops in WSM6. As a result, with array dimensions of 10592

and 39, there are only 3.7M flops. A loop time of 0.02ms gives a flop rate of 185 GFLOPs,

which is about 6.6% of peak and is not unexpected for loops that have low flop counts.

All the tables and plots show a performance decrease after 128 threads for KNL and

72 threads for Haswell. This corresponds to two or four thread per core. In the KNL and

Haswell, all active threads in a given core flow through the same pipeline, and thus they

share resources such as instruction cache and instruction queue. The increase in the number

of threads per cores leads to the division of the shared resources among threads, and to

an increase in memory access conflicts. This competition for resources indicates why a

performance decrease is observed after 128 threads and 72 threads on KNL and Haswell,

respectively.

This work has demonstrated the efficiency of high-level optimization approach using

43

thread-local SOA paired with low-level optimization technique using OMP SIMD directive.

As presented in the results section, these optimization approaches enable a better utilization

of the KNL and Haswell resources by improving locality, memory allocation, and vector-

ization. The use of thread-local SOA and static allocation enables better memory traffic by

increasing locality and decreasing cache misses. The use OMP SIMD directives coupled

with SOA chunk sizes, set to be multiples of the SIMD length, enables a better utilization of

SIMD units in KNL and Haswell. Overall, the various optimizations achieved a speed-ups

of 70, 27, 23 on KNL, and 26, 18, and 30 on Haswell over the original serial version of WSM6,

GFS physics, GFS Radiation, respectively. In addition, the results indicated that WSM6, GFS

physics, GFS radiation run 1.3, 2.4 and 6.5 faster on on Haswell compared to KNL because

the Haswell system used here has more cores and a higher clock frequency than KNL. As

mentioned in the discussion, peak performance is still relatively challenging to achieve

given the complexity of the physics schemes.

Figure 3.1: Transformation from AOS to SOA. The 2D arrays A and B are transformed into
two thread-local SOA. The top and bottom parts are put next to each other as shown on
the right. The chunk size shown in blue determines how to split and A and B. If the chunk
size is chosen to be two, A and B would be split into four parts, which would give four
thread-local SOA.

44

Figure 3.2: Transpose representation that shows transposition of a 2D (im× jm) array, where
im > 800 and jm < 40. Given that Fortran is column major, k is the outer loop before the
transposition, shown on the left. The outer loop becomes i after the transposition as shown
on the right. This transformation increases thread parallelism on the outer loop.

Figure 3.3: Code transformation with transpose. This shows how the transposition is
implemented with a simple code. The loops and the indices are swapped.

45

1 2 4 8 16 32 64 128 256

number of threads

0

0.5

1

1.5

2

ti
m

e
 (

m
s
)

CHUNK=8

CHUNK=16

CHUNK=32

CHUNK=64

CHUNK=128

Figure 3.4: Plots of thread-local SOA performance wieh different chunk sizes. The bars
indicate the runtime of the optimized standalone Code 2 with different size thread-local
SOA which determined by the choice of chunk. The lowest runtime occurs at 64 with
chunk = 32. This indicates that chunk = 32 provide enough work per thread and one
thread per core enables a better usage of core resources compare to two and four threads
per core.

0 50 100 150 200 250 300

number of threads

0

10

20

30

40

50

s
p

e
e
d

-u
p

transpose

soa

Figure 3.5: Transpose versus SOA speed-ups on nisflv_rain_plm6. This thread scalability
plot reaffirms that using thread-local SOA scales better than transposing the input data.

46

1 2 4 8 16 32 64 128 256

number of threads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ti
m

e
 (

s
e
c
)

CHUNK=8

CHUNK=16

CHUNK=32

CHUNK=64

Figure 3.6: WSM6 runtime with various thread-local SOA sizes and static scheduling on
KNL. The bars shows that the runtimes decreases exponentially as the number of threads
increases regardless of the chunk sizes. Each chunk provides enough work for thread and
vector parallelism. The lowest runtime occurs at 64 threads and plateaus after that.

1 2 4 8 16 32 64 72 144

number of threads

0

0.05

0.1

0.15

0.2

0.25

0.3

ti
m

e
 (

m
s
)

CHUNK=8

CHUNK=16

CHUNK=32

CHUNK=64

Figure 3.7: WSM6 runtime with various SOA sizes and static scheduling on Haswell. The
bars show that the runtimes decrease exponentially as the number of thread increase up
to about 32 threads. The best runtime is observed at 64 threads with chunk = 32. The
performance plateaus after the 64 threads. This indicates that hyper-threading does not
improve performance in WSM6. In addition, after 64 threads the amount of work per thread
is not large enough to enable scalability.

47

0 50 100 150 200 250 300

number of threads

0

5

10

15

20

25

30

35

40

45

s
p
e

e
d

-u
p

static

dynamic

Figure 3.8: WSM6 speed-ups on KNL. This shows scalability plots of WSM6 with static and
dynamic scheduling. The chunk size is chosen to be 32 in this case. The performance scales
up to 64 threads and then decreases. Hyper-threading is used at 128 and 256 threads. In
hyper-threading, the core resources are divided between hyper-threads, and this may limit
the performance, as seen in this case.

0 50 100 150

number of threads

0

5

10

15

20

25

30

s
p
e

e
d
-u

p

static

dynamic

Figure 3.9: WSM6 speed-ups with static and dynamic scheduling on Haswell. The
best performance occurs at 32 threads. After 16 threads, performance is limited by the
NUMA affect because OpenMP is not suitable for parallelism across NUMA nodes. The
performance could be improved by using MPI.

48

0 50 100 150 200 250 300

number of threads

0

10

20

30

40

50

60

70

80

s
p
e

e
d

-u
p

Cache

Flat

Figure 3.10: WSM6 speed-ups on KNL with flat configuration. In this scalability plot of
WSM6 with cache and flat configuration, dynamic scheduling is used for both and the
chunk size is set to 32. The maximum speed-up is observed at 64 threads in the case of the
cache configuration and 128 threads in the case flat configuration. In the case of the flat
mode, hyper-threading with two hyper-threads per core improved performance. Although
the resources per core are shared between hyper-threads, in this case the set instructions in
the shared instruction pipeline enable a better utilization of core resources.

1 2 4 8 16 32 64 128

number of threads

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ti
m

e
 (

s
e

c
)

CHUNK=4

CHUNK=8

CHUNK=12

CHUNK=16

Figure 3.11: GFS physics runtime with various thread-local SOA sizes on KNL. This plot
shows the runtimes of different thread-local SOA to help guide the choice of chunk size.
Static scheduling is used in this experiment. The maximum speed-up occurs at 128 threads
with chunk = 8. The maximum number of loop iterations is 108. Thus, using 256 threads is
largely more than necessary given there are only 108 loop iterations.

49

1 2 4 8 16 32 64 72 144

number of threads

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ti
m

e
 (

s
e

c
)

CHUNK=4

CHUNK=8

CHUNK=12

CHUNK=16

Figure 3.12: GFS physics runtime with various SOA sizes on Haswell. This plot shows
runtimes of different thread-local SOA to help determine the appropriate choice for the
chunk size. MPI was not used. OpenMP is used for shared parallelism across NUMA
nodes. The default static scheduler is used in this experiment. The lowest runtime occurs
a 16 threads. After 16 threads, the NUMA effect start limiting performance. This can be
addressed by using MPI for parallelism across NUMA nodes.

1 2 4 8 16 32 64 72 144

number of threads

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ti
m

e
 (

s
e

c
)

CHUNK=4

CHUNK=8

CHUNK=12

CHUNK=16

Figure 3.13: GFS physics runtime with various SOA sizes on Haswell with MPI. This plots
shows runtimes of different thread-local SOA to help choose on the appropriate chose
for the chunk size. MPI was used for parallelism across NUMA nodes and OpenMP
for shared parallelism within NUMA nodes. The default static scheduler is used in this
experiment. The performance scales up to 72 threads. Hyper-threading does not help
improve speed-ups.

50

0 20 40 60 80 100 120 140

 number of threads

0

5

10

15

20

25

30

S
p
e

e
d
-u

p
s

Static

Dynamic

Figure 3.14: GFS physics speed-ups on KNL. These plots show thread scalability perfor-
mance with static and dynamic scheduling on KNL. The performance scales up to 128
threads. The uses a maximum of 128 threads because there is 108 iteration. Using 256
threads would be oversubscribing. In this case, hyper-threading enables better performance.

0 50 100 150

 number of threads

0

1

2

3

4

5

6

S
p

e
e

d
-u

p
s

Static

Dynamic

Figure 3.15: GFS physics speed-ups on Haswell. These plots show thread scalability
performance with static and dynamic scheduling on Haswell. OpenMP is used for
parallelism within and across NUMA nodes. The performance decreases after 16 threads
because of NUMA effects. Using OpenMP fr parallelism across NUMA nodes does not
improve speed-ups.

51

0 50 100 150

 number of threads

0

2

4

6

8

10

12

14

16

18

S
p
e

e
d
-u

p
s

Static

Dynamic

Figure 3.16: GFS physics speed-ups on Haswell with MPI across nodes. These plots show
thread scalability performance with static and dynamic scheduling on Haswell. MPI and
OpenMP are used for parallelism across and within NUMA nodes, respectively. This
optimization scales up to 72 cores. Hyper-threading does not improve the utilization of
core resources.

0 20 40 60 80 100 120 140

 number of threads

0

5

10

15

20

25

30

S
p
e

e
d
-u

p
s

Cache

Flat

Figure 3.17: GFS physics speed-ups on KNL. These plots show thread scalability perfor-
mance with flat and cache configurations on KNL. Dynamic scheduling is used. Both cache
and flat configurations scale up to 128 threads.

52

1 2 4 8 16 32 64 128

number of threads

0

1

2

3

4

5

ti
m

e
 (

s
e

c
)

CHUNK=4

CHUNK=8

CHUNK=12

CHUNK=16

Figure 3.18: GFS radiation runtimes with various SOA sizes on KNL. This plot shows
runtimes of different thread-local SOA to help determine the appropriate choice for the
chunk size. Static scheduling is used in this experiment. The best speed-up is observed
at 64 threads. This indicates that one thread per core allows for better utilization of core
resources compared to two threads per core.

1 2 4 8 16 32 64 72 144

number of threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ti
m

e
 (

s
e
c
)

CHUNK=4

CHUNK=8

CHUNK=12

CHUNK=16

Figure 3.19: GFS radiation runtimes with various SOA sizes on Haswell. This plot shows
runtimes of different thread-local SOA to help determine the appropriate choice for the
chunk size. MPI was not used. OpenMP is used for shared parallelism across NUMA nodes.
The default static scheduler is used in this experiment. The best performance is observed
at 16 threads. After 16 threads, using OpenMP for parallelism across NUMA nodes limits
performance. OpenMP is designed for shared memory parallelism.

53

1 2 4 8 16 32 64 72 144

number of threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ti
m

e
 (

s
e

c
)

CHUNK=4

CHUNK=8

CHUNK=12

CHUNK=16

Figure 3.20: GFS radiation runtimes with various SOA sizes on Haswell. This plot
shows runtimes of different thread-local SOA to help determine the appropriate choice
for the chunk size. MPI was used for parallelism across NUMA nodes and OpenMP
for shared parallelism within NUMA nodes. The default static scheduler is used in this
experiment. This experiment scales up to 64 threads. Using hyper-threads does not improve
performance.

0 20 40 60 80 100 120 140

 number of threads

0

5

10

15

20

25

S
p

e
e
d

-u
p
s

Static

Dynamic

Figure 3.21: GFS radiation speed-ups on KNL. These plots show thread scalability perfor-
mance with static and dynamic scheduling on KNL. The maximum performance is observed
at about 64 threads. The performance does not change much between 32 and 64 threads
because there is not enough work per thread to improve scalability. After 64 threads, the
performance decreases because the hyper-threading does not help increase performance.

54

0 50 100 150

 number of threads

1

2

3

4

5

6

7

8

9

10

S
p
e

e
d
-u

p
s

Static

Dynamic

Figure 3.22: GFS radiation speed-ups on Haswell. These plots show thread scalability
performance with static and dynamic scheduling on Haswell. OpenMP is used for
parallelism within and across NUMA nodes. The best performance is observed at 16
threads. After 16 threads, the performance decreases because OpenMP is not suitable for
parallelism across NUMA nodes.

0 50 100 150

 number of threads

0

5

10

15

20

25

30

S
p
e

e
d
-u

p
s

Static

Dynamic

Figure 3.23: GFS radiation speed-ups on Haswell with MPI across nodes. These plots
show thread scalability performance with static and dynamic scheduling on Haswell. MPI
and OpenMP are used for parallelism across and within NUMA nodes, respectively. This
optimized code scales up to 72 threads. After the 72 threads the performance decreases.
This indicates that one thread per core enables a better utilization of the core’s resources
than two threads per core.

55

0 20 40 60 80 100 120 140

 number of threads

0

5

10

15

20

25

S
p
e

e
d
-u

p
s

Cache

Flat

Figure 3.24: GFS radiation speed-ups on KNL. These plots show thread scalability per-
formance with flat and cache configurations on KNL. Both flat and cache configurations
scale up to 64 threads. The performance decreases after 64 threads because hyper-threads
do not improve utilization of core’s resources. Because the test case fit in MCDRAM, the
flat configuration enables a slightly better memory usage, which is translated into better
performance.

Table 3.1: Results from Code 1 compared to transpose approach and original code. The
maximum speed-ups for transpose and thread-local SOA are at 128 threads. At 128 threads,
each core uses two hyper-threads per core. The hyper-threads share the same instruction
pipeline, which helps improve utilization of cores. Sharing resources can contribute to
reducing core utilization, as observed at 256 threads. Hyper-threading performance is
dependent on how the shared resources are managed between hyper-threads.

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 2.06 3.3 6 3.33 1 0.61 0.62
2 1.59 1.97 1.74 1.30 1.05 1.18
4 0.91 1.44 0.84 2.26 1.43 2.45
8 0.67 0.5 0.41 3.07 4.12 5.02
16 0.55 0.26 0.18 3.75 7.92 11.44
32 0.54 0.17 0.15 3.81 12.12 13.73
64 0.72 0.05 0.11 2.86 41.20 18.73

128 0.87 0.05 0.06 2.37 41.20 34.33
256 1.35 0.1 0.49 1.53 20.60 4.20

56

Table 3.2: Results from Code 0 compared to transpose approach and original code with
large array sizes. In this experiment, the maximum performance occurs at 63 threads. After
63 threads, hyper-threading is used and the resource per core is divide up between the
hyper-threads. This causes the performance to slow down.

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

0 33.82 29.53 75.45 1.00 1.15 0.45
1 26.98 19.44 45.7 1.25 1.74 0.74
3 15.54 13.47 23.37 2.18 2.51 1.45
7 10.9 5.09 7.44 3.10 6.64 4.55

15 8.86 2.98 5.96 3.82 11.35 5.67
31 8.93 2.61 1.72 3.79 12.96 19.66
63 10.97 0.95 1.39 3.08 35.60 24.33
127 16.14 1.17 5.93 2.10 28.91 5.70
255 22.27 2.17 9.57 1.52 15.59 3.53

Table 3.3: Results from Code 2 compared to transpose approach and original code. The
best performance is observed at 64 threads for the thread-local SOA. At 128 and 256 threads,
each core uses about two and four threads per core. The core resources, such as L1 cache,
are shared between the hyper-threads, which causes the performance to slow down for
large core counts.

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 2.06 3.36 1.99 1.00 0.61 1.04
2 1.59 1.97 1.07 1.30 1.05 1.93
4 0.91 1.44 0.53 2.26 1.43 3.89
8 0.67 0.5 0.14 3.07 4.12 14.71

16 0.55 0.26 0.07 3.75 7.92 29.43
32 0.54 0.17 0.02 3.81 12.12 103.00
64 0.72 0.05 0.06 2.86 41.20 34.33
128 0.87 0.05 0.27 2.37 41.20 7.63
256 1.35 0.1 0.04 1.53 20.60 51.50

57

Table 3.4: Results from Code 2 compared to transpose approach and original code with
large arrays. The peak performance is observed at 16 threads. In this case, the array
thread-local SOA do not fit in L2 cache. This leads to lower performance than the cases
where the thread-local SOA fit in cache.

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 264.71 194.94 159.98 1.00 1.36 1.65
2 119.93 120.69 113.15 2.21 2.19 2.34
4 98.89 61.57 57.08 2.68 4.30 4.64
8 54.17 25.57 34.25 4.89 10.35 7.73
16 30.11 16.3 22.83 8.79 16.24 11.59
32 16.87 13.51 34.23 15.69 19.59 7.73
64 13.81 13.15 29.72 19.17 20.13 8.91

128 15.74 6.56 38.25 16.82 40.35 6.92
256 23.33 13.24 45.51 11.35 19.99 5.82

Table 3.5: Thread-local SOA and Transpose approach applied to nisfl_rain_plm6. This
shows runtimes of transpose and thread-local SOA on a subroutine in WSM6.

Threads Transpose (ms) SOA (ms)
1 250 450
2 127 220
4 74 112
8 37 60
16 24 31.2
32 20 16.3
64 19 10.1
128 17 8.9
256 18 12.3

Table 3.6: SOA approach applied to WSM6 with flat and cache modes.

Threads cache (ms) flat (ms)
1 1079.3 1084.32
2 570.51 574.92
4 325.86 324.91
8 171.67 167.61

16 93.3 90.32
32 53.66 50.21
64 35.4 31.66
128 45.39 23.45
256 65.59 24.2

58

Table 3.7: Performance summary. This table shows the best performance results for the
different physics codes used on KNL and Haswell. On KNL the chunk size is set to 8 and
on Haswell it is set 32.

physics schemes WSM6 GFS physics GFS radiation

KNL

best time (ms) 23.0 4.8 190.0
speed-up 70 27 23
threads 64 128 64

configuration dynamic+flat static+flat dynamic+flat

Haswell

best time (ms) 17.0 2.0 29.0
speed-up 26 18 30
threads 32 72 72

configuration dynamic static dynamic

CHAPTER 4

ADAPTIVE HIGH-ORDER DATA-BOUNDED

AND POSITIVITY-PRESERVING

INTERPOLATION

4.1 Introduction
A number of key scientific computing applications that are based upon high-order

methods over tensor-product grid constructions, such as numerical weather prediction

(NWP) and combustion simulations, require property-preserving interpolation. In the afore-

mentioned application areas, property preservation often manifests itself as a requirement

for either data boundedness or positivity preservation. The particular application moti-

vating this work is the Navy Environmental Prediction System Utilizing a Nonhydrostatic

Engine (NEPTUNE). NEPTUNE is a next-generation global NWP system being developed

at the Naval Research Laboratory (NRL) and the Naval Postgraduate School (NPS) [49].

NEPTUNE makes use of the Nonhydrostatic Unified Model of the Atmosphere (NUMA) [34]

three-dimensional spectral element dynamical core, but currently uses physics routines that

were developed assuming uniform grid spacing on the elements. At least two options are

available for combining these two NWP building blocks: either (1) evaluate the physics

routines at the (nonuniformly spaced) quadrature points on the spectral element with

acknowledgment that a modeling “crime" has been committed; or (2) interpolate between

the grid (quadrature points) on which the dynamics is calculated to a grid on which the

physics is calculated (and back), and hence incur an interpolation error. Since there is a

long-standing history of using the validated physics routines designed for use on uniformly

spaced grids, there is a strong incentive to apply the second option. However, interpolating

density or other key physical quantities without accounting for property preservation may

lead to negative values that are nonphysical and result in inaccurate representations and/or

60

interpretations of the physical data. For example, Skamrock et al. [97] demonstrated that

not preserving positivity may lead to a positive bias in a predicted physical quantity of

interest (e.g., prediction of moisture). The second option mentioned above of moving

information from nonuniform to uniform and back via ENO-type interpolation schemes,

explored in [77] in the context of high-order methods for numerical weather prediction, is

the main motivation for this work.

Property-preserving interpolation is straightforward when used in the context of low-

order numerical simulation methods. High order property-preserving interpolation is,

however, nontrivial, especially when the interpolation points are not uniformly spaced.

In this chapter, we demonstrate that it is possible to adaptively construct high-order

interpolation methods over unevenly spaced tensor product grids in a way that ensures

either data boundedness or positivity preservation (within user-supplied bounds). The

algorithm we have developed comes with theoretical estimates, presented herein, that

provide sufficient conditions for data boundedness and positivity preservation.

4.1.1 Previous Work

In this section, we provide an overview of various numerical approaches to data

boundedness and positivity preservation. This overview is not meant to be exhaustive,

but instead to summarize the various ways by which researchers have attempted to tackle

this challenging problem. Introduced by Harten et al. [39], Essentially Non-Oscillatory

(ENO) schemes were developed to solve problems with sharp gradients and discontinuities

while achieving high-order accuracy in both smooth and nonsmooth regions. As with many

finite-difference-based methods, the backbone of these schemes is interpolation methods.

In the context of this chapter, which is to propose ENO-like interpolation schemes that

are property preserving, we briefly review ENO methods. In the context of finite volume

schemes, Fjordholm et al. [29] demonstrated that ENO schemes are stable, in the sense that

the jump of the reconstructed value at each cell interface has the same sign as the jump in

the underlying cell average. Building on the work in [99] and [29], Fjordholm et al. [28]

developed a high-order entropy stable ENO scheme for conservation laws. This approach

consists of using entropy conservative flux based on [99], adding a numerical diffusion to

obtain a stable scheme, and obtaining the high-order accuracy via ENO reconstruction.

61

Harten [37], [38] developed an ENO scheme for subcell resolution in the cases where

a discontinuity lies inside a given cell. Weighted Essentially Non-Oscillatory (WENO)

schemes were later proposed by Liu et al. [62] to address some of the shortcomings of the

ENO schemes. Shu [94] provided a comprehensive overview of different applications and

problems in which ENO and WENO schemes are used. Shen et al. [91] proposed an adaptive

mesh refinement method (AMR) based on WENO schemes for hyperbolic conservation

laws. In this approach, high-order WENO interpolation is used for the prolongation. A

generalization of the AMR-WENO in [103] was used to solve a multidimension detonation

problem.

Another body of literature sometimes considered around property-preserving methods

is computer-aided design and visualization. Although different from the finite difference

(stencil) methods that we seek, we briefly review this literature. In this literature, “shape"

preservation is often used to describe the preservation of properties like monotonicity and

convexity, and may include positivity and data boundedness [15] and [13]. We only briefly

review this literature as the additional smoothness constraints at the stencil points enforced

by these methods introduce a level of complexity not needed for our application domain.

Our focus is finite difference ENO-type schemes. Perhaps the most widely used approach

for preserving monotonicity in many applications is PCHIP by Fritch and Carlson [33], who

derived necessary and sufficient conditions for monotone cubic interpolation, and provided

an algorithm for building a piecewise cubic approximation from data. This algorithm

calculates the values of the first derivatives at the nodes based on the necessary and

sufficient conditions. Lux et al. [63] proposed a monotone quintic spline (MQS) algorithm

that relies on the results of Heß and Schmidt [89] and Ulrich and Watson [102]. This method

is dependent on the value of the first and second derivatives at the node. The algorithm

uses the sufficient conditions from [89] to check for monotonicity. When the conditions are

not met, the method in [102] is used to modify the values of the first and second derivatives

to ensure monotonicity. The work of Dougherty et al. [21] extends these ideas to preserving

convexity and concavity and also to quintic splines.

A second area in which one often finds the development of methods for property preser-

vation is numerical methods for partial differential equations (PDEs). Various methods have

been developed to enable, for example, positivity-preserving approximations. To preserve

62

positivity in discontinuous Galerkin (dG) schemes, Zhang et al. [108], [111], [109] introduced

a linear rescaling of polynomials that ensures that the evaluation of the polynomial at the

quadrature points remains positive. In addition, the linear rescaling of the polynomial

conserves mass. Light et al. [59] developed a similar approach with a more involved linear

polynomial rescaling that preserves positivity at the quadrature nodes and conserves mass.

The polynomial rescaling does not address the case of interpolating between different

meshes, which is the primary focus of this work. Harten et al. [39] developed an Essentially

Non-Oscillatory (ENO) piecewise polynomial reconstruction that enables interpolation

between different meshes. The ENO method adaptively chooses stencil points for the

interpolation and helps remove Gibbs-like effects but does not guarantee positivity. As

previously mentioned, extensions of these ideas to a Weighted ENO (WENO) combination

of these schemes have been proposed by Zhang et al. [110] and others. Finally, Zala et

al. [106], [107] developed a nonlinear filtering operator for property-preservation by casting

it as an optimization problem in which the desired “structures" (properties) are encoded as

constraints.

The data-bounded interpolation (DBI) method of Berzins [5] builds on three ideas

from these ENO and WENO algorithms in the area of the numerical solution of advection

equations: adaptively selecting stencils as in the ENO methods to reduce oscillations [39];

altering the polynomial approximation so that any discontinuities in higher derivatives

are removed [38]; and altering the polynomial degree and/or terms so that the ratio of

successive divided differences in the series is strictly limited to enforce the boundedness

of the interpolation [5]. The work in [3] extends the earlier proof to 1D unevenly spaced

points where, in addition to the interval points, all the remaining points used to build the

interpolant are to the right or left of the interval of interest. In addition, the work in [3]

recognizes that switching off data boundedness when extrema are present is important

for maintaining accuracy. Positivity is important in interpolation cases in which extrema

lie between data points and where the data-bounded interpolant will “clip" the function,

resulting in a loss of accuracy. A novel feature of the approach addresses the fact that

preserving positivity alone may still produce undesirable oscillations that lead to an

inaccurate representation and/or interpretation of the underlying data. These oscillations

are removed here by imposing strict user-supplied bounds on the positive interpolants as a

63

way of limiting oscillations and correspondingly improving accuracy.

This work extends the ideas in [5] by addressing data boundedness and positivity (within

user-supplied bounds) in the same framework and by allowing meshes of unevenly spaced

points. The DBI method presented in this chapter introduces more relaxed conditions for

data-boundedness which give greater accuracy than the conditions used in [5]. Thus,

these new proofs provide the previously missing theoretical underpinning for complex

interpolation cases such as those like the NWP case described above. The new approach

used here both generalizes the DBI method to unevenly spaced structured meshes and

extends the approach to preserve positivity (positivity-preserving interpolation (PPI)) rather

than the more restrictive data-bounded approach in [5] and [3].

4.2 Background
The approach introduced in this work relies on the Newton polynomial [56, 101]

representation to build interpolants that are positive or bounded by the data values. The

ability to adaptively select the divided differences or the stencil as in ENO methods [39] is

central to the data-bounded and positivity-preserving interpolation approaches presented

in this work.

Consider a 1D mesh defined as follows:

M = {xi−J , · · · , xi, xi+1, · · · , xi+L}, (4.1)

where xi−J < · · · < xi < xi+1 < · · · < xi+L, and {ui−J , · · · , ui+L} is the set of data values

associated with the mesh points. In the definition of the mesh M, the subscripts J, L,

i,∈ N0 = N ∪ {0}, and xk, uk ∈ R for i − J ≤ k ≤ i + L. For the given mesh M, the

Newton divided differences are recursively defined as follows:{
U[xi] = ui

U[xi, · · · , xi+j] =
U[xi+1,··· ,xi+j]−U[xi ,··· ,xi+j−1]

xi+j−xi
.

(4.2)

The ENO procedure starts by setting the initial stencil V0:

V0 = {xi, xi+1} = {xl
0, xr

0}. (4.3)

The stencil V0 is expanded by successively appending a point to the right or left of Vj to

form Vj+1. The point appended is selected by picking the smallest divided difference at

each step.

64

Given Vj, let xl
j and xr

j be the leftmost and rightmost stencil points, respectively. In

addition, let xp and xq be the stencil points immediately to the left and right of Vj. The

stencil is expanded from Vj to Vj+1 based on the following rules:

• if |U[xp, xl
j, · · · , xr

j]| < |U[xl
j, · · · , xr

j , xq]| then

Vj+1 = {xp,Vj} with xl
j+1 = xp and xr

j+1 = xr
j .

• otherwise

Vj+1 = {Vj, xq} with xl
j+1 = xl

j and xr
j+1 = xq.

Let

Ii = [xi, xi+1], for 0 ≤ i ≤ n− 1. (4.4)

Once the final stencil Vn−1 is obtained, the interpolant of degree n defined on Ii can be

written as

Un(x) = ui + U[xl
0, xr

0]π0,i(x) + U[xl
1, · · · , xr

1]π1,i(x) + · · ·+ U[xl
n−1, · · · , xr

n−1]πn−1,i(x),

(4.5)

where π0,i(x) = (x− xi), π1,i(x) = (x− xi)(x− xe
1), · · · are the Newton basis functions. xe

j

is the point added to expand the stencil Vj−2 to Vj−1 and can be explicitly expressed as
xe

0 = xi,
xe

1 = xi+1,
xe

j = Vj−1 \ Vj−2, 2 ≤ j ≤ n− 1.
(4.6)

The first step in developing the DBI and PPI methods consists of reorganizing the terms in

the polynomial Un(x) defined in Equation (6.3) to expose the features used to enforce data

boundedness and positivity. The reorganization begins by defining λj as follows:

λj =

1, j = 0
U[xl

j ,··· ,xr
j]

U[xl
j−1,··· ,xr

j−1]
(xr

j − xl
j), 1 ≤ j ≤ n− 1.

(4.7)

Expressing Un(x) in terms of λj, for j > 0 gives

Un(x) = ui + (ui+1 − ui)
x− xe

0

xr
0 − xl

0

(
1 +

(x− xe
1)

(xr
1 − xl

1)
λ1(

1 +
(x− xe

2)

(xr
2 − xl

2)
λ2

(
· · · λn−2

(
1 +

(x− xe
n−1)

(xr
n−1 − xl

n−1)
λn−1

)
· · ·
)

.
(4.8)

For x ∈ Ii, s, tj, and dj are defined as follows:

0 ≤ s =
x− xi

xi+1 − xi
=

x− xe
0

xr
0 − xl

0
≤ 1, (4.9)

65

tj = −
xi − xe

j

xr
0 − xl

0
, and (4.10)

0 ≤ dj =
xr

j − xl
j

xr
0 − xl

0
. (4.11)

s and dj are defined such that s ∈ [0, 1] and dj ≥ 0. Expressing
x−xe

j

xr
j−xl

j
in terms of s, tj, and dj

gives

x− xe
j

xr
j − xl

j
=

x−xi
xr

0−xl
0
+

xi−xe
j

xr
0−xl

0

xr
j−xl

j

xr
0−xl

0

=
s− tj

dj
. (4.12)

Using the results from Equation (4.12), the polynomial Un(x) as expressed in Equation (4.8)

can be written as

Un(x) = ui + (ui+1 − ui)Sn(x) (4.13)

with Sn(x) defined as

Sn(x) = s
(

1 +
(s− 1)

d1
λ1

(
1 +

(s− t2)

d2
λ2

(
· · ·
(

1 +
(s− tn−1)

dn−1
λn−1

)
· · ·
)

. (4.14)

For future use below, Sn(x) can be compactly represented by introducing δj defined as
δn = 1
δj = 1 + s−tj

dj
λjδj+1 2 ≤ j ≤ n− 1

δ1 = s + s(s−1)
d1

δ2 = Sn(x).

(4.15)

Together, Un(x) and Sn(x) in Equations (6.6) and (6.7) are reorganizations needed to con-

struct the DBI and PPI algorithm. The general approach is to first bound the quadratic term

in Sn(x) and then to increase the order to cubic, quartic, and higher order polynomials. This

iterative procedure is used to define computational bounds on the values of λ̄j = ∏
j
k=0 λk.

λ̄j can be explicitly written as

λ̄j = λjλ̄j−1 =
j

∏
k=1

λk =

1 j = 0,
U[xl

j ,··· ,xr
j]

U[xl
0,xr

0]
∏

j
k=1(xr

k − xl
k), 1 ≤ j ≤ n− 1.

(4.16)

4.3 Data-Bounded Interpolation
The DBI method builds on three ideas from algorithms in the area of the numerical

solution of advection equations: adaptively selecting stencils as in the ENO methods to

reduce oscillations [39]; altering the polynomial approximation so that any discontinuities

in higher derivatives are removed [38]; and altering the polynomial degree and/or terms

66

so that the ratio of successive divided differences in the series is strictly limited to enforce

the boundedness of the interpolation [5]. In the DBI method introduced here, more relaxed

bounds on λ̄j defined in Equation (6.11) are derived, which gives greater accuracy than

those in [5]. The work in [5] requires that the absolute values of λ̄j decrease as more

terms are added (|λ̄j| > |λ̄j+1|) and |λ̄j| < 1, which are more restrictive than the bounds in

Equation (4.27). For a given set of mesh points and the data values associated with those

mesh points, we approximate the data with a C0 continuous function that is built by fitting

a polynomial in each subinterval Ii. The fitted polynomial is constructed in such a way

that it is bounded by ui and ui+1. Given that this work concerns itself with locally fitting

a polynomial in the interval Ii, let us assume, for the remaining parts of this chapter, that

x ∈ Ii and that building the interpolant always starts with the stencil V0 = {xi, xi+1}.

Let Ul(x) be the limited polynomial defined as in Equation (6.6) and bounded by ui and

ui+1. For the polynomial Ul(x) to be bounded by ui and ui+1, it follows that for x ∈ Ii

0 ≤ Sn(x) ≤ 1, (4.17)

with Sn(x) defined in Equation (6.7). The reconstruction procedure begins by considering

the linear and quadratic terms from Sn(x) in Equation (6.7), and imposing the following

bounds:

0 ≤ s
(
1 +

s− 1
d1

λ̄1
)
≤ 1. (4.18)

As s ∈ [0, 1] and isolating λ̄1 in Equation (4.18) gives

− d1

s
≤ λ̄1 ≤

d1

1− s
, and (4.19)

− d1 ≤ λ̄1 ≤ d1. (4.20)

The bounds from Equation (4.20) are extended to bound the cubic form by requiring that

what multiplies λ̄1 must fit into the inequality in Equation (4.20). Thus, for the cubic case

Equation (4.20) becomes

− d1 ≤ λ̄1
(
1 +

(s− t2)

d2
λ2
)
≤ d1. (4.21)

Subtracting λ̄1 from this inequality gives

− d1 − λ̄1 ≤
(s− t2)

d2
λ̄2 ≤ d1 − λ̄1. (4.22)

67

In the case when t2 is negative, s− t2 has a maximum value at s = 1 and a minimum value

at s = 0. λ̄2 is then bounded by

d2

(1− t2)
(−d1 − λ̄1

)
≤ λ̄2 ≤ (d1 − λ̄1)

d2

(1− t2)
. (4.23)

When t2 positive, 1
1−t2

is substituted by 1
−t2

and the inequalities ≤ with ≥ and vice versa

are swapped. In the quartic case, we require that

d2

1− t2
(−d1 − λ̄1) ≤ λ̄2

(
1 +

(s− t3)

d3
λ3

)
≤ d2

1− t2
(d1 − λ̄1). (4.24)

If we assume that t3 is negative

d3

1− t3

(
d2

1− t2
(−d1 − λ̄1

)
− λ̄2

)
≤ λ̄3 ≤

d3

1− t3

(
d2

1− t2
(d1 − λ̄1)− λ̄2

)
. (4.25)

This reconstruction procedure can be continued to higher orders provided that care is taken

to correctly manage the impact of the signs of tj. For the boundary and nearby boundary

intervals, fewer choices are available, and the final stencil is biased toward the interior

of the domain because there are no points to choose from beyond the boundaries. In the

process of constructing Vn−1, when the left or right boundary are reached, the remaining

mesh points are obtained from the side that is toward the interior of the domain.

For a more formal and complete expression of this recursive procedure, the bounds on

λ̄j can be defined as follows:

B−j =


−d1 j = 0

(B−j−1 − λ̄j−1)
dj

1−tj
, tj ∈ (−∞, 0] j > 1

(B+
j−1 − λ̄j−1)

dj
−tj

, tj ∈ (0,+∞) j > 1,

(4.26a)

and

B+
j =


d1, j = 1

(B+
j−1 − λ̄j−1)

dj
1−tj

, tj ∈ (−∞, 0] j > 1

(B−j−1 − λ̄j−1)
dj
−tj

, tj ∈ (0,+∞) j > 1.

(4.26b)

The sign of tj is incorporated into the definitions of B−j and B+
j in Equations (4.26a) and

(4.26b), respectively. The sufficient conditions for data boundedness such as Equations

(4.20), (4.23) and (4.25) can now be written as

B−j ≤ λ̄j ≤ B+
j , for j ≥ 0. (4.27)

68

Lemma 4.3.1. Let us assume that for x ∈ Ii, B−j and B+
j are defined as in Equations (4.26b) and

(4.26a), respectively. In addition, let δj be defined as in Equation (4.15). If for x ∈ Ii, B−j is negative,

B+
j is positive, and B−j ≤ λ̄jδj+1 ≤ B+

j , then

B−j−1 ≤ λ̄j−1δj ≤ B+
j−1.

Proof. The proof is split into two cases that take into consideration the different possible

values of tj, and in each case we consider the left and right side of the inequality separately.

(I) tj ∈ (−∞, 0]

Let us start with the left side of the inequality (i.e., B−j−1 ≤ λ̄j−1δj). Noting that 1−tj
s−tj
≥ 1

for s ∈ [0, 1], and using B−j ≤ 0 and B−j ≤ λ̄jδj+1, we have

(B−j−1 − λ̄j−1)
dj

s− tj
=

1− tj

s− tj
B−j

≤B−j

≤λ̄jδj+1.

(4.28)

Isolating B−j−1 in Equation (4.28) and using Equations (4.15) and (6.11) lead to

B−j−1 ≤λ̄j−1 +
s− tj

dj
λ̄jδj+1

≤λ̄j−1

(
1 +

s− tj

dj
λjδj+1

)
=λ̄j−1δj.

(4.29)

Now, let us focus on the right side of the inequality (i.e., B+
j−1 ≥ λ̄j−1δj) Again,

observing that 1−tj
s−tj
≥ 1 for s ∈ [0, 1] and using B+

j ≥ 0 and B+
j ≥ λ̄jδj+1 yields

(B+
j−1 − λ̄j−1)

dj

s− tj
=

1− tj

s− tj
B+

j

≥B+
j

≥λ̄jδj+1.

(4.30)

Isolating B+
j−1 in Equation (4.30) yields

B+
j−1 ≥λ̄j−1 +

s− tj

dj
λ̄jδj+1

≥λ̄j−1

(
1 +

s− tj

dj
λjδj+1

)
=λ̄j−1δj.

(4.31)

69

(II) tj ∈ (0,+∞)

Let us consider the left side of the inequality (i.e., B−j−1 ≤ λ̄j−1δj). Multiplying B−j by
−tj
s−tj

yields

(B+
j−1 − λ̄j−1)

dj

s− tj
=
−tj

s− tj
B−j . (4.32)

Given that B−j ≤ 0 and B−j ≤ λ̄jδj+1, and noting that −tj
s−tj
≥ 1 for s ∈ [0, 1], the right

side of Equation (4.32) can be bounded by B−j to give

(B+
j−1 − λ̄j−1)

dj

s− tj
≤B−j

≤λ̄jδj+1.
(4.33)

Isolating B+
j−1 in Equation (4.33) leads to

B+
j−1 ≥λ̄j−1 +

s− tj

dj
λ̄jδj+1

≥λ̄j−1

(
1 +

s− tj

dj
λjδj+1

)
=λ̄j−1δj.

(4.34)

For the right side of the inequality (i.e., B−j−1 ≤ λ̄j−1δj),
−tj
s−tj
≥ 1 for s ∈ [0, 1], and

using B−j ≤ 0 and B−j ≤ λ̄jδj+1 yields

(B−j−1 − λ̄j−1)
dj

s− tj
=
−tj

s− tj
B+

j

≥B−j

≥λ̄jδj+1.

(4.35)

Isolating B−j−1 in Equation (4.35) yields

B−j−1 ≤λ̄j−1 +
s− tj

dj
λ̄jδj+1

≤λ̄j−1

(
1 +

s− tj

dj
λjδj+1

)
=λ̄j−1δj.

(4.36)

The results from Equations (4.29), (4.31), (4.29), and (4.31) can be summarized as

B−j−1 ≤ λ̄j−1δj ≤ B+
j−1.

70

Theorem 4.3.2. Assuming that for x ∈ Ii, the polynomial Sn(x) of degree n is built starting from

the stencil V0 = {xi, xi+1}, and then by successively appending mesh points from the left and/or

right of the interval Ii to obtain the final stencil Vn−1. The construction of Vn−1 does not require the

points to be added in a symmetric fashion alternating from left to right. If for x ∈ Ii, B−j defined in

Equation (4.26a) is negative, B+
j defined in Equation (4.26b) is positive, and B−j ≤ λ̄j ≤ B+

j then

for x ∈ Ii

0 ≤ SN(x) ≤ 1.

Proof. This proof builds on the results from Lemma 4.3.1 and starts by using B−j ≤ λ̄j ≤ B+
j

to bound λ̄n−1 as follows:

B−n−1 ≤ λ̄n−1 ≤ B+
n−1. (4.37)

By Lemma 4.3.1, Equation (4.37) then leads to

B−n−2 ≤ λ̄n−2δn−1 ≤ B+
n−2. (4.38)

Successively using the results from Lemma 4.3.1 to bound λ̄n−2δn−1, λ̄n−3δn−2, · · · , λ̄1δ2,

yields

B−1 ≤ λ̄1δ2 ≤ B+
1 , (4.39)

where δj is defined in Equation (4.15). The results from Equation (4.39) may now be used to

derive the target bounds (i.e., 0 ≤ SN(x) ≤ 1). Considering the left side of Equation (4.39)

(i.e., B−1 ≤ λ̄1δ2), and noting that (s−1)
s(s−1) ≥ 1, gives

− (s− 1)
s(s− 1)

d1 =B−1
(s− 1)
s(s− 1)

≤B−1

≤λ̄1δ2.

(4.40)

Isolating δ1 from Equation (4.40) gives

1 ≥ s +
s(1− s)

d1
λ̄1δ2 = δ1 = Sn(x). (4.41)

Considering the right side of Equation (4.39) (i.e., B+
1 ≥ λ̄1δ2), and noting that (−s)

s(s−1) ≥ 1,

gives
(−s)

s(s− 1)
d1 =B+

1
(−s)

s(s− 1)
≥B+

1

≥λ̄1δ2.

(4.42)

71

Isolating δ1 from Equation (4.42) gives

0 ≤ s +
s(1− s)

d1
λ̄1δ2 = δ1 = Sn(x). (4.43)

The proof concludes by combining the results from Equations (4.41) and (4.43) to obtain

0 ≤ s +
s(1− s)

d1
λ̄1δ2 = δ1 = Sn(x) ≤ 1. (4.44)

4.4 Constrained Positivity-Preserving Interpolation
In many cases, it is sufficient to preserve positivity through interpolation and not to

enforce the stricter requirement of data boundedness. As mentioned in the introduction,

the case of unknown extrema between data points is an important example. Let Up(x) be a

positive polynomial of degree n defined over the interval Ii as in Equation (6.6). For x ∈ Ii,

the polynomial Up(x) is allowed to grow beyond ui and ui+1 but must remain positive. For

the polynomial to be positive, one requires that

Up(x) ≥ 0. (4.45)

However, in practice, enforcing positivity alone may still result in large oscillations and

in extrema that degrade the approximation. We observe this behavior because enforcing

positivity alone does not restrict how much the polynomial is allowed to grow beyond the

data values. In addition to enforcing positivity, it is important to remove the undesirable

oscillations and extrema as much as possible. Let us define umin and umax as

umin = min(ui, ui+1)− ∆min, (4.46)

and

umax = max(ui, ui+1) + ∆max, (4.47)

where ∆min and ∆max are user-defined parameters used to bound the positive polynomial

Up(x). To allow the polynomial to grow beyond the data values but not produce extrema

that are too large, we bound Up(x) as follows:

umin ≤ Up(x) = ui + (ui+1 − ui)Sn(x) ≤ umax. (4.48)

The interpolant Up(x) is now positive and bounded by umin and umax. Equation (6.12) is

equivalent to bounding Sn(x) as follows:

m` ≤ Sn(x) ≤ mr, (4.49)

72

where the factors m` and mr are expressed as

(I) : ui+1 > ui

m` = min
(

0,
umin − ui

ui+1 − ui

)
, and mr = max

(
1,

umax − ui

ui+1 − ui

)
(4.50)

(II) : ui+1 < ui

m` = min
(

0,
umax − ui

ui+1 − ui

)
, and mr = max

(
1,

umin − ui

ui+1 − ui

)
. (4.51)

We note that if we set ∆min = 0 and ∆max = 0, we recover Equation (4.45).

The PPI method is constructed by relaxing the bounds imposed on λ̄1 as follows:(
− 4(mr − 1)− 1

)
d1 ≤ λ̄1 ≤

(
− 4m` + 1

)
d1. (4.52)

Let us demonstrate how the PPI method is constructed in the case of a quadratic interpolant.

Starting from the DBI results in the Theorem 4.3.2, it follows that

0 ≤ s +
s(s− 1)

d1
λ̄1 ≤ 1. (4.53)

Relaxing the left and right bounds in Equation (4.53) by m` and mr, respectively, leads to

m` ≤ s +
s(s− 1)

d1
λ̄1 ≤ mr. (4.54)

Isolating λ̄1 from Equation (4.54) leads to

mr − s
s(s− 1)

d1 ≤ λ̄1 ≤
m` − s

s(s− 1)
d1. (4.55)

Equation (4.55) can be reorganized to obtain(
mr − 1

s(s− 1)
+

1− s
s(s− 1)

)
d1 ≤ λ̄1 ≤

(
m`

s(s− 1)
− s

s(s− 1)

)
d1 (4.56)

and then (
mr − 1

s(s− 1)
− 1

s

)
d1 ≤ λ̄1 ≤

(
m`

s(s− 1)
− 1

(s− 1)

)
d1. (4.57)

Noting that 1
s(s−1) ≤ −4, 1

s ≥ 1, and 1
s−1 ≤ −1, we obtain(

− 4(mr − 1)− 1
)

d1 ≤ λ̄1 ≤
(
− 4m` + 1

)
d1. (4.58)

Once the bounds on λ̄1 and the quadratic interpolant are determined, the extension to cubic,

quartic, and higher order interpolants follows the same reconstruction procedure used

73

in the DBI method and outlined from Equation (4.21) to (4.25). As in the case of the DBI

method, fewer choices are available for Vn−1 at the boundary and nearby boundary intervals

because there are no points to choose from beyond the boundaries. When a boundary is

reached during the process of constructing the stencil Vn−1, the remaining mesh points

are picked from the side that is toward the interior of the domain. The final stencils at the

boundary and nearby the boundary intervals are biased toward the interior of the domain.

The recursive expression for the bounds on λ̄j for the PPI method becomes

B−j =


(−4(mr − 1)− 1)d1 j = 1

(B−j−1 − λ̄j−1)
dj

1−tj
, if tj ∈ (−∞, 0] j > 1

(B+
j−1 − λ̄j−1)

dj
−tj

, if tj ∈ (0, 1) ∪ (1,+∞) j > 1,

(4.59a)

and

B+
j =


(−4m` + 1)d1, j = 1

(B+
j−1 − λ̄j−1)

dj
1−tj

, if tj ∈ (−∞, 0] j > 1

(B−j−1 − λ̄j−1)
dj
−tj

, if tj ∈ (0,+∞) j > 1.

(4.59b)

The difference between the DBI and PPI methods is highlighted in how the bounds B−1 and

B+
1 are calculated. More precisely, B−1 and B+

1 are defined as −d1 and d1 for the DBI method,

whereas for the PPI method, they are defined as (−4(mr − 1)− 1)d1 and (−4m` + 1)d1,

respectively. In addition, the DBI method can be recovered from the PPI methods by setting

m` = 0 and mr = 1. For example, in the case of the right boundary Equations (4.20) and

(4.58) can be written as

− d1 ≤ λ̄1 =
U[xN−2, xN−1, xN]

U[xN−1, xN]
(xN − xN−1) ≤ d1, and (4.60)(

− 4(mr − 1)− 1
)

d1 ≤ λ̄1 =
U[xN−2, xN−1, xN]

U[xN−1, xN]
(xN − xN−1) ≤

(
− 4m` + 1

)
d1, (4.61)

where xN is the mesh point at the right boundary, m` ≤ 0, mr ≥ 1, and

d1 =
xN − xN−2

xN − xN−1
. (4.62)

From Equations (6.17) and (6.18), mr = 18.94 and m` = −18.94 for the right boundary

of the Runge example in Fig. 4.1. Equations (4.60) and (4.61) show the bounds on λ̄1

for data boundedness and positivity, respectively. Given that (−4(mr − 1)− 1) ≤ 0 and

(−4m` + 1) ≥ 1, the bounds for positivity are more relaxed than data boundedness. Thus,

enabling the use of higher degree polynomials for the PPI method than for the DBI method.

74

Theorem 4.4.1. Let us assume that for x ∈ Ii, the polynomials Un(x) and Sn(x) of degree n are

defined as in Equations (6.6) and (6.7), respectively. Both polynomials are built starting from the

stencil V0 = {xi, xi+1}, and then by successively appending mesh points from the left and/or right

of the interval Ii to obtain the final stencil Vn−1. The construction of Vn−1 does not require the

points to be added in a symmetric fashion alternating from left to right. If for x ∈ Ii, B−j defined in

Equation (4.26a) is negative, B+
j defined in Equation (4.26b) is positive, and B−j ≤ λ̄j ≤ B+

j then

for x ∈ Ii

m` ≤ Sn(x) ≤ mr,

where m` and mr are provided in Equations (6.17) and (6.18).

Proof. As in Theorem 4.3.2, the proof begins by using the results from Lemma 4.3.1 and

the expression B−j ≤ λ̄j ≤ B+
j to bound λ̄n−2δn−1, λ̄n−3δn−2, · · · , λ̄1δ2 and so to obtain the

result

B−1 ≤ λ̄1δ2 ≤ B+
1 . (4.63)

Equation (4.63) is then used to derive the target bounds. Starting with the left side of the

inequality (i.e., B−1 ≤ λ̄1δ2) and noting that 1
s(s−1) ≤ −4 and − 1

s ≤ −1, yields

mr − s
s(s− 1)

d1 =

(
mr − 1

s(s− 1)
+

1− s
s(s− 1)

)
d1

=

(
mr − 1

s(s− 1)
− 1

s

)
d1

≤
(
− 4(mr − 1)− 1

)
d1

=B−1

≤λ̄1δ2.

(4.64)

Isolating mr, leads to the desired result

mr ≥ s +
s(s− 1)

d1
λ̄1δ2 = δ1 = Sn(x). (4.65)

Now, addressing the right side of the inequality (i.e., B+
1 ≥ λ̄1δ2) and noting that 1

s(s−1) ≤ −4

and − 1
s−1 ≥ 1, gives

75

m` − s
s(s− 1)

d1 =

(
m`

s(s− 1)
− s

s(s− 1)

)
d1

=

(
m`

s(s− 1)
− 1

(s− 1)

)
d1

≥
(
− 4m` + 1

)
d1

=B+
1

≥λ1δ2.

(4.66)

Isolating m` leads to the desired bound

m` ≤ s +
s(s− 1)

d1
λ̄1δ2 = δ1 = Sn(x). (4.67)

The proof is concluded by combining Equations (4.65) and (4.67) to obtain

m` ≤ s +
s(s− 1)

d1
λ̄1δ2 = δ1 = Sn(x) ≤ mr. (4.68)

At the boundary intervals, both the DBI and PPI methods construct the interpolants

using a left- or right-biased stencil. For the left boundary, the final stencil is built by

successively appending mesh points from the right side of the interval Ii. In the same

way, the final stencil for the right boundary interval is obtained by successively appending

the mesh points from the left side. For the nearby boundary intervals, the stencil points

selection process could reach the boundary before completing the final stencil. In such a

case, the remaining points are selected from the right if the left boundary is reached and

from the left is the right boundary is reached.

4.4.1 Hidden Local Extrema

The interval Ii may contain a hidden extremum when two of three divided differences

U[xi−1, xi], U[xi+1, xi] and U[xi+1, xi+2] of the neighboring intervals are of opposite signs.

In this case, the PCHIP and DBI algorithms truncate the extremum whereas the relaxed

nature of the PPI algorithm allows for a better approximation of the extremum. In [3],

when an extremum is detected, the ENO approach is used to construct the interpolant. The

ENO approach may fail to recover the extremum or result in oscillations that violate the

requirements for positivity and reduce the accuracy. The data-bounded method in [3] is

much more restrictive and does not address positivity. These limitations can be addressed

by using a bounded positive interpolant.

76

To simplify the notation, let us define σi−1, σi and σi+1 such that

σi−1 = U[xi−1, xi], σi = U[xi+1, xi], and σi+1 = U[xi+1, xi+2]. (4.69)

As in [3] and [90], we assume that there exists an extremum in Ii if

σi−1σi+1 < 0, or σi−1σi < 0. (4.70)

To address the cases with and without extremum, we choose the parameters ∆min and ∆max

according to

∆min =


∣∣ε1min

(
ui, ui+1

)∣∣ if σi−1σi+1 < 0 and σi−1 < 0
or σi−1σi+1 ≥ 0 and σi−1σi < 0

ε0
∣∣min

(
ui, ui+1

)∣∣ otherwise,

(4.71)

and

∆max =


ε1
∣∣max

(
ui, ui+1

)∣∣ if σi−1σi+1 < 0 and σi−1 > 0
or σi−1σi+1 ≥ 0 and σi−1σi < 0

ε0
∣∣max

(
ui, ui+1

)∣∣ otherwise.

(4.72)

The positive parameters ε0 and ε1 are introduced to adjust ∆min and ∆max when no extremum

is detected. In Equation (6.14), the interval Ii has a local maximum if σi−1σi+1 < 0 and

σi−1 < 0. Correspondingly, in Equation (6.15), the interval Ii has a local minimum if

σi−1σi+1 < 0 and σi−1 > 0. In both Equations (6.14) and 6.15, the type of extremum is

ambiguous if σi−1σi+1, and σi−1σi < 0. When an extremum is identified, ∆min and/or

∆max are chosen to be sufficiently large to allow the interpolant Up(x) to grow beyond

the data as needed to approximate the extremum without violating the requirement for

positivity. In the case where no extremum is identified, the parameter ε0 is used to adjust

∆min and/or ∆max to be sufficiently large to allow higher degree interpolants compared to

the DBI method, but sufficiently small to not allow for large oscillations that will degradate

the accuracy of the approximation.

In Fig. 4.1, we approximate the Runge function with N = 17 LGL points and different

values of ε0, and the target polynomial degree is set to d = 16 for each interval. For

ε0 > 0.01, the PPI method leads to oscillations, whereas for ε0 ≤ 0.01 the oscillations are

removed. Similar oscillations are seen when using high-order Chebyshev polynomials. The

cutoff for the positive parameter ε0 depends on the underlying function and the input data.

For the Runge example with N = 17 uniformly spaced points, the spurious oscillations

77

are removed for ε0 ≤ 0.05. With the same Runge example with N = 129 and d = 16,

the unconstrained approximation does not produce oscillations and ε0 can be set to any

value in [0, 1]. In the case of the smoothed Heaviside examples, setting ε0 = 0.05 with

N = 17 uniformly spaced points lead to large oscillations that degrade the approximations.

However, for ε0 ≤ 0.01 with N = 17, the oscillations are significantly reduced, and the

approximation improved, as shown in the bottom part of Fig. 4.1. Setting ε0 = 0.0 will

completely eliminate the oscillations. Overall, using ε0 ≤ 0.01 is sufficient to remove or

significantly reduce the oscillations and improve the approximation. For an interval Ii with

no extremum, as ε0 approaches zero and both ∆min and ∆max get smaller, the approximation

method becomes closer to the DBI approach. As for the DBI approach, the PPI method may

become restrictive for higher degree polynomial interpolants as ε0 approaches zero. This

approach is also further explored for a variety of practical applications [77].

The right part of Fig. 4.1 shows the interpolants used at the right boundaries in both the

Runge and smoothed Heaviside examples. At the right boundary of the Runge example,

the stencil {xN−12 · · · xN} is used to build the data-bounded interpolant and the stencil

{xN−16, · · · , xN} is used for the positive interpolant with ε0 = 1. As the positive parameter

ε0 gets smaller the upper and lower bounds for the interpolant gets tighter and converges

to the DBI bounds. The stencil used for both the DBI and PPI are the same for ε0 ≤ 0.01. At

the boundary intervals, the PPI method allows for higher degree interpolants compared to

the DBI method. However, these higher degree interpolants while positive may introduce

oscillations that can be removed using the parameter ε0. For ui = ui+1, m`, mr and Un(x) as

written in Equations (6.17), (6.18) and (6.6) are not defined. The PPI algorithm addresses

this limitation by rewriting Un(x) as

Un(x) = ui + U[xl
1, · · · , xr

1](xi+1 − xi)(xr
1 − xl

1)Sn(x), (4.73)

where Sn(x) is expressed as follows:

Sn(x) =
n−1

∑
j=1

s̄j. (4.74)

The summation starts at j = 1 because the linear term ui+1−ui
xi+1−xi

(x− xi) = 0. Let

w = U[xl
1, · · · , xr

1](xi+1 − xi)(xr
1 − xl

1). (4.75)

78

λ̄j in this context is defined as

λ̄j =
U[xl

j, · · · , xr
j]

w

j

∏
k=0

(xr
k − xl

k). (4.76)

For ui = ui+1, the parameters m` and mr are then defined according to

(I) : U[xl
1, · · · , xr

1] > 0

m` = min
(

0,
umin − ui

w

)
, and mr = max

(
1,

umax − ui

w

)
(4.77)

(II) : U[xl
1, · · · , xr

1] < 0

m` = min
(

0,
umax − ui

w

)
, and mr = max

(
1,

umin − ui

w

)
. (4.78)

For U[xi, xi+1] = U[xl
1, · · · , xr

1] = 0, the data ui−1, ui, ui+1, and ui+2 have the same value

(ui−1 = ui = ui+1 = ui+2). In this case, the algorithm approximates the function in the

interval Ii with a linear interpolant. For both cases U[xl
1, · · · , xr

1] < 0 and U[xl
1, · · · , xr

1] > 0,

B+
j and B−j remain defined as previously in Equations (6.19b) and (6.19a). Lemma 4.3.1 and

Theorem 4.4.1 still hold and remain unchanged.

Fig. 4.2 shows an example with ui = ui+1 and a hidden local extremum at x = 0. In

Fig. 4.2, we approximate the Runge function f1(x) using the PCHIP, DBI, and PPI methods

from 16 uniformly spaced data points. The PPI method is able to better capture the peak

compared to the DBI and PCHIP methods.

4.4.2 Algorithm

The ENO reconstruction can result in a stencil that is biased to the left or right. Rogerson

et al. [84] demonstrated that a biased ENO stencil may lead to some stability issues when

used to solve hyperbolic equations, and a refined resolution may lead to even larger errors.

To address this limitation, Shu [92] developed a modified ENO reconstruction that uses a

bias coefficient to target a preferred final stencil. Furthermore, a left- and right-biased stencil

may fail to recover hidden local extrema. For instance, if U[xi−1, xi] > 0, U[xi, xi+1] < 0,

and U[xi+1, xi+2] > 0, the interval Ii has an extremum. In such a case, if the points in the

final stencil are all to the right or left of xi, the interpolant may fail to recover the extremum.

The points xi−1 and xi+2 are important for identifying and reconstructing a hidden local

extremum. However, the right-biased stencils does not include xi−1, and the left-biased

79

stencil does not include xi+2. To resolve these issues due to biased stencils, the algorithm

introduced here favors a symmetric stencil over the ENO stencil in addition to enforcing

the requirements for data boundedness or positivity preservation. A symmetric stencil

centered around xi includes xi−1 and xi+2 and better approximates a hidden local extremum

compared to a biased stencil.

Before we present the algorithm for the DBI and PPI method, let us define λ̄−j+1 and λ̄+
j+1.

At any given step j, the next point inserted into Vj can be to the right or left. λ̄−j+1 and λ̄+
j+1

correspond to the case where the stencil inserted is to the left and right, respectively.{
λ̄−j+1 = λ̄j+1 with Vj+1 = {xp} ∪ Vj

λ̄+
j+1 = λ̄j+1 with Vj+1 = Vj ∪ {xq}.

(4.79)

As a reminder, xp and xq are the mesh points immediately to the left and right of Vj. Given

Vj, let µl
j be the number of points to the left of xi and µr

j the number of points to the right.

Below we introduce an algorithm for DBI and PPI based on the procedures introduced

above.

Input: {xi}n
i=0, {ui}n

i=0, {x̃i}ñ
i=0, ε0 and d. Output: {ũi}ñ

i=0.

1. Select an interval [xi, xi+1]. Let V0 = {xi, xi+1} = {xl
0, xr

0}.

2. If σi−1σi+1 < 0 or σi−1σi < 0, then the interval Ii has a hidden local extremum. For the

boundary intervals, we assume that the divided differences to the left and right have

the same sign.

3. Compute umin and umax using Equations (4.46) and (4.47).

4. Compute mr and m` based on Equations (50) and (51) or Equations (72) and (73). For

DBI, set mr = 1 and m` = 0.

5. Given a stencil Vj,

• if B−j+1 ≤ λ̄+
j+1 ≤ B+

j+1 and B−j+1 ≤ λ̄−j+1 ≤ B+
j+1

– if µl
j < µr

j then insert a new stencil point to the left;

– else if µl
j > µr

j then insert a new stencil point to the right;

– else insert a new stencil point to the right if |λ̄l
j+1| ≥ |λ̄r

j+1|, otherwise insert

a new point to left;

80

• else if B−j+1 ≤ λ̄−j+1 ≤ B+
j+1, then insert a new stencil point to the left;

• else if B−j+1 ≤ λ̄+
j+1 ≤ B+

j+1, then insert a new stencil point to the right;

6. This process (Step 3) iterates until the halting criterion that the ratio of divided

differences lies outside the required bounds stated above or the stencil has d + 1

points, with d being the target degree for the interpolant.

7. Evaluate the final interpolant Ul(x) (for DBI) or Up(x) (for PPI) at the output points

x̃i that are in Ii.

8. Repeat Steps 1–7 for each interval in the input 1D mesh.

At the left and right boundary intervals, there are no mesh points beyond the boundaries

to calculate σi−1 and σi+1, respectively. At both boundaries, σi−1 is set to σi+1 (σi−1 = σi+1)

to ensure that no new extrema are introduced. At the boundary and nearby boundary

intervals, the algorithm allows for hidden local extrema to be recovered. For example, if the

right boundary interval has a hidden extremum σi−1σi < 0 (from Step 2) then the algorithm

will relax the bounds on the interpolant and allow for the extremum to be recovered.

4.5 Numerical Experiments
In this section, we present both numerical experiments that demonstrate the properties

of our proposed methods. These experimental studies use the PCHIP, DBI, and PPI methods.

The test functions used here are taken from test problems 1, 2, 7, and 10 in [76]. A full

suite of test problems has been undertaken by the authors in [76]. In that study, nine test

problems are used with both uniform and nonuniform Legendre-Gauss-Lobatto (LGL)

meshes. The Legendre-Gauss-Lobatto mesh consists of uniform elements with eight LGL

quadrature nodes [36] inside each element. The integrals in the L2−norm calculation are

approximated using the trapezoid rule with 104 uniformly spaced points. The parameter ε0

is set to 0.01 to allow the interpolant in each interval to grow beyond the data in a bounded

way.

For various problems, including all the examples below, a standard Lagrange interpolant

leads to large oscillations and negative values. The ENO and WENO methods reduce the

oscillations, but they do not address the issue of preserving data boundedness or positivity.

The DBI and PPI methods resolve both issues. The numerical experiments compare the DBI

81

and PPI methods against the widely used PCHIP method, and show approximation errors

using the algorithm described in Section 4.4.2.

4.5.1 1D Example: Runge Function

Our first example uses the Runge [23] function, defined as follows:

f1(x) =
1

1 + 25x2 , x ∈ [−1, 1]. (4.80)

Approximating the Runge function via a standard global polynomial using the set of points

provided for the experiment leads to large oscillations and negative values.

Tables 4.1 and 4.2 show L2-errors and convergence rates when approximating the Runge

function f1(x) using the uniform and LGL meshes. For the approximations in Table 4.1,

we use the PCHIP, DBI, and PPI methods with a target polynomial degree d = 3; whereas

in Table 4.2, we use the DBI and PPI methods with the target polynomial degree varying

from d = 1 to d = 16. The results in Table 4.1 show that the DBI and PPI methods lead to

smaller errors and larger convergence rates compared to PCHIP for N larger than 17 in both

the uniform and LGL mesh examples. For N = 17, the PCHIP approach leads to smaller

errors. For higher polynomial degrees, the PPI method gives better results compared to

the DBI and PCHIP, as demonstrated in Table 4.2. These results demonstrate that the PPI

method is a suitable approach for interpolating data from one mesh to another when the

underlying function is similar to the Runge function. For N = 17 in this example, the higher

order terms added when going from P8 to P16 increase the L2−error norms. These results

indicate that resolution for N = 17 is not sufficient to see polynomial convergence when

going from P8 to P16. The L2−errors norms decrease with larger values of N.

Fig. 4.3 shows the errors found when approximating the Runge function f1(x) with

PCHIP, DBI, and PPI. The top and bottom plots in Fig. 4.3 show the absolute errors when

approximating the Runge example using N = 33 and N = 129 uniformly spaced points,

respectively. The target polynomial degree is set to d = 8 for both the DBI and PPI methods

and ε0 = 0.01. The errors around the middle of the domain dominate the overall error. The

relaxed nature of the PPI method allows for higher degree interpolants compared to the

DBI and PCHIP, which leads to better approximations, as shown in the bottom plots in Fig.

4.3.

82

4.5.2 1D Example: Smoothed Heaviside Function

This 1D example uses an analytic approximation of the Heaviside function defined as

f2(x) =
1

1 + e−2kx , k = 100, and x ∈ [−0.2, 0.2]. (4.81)

A polynomial approximation of f2(x) is challenging because of the large solution gradient

around x = 0. Attempts to use a standard polynomial approximation for this function result

in oscillations and negative values.

Tables 4.3 and 4.4 show L2-errors and convergence rates when approximating the

smoothed Heaviside function f2(x) using the uniform and LGL meshes. Table 4.4 shows that

for a target polynomial of degree d = 3, the errors for PCHIP, DBI, and PPI are comparable.

When the target degree increases from d = 1 to d = 16, the errors for the DBI and PPI

methods decrease, as shown in Table 4.4. Overall, the errors from the DBI and PPI methods

are comparable with DBI yielding slightly smaller errors than PPI. The uniform mesh leads

to better approximation results compared to the LGL mesh. These results demonstrate that

the DBI and PPI methods are both suitable for mapping data between different meshes

when the underlying function is similar to the smoothed Heaviside function.

Fig. 4.4 provides examples of error plots for approximating the smoothed Heaviside

function f2(x) with PCHIP, DBI, and PPI. The top and bottom plots in Fig. 4.4 show the

absolute error when approximating the smoothed Heaviside function f2(x) using N = 33

and N = 129 uniformly spaced points, respectively. The global error is dominated by the

errors in the region with the steep gradient around x = 0. The errors from DBI and PPI are

identical for N = 129 because the stencil selected by both methods are the same around the

region with the steep gradients. Away from the steep gradient, the DBI and PPI methods

use different stencils, but the errors in those regions are negligible compared to the errors

around x = 0.

4.5.3 Hidden Local Extrema Examples

This numerical study demonstrates the ability of the PPI method to recover hidden

extrema. The study uses the Runge functions f1(x) with a uniform mesh. The uniformly

spaced mesh points are constructed such that the extremum at x = 0 lies inside of an

interval. Tables 4.5 shows L2-error norms and convergence rates when approximating

f1(x) from Equations (4.80). Overall, the PPI method achieves high-order accuracy when

83

approximating the Runge functions from data with and without hidden extrema. The results

from both tables show that the PPI method leads to smaller errors and larger convergence

rates compared to the DBI method. The DBI approach uses a bounded interpolant that

fails to represent the extremum at x = 0, whereas the relaxed nature of the PPI approach

allows for a more accurate representation of the extremum. In the case of DBI, as the

target polynomial degree increases from P4 to P16, the errors and convergence rates do not

improve because the global error is dominated by the local error in the interval with the

hidden extremum. The DBI approach achieves only an O(h2.5) accuracy as opposed to the

PPI method, that achieves the same high accuracy regardless of whether or not the extremal

values are data points. These results highlight the advantage of the PPI method over the

DBI method for recovering hidden extrema from data.

4.6 Summary and Discussion
In this chapter, we present both an algorithm and theoretical foundations for sufficient

conditions to ensure data boundedness and positivity on any set of mesh points via a

Newton polynomial formulation. The one-dimensional PPI and DBI methods analyzed

herein are building blocks that have been extended to multidimensional PPI and DBI

methods using tensor-products. This extension consists of successively applying the one-

dimensional PPI or DBI method on each dimension to generate the multidimensional

results.

The DBI method imposes restrictions on the ratio of divided differences to ensure that

the interpolants are bounded by the input data. The proof of the DBI approach presents new

challenges because the configuration of mesh points may not exhibit a regular structure.

The PPI method starts from the DBI method and relaxes the bounds on the ratio of divided

differences, thereby allowing the interpolants to grow beyond the data as needed while

remaining positive. The positive interpolant is further bounded by the parameters umin and

umax to remove undesirable oscillations that may potentially degrade the approximation.

The proofs of both the DBI and PPI approaches rely on the results from Lemma 4.3.1, which

consist of using the definition of B+
j , B−j to arrive at the bounds B−j−1 ≤ λ̄j−1δj ≤ B+

j−1. The

proofs from Theorems 4.3.2 and 4.4.1 use Lemma 4.3.1 to show that 0 ≤ Sn(x) ≤ 1 for the

DBI method and m` ≤ Sn(x) ≤ mr for the PPI method.

84

Note that one observation we have made is that the PPI method uses higher order

interpolants compared to the DBI method. Relaxing the bounds on the ratio of divided

differences increases the range of polynomial degrees that meet the desired requirement.

The numerical results, in Tables 4.1-4.4, indicate that the DBI or PPI methods provided

herein are appropriate for ensuring data boundedness or positivity preservation, and both

methods converge as the interpolant degree and resolution increase. Fig. 4.1 demonstrates

that enforcing positivity alone may not be sufficient to remove large oscillations. We resolve

this issue by bounding the positive polynomial with umin and umax, which are determined

based on user-supplied values, such as ε0 = 0.01 for the numerical examples in Section

5.5. In addition, Fig. 4.2 demonstrates that for an interval Ii where there exists a local

extremum, the PCHIP and DBI methods truncate the extremum whereas the PPI method

leads to a better approximation of the extremum. The different results demonstrated that

the PPI method is able to produce high-order accurate approximations in examples with

and without a hidden extremum.

85

Figure 4.1: The top row shows an approximation of f1(x) from N = 17 LGL points using
DBI and PPI with different values of ε0. The bottom row shows an approximation of f2(x)
from N = 17 uniformly spaced points using DBI and PPI with different values of ε0. The
values of ε1 is set to 1.0. The target polynomial degree is set to d = 16 for both f1(x) and
f2(x).

86

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1

y

True

PCHIP

DBI

PPI

Figure 4.2: Approximation of f1(x) with N = 16 points using PCHIP, DBI, and PPI. The
interpolants from DBI and PPI are in P8, where 8 is the target polynomial degree. The
parameters ε0 and ε1 are set to 0.01 and 1.0, respectively.

-1 -0.5 0 0.5 1

x

0

1

2

3

4

5

6

7

e
rr

o
r

10
-3

PCHIP

DBI

PPI

-1 -0.5 0 0.5 1

x

0

0.5

1

1.5

2

e
rr

o
r

10
-5

PCHIP

DBI

PPI

Figure 4.3: Error plots when approximating f1(x). The top and bottom error plots are
obtained from approximating f1(x) with N = 33 and N = 129 uniformly spaced points,
respectively. The target polynomial degree is set to d = 8 and ε0 = 0.01.

87

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

x

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

e
rr

o
r

PCHIP

DBI

PPI

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

x

0

0.5

1

1.5

2

2.5

3

3.5

e
rr

o
r

10
-5

PCHIP

DBI

PPI

Figure 4.4: Error plots when approximating f2(x). The top and bottom error plots are
obtained from approximating f1(x) with N = 33 and N = 129 uniformly spaced points,
respectively. The target polynomial degree is set to d = 8, ε0 = 0.01, and ε1 = 1.0.

88

Table 4.1: L2-errors and rates of convergence when using the PCHIP, DBI, and PPI methods
to approximate the function f1(x). The parameters ε0 and ε1 are set to 0.01 and 1.0,
respectively. N represents the number of input points used to build the approximation. The
approximation functions for the DBI and PPI methods are cubic interpolants.

N PCHIP Rate DBI Rate PPI Rate
Uniform Mesh

17 7.15E-03 – 1.01E-02 – 1.01E-02 –
33 1.91E-03 1.99 1.21E-03 3.20 1.59E-03 2.78
65 3.70E-04 2.42 9.64E-05 3.73 1.12E-04 3.92

129 6.79E-05 2.47 6.29E-06 3.98 6.29E-06 4.20
257 1.22E-05 2.49 3.94E-07 4.02 3.94E-07 4.02

LGL Mesh
17 4.75E-03 – 8.36E-03 – 8.38E-03 –
33 1.30E-03 1.96 1.84E-03 2.28 1.84E-03 2.28
65 2.86E-04 2.23 2.05E-04 3.24 2.05E-04 3.24

129 5.81E-05 2.32 1.17E-05 4.17 1.17E-05 4.17
257 1.15E-05 2.35 1.04E-06 3.51 1.04E-06 3.51

89

Table 4.2: L2-errors and rates of convergence when using the DBI and PPI methods to
approximate the function f1(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively.
N represents the number of input points used to build the approximation. The interpolants
are in Pj, where j is the target polynomial degree.

Uniform Mesh LGL Mesh
N DBI PPI DBI PPI

L2-error Rate L2-error Rate L2-error Rate L2-error Rate
P1

17 2.16E-02 – 2.16E-02 – 1.69E-02 – 1.69E-02 –
33 6.02E-03 1.92 6.02E-03 1.92 5.84E-03 1.60 5.84E-03 1.60
65 1.52E-03 2.03 1.52E-03 2.03 1.66E-03 1.86 1.66E-03 1.86
129 3.82E-04 2.02 3.82E-04 2.02 5.80E-04 1.53 5.80E-04 1.53
257 9.56E-05 2.01 9.56E-05 2.01 1.52E-04 1.94 1.52E-04 1.94

P4
17 8.34E-03 – 7.02E-03 – 6.55E-03 – 6.54E-03 –
33 5.91E-04 3.99 5.91E-04 3.73 7.62E-04 3.24 7.62E-04 3.24
65 4.26E-05 3.88 2.39E-05 4.73 5.30E-05 3.93 5.29E-05 3.94
129 2.68E-06 4.03 8.00E-07 4.95 3.44E-06 3.99 3.44E-06 3.99
257 8.63E-08 4.99 2.55E-08 5.00 8.88E-08 5.31 8.87E-08 5.31

P8

17 4.61E-03 – 3.11E-03 – 3.49E-03 – 4.40E-03 –
33 4.43E-04 3.53 1.51E-04 4.56 1.76E-04 4.50 1.76E-04 4.85
65 3.67E-05 3.67 1.05E-06 7.33 3.25E-06 5.89 3.01E-06 6.00
129 2.56E-06 3.88 3.10E-09 8.50 5.64E-08 5.91 8.82E-09 8.51
257 8.24E-08 4.99 6.80E-12 8.88 3.51E-09 4.03 3.96E-11 7.84

P16
17 4.34E-03 – 3.44E-03 – 4.89E-03 – 5.01E-03 –
33 4.21E-04 3.52 4.85E-05 6.43 1.18E-04 5.62 1.17E-04 5.67
65 3.67E-05 3.60 5.92E-08 9.89 1.22E-06 6.75 9.40E-08 10.51
129 2.56E-06 3.88 4.21E-12 13.94 5.57E-08 4.50 1.02E-11 13.32
257 8.24E-08 4.99 2.18E-16 14.32 3.51E-09 4.01 5.04E-16 14.38

90

Table 4.3: L2-errors and rates of convergence when using the PCHIP, BDI, and PPI methods
to approximate the function f2(x). The parameters ε0 and ε1 are set to 0.01 and 1.0,
respectively. N represents the number of input points used to build the approximation. The
approximation functions for the DBI and PPI methods are cubic interpolants.

N PCHIP Rate DBI Rate PPI Rate
Uniform Mesh

17 2.02E-02 – 1.97E-02 – 1.97E-02 –
33 3.38E-03 2.70 3.53E-03 2.59 3.54E-03 2.59
65 3.59E-04 3.31 5.00E-04 2.88 5.00E-04 2.89

129 4.21E-05 3.13 4.51E-05 3.51 4.51E-05 3.51
257 5.12E-06 3.06 3.01E-06 3.93 3.01E-06 3.93

LGL Mesh
17 3.65E-03 – 5.38E-03 – 5.38E-03 –
33 1.45E-03 1.39 1.55E-03 1.88 1.56E-03 1.86
65 4.07E-04 1.87 6.49E-04 1.28 6.49E-04 1.30

129 8.85E-05 2.23 9.77E-05 2.76 9.77E-05 2.76
257 1.38E-05 2.70 9.06E-06 3.45 9.06E-06 3.45

91

Table 4.4: L2-errors and rates of convergence when using the DBI and PPI methods to
approximate the function f2(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively.
N represents the number of input points used to build the approximation. The interpolants
are in Pj, where j is the target polynomial degree.

Uniform Mesh LGL Mesh
N DBI PPI DBI PPI

L2-error Rate L2-error Rate L2-error Rate L2-error Rate
P1

17 2.89E-02 – 2.89E-02 – 8.58E-03 – 8.58E-03 –
33 7.69E-03 1.99 7.69E-03 1.99 5.24E-03 0.74 5.24E-03 0.74
65 1.80E-03 2.14 1.80E-03 2.14 2.20E-03 1.28 2.20E-03 1.28
129 4.58E-04 2.00 4.58E-04 2.00 8.08E-04 1.47 8.08E-04 1.47
257 1.15E-04 2.00 1.15E-04 2.00 2.01E-04 2.01 2.01E-04 2.01

P4
17 2.23E-02 – 2.23E-02 – 5.24E-03 – 5.24E-03 –
33 4.09E-03 2.56 4.10E-03 2.56 1.10E-03 2.36 1.11E-03 2.34
65 3.05E-04 3.83 3.05E-04 3.84 3.06E-04 1.88 3.07E-04 1.89
129 1.35E-05 4.55 1.35E-05 4.55 3.32E-05 3.24 3.32E-05 3.24
257 4.71E-07 4.87 4.71E-07 4.87 1.17E-06 4.85 1.17E-06 4.85

P8

17 2.08E-02 – 2.08E-02 – 4.87E-03 – 4.68E-03 –
33 3.36E-03 2.75 3.33E-03 2.76 8.71E-04 2.59 7.84E-04 2.69
65 1.38E-04 4.70 1.38E-04 4.69 7.57E-05 3.60 1.24E-04 2.72
129 1.22E-06 6.90 1.22E-06 6.90 2.17E-06 5.19 2.17E-06 5.90
257 4.44E-09 8.15 4.44E-09 8.15 1.95E-08 6.83 1.95E-08 6.83

P16
17 2.00E-02 – 2.00E-02 – 4.83E-03 – 4.64E-03 –
33 2.93E-03 2.90 2.91E-03 2.91 7.38E-04 2.83 7.27E-04 2.80
65 9.17E-05 5.11 9.17E-05 5.10 7.60E-05 3.35 9.41E-05 3.02
129 1.70E-07 9.17 1.70E-07 9.17 2.88E-07 8.14 2.88E-07 8.45
257 2.64E-11 12.73 2.64E-11 12.73 5.39E-11 12.45 5.39E-11 12.45

92

Table 4.5: L2-errors and rates of convergence when using the DBI and PPI methods to
approximate the function f1(x). The parameters ε0 and ε1 are set to 0.01 and 1.0. The
uniform mesh used to build the approximation is constructed with N points . The
interpolants are in Pj, where j is the target polynomial degree.

N DBI PPI
L2-error Rate L2-error Rate

P1
16 2.81E-02 – 2.81E-02 –
32 6.41E-03 2.13 6.41E-03 2.13
64 1.57E-03 2.03 1.57E-03 2.03
128 3.88E-04 2.02 3.88E-04 2.02
256 9.63E-05 2.01 9.63E-05 2.01

P4
16 2.81E-02 – 1.37E-02 –
32 4.72E-03 2.57 6.85E-04 4.32
64 8.14E-04 2.54 2.57E-05 4.73
128 1.42E-04 2.52 8.32E-07 4.95
256 2.49E-05 2.51 2.60E-08 5.00

P8

16 2.74E-02 – 1.07E-02 –
32 4.69E-03 2.55 2.06E-04 5.70
64 8.14E-04 2.53 1.19E-06 7.43
128 1.42E-04 2.52 3.32E-09 8.49
256 2.49E-05 2.51 7.04E-12 8.88

P16
16 2.75E-02 – 1.02E-02 –
32 4.69E-03 2.55 1.43E-04 6.16
64 8.14E-04 2.53 7.18E-08 10.96
128 1.42E-04 2.52 4.74E-12 13.89
256 2.49E-05 2.51 2.77E-16 14.06

CHAPTER 5

NUMERICAL TESTING OF THE

POSITIVITY-PRESERVING

AND DATA-BOUNDED

INTERPOLATION

This chapter is concerned with the numerical testing of new interpolation algorithm

that has been introduced in Chapter 4 for positivity preservation when mapping solution

values between structured meshes. The theoretical basis for the algorithm builds on the

data-bounded work of Berzins [5] to develop a new data-bounded and positivity-preserving

methods for both evenly- and unevenly-spaced structure meshes. The new data-bounded

interpolation (DBI) method in introduced in the previous chapter relaxes conditions for data

boundedness, which gives greater accuracy than the conditions used in [5]. Ouermi et al.

[81] further extended the DBI method to give a new positivity-preserving interpolation (PPI)

method. The application of these new methods to numerical weather prediction examples

is described in [77]. In this chapter, a number of possible alternative interpolation schemes

are introduced. A representative sample of such methods is compared against the new

approaches on a number of different test functions, including smooth, C0, discontinuous,

and steep-gradient functions. The comparison undertaken focuses on how accurately the

different methods are able to represent this underlying set of test functions. In addition,

a representative weather model problem is considered. Overall, it will be shown that the

new methods are well suited for function approximation and mapping data values between

meshes for numerical weather examples. The generality of this approach suggests that

these methods also have application to other problems for which preserving positivity is

important.

94

5.1 Examples of Existing Interpolation Methods
This section highlights several approaches that have been developed to address the need

for data-bounded, positivity-preserving, and shape-preserving interpolation. Although

this selection of methods is not all-inclusive, it is intended to illustrate the main types of

polynomial-based approaches.

5.1.1 Cubic Splines

In computer-aided design (CAD), graphics and visualization, significant contributions

have been made to develop and advance shape-preserving methods. Many of the ap-

proaches for shape-preservation are based on cubic splines. In [88] and [89] Schmidt and

Heß introduced positive interpolation methods using rational quadratic and cubic splines

respectively. Necessary and sufficient conditions for positivity are provided for both the

rational quadratic and cubic interpolants. These conditions impose some restrictions on

the values of the first derivatives at each node. As in [41], both approaches lead to multiple

solutions, and the one with the minimal curvature is selected. The work in [55], [54], and [47]

presented positivity-preserving interpolation methods that rely on rational cubic splines.

The C2 continuity in [55] is obtained by solving a tridiagonal system of linear equations.

All three methods introduce free parameters that are used to derive and enforce conditions

for positivity. Butt and Brodlie [10] provide a method for constructing C1 cubic Hermite

splines. This method is dependent on the availability of values of first derivatives at the

nodes, which may not be available in practice. Positivity is enforced by imposing a bound

on the values of the derivatives. In the case where bounds on the derivatives are not met,

one or two knots are inserted to ensure that the constructed spline is positive. Perhaps the

most widely used approach for preserving monotonicity in many applications is PCHIP by

Fritch and Carlson [33] who derived necessary and sufficient conditions for monotone cubic

interpolation, and provided an algorithm for building a piecewise cubic approximation

from data. This algorithm calculates the values of the first derivatives at the nodes based on

the necessary and sufficient conditions.

5.1.2 Quartic and Quintic Splines

Although many shape-preserving interpolation methods are cubic or lower order, a

number of approaches target higher order interpolants, with an emphasis on quartic or

95

quintic polynomial approximations. The work in [26] and [25] presents geometric or

visual continuity G1 and G2 continuous shape-preserving interpolation using Pythagorean-

Hodograph quintic splines curves. This approach uses Bernstein basis functions and a

parametric representation of the interpolant in each interval. A sufficient condition for

shape preservation is constructed based on free angular parameters that influence the

shape of the curve in each interval. The appropriate angular parameters are selected based

on the cubic-cubic (CC) criterion introduced in [24]. The G2 case requires a tridiagonal

solve and use of a Newton-Raphson iteration, which potentially affects the computational

performance.

Hussain et al. [46] and Hussain et al. [48] introduced C2 rational quintic interpolation

interpolation approaches that preserve positivity. These rational quintic functions are

constructed with free parameters that are used to enforce positivity. Both methods require

the approximation of values of first and second derivatives at the nodes if these derivatives

are not available. In addition, the rational quintic interpolation methods in [46] and [48]

have a O(h3) order of accuracy.

Heß and Schmidt [41] developed interpolation schemes that preserve positivity and

monotonicity using C2 quartic and quintic splines. Positivity and monotonicity are achieved

by imposing some restrictions on the values of the first and second derivatives at each node.

This approach leads to a potentially infinite number of solutions that meet the required

conditions. Of these solutions, the solution with minimal curvature is selected using global

minimization. The global nature of the minimization makes the algorithm challenging

to parallelize and may have an impact on computational performance. MQS [63] is an

example of a monotonic quintic spline method that was developed by Lux et al. [63] who

built on the work of Heß and Schmidt [89] and Ulrich and Watson [102]. This algorithm

uses the sufficient conditions from [89] to check for monotonicity and the work in [102]

to adjust values of the first and second derivatives to ensure monotonicity. This method

requires the values of the first and second derivatives at the nodes, which may not be

available in practice. In this report, the first and second derivatives are approximated using

a fourth-order finite difference stencil based on [30].

96

5.1.3 SPS and B-Spline Higher Order Splines

Costantini [15], [14] developed a C1 and C2 shape-preserving spline (SPS) interpolation

method using Berstein-Bezier polynomials of an arbitrary degree. The desired shape

property is obtained by imposing restrictions on the value of the first derivatives at the

nodes. The Bezier coefficients for each spline are derived from a linear function. For a given

interval, the coefficients of the Berstein-Bezier polynomial interpolant are selected from

a linear function. The first derivatives at the nodes are calculated such that the sufficient

conditions for shape preservation given in [15] are met. The approximation of the first

derivatives at the node is third-order accurate. In addition, Theorem 9 of [13] shows that the

spline method presented in [15] [14] has an error of O(h4). More details on the construction

of the splines, an algorithm and a software package for the SPS method can be found

in [15] [14]. In addition to the positivity-preserving approaches, conventional B-splines [19]

are also used here. Although the B-spline approach does not preserve positivity, many of

the approaches mentioned in this work are based on B-splines, and so the use of unmodified

B-splines provides an accuracy check on the other spline methods.

5.1.4 DBI and PPI Methods

The numerical solution of partial differential equations (PDEs), particularly hyperbolic

equations, is an another area in which various methods have been developed to enable

data-bounded and positivity-preserving approximations. In order to preserve positivity

in discontinuous Galerkin (dG) schemes, Zhang et al. [108], [111], [109] and Light et al.

[59] introduced a linear rescaling of polynomials that ensures that the evaluation of the

polynomial at the quadrature points is positive. In addition, this linear rescaling of the

polynomial conserves mass. The polynomial rescaling, however, does not address the

case of interpolating between different meshes, which is the primary focus of this work.

Harten et al. [39] developed an essentially nonoscillatory (ENO) piece-wise polynomial

reconstruction that is suitable for interpolating between different meshes. ENO methods

adaptively build an interpolant based on Newton divided differences and can help remove

Gibbs-like effects but do not guarantee positivity. A weighted combination of ENO schemes,

(WENO) has been used by Zhang et al. [110] and many others.

A DBI method was developed by Berzins using evenly spaced meshes from ENO

97

methods [5]. This method was extended by the authors in [81], [77] to work for both evenly

and unevenly spaced meshes and, more importantly, to the PPI method. Ouermi et al. [81]

relaxed the conditions for data boundedness which gives greater accuracy compared to

the conditions used in [5]. Both the improved DBI and the new PPI methods are used

in this chapter. The PPI method further extends the DBI method by relaxing the bounds

on the ratio of divided differences and so allows the interpolant to grow beyond the data,

while still remaining positive. For a given interval, the DBI and PPI methods successively

select stencil points until the required bounds are violated or d + 1 points are selected, with

d being the target degree of the interpolant. In addition to enforcing data boundedness

and positivity, the algorithm in [77] uses a user-supplied parameter st to guide the stencil

construction procedure. When adding the next point to both the right or left of the current

stencil meets the requirements for data boundedness or positivity, the algorithm makes the

selection based on the three cases below.

• If st = 1, the algorithm chooses the point with the smallest divided difference, as in

the ENO stencil.

• If st = 2, the point to the left of the current stencil is selected if the number of points

to the left of xi is smaller than the number of points to right. Similarly, the point to the

right is selected if the number of points to the right of xi is smaller than the number of

points to the left. When both the number of points to right and left are the same, the

algorithm chooses the point with the smallest ratio of divided differences.

• If st = 3, the algorithm chooses the point that is closest to the starting interval Ii.

Enforcing positivity alone may still lead to undesirables oscillations. To address this

limitation, the algorithm provides the parameters ε0 and ε1 that are used to impose an

upper and lower bound for each interpolant. For each interval Ii, the bounds are constructed

using the parameters ε0 and ε1, and the data values ui and ui+1. Both the DBI and PPI

methods and the algorithm details are described in [77] with numerical examples pertaining

to NWP.

98

5.2 Comparison Methodology
5.2.1 Compared Methods

The numerical experiments in this report use the PCHIP [33], MQS [63], SPS [15], [14],

B-splines [19], the improved DBI [5], and the new PPI methods [81]. These methods are

available as follows:

• PCHIP: The version of the PCHIP algorithm used in this report is implemented

in Fortran 90 and can be found at https://people.sc.fsu.edu/~jburkardt/f_src/

pchip/pchip.html.

• MQS: The method of Lux et al. [63] is an example of a method for monotonic quintic

splines. The algorithm is implemented in Python3 and can be found https://github.

com/tchlux/papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline).

• SPS: Costantini [15], [14] introduced a high-order shape-preserving (monotonicity-

and convexity-preserving) Spline (SPS) method using Berstein-Bezier polynomials of

arbitrary degree. The SPS method is implemented in the BVSPIS software package in

Fortran 77 and is available from ACM as Algorithm 770 [14] https://dl.acm.org/

action/downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=

true.

• B-splines: PPPACK, a Fortran 90 library that evaluates piecewise polynomial func-

tions, including cubic splines. The original FORTRAN77 library is by Carl de Boor

[19]. The package is available from https://people.sc.fsu.edu/~jburkardt/f_

src/pppack/pppack.html.

• HPPIS: The DBI and PPI methods have been developed based on the theory and

algorithm in [81], [77]. The software and implementation details can be found in [77].

5.2.2 Comparison Criteria

The three steps outlined below are used to compare the different methods when used

to approximate smooth and nonsmooth functions. The errors are measured in a discrete

approximation to the L2-error norm.

https://people.sc.fsu.edu/~jburkardt/f_src/pchip/pchip.html
https://people.sc.fsu.edu/~jburkardt/f_src/pchip/pchip.html
https://github.com/tchlux/papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline)
https://github.com/tchlux/papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline)
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=true
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=true
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=true
https://people.sc.fsu.edu/~jburkardt/f_src/pppack/pppack.html
https://people.sc.fsu.edu/~jburkardt/f_src/pppack/pppack.html

99

• The first step consists of demonstrating that the various schemes preserve positivity

for each of the test functions used. In addition, this step is used to show that a standard

polynomial interpolation method does not guarantee positivity.

• The second step experimentally investigates the convergence of the various schemes

when using smooth functions. This step tests the ability of the different methods

to accurately represent smooth functions as the resolution increases. For the shape-

preserving spline (SPS) [15], [14], DBI and PPI methods, we also investigate the

approximation accuracy obtained with varying interpolant polynomial degrees.

• The third step focuses on the ability of the different methods to represent a set of

challenging test functions with large gradients and/or discontinuities. This step

represents situations often encountered in computational science problems, such as

mapping between physics and dynamics meshes in NEPTUNE.

5.3 Positivity-Preserving Interpolants
Preserving positivity while maintaining accuracy is perhaps the key property needed

when mapping from one mesh to another in NEPTUNE and similar applications. This

section compares the PCHIP, MQS, SPS, DBI, and PPI against a standard interpolation

method using five examples. The standard polynomial interpolation approach (STD) uses

the points in each element to build a standard Lagrange interpolant for that element. In

each of the examples, the different interpolants are constructed using:

• a uniform mesh that is constructed using uniformly spaced points. In this mesh, all

the elements have the same size and the nodes are uniformly spaced inside each

element.

In the figures presented in this section, the black and red plots represent the underlying

function and its approximation using the different interpolation methods. Both the DBI

and PPI methods use a mesh point selection method that favors a symmetric stencil about

xi by setting st = 1 with ε0 = 0.01 and ε1 = 1.0. The results in this section demonstrate

that the PCHIP, MQS, DBI, SPS, and PPI methods preserve positivity, whereas the standard

interpolation methods lead to oscillations and fail to preserve positivity.

100

5.3.1 Example I f1(x)

This example uses the famous Runge function [23] defined as follows:

f1(x) =
1

1 + 25x2 , x ∈ [−1, 1]. (5.1)

Fig. 5.1 shows the different polynomial approximations for this function using 17 uniformly

spaced points. The target polynomial degree for the standard interpolation, DBI, and PPI

is set to d = 16. The standard polynomial interpolation approach, STD, does not preserve

positivity with the uniform mesh and generates oscillations in both meshes. The PCHIP,

MQS, DBI, SPS, and PPI methods preserve positivity.

5.3.2 Example II f2(x)

The second example uses an analytic approximation of the Heaviside function defined

as follows:

f2(x) =
1

1 + e−2kx , k = 100, and x ∈ [−0.2, 0.2]. (5.2)

A polynomial approximation of f2(x) is challenging because of the large gradient at about

x = 0. Attempts to use a global polynomial approximation for this function result in

unacceptable oscillations and negative values as observed in the Runge example above. Fig.

5.2 shows interpolations of f2(x) using uniform mesh of 17 points. Standard polynomial

interpolation, DBI, and PPI are used with an interpolant of degree d = 8 for each interval.

Standard polynomial interpolation fails to preserve positivity. The results demonstrate that

the PCHIP, MQS, DBI, SPS, and PPI methods preserve positivity.

5.3.3 Example III f3(x)

The third example uses a modified version of a function introduced by Tadmor and

Tanner [100] and used by Berzins [5] in the context of DBI based upon uniform mesh points.

The original function was modified by adding the value one to ensure that the function is

positive over the interval [−1, 1]. The modified function is defined as

f3(x) =


1 + 2e2π(x+1)−1−eπ

eπ−1 , x ∈ [−1,−0.5)

1− sin
(2πx

3 + π
3

)
, x ∈ [−0.5, 1].

(5.3)

This function is particularly challenging because of the discontinuity at x = −0.5. This

example uses 17 uniformly spaced points. The target interpolant degree for the standard

101

interpolation, DBI, and PPI methods is d = 4. Fig. 5.3 demonstrates that the interpolants

built using the PCHIP, MQS, SPS, SPS and PPI methods remain positive whereas the

standard polynomial interpolation approach fails to preserve positivity.

5.3.4 Example IV f4(x)

This example consists of a function with multiple spikes defined as follows:

f4(x) = 1.0−
∣∣∣∣ 2
π

arctan
(

sin
(
π x

h

)
δ

)∣∣∣∣, x ∈ [0, 1], (5.4)

where h represent the element size, and δ = 0.01. f4(x) depends on the element size h, and

therefore, on the number of element in a given interval. At the element boundaries, f4(x)

is C0-continuous with large gradients of opposite signs. This example uses 33 points, four

elements, and nine points in each element. The approximations in Fig. 5.4 use uniform

points. The plots in Fig. 5.4 show the standard polynomial interpolation approach leads

to oscillation and negative values, whereas the PCHIP, MQS, SPS, DBI, and PPI methods

preserve positivity and remove the oscillations.

5.3.5 Example V f5(x)

This example is constructed using the tanh function and by introducing C0-continuities

at the elements boundaries. The constructed function is defined as follows:

f5(x) =


tanh(xk) if x ∈ [a, a + h]
2tanh(xk)− tanh((a + h)k) if x ∈ [a + h, a + 2h]
3tanh(xk)− tanh((a + h)k)− tanh((a + 2h)k) if x ∈ [a + 2h, a + 3h]

...

(5.5)

where the overall interval is [−2, 0] with a = −2 and k = 10. h represents the size of each

element. f5(x) depends on the element size h and, therefore, on the number of elements in a

given interval. This example is built to mirror the C0-continuity at the elements boundaries

in the spectral element method used in NEPTUNE. In this example, the gradients at the

elements boundaries are always positive, and are not as large as the ones in f4(x) from

Example IV. The approximations shown in Fig. 5.5 uses 17 points. The plots in Fig. 5.5 show

that the standard interpolation method does not preserve positivity and that the PCHIP,

MQS, SPS, DBI, and PPI can be used to enforce positivity as required.

102

5.4 Convergence
This section focuses on the second comparison criterion, which consists of evaluating

the convergence of the different methods when applied to a smooth function. As NUMA

[34], the dynamics part of NEPTUNE uses a spectral element method that has high-order

accuracy, especially in smooth regions. It is important when interpolating solution values

between dynamics and physics meshes for the interpolation scheme to not degrade the

accuracy obtained from the spectral element method.

The test function

f6(x) = 1 + sin(x), x ∈ [0, π] (5.6)

is used to study the convergence of the different methods. f6(x) is infinitely smooth with

no sharp gradients or discontinuities. These characteristics make f6(x) a suitable test

function for evaluating which approach is a good choice for representing smooth functions.

These experiments focus on the accuracy of the approximation as the resolution and the

polynomial degree both increase.

Table 5.1 shows L2-errors when approximating f6(x) using the different interpolation

methods. In this experiment, the parameters ε0, ε1, and st are chosen to be 0.01, 1, and 1,

respectively. In all cases, the L2-error is estimated by sampling the error at 10000 equally

spaced points in the interval and using trapezoidal quadrature. Table 5.2 shows the ratio,

eNi /eNi+1 of the L2-errors in Table 5.1 as the resolution increases. The DBI and PPI methods

lead to smaller errors compared to the PCHIP, MQS, and SPS methods. As the average

polynomial degree increases, the approximation using the DBI method does not improve

because the global error is dominated by the local error from the intervals using lower degree

interpolants compared to PPI. These results show that the conditions for data-boundedness

may be more restrictive when it comes to enforcing positivity. The SPS method shows

smaller errors compared to the other methods. Furthermore, as the polynomial degree

increases, the accuracy of the approximation decreases. These results are consistent with

those in [15] [14]. Costantini [13], [15] demonstrated that the SPS method is bounded

by O(h4) and in the limit (as the spline degree increases) the spline tends to a linear

interpolation. The B-spline and PPI methods have smaller L2-errors compared to the other

methods, and their accuracy improves as the polynomial degree increases. Table 5.2 shows

that both methods have better convergence rates compared to PCHIP, MQS, and SPS. The

103

PPI method leads to slightly smaller errors compared to the unmodified B-spline approach.

For P8 and P16 the approximation errors are close to machine precision, which explains the

slow rate of convergence observed for B-spline and PPI in Table 5.2.

5.5 Results
In this section, the different interpolation methods are used to approximate functions

with steep gradients, C0-continuity, and discontinuities. These experiments focus on the

third criterion, which consists of evaluating the ability of the different methods to represent

nonsmooth functions. The data points for the interpolation are sampled from 1D and 2D

functions. Two types of meshes are used for the various experiments. The first type of mesh

uses uniform elements and uniformly spaced nodes within each element. The second type

of mesh uses uniform elements and Legendre Gauss-Lobatto (LGL) quadrature nodes [36]

within each element. The experimental results compare the DBI and PPI methods against

the SPS, PCHIP [33], and MQS [63] methods.

The MQS algorithm is designed for monotonically increasing data. In order to use the

MQS approach with the different 1D examples, we divide the data into monotonically

increasing and decreasing regions. For the monotonically increasing data, the MQS

algorithm is applied directly. For the monotonically decreasing data, we uses the reflection

of the data about a vertical axis and applied the MQS algorithm. Because of the data

transformation involved, the MQS method is used only for the 1D examples.

The tables show the L2 error norms and the averaged polynomial degree (“avg. deg.")

when using the different methods to approximate the 1D and 2D functions, respectively.

5.5.1 Example I f1(x)

This example is the 1D Runge function [23] defined in Equation 5.1 with ε0 = 0.01,

ε1 = 1 and st = 2. Tables 5.3 and 5.4 demonstrate that the PPI method gives smaller

approximation errors when compared to the other approaches. The requirements of data

boundedness in the DBI method are restrictive compared to the positivity requirements

in PPI. These restrictions lead to lower average polynomial degrees for DBI compared to

PPI, as shown in the sixth and eighth columns in Tables 5.3 and 5.4. In the case of the

uniform mesh, as the average degree used by DBI increases the L2-errors remain the same.

The approximation error using the DBI method does not improve as the average degree

104

increases because the global error is dominated by the local error of those subintervals with

low degree interpolants. The polynomial degree of the interpolants used for these intervals

remains the same as the average polynomial degree of the interpolant increases elsewhere.

The PPI methods uses higher order interpolants compared to the SPS, DBI, PCHIP, and MQS

methods in both the uniform and LGL meshes. The uniform mesh leads to slightly more

accurate results than the LGL mesh. These results show that the PPI method is a suitable

approach for interpolating data from one mesh to another in cases where the underlying

function is similar to the Runge function.

5.5.2 Example II f2(x)

The second example uses the analytic approximation of the Heaviside function defined

in Equation 5.2 with ε0 = 0.01, ε1 = 1 and st = 2. As mentioned in Section 3.2, this function,

f2(x), is challenging because of the sharp gradient around x = 0. For polynomial degree

five or less, the results from Tables 5.5 and 5.6 suggest that the MQS method leads to slighter

better approximations than DBI and PPI for f2(x). Overall, the results from Tables 5.5

and 5.6 indicate that the DBI and PPI methods have smaller L2-errors compared to the

other methods. Approximating f2(x) from data on a uniform mesh leads to slightly better

results compared to LGL mesh data. For smooth data with a large gradient, these results

indicate that both the DBI and PPI approaches are suitable for interpolating from one mesh

to another.

5.5.3 Example III f3(x)

The third example uses the modified function introduced in Equation 6.23 with ε0 = 0.01,

ε1 = 1 and st = 2. The function f3(x) is particularly challenging because of the discontinuity

at x = −0.5. The results from Tables 5.7 and 5.8 show that the L2-errors from the four

interpolation methods have the same order of accuracy. The results from Tables 5.7 and 5.8

show that the L2-errors from the four interpolation methods have the same order. because

around the discontinuity, the methods are as accurate as the other ones, and in smooth

regions the method gives better approximation results than the other approaches. The DBI

and PPI methods give slightly better approximation results compared to the other methods.

The average polynomial degrees for the DBI and PPI approaches show that high-order

polynomials are used. The high-order polynomial suggest that in the smooth regions

105

away from the discontinuity, the DBI and PPI approaches lead to high-order accuracy.

However, at the discontinuity, the DBI and PPI and other methods struggle to represent

the underlying function. This example shows that both the DBI and PPI methods are

appropriate approaches for interpolating from one mesh to another,

5.5.4 Example IV f4(x)

The fourth example uses the function f4(x) defined in Equation 5.4 with ε0 = 0.01,

ε1 = 1 and st = 2. f4(x) depends on the size h of each element, and as the number of

element changes, so does the element size h and the function f4(x).

At the element boundaries f4(x) is only C0-continuous with large gradients of opposite

signs. The results from Tables 5.9 and 5.10 show that all the methods struggle to approximate

the underlying function. With the exception of using a uniform mesh with PCHIP and

SPS, the remaining results from Tables 5.9 and 5.10 show that all the methods have the

same order of accuracy for both uniform and LGL meshes. The PPI and DBI methods give

slightly smaller L2-errors compared to the other approaches.

5.5.5 Example V f5(x)

The fifth experiment uses the function f5(x) defined in Equation 5.5 with ε0 = 0.01,

ε1 = 1, and st = 1. f5(x) depends on the size h of each element, and as the number

of elements changes, so does the element size h and f5(x). Similarly to f4(x), f5(x) is

only C0-continuous at the element boundaries. However, the gradients remain positive

over the entire interval. This example is constructed to reflect the C0-continuity observed

in the spectral element method used in NEPTUNE. Tables 5.11 and 5.12 show that the

approximation errors from PCHIP, MQS, and SPS methods improve slowly compared to

the DBI and PPI methods, as we increase the polynomial degree and the number of points.

The PCHIP, SPS, and MQS methods use approximations of the first derivatives and enforce

C1-continuity at the element boundaries. Overall, the results from Tables 5.11 and 5.12 show

that the DBI and PPI methods has smaller L2-errors compared to the remaining methods.

5.5.6 Example VII f7(x)

This example uses an extended version of the 1D Runge function defined in Equation

5.1 from Section 5.3.1 to a 2D function.

106

f7(x, y) =
1

1 + 25(x2 + y2)
, x, y ∈ [−1, 1] (5.7)

For the DBI and PPI algorithm, ε0 = 0.01, ε1 = 1 and st = 2. The results from Tables 5.13

and 5.14 show that the DBI and PPI methods give smaller approximation errors compared

to the PCHIP and SPS methods. In this case, the DBI and PPI methods use higher order

polynomial interpolants for each interval. These higher order interpolants help improve

the approximation compared to the PCHIP and SPS.

5.5.7 Example VIII f8(x)

This example uses a 2D function that is used to study positive and monotonic splines

[11, 82]. The function is defined as follows:

f8(x, y) =



2(y− x) if 0 ≤ y− x ≤ 0.5
1 if y− x ≥ 0.5

cos
(

4π
√
(x− 1.5)2 + (y− 0.5)2

)
if (x− 1.5)2 + (y− 0.5)2 ≤ 1

16

0 otherwise

(5.8)

For the DBI and PPI algorithm, ε0 = 0.01, ε1 = 1 and st = 2. As in Example V, the function

f8(x) is C0-continuous and the underlying mesh used for the approximations does not

capture the sharp corners. The L2-errors from the DBI and PPI methods are dominated by

the local errors of the intervals with C0-continuity and low-degree polynomial interpolants.

Tables 5.15 and 5.16 show that the L2-errors from the three methods have the same order,

with DBI and PPI having slightly smaller errors than the other approaches. In the cases

where the underlying function is C0, the results from DBI and PPI are comparable to the

other approaches. Furthermore, the results from DBI and PPI can be improved by using

a mesh that captures C0-continuity, as is the case with the spectral element methods in

NEPTUNE.

5.5.8 Example IX f9(x)

This example is used herein to study shape-preserving (monotonicity and convexity)

splines [16].

f9(x, y) = max
(

0, sin(πx)sin(πy)
)

x, y ∈ [−1, 1] (5.9)

For the DBI and PPI algorithm, ε0 = 0.01, ε1 = 1 and st = 2. The function f9(x, y)

is a C0-continuous function. Tables 5.17 and 5.18 show L2-errors when approximating

107

f9(x, y) with the PCHIP, SPS, DBI, and PPI methods. The underlying mesh is such that

the C0-continuities are at the elements boundaries except for P16 and N = 17. The PCHIP

and SPS methods struggle to capture the C0-continuities because both methods enforce

C1-continuity. The L2-error from DBI is dominated by the local error from the intervals with

low-degree interpolants and so as the average polynomial degree increases the L2-errors

do not improve. The L2-error for P16 and N = 17 is larger compared to the other cases

when the PPI method is used. For P16 and N = 17, there is no mesh point at the points of

C0-continuity, and so the L2-error is dominated by the local error from those intervals where

low degree interpolants are used. Overall, the results from Tables 5.17 and 5.18 demonstrate

that the DBI and PPI methods lead to smaller approximation errors than the PCHIP and

SPS methods.

5.5.9 Example X f10(x)

This example uses a 2D extension of the 1D approximation of the Heaviside function

f2(x) defined in Equation 5.2, which is defined as follows:

f10(x, y) =
1

1 + e−
√

2k(x+y)
, x, y ∈ [−0.2, 0.2] (5.10)

For the DBI and PPI algorithm, ε0 = 0.01, ε1 = 1 and st = 2. The function f10(x, y) is

challenging because of the large gradient at y = −x. Tables 5.19 and 5.20 show L2-errors

when approximating f10(x) using PCHIP, SPS, DBI, and PPI. As the average polynomial

degree increases, the accuracy of the DBI and PPI methods improves. In this case, the

L2-error is dominated by the local error of the region with the steep gradient. The errors

for the DBI and PPI methods are similar because the stencils used for both methods are

the same in the region with the large gradient. Overall, the results from Tables 5.19 and

5.20 show that the DBI and PPI methods lead to smaller L2-errors compared to the other

methods.

5.6 Discussion and Conclusion
In this chapter, a representative sample of existing methods is compared against our new

approaches on a number of different test functions, including smooth, C0, discontinuous,

and steep functions. The comparison undertaken here focuses on how accurately the

different methods are able to represent this underlying set of test functions. Overall, the DBI

108

and PPI methods perform well and are suited to the C0 continuity of the spectral element

methods in NEPTUNE. The experiments show that the DBI and PPI methods are suitable

approaches for interpolating smooth functions and C0 continuous functions while enforcing

positivity. In detail the summary is that:

• The results in Section 3 Examples I, II, and III show that the improved DBI and new

PPI approaches preserve positivity exactly as the proofs in [81] indicate;

• The results in Section 4 and Sections 5.1, 5.2, and 5.3 show that the DBI and PPI

approaches give much higher levels of accuracy than the DBI method by allowing

the solution to be outside the local bounds while remaining positive. The PPI method

also appears to give better results than the SPS method in line with the studies

in [13] and [15], which demonstrate that the SPS method does not achieve high-order

accuracy; and

• In the cases when steep gradients or discontinuities force the use of low-order

approximations, the DBI and PPI methods compete against the well-known cubic

spline method PCHIP and the higher order MQS and the SPS spline methods.

Overall, it would seem that when it is possible to use higher order polynomial approxi-

mations the PPI method appears to give levels of accuracy that compete with standard

unmodified high-order spline methods while at the same time preserving positivity.

109

Figure 5.1: Approximation of the Runge function with the N = 17 points that are uniformly
distributed on the interval [−1, 1]. The parameters d, ε0 and ε1 are set to 16, 0.01, and 1.0,
respectively.

110

Figure 5.2: Approximation of f2(x) = 1
1+e−2kx , k = 100, and x ∈ [−0.2, 0.2], with N = 17

points. The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively. The points are
uniformly distributed, and the target polynomial degree for the DBI and PPI is d = 8.

111

Figure 5.3: Approximation of f3(x) with N = 17 points. The parameters d, ε0, and ε1 are
set to 4, 0.01, and 1.0, respectively. The points are distributed uniformly over the interval
[−1, 1].

112

Figure 5.4: Approximation of f4(x), with N = 33 points. The parameters ε0 and ε1 are set to
0.01, and 1.0, respectively. The points are uniformly distributed, and the target polynomial
degree for the DBI and PPI is d = 8.

113

Figure 5.5: Approximation of f5(x), with N = 17 points. The parameters ε0, and ε1 are set
to 0.01 and 1.0, respectively. The points are uniformly distributed and the target polynomial
degree for the DBI and PPI is d = 4.

114

Table 5.1: L2-errors when using the PCHIP, MQS, SPS, B-splines, DBI, and PPI methods to
approximate the function f6(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively.
Ni represents the number of input points used to build the approximation. Pj represents
the space of polynomials of degree j, with j being the target degree for each interval. The
seventh and ninth columns show the average polynomial degree used for the DBI and PPI
methods, respectively. The input points are uniformly distributed over the interval [0, π].

Ni PCHIP MQS SPS B-spline DBI PPI
L2-error L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – – 2.49E-3 1 2.49E-3 1
33 – – – – 6.22E-4 1 6.22E-4 1
65 – – – – 1.56E-4 1 1.56E-4 1
129 – – – – 3.89E-5 1 3.89E-5 1
257 – – – – 9.72E-6 1 9.72E-6 1

P3 P5 P4
17 4.49E-4 4.47E-5 4.84E-4 4.52E-6 6.70E-06 3.94 2.52E-06 4
33 7.83E-5 7.42E-6 1.20E-4 2.07E-7 2.85E-07 3.97 6.94E-08 4
65 1.38E-5 1.31E-6 3.01E-5 1.22E-8 1.24E-08 3.98 1.96E-09 4
129 2.45E-6 2.31E-7 7.52E-6 7.56E-10 5.43E-10 3.99 5.73E-11 4
257 4.34E-7 4.09E-8 1.88E-6 4.72E-11 2.39E-11 4.00 1.73E-12 4

P8

17 – – 2.00E-3 2.45E-9 6.21E-06 7.69 1.06E-09 8
33 – – 4.96E-4 3.47E-12 2.76E-07 7.84 1.83E-12 8
65 – – 1.24E-4 6.11E-15 1.22E-08 7.92 3.44E-15 8
129 – – 3.10E-5 3.23E-15 5.40E-10 7.96 1.00E-15 8
257 – – 7.74E-6 2.93E-15 2.39E-11 7.98 9.64E-16 8

P16
17 – – 3.10E-3 5.61E-15 6.21E-06 15.19 3.98E-15 16
33 – – 7.75E-4 4.35E-13 2.76E-07 15.59 1.95E-15 16
65 – – 1.94E-4 2.75E-13 1.22E-08 15.80 4.65E-15 16
129 – – 4.84E-5 9.00E-14 5.40E-10 15.90 2.33E-15 16
257 – – 1.21E-5 6.83E-14 2.39E-11 15.95 1.10E-15 16

115

Table 5.2: Ratio of L2-errors from Table 5.1 (eNi /eNi+1). Ni represents the number of input
points used to build the approximation. Pj represents the space of polynomials of degree j,
with j being the target degree for each interval.

eNi /eNi+1 PCHIP MQS SPS B-spline DBI PPI
P1

e17/e33 – – – – 4 4
e33/e65 – – – – 4 4
e65/e129 – – – – 4 4
e129/e257 – – – – 4 4

P3 P5 P4
e17/e33 5.73 6.02 4.03 21.84 24 36
e33/e65 5.67 5.67 3.99 16.97 23 35
e65/e129 5.63 5.66 4.00 16.13 23 34
e129/e257 5.64 5.66 4.00 16.02 23 33

P8

e17/e33 – – 4.03 706.05 22 576
e33/e65 – – 4.00 567.92 23 533
e65/e129 – – 4.00 1.89 23 3
e129/e257 – – 4.01 1.10 23 1

P16
e17/e33 – – 4.01 0.01 22 2
e33/e65 – – 3.99 1.58 23 0
e65/e129 – – 4.01 3.06 23 2
e129/e257 – – 4.00 1.32 23 2

116

Table 5.3: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the Runge function f1(x) = 1

1+25x2 , x ∈ [−1, 1]. The parameters ε0 and ε1 are set to
0.01 and 1.0, respectively. Ni represents the number of input points used to build the
approximation. Pj represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eighth columns show the average polynomial degree
used for the DBI and PPI methods, respectively. The input points are uniformly distributed
over the interval [−1, 1].

Ni PCHIP MQS SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 2.16E-2 1 2.16E-2 1
33 – – – 6.02E-3 1 6.02E-3 1
65 – – – 1.52E-3 1 1.52E-3 1
129 – – – 3.82E-4 1 3.82E-4 1
257 – – – 9.56E-5 1 9.56E-5 1

P3 P5 P4
17 7.15E-3 5.72E-3 8.34E-3 8.34E-3 4 7.02E-3 4
33 1.91E-3 3.95E-4 5.91E-4 5.91E-4 4 5.91E-4 4
65 3.70E-4 6.44E-5 4.26E-5 4.26E-5 3.98 2.39E-5 4
129 6.79E-5 5.27E-6 2.68E-6 2.68E-6 3.98 8.00E-7 4
257 1.22E-5 6.83E-7 8.63E-8 8.63E-8 4.00 2.55E-8 4

P8

17 – – 1.21E-2 4.61E-3 7.88 3.11E-3 7.88
33 – – 2.74E-3 4.43E-4 7.88 1.51E-4 8
65 – – 6.86E-4 3.67E-5 7.92 1.05E-6 8
129 – – 1.72E-4 2.56E-6 7.92 3.10E-9 8
257 – – 4.30E-5 8.24E-8 7.97 6.80E-12 8

P16
17 – – 1.64E-2 4.34E-3 11.31 3.44E-3 11.75
33 – – 4.25E-3 4.21E-4 15.62 4.85E-5 16
65 – – 1.07E-3 3.67E-5 15.69 5.92E-8 16
129 – – 2.69E-4 2.56E-6 15.80 4.21E-12 16
257 – – 6.71E-5 8.24E-8 15.91 2.18E-16 16

117

Table 5.4: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the Runge function f1(x) = 1

1+25x2 , x ∈ [−1, 1]. The parameters ε0 and ε1 are set to
0.01 and 1.0, respectively. Ni represents the number of input points used to build the
approximation. Pj represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eight columns show the average polynomial degree
used for the DBI and PPI methods, respectively. The interval [-1,1] is divided into (Ni− 1)/j
and j + 1 LGL quadrature points are used in each element.

Ni PCHIP MQS SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 2.16E-2 1 2.16E-2 1
33 – – – 6.02E-3 1 6.02E-3 1
65 – – – 1.52E-3 1 1.52E-3 1
129 – – – 3.82E-4 1 3.82E-4 1
257 – – – 9.56E-5 1 9.56E-5 1

P3 P5 P4
17 1.02E-2 6.29E-3 9.73E-3 8.63E-3 4 8.39E-3 4
33 1.86E-3 9.13E-4 1.63E-3 7.95E-4 4 7.80E-4 4
65 3.68E-4 8.47E-5 2.24E-4 4.76E-5 3.98 4.64E-5 4
129 7.20E-5 6.23E-6 6.03E-5 1.49E-6 3.98 1.27E-6 4
257 1.52E-5 5.72E-7 1.48E-5 4.68E-8 4 3.95E-8 4

P8

17 – – 8.44E-3 3.49E-3 8.00 4.40E-3 8
33 – – 2.69E-3 1.76E-4 7.88 1.76E-4 8
65 – – 7.59E-4 3.25E-6 7.92 3.01E-6 8
129 – – 2.61E-4 5.64E-8 7.94 8.82E-9 8
257 – – 6.85E-5 3.51E-9 7.96 3.96E-11 8

P16
17 – – 2.29E-2 9.12E-3 12.19 1.25E-2 12.62
33 – – 3.26E-3 5.87E-5 15.28 5.86E-5 16
65 – – 1.11E-3 1.41E-7 15.62 1.17E-7 16
129 – – 3.12E-4 3.52E-9 15.90 4.44E-11 16
257 – – 1.08E-4 1.56E-10 15.91 2.88E-15 16

118

Table 5.5: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f2(x) = 1

1+e−2kx , k = 100, and x ∈ [−0.2, 0.2]. The parameters ε0 and ε1 are
set to 0.01 and 1.0, respectively. Ni represents the number of input points used to build the
approximation. Pj represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eighth columns show the average polynomial degree
used for the DBI and PPI methods, respectively. The input points are uniformly distributed
over the interval [−1, 1].

Ni PCHIP MQS SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 2.89E-2 1 2.89E-2 1
33 – – – 7.69E-3 1 7.69E-3 1
65 – – – 1.80E-3 1 1.80E-3 1
129 – – – 4.58E-4 1 4.58E-4 1
257 – – – 1.15E-4 1 1.15E-4 1

P3 P5 P4
17 2.02E-02 1.67E-2 1.82E-2 2.23E-2 2.75 2.23E-2 3.38
33 3.38E-03 4.16E-3 3.72E-3 4.09E-3 3.62 4.10E-3 3.72
65 3.59E-04 2.29E-4 3.40E-4 3.05E-4 3.86 3.05E-4 3.86
129 4.21E-05 7.48E-6 5.36E-5 1.35E-5 3.88 1.35E-5 3.88
257 5.12E-06 2.16E-7 1.27E-5 4.71E-7 3.85 4.71E-7 3.86

P8

17 – – 3.75E-3 2.08E-2 3.25 2.08E-2 5.50
33 – – 5.24E-3 3.36E-3 3.88 3.33E-3 5.72
65 – – 8.71E-4 1.38E-4 7.59 1.38E-4 7.59
129 – – 2.08E-4 1.22E-6 7.68 1.22E-6 7.73
257 – – 5.17E-5 4.44E-9 7.61 4.44E-9 7.67

P16
17 – – 5.90E-3 2.00E-2 4.25 2.00E-2 6.62
33 – – 6.34E-3 2.93E-3 4.38 2.91E-3 9.72
65 – – 1.30E-3 9.17E-5 14.64 9.17E-5 14.86
129 – – 3.23E-4 1.70E-7 15.15 1.70E-7 15.41
257 – – 8.08E-5 2.64E-11 15.05 2.64E-11 15.30

119

Table 5.6: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f2(x) = 1

1+e−2kx , k = 100, and x ∈ [−0.2, 0.2]. The parameters ε0 and ε1 are
set to 0.01 and 1.0, respectively. Ni represents the number of input points used to build the
approximation. Pj represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eighth columns show the average polynomial degree
used for the DBI and PPI methods, respectively. The interval [−0.2, 0.2] is divided into
(Ni − 1)/j elements and j + 1 LGL quadrature points are used in each element.

Ni PCHIP MQS SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 2.89E-2 1 2.89E-2 1
33 – – – 7.69E-3 1 7.69E-3 1
65 – – – 1.80E-3 1 1.80E-3 1
129 – – – 4.58E-4 1 4.58E-4 1
257 – – – 1.15E-4 1 1.15E-4 1

P3 P5 P4
17 8.60E-3 7.38E-3 7.15E-3 1.26E-2 2.88 1.25E-2 3.44
33 2.50E-3 2.50E-3 8.04E-4 3.11E-3 3.03 2.83E-3 3.44
65 6.36E-4 2.11E-4 4.18E-4 3.28E-4 3.81 3.72E-4 3.84
129 1.02E-4 1.01E-5 9.07E-5 1.55E-5 3.88 1.55E-5 3.88
257 1.83E-5 2.93E-7 1.83E-5 6.29E-7 3.85 6.29E-7 3.86

P8

17 – – 4.43E-3 4.87E-3 3.50 4.68E-3 5.00
33 – – 2.51E-3 8.71E-4 4.34 7.84E-4 5.75
65 – – 1.00E-3 7.57E-5 6.64 1.24E-4 7.28
129 – – 3.65E-4 2.17E-6 7.65 2.17E-6 7.73
257 – – 9.11E-5 1.95E-8 7.55 1.95E-8 7.73

P16
17 – – 4.52E-2 3.77E-2 3.81 3.73E-2 7.25
33 – – 2.03E-3 2.53E-4 5.56 5.23E-4 9.84
65 – – 9.55E-4 1.37E-5 10.53 6.95E-5 12.56
129 – – 4.16E-4 2.19E-7 15.16 2.19E-7 15.30
257 – – 1.51E-4 1.56E-10 14.96 1.56E-10 15.30

120

Table 5.7: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f3(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni
represents the number of input points used to build the approximation. Pj represents the
use of polynomials of degree j, with j being the target degree for each interval. The fifth and
seventh columns show the average polynomial degree used for the DBI and PPI methods,
respectively. The input points are uniformly distributed over the interval [−1, 1].

Ni PCHIP MQS SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 1.82E-1 1 1.82E-1 1
33 – – – 1.39E-1 1 1.39E-1 1
65 – – – 1.01E-1 1 1.01E-1 1
129 – – – 7.16E-2 1 7.16E-2 1
257 – – – 5.05E-2 1 5.05E-2 1

P3 P5 P4
17 1.77E-1 1.59E-1 2.32E-1 1.82E-1 3.62 1.71E-1 3.81
33 1.39E-1 1.11E-1 1.56E-1 1.39E-1 3.97 1.29E-1 3.97
65 1.03E-1 7.90E-2 1.09E-1 9.38E-2 3.98 9.38E-2 3.98
129 7.42E-2 5.63E-2 7.69E-2 6.69E-2 3.99 6.70E-2 3.99
257 5.28E-2 4.04E-2 5.45E-2 4.73E-2 4 4.74E-2 4

P8

17 – – 2.25E-1 1.83E-1 6.62 1.70E-1 7.06
33 – – 1.53E-1 1.36E-1 7.81 1.31E-1 7.81
65 – – 1.07E-1 9.62E-2 7.92 9.65E-2 7.92
129 – – 7.58E-2 6.90E-2 7.96 6.93E-2 7.96
257 – – 5.37E-2 4.90E-2 7.98 4.92E-2 7.98

P16
17 – – 2.25E-1 1.82E-1 12.06 1.66E-1 13.06
33 – – 1.50E-1 1.37E-1 14.09 1.33E-1 14.19
65 – – 1.05E-1 9.75E-2 15.78 9.81E-2 15.78
129 – – 7.45E-2 7.02E-2 15.90 7.07E-2 15.90
257 – – 5.29E-2 4.99E-2 15.95 5.03E-2 15.95

121

Table 5.8: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f3(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni
represents the number of input points used to build the approximation. Pj represents
the use of polynomials of degree j, with j being the target degree for each interval. The
sixth and eighth columns show the average polynomial degree used for the DBI and PPI
methods, respectively. The interval [−1, 1] is divided into (Ni − 1)/j elements and j + 1
LGL quadrature points are used in each element.

Ni PCHIP MQS SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 1.82E-1 1 1.82E-1 1
33 – – – 1.39E-1 1 1.39E-1 1
65 – – – 1.01E-1 1 1.01E-1 1
129 – – – 7.16E-2 1 7.16E-2 1
257 – – – 5.05E-2 1 5.05E-2 1

P3 P5 P4
17 1.64E-1 1.39E-1 1.87E-1 1.61E-1 3.81 1.58E-1 3.81
33 1.20E-1 9.79E-2 1.29E-1 1.18E-1 3.97 1.18E-1 3.97
65 8.70E-2 6.94E-2 9.04E-2 8.32E-2 3.98 8.53E-2 3.98
129 6.21E-2 4.96E-2 6.39E-2 5.93E-2 3.99 6.08E-2 3.99
257 4.39E-2 3.58E-2 4.54E-2 4.19E-2 4.00 4.29E-2 4

P8

17 – – 2.84E-1 1.85E-1 7.38 1.81E-01 7.50
33 – – 9.61E-2 9.38E-2 7.62 1.27E-01 7.66
65 – – 6.79E-2 6.75E-2 7.92 9.33E-02 7.92
129 – – 4.82E-2 4.79E-2 7.96 6.72E-02 7.96
257 – – 3.44E-2 3.37E-2 7.98 4.77E-02 7.98

P16
17 – – 1.11E-1 1.08E-1 11.62 1.51E-1 12.12
33 – – 1.86E-1 1.66E-1 14.31 1.55E-1 14.88
65 – – 4.91E-2 5.06E-2 15.56 8.28E-2 15.58
129 – – 3.51E-2 3.56E-2 15.90 5.92E-2 15.90
257 – – 2.53E-2 2.48E-2 15.94 4.19E-2 15.94

122

Table 5.9: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the Runge function f4(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni
represents the number of input points used to build the approximation. Pj represents the
use of polynomials of degree j, with j being the target degree for each interval. The value
ne represents the number of elements. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The input points are
uniformly distributed over the interval [0, 1].

Ni PCHIP MQS Pj SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

ne = 4
17 3.74E-01 3.95E-1 P4 3.72E-1 3.49E-1 2.62 3.49E-1 2.88
33 2.47E-01 2.59E-1 P8 2.46E-1 2.19E-1 5.19 2.19E-1 6.19
65 1.55E-01 1.63E-1 P16 1.54E-1 1.32E-1 13.34 1.32E-1 15.34

ne = 8
33 3.84E-01 3.94E-1 P4 3.83E-1 4.04E-1 2.69 4.04E-1 2.94
65 2.54E-01 2.59E-1 P8 2.52E-1 2.60E-1 5.34 2.74E-1 6.34
129 1.61E-01 8.23E-2 P16 1.57E-1 1.67E-1 13.55 1.78E-1 15.30

ne = 16
65 3.90E-01 3.93E-1 P4 3.89E-1 3.61E-1 2.72 3.61E-1 2.97
129 2.58E-01 2.58E-1 P8 2.55E-1 2.26E-1 5.42 2.26E-1 6.42
257 1.63E-01 8.06E-2 P16 1.58E-1 1.36E-1 13.65 1.36E-1 15.65

Table 5.10: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approxi-
mate the Runge function f4(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively.
Ni represents the number of input points used to build the approximation. Pj represents the
use of polynomials of degree j, with j being the target degree for each interval. The value
ne represents the number of elements. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods respectively. The interval [0, 1] is
divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are used in each element.

Ni PCHIP MQS Pj SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

ne = 4
17 3.02E-1 3.18E-1 P4 3.02E-1 2.32E-1 2.75 2.32E-1 3.00
33 1.33E-1 1.39E-1 P8 1.33E-1 9.60E-2 5.25 9.60E-2 6.25
65 3.80E-2 3.92E-2 P16 3.77E-2 2.11E-2 11.88 2.11E-2 13.31

ne = 8
33 3.10E-1 3.17E-1 P4 3.10E-1 3.42E-1 2.75 3.42E-1 3.00
65 1.37E-1 1.39E-1 P8 1.36E-1 1.59E-1 5.25 1.65E-1 6.12
129 3.98E-2 3.72E-2 P16 3.87E-2 5.33E-2 11.88 5.60E-2 13.31

ne = 16
65 3.14E-1 3.16E-1 P4 3.14E-1 2.32E-1 2.75 2.32E-1 3.00
129 1.39E-1 1.38E-1 P8 1.37E-1 9.60E-2 5.25 9.60E-2 6.25
257 4.07E-2 3.37E-2 P16 3.90E-2 2.11E-2 11.88 2.11E-2 13.31

123

Table 5.11: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approx-
imate the function f5(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively.
Ni represents the number of input points used to build the approximation. Pj represents
the use of polynomials of degree j, with j being the target degree for each interval. The
value ne is the number of elements used. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The input points are
uniformly distributed over the interval [−2, 0].

Ni PCHIP MQS Pj SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

ne = 4
17 1.68E-2 4.50E-2 P4 1.23E-2 2.36E-2 3.56 2.36E-2 3.56
33 9.95E-3 6.04E-3 P8 1.36E-2 4.20E-4 7.59 4.20E-4 7.62
65 1.67E-3 3.82E-4 P16 5.77E-3 3.65E-5 14.98 3.65E-5 14.98

ne = 8
33 1.99E-2 1.20E-2 P4 1.29E-2 1.65E-2 3.91 1.65E-2 3.91
65 3.35E-3 7.63E-4 P8 7.42E-3 2.17E-4 7.67 2.17E-4 7.67

129 3.70E-4 4.44E-5 P16 2.89E-3 5.01E-5 14.84 5.01E-5 14.88
ne = 16

33 6.73E-3 2.46E-3 P4 4.57E-3 1.18E-3 3.86 1.18E-3 3.86
65 8.22E-4 4.53E-4 P8 3.61E-3 5.27E-5 7.51 5.27E-5 7.51

256 1.53e-4 1.59E-4 P16 1.42E-3 4.27E-11 14.65 4.27E-11 14.70

Table 5.12: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approxi-
mate the function f5(x). The parameters ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni
represents the number of input points used to build the approximation. Pj represents the
use of polynomials of degree j, with j being the target degree for each interval. The value
of ne is the number of elements used. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The interval [−2, 0] is
divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are used in each element.

Ni PCHIP MQS Pj SPS DBI PPI
L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

ne = 4
17 4.64E-2 3.10E-2 P4 1.23E-2 5.09E-2 3.06 5.09E-2 3.06
33 7.43E-3 4.29E-3 P8 1.36E-2 1.47E-3 6.34 1.47E-3 6.44
65 9.48E-4 1.58E-4 P16 5.77E-3 3.15E-6 14.83 3.15E-6 14.84

ne = 8
33 2.57E-2 9.45E-3 P4 1.29E-2 1.52E-2 3.84 1.52E-2 3.84
65 3.18E-3 9.15E-4 P8 7.42E-3 2.66E-4 7.66 2.66E-4 7.67

129 4.08E-4 2.71E-5 P16 2.89E-3 3.75E-4 14.88 4.53E-4 14.88
ne = 16

33 8.03E-3 3.77E-3 P4 4.57E-3 1.91E-3 3.81 1.91E-3 3.81
65 9.93E-4 2.22E-4 P8 3.61E-3 2.23E-6 7.51 2.23E-6 7.51

256 1.23E-4 3.30E-5 P16 1.42E-3 2.63E-12 14.37 2.63E-12 14.50

124

Table 5.13: L2 − errors when approximating f7(x, y) with Ni × Ni points. The parameters
ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni represents the number of input points
used in each dimension to build the approximation. Pj represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The mesh points are
uniformly distributed on each dimension.

Ni PCHIP SPS DBI PPI
L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 1.60E-2 1 1.60E-2 1
33 – – 4.42E-3 1 4.42E-3 1
65 – – 1.12E-3 1 1.12E-3 1
129 – – 2.82E-4 1 2.82E-4 1
257 – – 7.06E-5 1 7.06E-5 1

P3 P4
17 5.01E-3 3.61E-3 5.16E-3 3.97 4.28E-3 4
33 1.23E-3 5.44E-4 3.51E-4 3.98 3.31E-4 4
65 2.33E-4 1.23E-4 2.55E-5 3.98 1.31E-5 4
129 4.27E-5 3.07E-5 1.20E-6 3.99 4.36E-7 4
257 7.72E-6 3.34E-6 4.96E-8 4 1.39E-8 4

P8

17 – 8.55E-3 3.19E-3 7.75 1.84E-3 7.99
33 – 1.99E-3 2.78E-4 7.82 7.86E-5 8
65 – 4.97E-4 2.31E-5 7.90 5.14E-7 8
129 – 1.25E-4 1.13E-6 7.95 1.49E-9 8
257 – 3.16E-5 4.78E-8 7.98 3.25E-12 8

P16
17 – 1.19E-2 3.49E-3 13.15 2.83E-3 14.26
33 – 3.10E-3 2.74E-4 15.43 2.68E-5 16
65 – 7.82E-4 2.30E-5 15.69 2.63E-8 16
129 – 1.96E-4 1.13E-6 15.84 1.77E-12 16
257 – 4.93E-5 4.76E-8 15.92 1.89E-15 16

125

Table 5.14: L2 − errors when approximating f7(x, y) with Ni × Ni points. The parameters
ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni represents the number of input points
used in each dimension to build the approximation. Pj represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. For each dimension,
the interval [−1, 1] is divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are
used in each element.

Ni PCHIP SPS DBI PPI
L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 1.60E-2 1 1.60E-2 1
33 – – 4.42E-3 1 4.42E-3 1
65 – – 1.12E-3 1 1.12E-3 1

129 – – 2.82E-4 1 2.82E-4 1
257 – – 7.11E-5 1 7.11E-5 1

P3 P4
17 6.31E-03 5.41E-3 5.54E-3 3.97 5.33E-3 4
33 4.15E-04 1.05E-3 4.59E-4 3.98 4.53E-4 4
65 1.07E-04 1.61E-4 2.67E-5 3.98 2.54E-5 4

129 2.46E-05 4.31E-5 7.97E-7 3.99 6.86E-7 4
257 5.20E-06 1.12E-5 2.79E-8 4.00 2.15E-8 4

P8

17 – 5.89E-3 3.02E-3 7.75 2.81E-3 7.99
33 – 1.72E-3 9.41E-5 7.82 9.34E-5 8
65 – 5.44E-4 1.78E-6 7.90 1.51E-6 8

129 – 1.90E-4 4.31E-8 7.95 4.53E-9 8
257 – 4.91E-5 1.73E-9 7.98 1.87E-11 8

P16
17 – 1.88E-2 6.31E-3 13.15 8.93E-3 14.26
33 – 2.11E-3 2.93E-5 15.43 2.91E-5 16
65 – 6.96E-4 8.12E-7 15.69 5.41E-8 16

129 – 2.25E-4 2.27E-8 15.84 1.97E-11 16
257 – 7.93E-5 9.21E-10 15.92 7.22E-15 16

126

Table 5.15: L2− errors when approximating f8(x, y) with Ni × Ni points. The parameters ε0
and ε1 are set to 0.01 and 1.0, respectively. Ni represents the number of input points used in
each dimension to build the approximation. Pj represents the use of polynomials of degree j,
with j being the target degree. The fourth and sixth columns show the average polynomial
degree used for the DBI and PPI methods, respectively. The points are uniformly distributed
in each dimension.

Ni PCHIP SPS DBI PPI
L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 2.70E-2 1 2.70E-2 1
33 – – 9.51E-3 1 9.51E-3 1
65 – – 3.40E-3 1 3.40E-3 1

129 – – 1.20E-3 1 1.20E-3 1
257 – – 4.30E-4 1 4.30E-4 1

P3 P4
17 1.91E-2 1.87E-2 1.77E-2 2.04 1.73E-2 2.06
33 6.92E-3 6.11E-3 6.22E-3 1.93 6.21E-3 1.95
65 2.47E-3 2.69E-3 2.24E-3 1.89 2.24E-3 1.90

129 8.99E-4 7.71E-4 8.17E-4 1.88 8.16E-4 1.88
257 3.23E-4 2.77E-4 2.95E-4 1.87 2.94E-4 1.87

P8

17 – 1.91E-2 1.73E-2 3.19 1.69E-2 3.31
33 – 6.46E-3 6.20E-3 3.09 6.19E-3 3.16
65 – 2.24E-3 2.21E-3 3.04 2.20E-3 3.09

129 – 8.12E-4 7.98E-4 3.03 7.97E-4 3.04
257 – 2.92E-4 2.87E-4 3.01 2.87E-4 3.02

P16
17 – 2.19E-2 2.02E-2 4.58 2.34E-2 4.94
33 – 7.57E-3 6.14E-3 5.13 6.17E-3 5.35
65 – 2.68E-3 2.25E-3 5.25 2.26E-3 5.38

129 – 9.63E-4 8.07E-4 5.29 8.08E-4 5.35
257 – 3.45E-4 2.89E-4 5.29 2.89E-4 5.32

127

Table 5.16: L2 − errors when approximating f8(x, y) with Ni × Ni points. Ni represents the
number of input points used in each dimension to build the approximation. Pj represents the
use of polynomials of degree j, with j being the target degree. The fourth and sixth columns
show the average polynomial degree used for the DBI and PPI methods, respectively. For
each dimension, the interval [−1, 1] is divided into (Ni − 1)/j elements and j + 1 LGL
quadrature points are used in each element.

Ni PCHIP DBI PPI
L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 2.70E-2 1 2.70E-2 1
33 – – 9.51E-3 1 9.51E-3 1
65 – – 3.40E-3 1 3.40E-3 1

129 – – 1.20E-3 1 1.20E-3 1
257 – – 4.30E-4 1 4.30E-4 1

P3 P4
17 1.91E-2 2.55E-2 2.18E-2 2.04 2.17E-2 2.06
33 6.92E-3 5.76E-3 7.22E-3 1.93 7.18E-3 1.95
65 2.47E-3 2.11E-3 2.74E-3 1.89 2.72E-3 1.90

129 8.99E-4 8.08E-4 9.93E-4 1.88 9.87E-4 1.88
257 3.23E-4 2.92E-4 3.61E-4 1.87 3.59E-4 1.87

P8

17 – 4.06E-2 3.42E-2 3.19 3.19E-2 3.31
33 – 9.69E-3 8.68E-3 3.09 8.67E-3 3.16
65 – 2.46E-3 2.76E-3 3.04 2.82E-3 3.09

129 – 9.83E-4 1.09E-3 3.03 1.12E-3 3.04
257 – 3.63E-4 3.85E-4 3.01 3.99E-4 3.02

P16
17 – 4.36E-2 3.35E-2 4.58 2.81E-2 4.94
33 – 1.53E-2 1.06E-2 5.13 1.06E-2 5.35
65 – 4.31E-3 3.42E-3 5.25 3.46E-3 5.38

129 – 1.13E-3 9.84E-4 5.29 1.29E-3 5.35
257 – 4.38E-4 3.95E-4 5.29 5.07E-4 5.32

128

Table 5.17: L2− errors when approximating f9(x, y) with Ni × Ni points. The parameters ε0
and ε1 are set to 0.01 and 1.0, respectively. Ni represents the number of input points used in
each dimension to build the approximation. Pj represents the use of polynomials of degree j,
with j being the target degree. The fourth and sixth columns show the average polynomial
degree used for the DBI and PPI methods, respectively. The points are uniformly distributed
on each dimension.

Ni PCHIP SPS DBI PPI
L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 5.80E-2 1 5.80E-2 1
33 – – 1.88E-2 1 1.88E-2 1
65 – – 6.27E-3 1 6.27E-3 1
129 – – 2.17E-3 1 2.17E-3 1
257 – – 7.87E-4 1 7.87E-4 1

P3 P4
17 1.91E-2 1.80E-2 1.20E-2 2.56 1.20E-2 2.66
33 6.77E-3 6.21E-3 4.25E-3 2.53 4.25E-3 2.58
65 2.39E-3 2.18E-3 1.50E-3 2.52 1.50E-3 2.54
129 8.47E-4 7.70E-4 5.30E-4 2.51 5.30E-4 2.52
257 3.01E-4 2.74E-4 1.88E-4 2.50 1.88E-4 2.51

P8

17 – 1.47E-2 1.27E-2 4.22 1.27E-2 4.72
33 – 4.57E-3 4.48E-3 4.37 4.48E-3 4.61
65 – 1.51E-4 1.58E-3 4.44 1.58E-3 4.56
129 – 5.16E-4 5.60E-4 4.47 5.60E-4 4.53
257 – 1.84E-4 1.98E-4 4.48 1.98E-4 4.51

P16
17 – 1.50E-2 2.22E-2 5.92 2.74E-2 7.11
33 – 4.03E-3 4.79E-3 8.05 4.79E-3 8.67
65 – 1.15E-3 1.69E-3 8.28 1.69E-3 8.58
129 – 3.50E-4 5.98E-4 8.39 5.98E-4 8.54
257 – 1.17E-4 2.12E-4 8.44 2.12E-4 8.52

129

Table 5.18: L2 − errors when approximating f9(x, y) with Ni × Ni points. The parameters
ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni represents the number of input points
used in each dimension to build the approximation. Pj represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. For each dimension,
the interval [−1, 1] is divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are
used in each element.

Ni PCHIP SPS DBI PPI
L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 5.80E-2 1 5.80E-2 1
33 – – 1.88E-2 1 1.88E-2 1
65 – – 6.27E-3 1 6.27E-3 1
129 – – 2.17E-3 1 2.17E-3 1
257 – – 7.87E-4 1 7.87E-4 1

P3 P4
17 3.56E-02 1.05E-2 1.85E-2 2.52 1.46E-4 3.91
33 1.79E-03 3.61E-3 4.74E-3 2.61 4.77E-6 3.95
65 2.53E-04 1.26E-3 1.19E-3 2.62 1.43E-7 3.98
129 9.94E-05 4.44E-4 2.98E-4 2.62 9.16E-9 3.99
257 3.26E-05 1.61E-4 7.45E-5 2.62 5.52E-9 3.99

P8

17 – 1.61E-2 1.85E-2 4.04 6.01E-8 7.36
33 – 3.34E-3 4.74E-3 4.57 1.37E-8 7.89
65 – 8.74E-4 1.19E-3 4.57 9.43E-9 7.95
129 – 2.40E-4 2.98E-4 4.56 6.15E-9 7.97
257 – 7.32E-5 7.45E-5 4.56 3.57E-9 7.99

P16
17 – 2.72E-2 1.85E-2 4.29 2.35E-3 8.75
33 – 6.65E-3 4.74E-3 7.93 9.88E-9 15.31
65 – 1.33E-3 1.19E-3 8.57 6.44E-9 15.88
129 – 3.35E-4 2.98E-4 8.54 3.78E-9 15.94
257 – 8.41E-5 7.45E-5 8.55 1.75E-9 15.97

130

Table 5.19: L2 − errors when approximating f10(x, y) with Ni × Ni points. The parameters
ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni represents the number of input points
used in each dimension to build the approximation. Pj represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The points are uniformly
distributed on each dimension.

Ni PCHIP SPS DBI PPI
L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 1.50E-2 1 1.50E-2 1
33 – – 4.57E-3 1 4.57E-3 1
65 – – 1.26E-3 1 1.26E-3 1
129 – – 3.23E-4 1 3.23E-4 1
257 – – 8.15E-5 1 8.15E-5 1

P3 P4
17 8.07E-3 1.99E-3 9.45E-3 2.75 9.44E-3 3.23
33 1.26E-3 2.43E-4 1.33E-3 3.53 1.29E-3 3.65
65 1.44E-4 4.92E-5 9.29E-5 3.82 9.29E-5 3.82
129 1.63E-5 1.20E-5 3.67E-6 3.81 3.67E-6 3.81
257 1.94E-6 3.05E-6 1.21E-7 3.79 1.21E-7 3.79

P8

17 – 1.80E-1 8.05E-3 3.15 8.67E-3 5
33 – 1.22E-1 1.03E-3 5.78 9.05E-4 6.55
65 – 8.48E-2 4.83E-5 7.54 4.99E-5 7.57
129 – 1.04E-1 2.57E-7 7.53 2.57E-7 7.55
257 – 8.02E-2 5.27E-10 7.49 5.27E-10 7.52

P16
17 – 4.72E-3 7.39E-3 3.57 1.86E-2 7.45
33 – 1.22E-3 1.02E-3 6.71 2.33E-3 10.23
65 – 3.11E-4 2.12E-4 14.76 2.41E-4 14.94
129 – 7.80E-5 1.03E-6 14.93 1.03E-6 15.05
257 – 1.95E-5 4.41E-11 14.83 4.41E-11 14.97

131

Table 5.20: L2 − errors when approximating f10(x, y) with Ni × Ni points. The parameters
ε0 and ε1 are set to 0.01 and 1.0, respectively. Ni represents the number of input points
used in each dimension to build the approximation. Pj represents the use of polynomials of
degree j, with j being the target degree. The fourth and sixth columns show the average
polynomial degree used for the DBI and PPI methods respectively. For each dimension, the
interval [−0.2, 0.2] is divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are
used in each element.

Ni PCHIP SPS DBI PPI
L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 1.50E-2 1 1.50E-2 1
33 – – 4.57E-3 1 4.57E-3 1
65 – – 1.26E-3 1 1.26E-3 1
129 – – 3.23E-4 1 3.23E-4 1
257 – – 8.15E-5 1 8.15E-5 1

P3 P4
17 1.32E-2 2.79E-3 1.12E-2 2.75 1.11E-2 3.23
33 2.75E-3 3.49E-4 1.73E-3 3.53 1.68E-3 3.65
65 3.57E-4 6.87E-5 1.28E-4 3.82 1.28E-4 3.82
129 4.09E-5 1.64E-5 5.47E-6 3.81 5.47E-6 3.81
257 5.04E-6 4.12E-6 1.77E-7 3.79 1.77E-7 3.79

P8

17 – 5.82E-3 1.22E-2 3.15 1.20E-2 5.00
33 – 1.26E-3 1.82E-3 5.78 1.67E-3 6.55
65 – 3.00E-4 4.98E-5 7.54 4.98E-5 7.57
129 – 7.58E-5 4.03E-7 7.53 4.03E-7 7.55
257 – 1.90E-5 1.21E-9 7.49 1.21E-9 7.52

P16
17 – 8.05E-3 1.34E-2 3.57 1.31E-2 7.45
33 – 2.06E-3 2.04E-3 6.71 1.92E-3 10.23
65 – 5.14E-4 3.81E-5 14.76 3.84E-5 14.94
129 – 1.26E-4 6.20E-8 14.93 6.20E-8 15.05
257 – 3.18E-5 6.20E-12 14.83 6.20E-12 14.97

CHAPTER 6

HIPPIS: A HIGH-ORDER

POSITIVITY-PRESERVING

MAPPING SOFTWARE

FOR STRUCTURED

MESHES

6.1 Introduction
This chapter introduces open-source software for high-order data-bounded and positivity-

preserving interpolation (HiPPIS) that addresses the limitations of both the spline and poly-

nomial rescaling methods. HiPPIS uses a given set of data points to construct high-degree

polynomial interpolants that are positive over the domains in which they are defined. The

high-order positive interpolants obtained from HPPIS are suitable for approximating and

mapping physical quantities such as mass, density, and concentration between meshes

while preserving positivity. HiPPIS provides Fortran and Matlab implementations of the

data-bounded and positivity-preserving interpolation methods. Both the Fortran and

Matlab versions are self-contained and are easy to integrate into other application software

requiring positivity. In addition to the software, this chapter provides an analysis of the

mapping error in the context of PDEs, uses several 1D and 2D numerical examples to

demonstrate the benefits and limitations of HPPIS, and introduces different strategies to

improve locality, vectorization, and overall, the performance of HiPPIS.

Mapping data values from one grid to another is a fundamental part of many com-

putational problems. Preserving certain properties such as positivity when interpolating

solution values between meshes is important. In many applications [1, 61, 86, 97, 98, 108],

failure to preserve the positivity of quantities such as mass, density, and concentration

results in negative values that are unphysical. These negative values may propagate to

133

other calculations and corrupt other quantities. Many polynomial-based methods have

been developed to address these limitations.

Positivity-preserving methods based on linear polynomial rescaling are introduced in

[45, 59, 61, 108, 110]. These polynomial rescaling methods are often used in the context of

hyperbolic PDEs, in numerical weather prediction (NWP) [59], combustion simulation

[45, 61], and other applications. These methods introduce rescaling parameters obtained

from quadrature weights that are used to linearly rescale the polynomial to ensure positivity

at the quadrature nodes and conserve mass. These approaches ensure positivity only at

the set of mesh points used for the simulation but do not address the case of mapping data

values between different meshes, which is the focus of HiPPIS.

Other approaches for preserving positivity that are based on splines can be found in

computer-aided design (CAD), graphics, and visualization [33, 47, 54, 87–89]. Several

positivity- and monotonicity-preserving cubic splines have been developed. A widely used

example of such an approach is the piecewise cubic Hermite interpolation (PCHIP) [33],

which is available as open-source code in [71]. In addition, quartic and quintic spline-based

approaches have been introduced in [41,46,48,63]. These methods impose some restrictions

on the first and second derivatives to ensure monotonicity, positivity, and continuity. For

instance, the monotonic quintic spline (MQS) in [63] uses the sufficient condition from [89]

to check for monotonicity and the approaches in [102] to adjust the values of the first and

second derivatives to ensure monotonicity.

Positivity can also be enforced using ENO-type methods [3, 5, 81, 86], which enforce

data boundedness and positivity by adaptively selecting mesh points to build the stencil

used to construct the positive interpolant for each interval. ENO-type methods use divided

differences to develop a sufficient condition for data boundedness or positivity that is

used to guide the stencil selection process. The software introduced in this work is based

on the high-order ENO-type data-bounded interpolation (DBI) and positivity-preserving

interpolation (PPI) methods in [81]. The work in [81] provides a positivity-preserving

method that uses higher degree polynomials compared to the other ENO-type methods in

[3, 5, 86] and the spline-based methods.

The implementations available for positivity preservation are based on splines [33, 41]

and polynomial rescaling [59, 108]. The spline-based approaches often require solving

134

a linear system of equations to ensure continuity, and an optimization problem in the

case of quartic and quintic splines. These spline approaches are often limited to fifth-

order polynomial and can be computationally expensive in cases where solving a global

optimization problem is required. A full suite of test problems comparing the DBI and

PPI methods against different spline-based methods including PCHIP [33], MQS [63],

and shape-preseving splines (SPS) [14] has been undertaken by the authors in [76]. The

different polynomial rescaling methods allow for polynomial degrees higher than five and

are built as part of larger partial differential equation (PDE) solvers [59, 108]. As previously

mentioned, the polynomial rescaling approaches guarantee positivity only at a given set

of points, not over the entire domain. The present work provides an implementation of a

high-order software (HiPPIS) based on [81] that is high-order and guarantees positivity

over the entire domain where the interpolant is defined. In addition, this work evaluates

the use of HiPPIS in the context of function approximation and mapping between different

meshes. This evaluation provides an analysis of the mapping error in the case of PDEs and

numerical examples demonstrating the benefits and limitations of HiPPIS.

The remaining parts of the paper are organized as follows: Section 6.2 presents a

background for the mathematical framework required for the DBI and PPI methods. Section

6.3 provides the algorithms used to build the software, the descriptions of the different

components HiPPIS, and the techniques used to enable vectorization, increase locality,

and improve overall computational performance. Section 6.4 shows 1D and 2D function

approximation examples using the DBI and PPI methods in HiPPIS. Section 6.5 provides

an analysis of the mapping error in the context of time dependent PDEs, and Section 6.6

shows examples constructed based on NWP applications. In these examples, the DBI and

PPI methods are used to map solution values between different meshes used in NWP. A

discussion and concluding remarks are presented in Section 6.7.

6.2 Mathematical Framework
This section provides a summary and the theoretical background of both the DBI and

PPI methods.

135

6.2.1 Adaptive Polynomial Construction

Both the DBI and PPI methods rely on the Newton polynomial [56,101] representation to

build interpolants that are positive or bounded by the data values. The ability to adaptively

choose stencil points to construct the interpolation, as in ENO methods [39], is the key

feature employed to develop the data-bounded and positivity-preserving interpolants.

Consider a 1D mesh defined as follows:

M = {xi−J , · · · , xi, xi+1, · · · , xi+L}, (6.1)

where xi−J < · · · < xi < xi+1 < · · · < xi+L, and {ui−J , · · · , ui+L} is the set of data values

associated with the mesh points. The subscripts J, L, i,∈N0 = N∪ {0}, and xk, uk ∈ R for

i− J ≤ k ≤ i + L. The DBI and PPI procedure starts by setting the initial stencil V0,

V0 = {xi, xi+1} = {xl
0, xr

0}. (6.2)

The stencil V0 is expanded by successively appending a point to the right or left of Vj to

form Vj+1. Once the final stencil Vn−1 is obtained, the interpolant of degree n defined on

Ii = {xi, xi+1} can be written as

Un(x) = ui + U[xl
0, xr

0]π0,i(x) + U[xl
1, · · · , xr

1]π1,i(x) + · · ·+ U[xl
n−1, · · · , xr

n−1]πn−1,i(x),

(6.3)

where π0,i(x) = (x− xi), π1,i(x) = (x− xi)(x− xe
1), · · · are the Newton basis functions. xe

j

is the point added to expand the stencil Vj−2 to Vj−1 and can be explicitly expressed as
xe

0 = xi,
xe

1 = xi+1,
xe

j = Vj−1 \ Vj−2, 2 ≤ j ≤ n− 1.
(6.4)

The divided differences are recursively defined as follows:{
U[xi] = ui

U[xi, · · · , xi+j] =
U[xi+1,··· ,xi+j]−U[xi ,··· ,xi+j−1]

xi+j−xi
.

(6.5)

The polynomial Un(x) can be compactly expressed as

Un(x) = ui + (ui+1 − ui)Sn(x). (6.6)

Sn(x) is defined as

Sn(x) = s
(

1 +
(s− 1)

d1
λ1

(
1 +

(s− t2)

d2
λ2

(
· · ·
(

1 +
(s− tn−1)

dn−1
λn−1

)
· · ·
)

, (6.7)

136

where s, tj, and dj are expressed as follows:

0 ≤ s =
x− xi

xi+1 − xi
=

x− xe
0

xr
0 − xl

0
≤ 1, (6.8)

tj = −
xi − xe

j

xr
0 − xl

0
, and (6.9)

0 ≤ dj =
xr

j − xl
j

xr
0 − xl

0
. (6.10)

s and dj are defined such that s ∈ [0, 1] and dj ≥ 0. The positivity-preserving and data-

bounded interpolants are obtained by imposing some bounds on λ̄j, defined as

λ̄j =
j

∏
k=1

λj = λjλ̄j−1 =
j

∏
k=1

λk =

1 j = 0
U[xl

j ,··· ,xr
j]

U[xl
0,xr

0]
∏

j
k=1(xr

k − xl
k), 1 ≤ j ≤ n− 1.

(6.11)

6.2.2 Positivity-Preserving and Data-Bounded Interpolation

The DBI and PPI algorithms are constructed by adaptively selecting stencil points and

enforcing the conditions for positivity and data boundedness. Requiring positivity alone can

lead to large oscillations and extrema that degrade the approximation. Positivity alone does

not restrict how much the interpolant is allowed to grow beyond the data values. The large

oscillations can be removed with the DBI and PCHIP methods. However, in the case where

a given interval Ii has a hidden extremum, both DBI and PCHIP will truncate the extremum.

As in [3, 90], the interval Ii has an extremum when two of the three divided differences

σi−1 = U[xi−1, xi], σi = U[xi, xi+1], and σi+1 = U[xi, xi+1] of neighboring intervals, are of

opposite signs. The constrained PPI algorithm addresses these limitations by allowing the

constructed interpolant to grow beyond the data values but not produce extrema that are

too large.

The positive polynomial interpolant is constrained as follows:

umin ≤ Up(x) = ui + (ui+1 − ui)Sn(x) ≤ umax. (6.12)

The bounds umin and umax are defined as{
umin = min(ui, ui+1)− ∆min,
umax = max(ui, ui+1) + ∆max.

(6.13)

137

The parameters ∆min and ∆max are chosen according to

∆min =

{
ε1
∣∣min

(
ui, ui+1

)∣∣ if σi−1σi+1 < 0 and σi−1 < 0 or σi−1σi+1 ≥ 0 and σi−1σi < 0
ε0
∣∣min

(
ui, ui+1

)∣∣ otherwise,
(6.14)

and

∆max =

{
ε1
∣∣max

(
ui, ui+1

)∣∣ if σi−1σi+1 < 0 and σi−1 > 0 or σi−1σi+1 ≥ 0 and σi−1σi < 0
ε0
∣∣max

(
ui, ui+1

)∣∣ otherwise.
(6.15)

The parameters ε0 and ε1, used for intervals with and without extremum, respectively, are

introduced to adjust ∆min and ∆max. This work extended the bounds in [81] by introducing

the parameter ε1 to allow for more flexibility on how to bound the interpolants in cases

where an extremum is detected. The choice for the positive parameters ε0 and ε1 depends

on the underlying function and the input data used for the approximation. As both ε0 and

ε1 get smaller, the upper and lower bounds get tighter, and the PPI method converges to the

DBI method. The choices for ε0 and ε1 are further discussed in Section 6.3.2. In Equation

(6.14), the interval Ii has a local maximum if σi−1σi+1 < 0 and σi−1 < 0. Correspondingly, in

Equation (6.15), the interval Ii has a local minimum if σi−1σi+1 < 0 and σi−1 > 0. In both

Equations (6.14) and (6.15), the type of extremum is ambiguous if σi−1σi+1, and σi−1σi < 0.

Equation (6.12) is equivalent to bounding Sn(x) as follows:

m` ≤ Sn(x) ≤ mr, (6.16)

where the factors m` and mr are expressed as

1. : ui+1 > ui

m` = min
(

0,
umin − ui

ui+1 − ui

)
, and mr = max

(
1,

umax − ui

ui+1 − ui

)
(6.17)

2. : ui+1 < ui

m` = min
(

0,
umax − ui

ui+1 − ui

)
, and mr = max

(
1,

umin − ui

ui+1 − ui

)
. (6.18)

The DBI method can be recovered from the PPI methods by setting m` = 0 and mr = 1. The

positivity-preserving result in Equation (6.12) is obtained by successively imposing bounds

138

on λ̄j in the quadratic, cubic, and higher order terms in the expression of Sn(x) defined in

Equation (6.7). The lower and upper bounds are defined according to

B−j =


(−4(mr − 1)− 1)d1 j = 1

(B−j−1 − λ̄j−1)
dj

1−tj
, if tj ∈ (−∞, 0] j > 1

(B+
j−1 − λ̄j−1)

dj
−tj

, if tj ∈ (0,+∞) j > 1,

(6.19a)

and

B+
j =


(−4m` + 1)d1, j = 1

(B+
j−1 − λ̄j−1)

dj
1−tj

, if tj ∈ (−∞, 0] j > 1

(B−j−1 − λ̄j−1)
dj
−tj

, if tj ∈ (0,+∞) j > 1.

(6.19b)

B−1 and B+
1 are defined as −d1 and d1 for the DBI method whereas for the PPI method, they

are defined as (−4(mr − 1)− 1)d1 and (−4m` + 1)d1, respectively. We refer the reader to

Theorem 1 and 2 in Chapter 4 or [81] for more details on the mathematical foundation used

to build the positivity-preserving software.

6.3 Algorithms and Software
This section describes the algorithms and different components used in the data-

bounded and positivity-preserving software. The software developed in this work provides

1D, 2D, and 3D implementations of the DBI and PPI methods for uniform and nonuniform

structured meshes. The 1D implementation is constructed based on the mathematical

framework provided in Section 6.2. The 2D and 3D implementation are obtained via a

tensor product of the 1D version.

6.3.1 Algorithms

The algorithms provide the necessary elements to construct the data-bounded or positive

interpolants. Rogerson [84] showed that the ENO reconstruction can lead to a left- or

right-biased stencil that causes stability issues when used to solve hyperbolic equations.

Shu [92] addressed this limitation by introducing a bias coefficient used to target a preferred

stencil. As indicated in [81], the left- and right-biased stencil can fail to recover hidden

extrema. For a given interval Ii, the left- and right-biased stencil does not include the

points xi−1 or xi+1, respectively. Algorithm I addresses these limitations by extending the

algorithm in [81] by introducing more options for the adaptive stencil selection process

139

described below. In addition to the symmetry-based points selection in [81], Algorithm I

includes ENO-type and locality-based point selection processes.

At any given step j, the next point inserted into Vj can be to the left or right. Let λ̄−j+1 and

λ̄+
j+1 correspond to the case where the stencil inserted is to the left and right, respectively.

Let xp and xq be the mesh points immediately to the left and right of Vj, respectively. Given

Vj, let µl
j be the number of points to the left of xi and µr

j the number of points to the right.{
λ̄−j+1 = λ̄j+1 with Vj+1 = {xp} ∪ Vj

λ̄+
j+1 = λ̄j+1 with Vj+1 = Vj ∪ {xq}.

(6.20)

Algorithm I extends the algorithm in [81] by introducing a user-supplied parameter st

used to guide the procedure for stencil construction. In the cases where adding both xp (to

the left) or xq (to the right) are valid, the algorithm makes the selection based on the three

cases below.

• If st = 1 (default), the algorithm chooses the point with the smallest divided difference,

as in the ENO stencil.

• If st = 2, the point to the left of the current stencil is selected if the number of points

to the left of xi is smaller than the number of points to the right. Similarly, the point

to the right is selected if the number of points to the right of xi is smaller than the

number of points to the left. When the number of points to both the right and left are

the same, the algorithm chooses the point with the smallest λ̄j+1.

• If st = 3, the algorithm chooses the point that is closest to the starting interval Ii. It

is important to prioritize the closest points in cases where the intervals surrounding

Ii vary significantly in size. These variations are found in computational problems

where different resolutions are used for different parts of the domain.

Algorithm II describes the 1D DBI and PPI methods built using the mathematical frame-

work in Section 6.2 and Algorithm I. Algorithm II further extends the constraints in [81]

by introducing the user-supplied positive parameter ε1 that is used to impose upper and

lower bounds on the interpolants according to Equations (6.14) and (6.15). The positive

parameters ε0 and ε1 are used for intervals with and without an extremum, respectively.

The user-supplied parameter im is used to choose between the DBI and PPI methods.

140

Algorithm I

Input: µl
j, µl

j, xp, xi, xq, xi+1, U[xp, · · · , xr
j], U[xl

j, · · · , xq] λ̄−j+1, λ̄+
j+1, and st.

1. if st = 1

• if |U[xp · · · , xr
j]| < |U[xl

j, · · · , xq]|, then insert a new stencil point to the left;

• else if |U[xp · · · , xr
j]| > |U[xl

j, · · · , xq]|, then insert a new stencil point to the

right;

• else insert a new stencil point to the right if |λ̄−j+1| ≥ |λ̄
+
j+1|; otherwise, insert a

new point to left;

2. if st = 2

• if µl
j < µr

j , then insert a new stencil point to the left;

• else if µl
j > µr

j then insert a new stencil point to the right;

• else insert a new stencil point to the right if |λ̄−j+1| ≥ |λ̄
+
j+1|; otherwise, insert a

new point to left;

3. else st = 3

• if |xp − xi| < |xq − xi+1|, then insert a new stencil point to the left;

• else if |xp − xi| > |xq − xi+1|, then insert a new stencil point to the right;

• else insert a new stencil point to the right if |λ̄−j+1| ≥ |λ̄
+
j+1|; otherwise, insert a

new point to left;

Algorithm II (1D)

Input: {xi}n
i=0, {ui}n

i=0, {x̃i}ñ
i=0, d, st ε0, im, and ε1. Output: {ũi}ñ

i=0.

1. Select an interval [xi, xi+1]. Let V0 = {xi, xi+1} = {xl
0, xr

0}.

2. If σi−1σi+1 < 0 or σi−1σi < 0, then the interval Ii has a hidden local extremum. For the

boundary intervals, we assume that the divided differences to the left and right have

the same sign.

3. Compute umin and umax using Equations (6.13), (6.14), and (6.15).

141

4. Compute mr and m` based on Equations (6.17) and (6.17) or Equations (4.77) and

(4.77). For DBI, set mr = 1 and m` = 0.

5. Given a stencil Vj,

• if B−j+1 ≤ λ̄+
j+1 ≤ B+

j+1 and B−j+1 ≤ λ̄−j+1 ≤ B+
j+1, choose the point to add based on

Algorithm I

• else if B−j+1 ≤ λ̄−j+1 ≤ B+
j+1, then insert a new stencil point to the left;

• else if B−j+1 ≤ λ̄+
j+1 ≤ B+

j+1, then insert a new stencil point to the right;

6. This process (Steps 3) iterates until the halting criterion that the ratio of divided

differences lies outside the required bounds stated above or the stencil has d + 1

points, with d being the target degree for the interpolant.

7. Evaluate the final interpolant Ul(x) (for DBI) or Up(x) (for PPI) at the output points

x̃i that are in Ii.

8. Repeat Steps 1–7 for each interval in the input 1D mesh.

6.3.2 Software Description

The DBI and PPI software implementation is guided by the algorithms described above.

HiPPIS is available at https://github.com/ouermijudicael/HiPPIS. The software can be

organized into four major parts: 1) computation of of divided differences; 2) calculations of

upper and lower bounds for each interval; 3) a stencil construction procedure; and 4) 1D,

2D, and 3D DBI and PPI implementations.

The divided differences are essential to the DBI and PPI methods because they are

used in the calculations of λ̄j and the stencil selection process. The divided differences are

computed using the standard recurrence form in Equation (6.5) and stored in a table of

dimension n× (d + 1) where d is the maximum polynomial degree for each interpolant.

Given that the maximum degree is d, it is sufficient to consider the d + 1 divided differences

for the stencil selection process and the construction of the final polynomial interpolant for

each interval.

The bounds on each interpolant are obtained from Equation (6.13), (6.14), and (6.15)

where the positive parameter ε0 and ε1 are user-supplied values used to adjust the bounds

https://github.com/ouermijudicael/HiPPIS

142

in for the interval with and without extremum, respectively. The adjustment focuses on

removing large oscillations as much as possible while still allowing high-degree polynomial

interpolants that meet the positivity requirements.

The stencil selection process requires the computation of B+
j and B−j , which are both

dependent on dj, tj, and λ̄j. The stencil Vj is constructed from Vj−1 by appending a point to

the left or right of Vj−1. In the cases where both appending to either the right or left meets

the requirements for positivity, the software offer three possible options for choosing from

both points that can be set by the user. The first and default option (st = 1) chooses the

stencil with the smallest divided difference, similar to the ENO-like approach. The second

option (st = 2) prioritizes the choice that makes the stencil more symmetric around the

point xi. The third option (st = 3) chooses the point closest to the starting interval Ii, thus

prioritizing locality.

The 1D DBI and PPI methods use the three options as building blocks to construct

the final approximation. Once the final stencil has been selected, the interpolant is built

using a Newton polynomial representation and then evaluated at the corresponding output

points. The Newton polynomial is used here because its coefficients/divided differences

are available. The 2D and 3D implementations successively use the 1D version along each

dimension to construct the final approximation on uniform and nonuniform structured

meshes.

The interfaces for the 1D, 2D, and 3D DBI and PPI subroutines are designed to be similar

to widely used interfaces for polynomial interpolation such as PCHIP, which makes the

software easy to use and incorporate into larger application codes. The interfaces require

• the input mesh points and the data values associated with those points,

• the maximum polynomial degree to be used for each interpolant,

• the interpolation method to be used (DBI or PPI), and

• the output mesh points.

Fig. 6.1 shows examples of how to use the 1D, 2D, and 3D interfaces for DBI and PPI

in HiPPIS. The variables x, y, and z are 1D arrays used to define the input meshes and

xout, yout, and zout are used to define the output meshes. The variables v, v2D, and v3D

143

correspond to the input data values associated with the input meshes. The parameters d

and im (1, or 2) are used to indicate the target polynomial degree and the interpolation

method to be used. For DBI and PPI, the parameter im is set to 1 and 2, respectively. The

parameters st, ε0, and ε1 are optional parameters that are set to 3, 0.01, and 1 by default,

as explained below. The choice for the optional parameters depends on the underlying

function and the input data.

In problems where different resolutions are used for different parts of the computational

domain, st=3 (default) is a preferable choice. The algorithm prioritizes the closest points to

starting interval Ii if st=3. This choice is particularly important in regions where the size of

the intervals varies significantly. For cases where smoothness is the primary goal, st=1 is a

suitable choice. For st=1, Algorithm I prioritizes smoothness by choosing the points with

the smallest divided differences during the stencil construction process. Both the st=1 and

st=3 can lead to left- or right-biased stencil. In these instances, st=2 can be used to remove

the bias. For st=2, the algorithm prioritizes a symmetric stencil. The default value of st is

set to 3 because the examples in this study indicate that st=3 lead better approximations

compared to st=1, or 2 and locality is often a highly desired property in many computational

problems.

The positive parameters ε0 and ε1 are used to bound the interpolants for the intervals

with and without extrema, respectively. In [81], and [76] the parameters ε0 and ε1 are

set to the default values of 0.01 and 1, respectively. The values of ε0 and ε1 are chosen

such that the lower and upper bounds on each interpolant are relaxed enough to allow

for a high-order polynomial that does not introduce undesirables oscillations. For profiles

that are prone to oscillation such as the smoothed Heaviside function, it is important to

choose small values for ε0 and ε1. For N × N = 17× 17, the approximation leads to large

oscillations if ε0 and ε1 are greater than 10−4. For intervals without extrema, it is important

to keep ε0 small to not introduce new extrema. For the intervals with extrema, ε1 needs

to be large enough to allow the recovery of the hidden extrema but small enough to not

cause undesired large oscillations. Choosing the parameter ε1 is very challenging given

that the size of the peaks are not know a priori. The default value of ε1 = 1 is such that the

interpolant maximum value is twice max(ui, uI+1). This default value of one is sufficient

for the modified Runge and TWP-ICE examples. However, in the case of BOMEX, smaller

144

values of ε1 ≤ 10−5 are required to remove undesired oscillations. In practice, it is prudent

to start with small values ε0 and ε1 and increase them as needed if the approximation fails

to recover hidden extrema or uses low-degree polynomial interpolants.

Fig. 6.2 shows a diagram of the different components of the main module of HiPPIS.

The function divdiff(...) is used to calculate the divided differences needed for Algorithms I

and II. Once the final stencil is constructed, the function newtonPolyVal(...) is used to build

and evaluate the positive interpolant at the corresponding output points. The major part

of the data-boundedness and positivity preservation including Algorithms I and II is in

the function adaptiveInterpolation1D(...). This function is used for the 1D approximation

or mapping problems and depends on the function divdiff(...) and newtonPolyVal(...). The

functions adaptiveIterpolation2D(...) and adaptiveInterpolation3D(...) use adaptiveInterpola-

tion1D(..) to construct the data-bounded or positive polynomial approximations on 2D and

3D structured tensor-product meshes, respectively. The interfaces for the 1D, 2D, and 3D

interpolations, in bold, require the parameter im which is used to indicate the interpolation

method chosen. For the DBI and PPI methods, the parameter im is set using 1 and 2,

respectively. HiPPIS does not allow for any other choices for the parameter im.

6.3.3 Implementation and Performance

This section provides more details on the implementation and different techniques used

to improve the performance of the DBI and PPI methods. HiPPIS is implemented using

Fortran90 and Matlab. The Fortran implementation includes a Makefile and examples that

are used to build an executable. The Makefiles require an Intel compiler with openMP4.

The Makefiles can be modified for other compilers such as gfortran (gnu), HPE Cray, etc.

The Fortran version contains all the examples presented in this manuscript. The Matlab

version only requires the installation of the Matlab software to be able to use HiPPIS. The

Matlab version does not include the BOMEX example because the DBI and PPI methods

are incorporated into a larger simulation code that is in Fortran.

Vectorizing adaptive algorithms is challenging, especially when the conditions used

for the adaptive decisions are not known a priori. Both the DBI and PPI approaches are

adaptive methods that are not suitable for vectorization and therefore fail to take advantage

of vector units in computational resources. Let “i-loops" be the loops that iterate over

145

the intervals from the input mesh, and “j-loops" the loops that iterate from one to the

target polynomial degree d. Although ENO methods are adaptive, they can be vectorized

along the “i-loops" and “j-loops" [95]. The vectorization along the “j-loops" are possible

because the values (divided differences) used for the adaptive decisions are known before

entering the loops. This type of vectorization is not suitable for the DBI and PPI methods.

When adding a point to go from Vj−1 to Vj, the point selection depends on the selection

order of previously added points, the conditions for data-boundedness and positivity, and

the user-supplied parameters. These dependencies, which are not known a priori, and

many nested conditionals inside the DBI and PPI algorithms prevent vectorization along

the “j-loops". There are no dependencies between the intervals, which are suitable for

parallelism. As a result, vectorization of the DBI and PPI algorithms along the “i-loops" is

more complex than the approach used for the ENO method in [95].

Although there are no dependencies between the intervals, the dependencies along the

“j-loops", and complex control flows remain. The implementation enables vectorization

by structuring the code such that the “j-loops" and “i-loops" are the outer and inner loops

respectively, by removing the complex control flows used, by introducing local variables to

reduce decencies inside each loop, and by placing the OpenMP directive OMP SIMD before

the “i-loops". Similar ideas for code restructuring are introduced in [78, 79] in the context of

vectorizing complex numerical weather prediction codes.

Figs. 6.3 and 6.4 show a unvectorized and vectorized pseudocode to highlight the

transformations used to enable vectorization. In Fig. 6.4 the computed values of msk1, msk2,

msk3, and msk4 encapsulate the conditionals in lines 4, 5, 8, 12, and 15 of Fig. 6.3. The

values of msk1, msk2, msk3, msk4, msk5, and msk6 are set to ones if the conditions in lines

5, 9, 14, 18, 23, and 24 of Fig. 6.4 are met; otherwise, the values are set to zeros. msk5 and

msk6 are used to indicate the final choices based on conditionals that are encapsulated in

precomputed values of msk1, msk2, msk3, and msk4. For a given index i, let us consider the

case where the conditions in lines 4, and 5 of Fig. 6.3 are met and left(i) = left(i)-1. In this

case, msk1(i)=msk5(i)=1 and msk2(i)=msk3(i)=msk5(i)=msk6(i)=0. Line 28 of Fig. 6.4 becomes

left(i) = msk5(i)*(left(i)-1) = left(i)-1, and the other evaluations collapse to zero.

The pseudocode in Fig. 6.3 fails to vectorize because of the nested conditionals. The

transformations from Figs. 6.3 to 6.4 enable vectorization by removing the nested condition-

146

als, swapping the “j-loop", the “i-loop", and placing the OpenMP directive !$OMP SIMD.

In Fig. 6.4, the conditionals are precomputed in the loops before line 21. These loops are

structured such that the nested conditionals are removed, and the variables used to compute

the conditions are known prior to entering the loops. Swapping the “i-loop" and “j-loop"

requires the introduction of new arrays to track the different changes for each interval as we

iterate over the “j-loop". For example, left_unvec in Fig. 6.3 becomes left(i), with the index

i going from 1 to n-1. Removing the nested conditionals and complex dependencies may

still not be sufficient for compiler auto-vectorization. To ensure vectorization, the OpenMP

directive !$OMP SIMD is placed before every “i-loop", as shown in Lisiting 6.4

Table 6.1 shows the runtimes for the PCHIP, the original unvectorized, and the vectorized

DBI and PPI codes on a Knights Landing (KNL) core with a 2018 Intel compiler. The KNL

architecture has a clock frequency of 1.3 GHz and AVX-512 vector processing units. Further

code transformation is required for the gnu compiler as it is unable to vectorize the loops

in Fig. 6.4. The vectorization report indicates that the combination of control flow and the

remaining conditionals prevents vectorizations in the case of the gfortran (gnu) compiler. In

the case of the Intel compiler placing the directive $OMP SIMD is sufficient to vectorize the

loops Fig. 6.4. The performance examples used functions sin(x) and sin(x)sin(y) for the

1D and 2D cases, respectively. The PCHIP, DBI and PPI methods use n and n× n uniformly

spaced points to approximate functions. The approximated functions are evaluated at n + 1

and (n + 1)× (n + 1) uniformly spaced points, for the 1D and 2D cases, respectively. The

runtimes for the PCHIP method are smaller than the runtimes for DBI and PPI methods with

P4. The PCHIP method requires less data and has a less complex control flow compared

to the DBI and PPI methods. The runtimes for the vectorized version of the DBI and PPI

methods are closer to the runtimes for the PCHIP method. The results from Table 6.1

show that reorganizing the code to improve vectorization and locality leads to smaller

runtimes compared to unvectorized code. These performance improvements correspond to

a minimum and maximum speed-up of 1.89 and 4.13 over the unvectorized version.

6.4 Numerical Examples
This section provides 1D and 2D numerical examples used to evaluate the use of the

PCHIP, DBI and PPI methods. These examples include a subset of the full suite of test

147

problems considered in [76]. The interpolation methods are used to approximate positive

functions from provided data values that are obtained by evaluating the 1D and 2D functions

on a given set of mesh points. Using a standard polynomial interpolation to approximate

the different functions leads to negative values and oscillations. The L2-norms in the tables

below are approximated using the trapezoid rule with 104 and 103 × 103 uniformly spaced

points for the 1D and 2D examples, respectively. For the numerical examples in Sections

6.4.1 - 6.6.2, the errors from using st = 1, 2, and 3 are similar with st = 3 leading to slightly

smaller errors compared to st = 1 and st = 2. Given that the results are similar, the tables

show only errors with the parameter st set to 3. For the BOMEX example, the errors from

the three choices are significantly different. Therefore, the results from all three choices are

included. More test examples can be found in [76].

6.4.1 Example I: Modified Runge Function

This example uses a modified version of the canonical Runge function defined as

g1(x) =
0.1

0.1 + 25x2 , x ∈ [−1, 1]. (6.21)

Approximating the modified Runge function g1(x) with a global standard polynomial leads

to large oscillations. Table 6.2 shows the L2-errors norms when using the PCHIP, DBI, and

PPI methods to approximate g1(x). The DBI and PPI methods lead to better approximation

results compared to the PCHIP method. As the target polynomial degree increases from

d = 4 to d = 8, the DBI approximation does not improve significantly compared to the

PPI method. The relaxed nature of the PPI method allows for higher degree polynomial

interpolants compared to DBI and PCHIP, which leads to better approximations.

6.4.2 Example II: 1D Smoothed Heaviside Function

This test case uses a smoothed version of the Heaviside function defined as

g2(x) =
1

1 + e−2kx , k = 100, and x ∈ [−0.2, 0.2]. (6.22)

The smoothed Heaviside function in Equation (6.22) is challenging because of the steep

gradient at about x = 0. Approximating g2(x) with a standard polynomial interpolation

leads to large oscillations to the left and right of the gradient. In addition, the oscillations to

the left produce negative values.

148

Table 6.3 shows L2-error norms when using the PCHIP, DBI and PPI methods to

approximate the smoothed Heaviside function g2(x). For a target polynomial d = 3,

the approximation errors using PCHIP, DBI, and PPI are comparable. Increasing the target

polynomial improves the approximations for DBI and PPI, as shown in Table 6.3. The errors

from both the DBI and PPI methods are similar because the smoothed Heaviside example

has no hidden extrema, and the stencils used for both methods are the same, around x = 0.

The global error is dominated by the local errors in the region with the steep gradients

around x = 0. Fig. 6.5 shows approximation plots of g2(x) using N = 17 uniformly spaced

points with different values of ε0 and ε1 = 1. The target polynomial degree is set to d = 8.

For ε0 = 1, we observe oscillations, as shown in the right part of Fig. 6.5. As ε0 decreases,

the oscillations decrease. For ε0 ≤ 0.01, the errors oscillations are negligible compared to

errors in the region with the steep gradient. The oscillation are completely removed for

ε0 = 0.0.

6.4.3 Example III

This example uses a modified version of a function introduced by Tadmor and Tanner

[100] and used by Berzins [5] in the context of DBI. The value one is added to the original

function in [100] to ensure that the function is positive over the interval [-1,1] The modified

function is defined as

g3(x) =


1 + 2e2πx−1−eπ

eπ−1 , x ∈ [−1,−0.5)

1− sin
(2πx

3 + π
3

)
, x ∈ [−0.5, 1].

(6.23)

Table 6.4 shows L2-error norms when using the PCHIP, DBI and PPI methods to

approximate the smoothed Heaviside function g3(x). Approximating g3(x) is challenging

because g3(x) is a piecewise function with a discontinuity at x = 0.5. The global error

is dominated by the local errors around the discontinuity. The PCHIP, DBI, and PPI

approximation results are comparable. Increasing the target polynomial degree does not

decrease the L2-error norms. The approximations in the smooth regions improve as we

increase the target polynomial degree, but the global error is dominated by the error

around the discontinuity. The error around the discontinuity does not decrease with higher

polynomial degrees.

149

Fig. 6.6 shows approximation plots of g3(x) using N = 17 uniformly spaced points with

different values of ε0. The target polynomial degree is set to d = 8. The right part of Fig. 6.6

shows oscillations at the left boundary for ε0 = 1. The oscillations are removed for ε0 ≤ 0.1.

As expected, all the interpolation methods have difficulties approximating the function

around the discontinuity, as shown in Fig. 6.6.

6.4.4 Example IV: 2D Modified Runge Function

This example extends the previously modified 1D Runge function to 2D as follows:

g4(x, y) =
0.1

0.1 + 25(x2 + y2)
, x, y ∈ [−1, 1]. (6.24)

Table 6.5 shows L2-error norms when using the PCHIP, DBI and PPI methods to

approximate the 2D modified Runge function g4(x). The DBI and PPI methods with

d = 3 lead to better approximation results compared to the PCHIP. As the target polynomial

degree d increases, the approximation errors from PPI decrease much faster than DBI. The

relaxed nature of the PPI methods allows for higher degree polynomials compared to DBI.

The bounds for data boundedness are more restrictive than positivity. In addition, the

approximation does not lead oscillations for ε0 and ε1 ∈ [0, 1].

6.4.5 Example V: 2D Smoothed Heaviside Function

The test case extends the 1D smoothed Heaviside function from Example II to 2D.

g5(x, y) =
1

1 + e−
√

2k(x+y)
, x, y ∈ [−0.2, 0.2] (6.25)

The function g5(x, y) is challenging because of the large gradient at y = −x. Approximating

g5(x, y) with a standard polynomial interpolation leads to oscillations and negative values

that violate the desired property of positivity.

Table 6.6 shows L2-error norms when using the PCHIP, DBI, and PPI methods to

approximate the 2D smoothed Heaviside function g5(x, y). The DBI and PPI methods

lead to better approximation results compared to the PCHIP approach. Increasing the target

polynomial degree improves the approximation for DBI and PPI, as shown in Table 6.6.

The global error is dominated by the local around the steep gradients at y = −x. The

approximations for both DBI and PPI are the same because both methods use the stencil for

the intervals around the discontinuity.

150

Fig. 6.7 shows an approximation plots of g5(x, y) using N × N = 17× 17 uniformly

spaced points with different values of ε1 and ε1. The left and right plots are approximated

solutions using PPI with ε0 = ε1 = 1 for the left plot and ε0 = ε1 = 10−4 for the right

plot. The target polynomial degree is set to d = 8. For ε0 = ε1 = 10−4, the oscillations are

significantly reduced and the approximation is closer to the target solution.

6.4.6 Example VI

This example uses a 2D function used to study positive and monotonic splines [11, 82].

The function is defined as follows:

g6(x, y) =



2(y− x) if 0 ≤ y− x ≤ 0.5
1 if y− x ≥ 0.5

cos
(

4π
√
(x− 1.5)2 + (y− 0.5)2

)
if (x− 1.5)2 + (y− 0.5)2 ≤ 1

16

0 otherwise.

(6.26)

The function g6(x, y) is challenging because it is only C0 continuous at various locations.

Table 6.7 shows L2-error norms when using the PCHIP, DBI, and PPI methods to

approximate the 2D smoothed Heaviside function g6(x, y). The PCHIP, DBI, and PPI

methods lead to comparable L2−error norms. Increasing the target polynomial degree does

not significantly improve the approximation for DBI and PPI, as shown in Table 6.7. The

global error is dominated by the local around the C0. The approximation for both DBI and

PPI can be improved by using an underlying mesh that better captures the C0-continuity.

Fig. 6.8 shows approximation plots of g6(x, y) using N × N = 17× 17 uniformly spaced

points with different values of ε0. The left and right plots show approximated solutions

using the PPI method. For the left plot ε1 = ε0 = 1, and for the right plot, ε1 = 1 ε0 = 10−4

The target polynomial degree is set to d = 8. The oscillations observed for ε1 = ε0 = 1 are

removed for small values of ε0, shown in right plot of Fig. 6.7.

6.5 Mapping Error in an Application Example
In addition to the development and study of the DBI and PPI methods, it is important

to provide some insight into the behavior of the mapping error in the context of time-

dependent PDEs. An example of a time-dependent problem where a positivity-preserving

mapping is required is the US Navy Environmental Prediction System Utilizing a Nonhydro-

static Engine (NEPTUNE) [49]. NEPTUNE is a next-generation global NWP system being

151

developed at the Naval Research Laboratory (NRL) and the Naval Postgraduate School

(NPS). In NEPTUNE, the physics and dynamics are calculated using different meshes and

require mapping the solution values between both meshes. NEPTUNE uses a nonuniform

structured meshes that have vertical columns with nonuniformly spaced points inside each

column. The mapping must preserve positivity for quantities such density and cloud water

mixing ratio. The cloud water mixing ratio is the amount of cloud water in air. At each time

step, the dynamics (advection) solutions, which are calculated on the dynamics mesh, are

mapped to the physics mesh to be use as input for the physics calculations. The physics

results are then mapped back to the dynamics to be used as input for the next time step.

Enforcing positivity alone may still lead to large oscillations and approximation errors.

Using the DBI method will remove the large oscillations but will truncate any hidden

extremum and may be too restrictive for high order accuracy in some cases. For simulations

where different structured meshes are used and mapping is required, the errors from

both the DBI and unconstrained PPI will propagate into other calculations and may even

cause the simulation to fail. This section provides an analysis of the mapping error when

interpolating from one mesh to another and back to the starting mesh. The mapping error is

considered within time-dependent PDEs. For example, when interpolating the data values

between the dynamics and physics mesh in NEPTUNE, a mapping error is introduced in

addition to the physics and time integration errors. The error in approximating a function

u(x) with the Newton polynomial Un(x) over the interval Ii is

En(x) = u(x)−Un(x) =
u(n+1)(ξ)

(n + 1)!

n

∏
k=0

(x− xe
k), x ∈ Ii (6.27)

where ξ ∈ [xl
n, xr

n]. Given that ξ and u(n+1) are not known, the local interpolation error can

approximated as follows:

Ẽn = U[xl
n · · · xr

n]
n

∏
k=0

∆xk, (6.28)

where

∆xk = max
(
|x(i)− xe

k|, |x(i + 1)− xe
k|
)

. (6.29)

The error approximation in Equation (6.28) is based on the mean value theorem for divided

differences, which states that there exist ξ0 ∈ [xl
n, xr

n] such that

U[xl
n · · · xr

n] =
u(n+1)(ξ0)

(n + 1)!
. (6.30)

152

Equation (6.28) approximates the local interpolation error for each interval when

mapping from one set of points to another. To consider a mapping error for interpolating

from one meshes to another and back to the starting mesh, letMD andMP be the dynamics

and physics mesh, respectively. In addition, let IDP and IPD be the interpolation operators

that map a given set of data values fromMD toMP and fromMP toMD, respectively. We

consider an advection-reaction problem where the advection part is calculated onMD and

the reaction onMP. A simple forward Euler time integration in used. Let ūτ and ûτ be the

approximate and the exact solution at time ττ. The dynamics/advection part is written as

ū1
τ+∆τ = ūτ + ∆τF

(
ūτ

)
, (6.31)

and the physics/reaction w̄τ+∆τ is expressed as

w̄τ+∆τ = Hū1
τ+∆τ, (6.32)

where Hū1
τ+∆τ = IDPG(IPDū1

τ+∆τ). Let Ēτ+∆τ be the global space and time error accumu-

lated up to τ + ∆τ after the advection and before mapping the solution values to MP.

Ēτ+∆τ does not include the mapping errors at τ + ∆τ. The final solution after applying the

operator H is

ūτ+∆τ = ū1
τ+∆τ + Hū1

τ+∆τ. (6.33)

The true solution ûτ+∆τ at the end of time step τ + ∆τ and after the mapping fromMD to

MP and backMD to can be expressed as

ûτ+∆τ = ū1
τ+∆τ + Ēτ+∆τ + Ĥ

(
ū1

τ+∆τ + Ēτ+∆τ

)
, (6.34)

where Ĥ is assumed to be the corresponding “exact" operator for H. Subtracting Equation

(6.34) from (6.33) gives an expression for the true error that can be written as

EG
τ+∆τ = Ēτ+∆τ + Ĥ

(
ū1

τ+∆τ + Ēτ+∆τ

)
− Hū1

τ+∆τ, (6.35)

where EG is the global space and time error including the mapping errors at τ +∆τ. Adding

and subtracting H
(
ū1

τ+∆τ + Ēτ+∆τ

)
yields

EG
τ+∆τ = Ēτ+∆τ + Ĥ

(
ū1

τ+∆τ + Ēτ+∆τ

)
−H

(
ū1

τ+∆τ + Ēτ+∆τ

)
+ H

(
ū1

τ+∆τ + Ēτ+∆τ

)
−Hū1

τ+∆τ.

(6.36)

153

Using a Taylor expansion of H
(
ū1

τ+∆τ + Ēτ+∆τ

)
about ū1

τ+1 and dropping the high order

terms, we can approximate the total errors as

EG
τ+1 ≈ Ēτ+∆τ + Ĥ

(
ūτ+∆τ

1 + Ēτ+∆τ

)
− H

(
ū1

τ+∆τ + Ēτ+∆τ

)
+

∂H
∂u

(u1
τ+∆τ)Eτ+∆τ. (6.37)

The results in Equation (6.37) indicate that the total error is dependent on

• the existing global space and time error Ēτ+∆τ that does not include the mapping

error at τ + ∆τ,

• the mapping error EM
τ+∆τ at τ + ∆τ,

EM
τ+∆τ = Ĥ

(
ū1

τ+∆τ + Ēτ+∆τ

)
− H

(
ū1

τ+∆τ + Ēτ+∆τ

)
= Ĥû1

τ+∆τ − Hû1
τ+∆τ, and

(6.38)

• a multiplier of the existing global space and time error Ēτ+∆τ,

EN
τ+∆τ =

∂H
∂u

(u1
τ+∆τ)Ēτ+∆τ. (6.39)

Mapping data values fromMD toMP and back toMD introduces the interpolation errors

that degrade the solution if EM
τ+∆τ is greater than the existing global space and time error

Ēτ+∆τ. This problem is resolved when the mapping error is kept smaller than the existing

global space and time error. Similar ideas in the context of time dependent differential

equations are explored in [4, 35, 58]. The studies in [35] and [58] develop strategies for

balancing the space and time error for better error control and improved performance

whereas [4] shows that in mesh adaptivity the spatial interpolation error must be controlled

smaller than the temporal error.

6.6 Mapping Examples
This section evaluates the use of the positivity-preserving interpolation to map data

values between two different meshes. The Runge and TWP-ICE examples use meshes that

emulate the dynamics and physics meshes used in NEPTUNE. These meshes are constructed

by linearly scaling the NEPTUNE vertical mesh points to the desired interval for the Runge

and TWP-ICE examples. In the BOMEX example, the dynamics mesh is composed of

uniformly spaced points, and the physics mesh is constructed using the mid-point of each

interval from the dynamics mesh. In Examples 6.6.1 and 6.6.2, we consider the max error

154

instead of L2-norm error because the global error is dominated by the local errors in few

locations around the large gradients.

6.6.1 1D Modified Runge Function

The examples are based on a modified version of the Runge function defined in Equation

(6.21) and two meshes that are similar to the dynamics and physics meshes used in

NEPTUNE. The modified Runge function increased the steepness on the left and right side

of the x = 0 compared to the canonical Runge function 1/(1 + 25x2). The function g1(x) is

evaluated on the first mesh (dynamics mesh) to create the initial data values. These data

values are mapped to the second mesh (physics) mesh and back to the starting mesh.

Table 6.8 shows maximum values of mapping errors over the grid points for g1 when

using the PCHIP, DBI, and PPI methods to map the data values from the dynamics to the

physics mesh and back to the dynamics mesh. For n = 64 points, increasing the interpolant

degree does not significantly improve the approximation. The global error is dominated by

the local error in the regions with steep gradients that are to left and right of the peak at

x = 0. The mapping errors can be improved by increasing the resolution and adding more

points in the regions with steep gradients. The resolution is increased by adding one or three

uniformly spaced points in each interval from the initial profile with 64 points. Increasing

the resolution leads to better approximations when mapping data values between both

meshes, and the error decreases as we increase the polynomial degree from 3 to 7. This

example demonstrates that in cases with steep gradients, using the PPI method high-order

interpolants may not improve the approximation unless there is sufficient resolution. In

order to benefit from the positivity and the high-order interpolants, it is important to

be in the regime where the problem has sufficient points to observe convergence as the

polynomial degree increases. Overall, the PPI method leads smaller errors compared to the

other methods.

6.6.2 TWP-ICE Example

This study uses the tropical warm pool international cloud experiment (TWP-ICE)

test case from the common community physics package (CCPP). The input mesh for the

simulation is configured to emulate a vertical column in NEPTUNE. The simulation result at

time t = 1440 sec is extracted scaled, and used to evaluate different interpolation approaches

155

when mapping solution values between dynamics and physics meshes. The domain and

range are scaled to [−1, 1] and [0, 1], respectively. This study considers the cloud water

mixing ratio profile, which represents the amount of cloud water in air. The extracted profile

is then fitted using a radial basis function interpolation to construct an analytical function

that can be used as the starting point of the mapping evaluation. The radial basis function

is based on multiquadrics.

bi =
√

1 + (ε|x− xi|)2. (6.40)

The parameter ε is approximated using cross validation [27]. The initial values are obtained

by evaluating the analytical function on the dynamics mesh. These values are then mapped

to the physics mesh and back to the dynamics mesh.

Table 6.9 shows maximum values of mapping errors for the extracted profile when using

the PCHIP, DBI, and PPI methods to map the data values from the dynamics to the physics

mesh and back to the dynamics mesh. For n = 64, the global error is dominated by the

local error at a couple points located in the regions with steep gradients. Increasing the

polynomial degree does not significantly improve the approximation compared to using

PCHIP for n = 64. More points are required to better approximate the underlying profile in

the regions with steep gradients. The resolutions are increased by adding one and three

uniformly spaced point in each interval from the initial n = 64 mesh points. Table 6.9 shows

that with the increased resolution, the approximation improves as the polynomial degree

increases. The number of points used in each region with steep gradients increased as more

points were added. This example provides an application example using simulation data

from TWP-ICE. In cases of coarse resolution (64) points, the PPI, DBI, and PCHIP results

are comparable, and going to higher degree interpolants does not significantly improve the

approximation. The approximation improves with higher degree interpolants when the

resolution is increased, as shown in Table 6.9. The results from this experiment suggest that

increasing the resolution is needed for the mapping between meshes to benefit from the

high-order interpolants from the PPI methods.

6.6.3 BOMEX Example

The 1D Barbados Oceanographic and Meteorological Experiment (BOMEX) [32] is a

single column test case that was developed to measure and study changes in the properties

156

of heat, moisture, and momentum. In this example, the dynamics and physics results are

calculated on different meshes. The dynamics uses uniformly spaced points that indicate

the boundary of each level in the vertical column. The physics mesh is constructed using the

mid-point of each level. The advections in the dynamics are approximated using fifth-order

weighted essentially nonoscillatory (WENO) and third-order Runge-Kutta methods [93].

At each time step, the dynamics are calculated on the dynamics mesh, and the results are

interpolated to the physics mesh for the use of the physics routines. The physics terms are

calculated using the physics mesh, and the results are interpolated back to the dynamics

mesh.

As in [85], let qc be the cloud water mixing ratio profile in the different experiments. The

cloud water mixing ratio represents the amount of cloud water in air. Fig. 6.9a - 6.10f show

the cloud mixing ratio profile qc at t = 5h that is used as input for the physics routines.

The physics calculations require positive input values for qc. Fig. 6.9a shows the target

profile for qc. This target profile is obtained by using the same mesh for both dynamics

and physics calculations where mapping is not required and qc remains positive during the

simulation. In addition, as the temporal and spatial resolution increases, qc converges to

the profile shown in Fig. 6.9a. Fig. 6.9b - 6.10f are used to investigate different interpolation

methods for mapping the solution values between meshes in the case where the dynamics

and physics are calculated using different meshes.

Fig. 6.9b shows the cloud mixing ratio profiles qc for the target and approximated

solution at t = 5h. In the case of the approximated solution, a fifth-order standard

polynomial interpolation is used when mapping between dynamics and physics meshes.

For a given interval Ii, the polynomial interpolant is constructed using the stencil V4 =

{xi−2, xi−1, xi, xi+1, xi+2, xi+3}. At the boundary and nearby boundary intervals, the stencil

V4 is biased toward the interior of the domain. The results in Fig. 6.9b demonstrate

that using the standard polynomial interpolation leads to oscillations, negatives values,

and an overestimation of the peak and total cloud mixing ratio of the profile qc. Using

standard polynomial interpolation leads to an overproduction of the total cloud mixing

ratio by 93.45%. The peak is max(qc) = 0.46g/kg, which is larger than the target peak

max(qc) = 0.28g/kg.

The negative values in Fig. 6.9b can be removed via “clipping", which is a procedure that

157

consists of removing the negative values by setting them to zero [97]. Fig. 6.9c shows the

cloud mixing ratio profiles for the target solution and an approximated solution that uses

“clipping" to remove the negative values at each time step. The approximated solution uses

a standard interpolation to map the data values from one mesh to another. The interpolant

for each interval is constructed using the stencil V4 = {xi−2, xi−1, xi, xi+1, xi+2, xi+3} with a

fifth-order polynomial. Once the interpolation is completed, “clipping" is used to remove

the negative values. Fig. 6.9c shows that using “clipping" still allows for oscillations and a

positive bias in the prediction of the cloud mixing ratio qc. The total cloud mixing ratio is

2.09 times greater than the target solution, and the peak max(qc) = 0.46g/kg is larger than

the target peak max(qc) = 0.28g/kg.

Using PCHIP to map between the dynamics and physics meshes eliminates the negative

values, removes oscillations, and reduces the positive bias in the cloud mixing ratio

prediction compared to the standard interpolation with and without “clipping". Fig. 6.9d

shows the target profile qc and an approximated profile that uses PCHIP for mapping

solution values between dynamics and physics meshes. The total cloud mixing ratio is

now 27.21% less than the target with a peak max(qc) = 0.21g/kg. In the BOMEX test case,

NEPTUNE, and similar codes, using PCHIP for mapping data values from one mesh to

another can degrade the high-order accuracy obtained from the high-order methods used

for the dynamics calculations. PCHIP is only third-order whereas the dynamics calculations

use a fifth-order method. This limitation can be addressed via high-order DBI and PPI.

Fig. 6.10a-6.10f show cloud mixing ratio profiles for the target and approximated

solutions that use the DBI and PPI methods to map the solution values between meshes.

The maximum polynomial degree for the DBI and PPI methods is set to 5 and 7, and

the parameters ε0 and ε1 are both set a value of 10−5. For larger values of ε0 and ε1, the

PPI approach introduces oscillations that lead to positive bias prediction of the cloud

mixing ratio. These oscillation are caused by the relaxed nature of the PPI approach, which

still allows the interpolants to oscillate while remaining positive. The positive bias and

oscillations can be removed using the DBI or PPI method with small values for ε0 and ε1.

When using the PPI method for mapping, the total amount of the cloud mixing ratio is less

than the target for st = 1 and more than the target for st = 2 and st = 3. Fig. 6.10a-6.10f

show that using the DBI and PPI methods with ε0 = ε1 = 10−5 to map data values between

158

the dynamics and physics meshes eliminates the negative values, removes the oscillations,

and significantly reduces the positive bias in the cloud mixing ratio prediction. Using the

DBI and PPI methods leads to a better approximation of the peak value of the total cloud

mixing ratio compared to using the standard interpolation and PCHIP approaches. The

best approximation of the total amount of the cloud mixing ratio is with the DBI method,

which is 7.57% more than the target with a peak of max(qc) = 0.28g/kg.

In summary, using DBI and PPI methods to map data values between both dynamics

and physics meshes produces better approximation results compared to the standard

interpolation and PCHIP methods. Tables 6.10 and 6.11 provide a summary of the maximum

values and the total amount of cloud mixing ratios for each case. The DBI and PPI methods

with a target polynomial set to d = 7 lead to a better approximation of the peak and

the total the cloud mixing ratios compared to the standard interpolation and PCHIP

approaches. The results from Tables 6.10 and 6.11 indicate that the DBI method is the

most suitable approach to map data values between meshes for the BOMEX test case.

This study provided an example demonstrating how to use the DBI and PPI methods

for mapping data values between meshes in the context of NWP. The BOMEX example

also demonstrated that positivity alone may not be sufficient to remove oscillations in the

solution, and the interpolants may need to be constrained to be between the data values for

a better approximation.

6.7 Discussion and Concluding Remarks
This work presents a high-order 1D, 2D, and 3D data-bounded and positivity-preserving

interpolation software HiPPIS for function approximation and mapping data values be-

tween different structured meshes. The software implementation is based on the math-

ematical framework in Section 6.2 and the algorithms in Section 6.3. The software is

self-contained and easy to incorporate into larger codes. The interface is designed to

be similar to commonly used PCHIP and splines interfaces. The algorithms used in the

software extend the DBI and PPI methods introduced in [81] by adding more options for

the stencil construction process that can be set by the user with the parameter st. For a given

interval Ii, the algorithm starts with the stencil V0 = {xi, xi+1} and successively appends

points the left and/or right of V0 to form the final stencil. The stencil construction is done

159

in accordance with the DBI and PPI conditions outlined in Equations (6.19a) and (6.19b).

In addition to the different options for stencil selection process, the software introduces

a parameter ε1 that can be used to adjust the bounds of the interpolants in the intervals

where extrema are detected.

Section 6.5 provides an analysis of the mapping error when the PPI and DBI methods are

used to map data values between different meshes. The analysis shows that it is important to

keep mapping errors smaller than the already existing global errors from other calculations.

Removing negative values and spurious oscillations can help reduce the mapping error.

Various 1D and 2D examples are employed to evaluate the use of the DBI and PPI

software in different contexts. The results in Tables 6.8 and 6.9 show that using small values

for parameters ε0 and ε1 improves the approximation in cases where the input data are

coarse. Small values of ε0 and ε1 further restrict how much the interpolant is allowed to

grow beyond the data values. The parameters ε0 and ε1 are used to adjust the lower and

upper bounds on each interpolant according to Equations (6.14) and (6.15).

The differences between st = 1, st = 2, and st = 3 are negligible in the case of function

approximation, as shown in Tables 6.2 - 6.7. However, in the BOMEX test case, prioritizing

a symmetry (st = 2) or locality (st = 3) leads to better approximations compared to the

ENO stencil (st = 1) using the DBI PPI methods. Using the ENO stencil (st = 1) produces

significantly less cloud mixing ratio compared to both the prioritizing symmetry and locality.

In the BOMEX example with parameters ε0 and ε1 greater than 10−5, the PPI method allows

for oscillations that degrade the approximation compared to the DBI and PCHIP approaches.

The study of the modified Runge example in Section 6.6.1 and TWP-ICE example in Section

6.6.2 demonstrated that for a profile with steep gradients or fronts, more points are required

to better take advantage of the DBI and PPI algorithm. If there are not enough points in the

regions with steep gradients or fronts increasing the polynomial degree may not improve

the accuracy. The results in Tables 6.8 and 6.9 show that once the resolution is sufficiently

increased, the approximations improve as the polynomial degree increases.

In summary, this work provided: 1) a high-order DBI and PPI software for 1D, 2D, and

3D structured meshes; 2) an analysis of the mapping error when using the DBI or PPI to map

data values between meshes; 3) an evaluation of the DBI and PPI methods in the context

of function approximation and interpolating data values between different meshes; and 4)

160

code and data restructuring techniques used to enable vectorization, increase locality, and

improve overall computational performance. As this work continues, we plan to investigate

different approaches for extending the DBI and PPI methods to unstructured 2D and 3D

meshes.

Figure 6.1: Interface examples.

adaptiveInterpolation1D(...)

adaptiveInterpolation3D(...)adaptiveInterpolation2D(...)

divdiff(…) newtonPolyVal(…)

HiPPIS

Figure 6.2: Diagram showing the components of the main module used to build the HiPPIS
software.

161

Figure 6.3: Unvectorized pseudocode example.

162

Figure 6.4: Vectorized pseudocode example.

Figure 6.5: Approximation of g2(x) using N = 17 uniformly spaced points with different
values of ε0 for the PPI method. The target polynomial is set to d = 8, st = 2, and ε1 = 1.

163

Figure 6.6: Approximation of g3(x) using N = 17 uniformly spaced points with different
values of ε0 for the PPI method. The target polynomial is set to d = 8, st = 2, and ε1 = 1.

Figure 6.7: Approximation of g5(x, y) using N× N = 17× N uniformly spaced points with
different values of ε0 and ε1 for the PPI method. The target polynomial is set to d = 8 and
st = 2.

Figure 6.8: Approximation of g6(x, y) using N× N = 17× N uniformly spaced points with
different values of ε0 for the PPI method. The target polynomial is set to d = 8, st = 2, and
ε1 = 1.

164

0 0.1 0.2 0.3

g/kg

0.5

1

1.5

2

z
 (

k
m

)

(a) Target (no mapping required).

0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10 -3

1.5

1.505

1.51

1.515

1.52

1.525

1.53

1.535

1.54

1.545

1.55

(b) Standard interpolation.

0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10 -3

1.51

1.515

1.52

1.525

1.53

1.535

1.54

1.545

1.55

(c) Standard interpolation with “clipping".

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10 -3

1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

(d) PCHIP.
Figure 6.9: Cloud mixing ratio qc profile from the BOMEX test case at t = 5h with nz = 600
points. A fifth-order WENO and third-order Runge-Kutta schemes with CFL = 0.1 are
used for the dynamics (advection). 6.9a the black plot in 6.9b, 6.9c, and 6.9d represents the
target profile where the same mesh is used for the dynamics and physics calculations. In
6.9b, 6.9c, and 6.9d, the profiles in blue use different meshes for the dynamics and physics
calcultions which require mapping the solution values between both meshes. A standard
polynomial interpolation, a standard polynomial interpolation with “clipping", and PCHIP
methods are used for the mapping in 6.9b, 6.9c, and 6.9d, respectively.

165

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.35

1.4

1.45

(a)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.37

1.38

1.39

1.4

1.41

1.42

(b)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.4

1.42

1.44

1.46

1.48

1.5

(c)

0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.42

1.43

1.44

1.45

1.46

1.47

1.48

1.49

(d)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.4

1.41

1.42

1.43

1.44

1.45

(e)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

(f)
Figure 6.10: Cloud mixing ratio qc profile from the BOMEX test case at t = 5h with nz = 600
points with ε0 = ε1 = 10−5. The profile in black is the target solution. The profiles on the
left and right are obtained using the DBI and PPI methods, respectively, to map solution
values between meshes. The maximum polynomial degrees are set to 5 and 7 for the blue
and red plots, respectively. A fifth-order WENO and third-order Runge-Kutta schemes with
CFL = 0.1 are used for the dynamics (advection).

166

Table 6.1: Runtimes in miliseconds (ms) for the different interpolation method. “unvec"
and “vec" correspond to unvectorized and vectorized, respectively.

N PCHIP PPI and DBI
P4 P8 P16

unvec vec unvec vec unvec vec
1D f1(x)

17 8.11E-3 2.34E-2 1.24E-2 3.30E-2 1.22E-2 5.82E-2 1.85E-2
33 1.41E-2 4.09E-2 1.65E-2 6.31E-2 2.09E-2 1.18E-1 3.20E-2
65 2.52E-2 7.30E-2 2.72E-2 1.21E-1 3.89E-2 2.31E-1 6.13E-2
127 4.14E-2 1.30E-1 4.59E-2 2.46E-1 7.98E-2 4.74E-1 1.26E-1
257 8.73E-2 2.28E-1 8.80E-2 4.83E-1 1.52E-1 9.75E-1 2.36E-1

2D f4(x, y)
172 1.89E-1 5.42E-1 2.53E-1 1.11 4.36E-1 2.02 6.48E-1
332 7.18E-1 2 8.20E-1 4.19 1.45 7.97 2.18
652 2.79 7.52 2.92 1.63E+1 5.22 3.19E+1 7.99

1272 1.08E+1 2.96E+1 1.19E+1 6.34E+1 2.12E+1 1.24E+2 3.40E+1
2572 4.45E+1 1.16E+2 4.45E+1 2.54E+2 8.05E+1 5.16E+2 1.26E+2

Table 6.2: L2-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g1(x). N represents the number of input points used to build the approximation.
The parameters ε0, ε1, and st are set to 0.01, 1.0, and 3, respectively.

N PCHIP DBI DBI
P3 P3 P4 P8 P3 P4 P8

17 3.99E-2 5.10E-2 2.91E-2 4.61E-2 5.10E-2 2.91E-2 4.61E-2
33 4.52E-3 6.31E-3 9.57E-3 3.05E-3 6.31E-3 9.57E-3 3.05E-3
65 2.79E-3 2.44E-3 2.49E-3 1.33E-3 2.44E-3 2.49E-3 9.92E-4
129 6.23E-4 2.22E-4 1.21E-4 1.05E-4 2.22E-4 1.21E-4 2.43E-5
257 1.17E-4 1.51E-5 1.15E-5 1.07E-5 1.51E-5 4.68E-6 9.89E-8

Table 6.3: L2-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g2(x). N represents the number of input points used to build the approximation.
The parameters ε0, ε1, and st are set to 0.01, 1, and 3, respectively.

N PCHIP DBI DBI
P3 P3 P4 P8 P3 P4 P8

17 2.02E-2 2.41E-2 2.41E-2 2.14E-2 2.41E-2 2.41E-2 2.17E-2
33 3.38E-3 4.89E-3 4.86E-3 3.59E-3 4.90E-3 4.84E-3 3.63E-3
65 3.59E-4 4.17E-4 4.07E-4 1.47E-4 4.17E-4 4.07E-4 1.47E-4
129 4.21E-5 3.09E-5 1.56E-5 1.70E-6 3.09E-5 1.56E-5 1.70E-6
257 5.12E-6 2.04E-6 5.19E-7 5.22E-9 2.04E-6 5.19E-7 5.22E-9

167

Table 6.4: L2-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g3(x). N represents the number of input points used to build the approximation.
The parameters ε0, ε1, and st are set to 0.01, 1, and 3, respectively.

N PCHIP DBI DBI
P3 P3 P4 P8 P3 P4 P8

17 1.77E-1 1.82E-1 1.83E-1 1.82E-1 1.73E-1 1.72E-1 1.70E-1
33 1.39E-1 1.35E-1 1.39E-1 1.36E-1 1.35E-1 1.39E-1 1.36E-1
65 1.03E-1 9.95E-2 1.04E-1 1.02E-1 9.95E-2 1.04E-1 1.02E-1
129 7.42E-2 7.12E-2 7.54E-2 7.35E-2 7.15E-2 7.55E-2 7.38E-2
257 5.28E-2 5.06E-2 5.38E-2 5.24E-2 5.07E-2 5.39E-2 5.26E-2

Table 6.5: L2-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g4(x, y). N represents the number of input points used to build the approximation.
The parameters ε0, ε1, and st are set to 0.01, 1, and 3, respectively.

N PCHIP DBI DBI
P3 P3 P4 P8 P3 P4 P8

172 1.76E-2 1.57E-2 9.09E-3 1.91E-2 2.12E-2 9.09E-3 1.91E-2
332 2.05E-3 9.58E-3 4.61E-3 1.25E-3 2.45E-3 4.61E-3 1.24E-3
652 1.05E-3 1.19E-3 9.33E-4 4.99E-4 8.59E-4 9.33E-4 3.51E-4

1292 2.23E-4 1.20E-4 4.76E-5 4.12E-5 7.47E-5 4.64E-5 7.16E-6
2572 4.19E-5 7.14E-6 4.20E-6 3.80E-6 5.05E-6 1.62E-6 2.91E-8

Table 6.6: L2-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g5(x, y). N represents the number of input points used to build the approximation.
The parameters ε0, ε1, and st are set to 0.01, 1, and 3, respectively.

N PCHIP DBI DBI
P3 P3 P4 P8 P3 P4 P8

172 8.07E-3 1.05E-2 1.02E-2 8.31E-3 1.05E-2 1.02E-2 8.74E-3
332 1.26E-3 1.67E-3 1.58E-3 1.09E-3 1.64E-3 1.53E-3 9.19E-4
652 1.44E-4 1.58E-4 1.06E-4 4.94E-5 1.58E-4 1.06E-4 5.05E-5
1292 1.63E-5 1.13E-5 4.01E-6 2.66E-7 1.13E-5 4.01E-6 2.66E-7
2572 1.94E-6 7.29E-7 1.27E-7 5.44E-10 7.29E-7 1.27E-7 5.44E-10

168

Table 6.7: L2-errors when using the PCHIP, DBI, and PPI methods to approximate the
function g6(x, y). N represents the number of input points used to build the approximation.
The parameters ε0, ε1, and st are set to 0.01, 1, and 3, respectively.

N PCHIP DBI DBI
P3 P3 P4 P8 P3 P4 P8

172 1.91E-2 1.72E-2 1.69E-2 1.63E-2 1.72E-2 1.68E-2 1.59E-2
332 6.92E-3 6.16E-3 5.81E-3 5.88E-3 6.16E-3 5.80E-3 5.87E-3
652 2.47E-3 2.24E-3 2.14E-3 2.11E-3 2.24E-3 2.14E-3 2.11E-3

1292 8.99E-4 8.21E-4 7.77E-4 7.63E-4 8.20E-4 7.77E-4 7.63E-4
2572 3.23E-4 2.97E-4 2.81E-4 2.76E-4 2.96E-4 2.81E-4 2.76E-4

Table 6.8: Maximum values of mapping errors for the modified Runge function g4(x) when
using the PCHIP, DBI, and PPI methods to map the data values from dynamics to physics
mesh and back to dynamics mesh. The target polynomials are set to d = 3, d = 5 and d = 7.
N represents the number of input points used for both meshes. The parameter st is set to 3

N PCHIP DBI PPI
P3 P3 P5 P7 P3 P5 P7

64 1.07E-2 1.76E-2 2.59E-2 1.83E-2 1.76E-2 1.45E-2 1.35E-2
127 2.68E-3 3.43E-3 3.44E-3 3.44E-3 1.42E-3 5.50E-4 1.41E-4
253 7.47E-4 8.62E-4 8.57E-4 8.57E-4 1.40E-4 2.27E-5 1.41E-5

Table 6.9: Maximum values of mapping errors for the TWP-ICE profile when using the
PCHIP, DBI, and PPI methods to map the data values from dynamics to physics mesh and
back to dynamics mesh. The target polynomials are set to d = 3, d = 5 and d = 7. N
represents the number of input points used for both meshes. The parameter st is set to 3

N PCHIP DBI PPI
P3 P3 P5 P7 P3 P5 P7

64 1.25E-2 4.02E-2 3.77E-2 3.67E-2 1.68E-2 7.20E-3 4.96E-3
127 6.71E-3 1.84E-2 1.89E-2 1.89E-2 3.72E-3 1.39E-3 7.10E-4
253 2.68E-3 4.95E-3 4.77E-3 4.75E-3 6.60E-4 1.09E-4 2.78E-5

Table 6.10: Maximum values of qc and the total amount of the cloud mixing ratio at t = 5h
with nz = 600 points. The total amount of the cloud mixing ratio is calculated by estimating
the integral qc. The units of qc are g/kg.

Target STD Clipping PCHIP
maximum qc 0.28 0.46 0.46 0.21

total qc 69.82 135.07 145.89 50.82

169

Table 6.11: Maximum values of qc and the total amount of the cloud mixing ratio at t = 5h
with nz = 600 points and ε0 = ε1 = 10−5. The total amount of the cloud mixing ratio is
calculated by estimating the integral qc. The units of qc are g/kg.

st = 1 st = 2 st = 3 st = 1 st = 2 st = 3
P5 P7 Target

DBI
maximum qc 0.20 0.20 0.31 0.30 0.30 0.28 0.28

total qc 45.91 47.74 87.98 86.57 82.67 75.11 69.82
PPI

maximum qc 0.20 0.21 0.33 0.32 0.29 0.29 0.28
total qc 47.87 50.09 97.60 92.54 81.44 78.85 69.82

CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary and Contributions
The advances in NWP are largely dependent on the progress in computational resources

and the ability to develop different methods to effectively use these resources. The exascale

systems offer a new opportunity to further improve NWP skills and reach the desired 1 km

resolution for global weather and climate model. This body of work highlights some of the

challenges in preparing NWP code for the exascale era and beyond. The research in the

dissertation is organized into two major parts. The first part, composed of Chapters 2 and

3, focuses on indentifying performance bottlenecks and developing strategies to remove

those bottlenecks. The second part, composed of Chapters 4, 5, and 6, introduces a novel

approach for mapping solutions values between meshes and evaluating the use of this

approach in the context of coupling physics and dynamics in NWP code.

Chapter 2 examines the impact of OpenMP directives on a Fortran-based WSM6

microphysics code in WRF. The synthetic examples measured the cost of thread overhead

and tested the effectiveness of various directives with and without OMP SIMD. This study

suggests that whereas greater scalability may be possible with high-level OpenMP con-

structs, parallelization of dependency-free code sections is possible with a few modifications

to the original code. Extending the lesson learned from the synthetic examples to WSM6

delivers 50x - 100x speed-ups over serial code.

Chapter 3 investigates high-level and low-level optimization strategies for NWP codes.

These strategies employ thread-local structures of arrays (SOA) and OpeMP directives such

as OPM SIMD, and minor code transformations to enable better utilizations of SIMD units,

increase parallelism, improve locality, and reduce memory traffic. The studies and examples

in Chapter 3 demonstrate the benefits of high-level optimization using thread-local SOA,

coupled with low-level SIMD using OMP SIMD. The optimized versions of WSM6, GFS

171

physics, and GFS radiation run 70, 27, and 23 times faster, respectively, on KNL and 26, 18,

and 30, times faster, respectively on Haswell compared to their respective original serial

versions. Although this work targets WRF physics schemes, the findings are transferable to

other performance optimization contexts and provide insight into the optimization of codes

with complex physical model models for present and near-future architectures with many

core and vector units.

Chapter 4, which starts the second part of the dissertation, introduces new data-bounded

and positivity-preserving interpolation methods for function approximation and for map-

ping solution values between meshes. This chapter demonstrates that it is possible to

construct high-order interpolation methods over arbitrarily spaced interpolation points in a

way that ensures either data boundedness or positivity preservation within user-supplied

bounds. The algorithm developed comes with theoretical estimates, presented herein,

that provide sufficient conditions for data boundedness and positivity preservation. This

work extends the ideas in [5] by addressing data boundedness and positivity (within

user-supplied bounds) in the same framework and by allowing irregular meshes. Thus,

these new proofs provide the previously missing theoretical underpinning for complex in-

terpolation cases such as those like the NWP case described above. The new approach used

here both generalizes the DBI method to nonuniform meshes and extends the approach to

preserve positivity (positivity-preserving interpolation PPI) rather than the more restrictive

data-bounded approach in [5].

Chapter 5 evaluates the new approach against several typical algorithms in use on

a range of test problems in one or more space dimensions. The results obtained show

that the new method is competitive in terms of observed accuracy while at the same time

preserving the underlying positivity of the functions being interpolated. The different

test functions include smooth, C0-continuous, discontinuous, and steep-gradients. The

comparison undertaken focuses on how accurately the different methods can represent this

underlying set of test functions. This study shows that the new methods are well suited for

function approximation and mapping data values between meshes. The generality of this

approach suggests that these methods also have application to other problems for which

preserving positivity is important.

Chapter 6 introduces open-source software for high-order data-bounded and positivity-

172

preserving interpolation (HPPIS) that addresses the limitations of both the spline and

polynomial rescaling methods. HPPIS uses a given set of data points to construct high-

degree polynomial interpolants that are positive over the domains in which they are defined.

The high-order positive interpolants obtained from HPPIS are suitable for approximating

and mapping physical quantities such as mass, density, and concentration between meshes

while preserving positivity. HPPIS provides a Fortran and Matlab implementation of the

data-bounded and positivity-preserving methods. Both the Fortran and Matlab versions are

self-contained and easy to integrate into other application software requiring positivity. In

addition to the software, this work provides an analysis of the mapping error in the context

of PDEs, uses several 1D and 2D numerical examples to demonstrate the benefits and

limitations of HPPIS, and introduces different strategies to improve locality, vectorization,

and, overall, the performance of the data-bounded and positivity-preserving interpolation

methods in HPPIS.

7.2 Lessons Learned
The research undertaken in this dissertation provided valuable insights to consider when

optimizing performance scientific application codes and developing high-order numerical

methods for these scientific applications.

• OpenMP is a suitable choice for node level performance on many- and multicore

architectures. Chapters 2 and 3 demonstrated that OpenMP directives can be used

to enable and improve thread and vector parallelism with minor changes in NWP

codes and similar applications for many- and multicore architectures. The evaluation

of the overhead associated with using OpenMP directives indicates how much work

is required to minimize the overhead and benefit from thread and vector parallelism.

• Complex control flows are detrimental to performance at the node level because they

prevent vectorization. Chapters 2 and 3 showed that to benefit from vector parallelism,

it is important to remove or reduce conditionals and dependencies used inside the

loops.

• The performance can be further improved by organizing the code and data structures

that maximize spatial and temporal locality while minimizing memory traffic. Chapter

173

3 demonstrated that using high- and low-level code and data restructuring coupled

thread-local structures of arrays can help improve performance.

• In many cases, enforcing data boundedness may be too restrictive and truncate hidden

extrema whereas enforcing positivity alone may lead to large oscillations. We observe

this behavior because enforcing positivity alone does not restrict how much the

polynomial is allowed to grow beyond the data values. In addition to enforcing

positivity, it is important to remove the undesirable oscillations and extrema as much

as possible. Chapter 4 addresses this limitation by introducing an user-supplied

parameter that is used to constrain the positive interpolant as needed.

• The extensive testing in Chapters 2 and 3 demonstrated that the DBI and PPI methods

are well suited for approximation and mapping solution values between different

meshes. Both methods provide high-order accuracy while enforcing data bounded-

ness and positivity preservation. In regions with sharp gradients, discontinuities, and

C0-continuity, the approximations from both approaches are comparable to cubic and

quintic shape-preserving spline methods.

• For time-dependent PDEs where positivity-preserving mapping is required, it is

important to keep interpolation error smaller than the already existing errors from

time integration and previous time steps. Chapter 6 showed that if the interpolation

error dominates, it may be amplified after several steps and cause the simulation to

fail. Increasing the resolution and constraining the interpolant are approaches that

can be used to improve the interpolation accuracy.

7.3 Future Directions
Although this body of work provides several methods addressing the various perfor-

mance and numerical challenges in NWP codes, several bottlenecks and interesting research

questions remain need to be solved.

• KNL is no longer the target architecture for NEPTUNE and will not be used in the

Exascale systems. Evaluating the performance strategies introduced in Chapters 2 and

3 on the intended architectures may further highlight new performance challenges

and help prepare NWP codes for the Exascale systems. In addition, it is important to

174

explore performance portable approaches for NEPTUNE across hybrid systems that

use different architectures, including CPU and GPU.

• The DBI and PPI methods presented in this dissertation build on ideas from ENO-

type reconstructions that are challenging to vectorize and less accurate compared to

WENO-type reconstruction. Building DBI and PPI methods based on WENO-type

reconstruction will help improve accuracy and performance.

• In many scientific applications, there is a strong incentive to use high-order methods.

However, in problems with coarse resolutions, sharp gradients, and discontinuities,

high-order approximations may degrade the accuracy. A convergence study to

investigate and determine the resolution and conditions required for high-order

polynomial approximation to improve as the polynomial decrease would provide a

guide for when and how to use high-order interpolation for scientific applications

such as NWP.

• NWP code and many other scientific applications are constructed by coupling several

other applications that have been developed independently. These coupling processes

often do not investigate how the errors from the different models interact and affect

the applications. For example, an interesting research question would be to evaluate

the effective order of accuracy for coupling the dynamical cores with the physics

schemes.

• The positivity preserving mapping in NEPTUNE is required because the dynamics

uses a spectral element mesh that is different from the uniform mesh used for physics

calculation. Another approach worth investigating would be to consider using the

same meshes for both dynamics and physics. This change would remove the need

for mapping solution values between meshes and the errors introduced from such

mapping.

7.4 Publications
1. Timbwaoga A. J. Ouermi, Robert M. Kirby, and Martin Berzins. “HPPIS: A High-

Order Positivity-Preserving Mapping Software for Structured Meshes." Submited for

publication (2022)

175

2. Timbwaoga A. J. Ouermi, Robert M. Kirby, and Martin Berzins. “ENO-Based High-

Order Data-Bounded and Constrained Positivity-Preserving Interpolation." Numerical

Algorithms. 2022.

3. Timbwaoga. A. J. Ouermi, Robert M. Kirby, and Martin Berzins. “Numerical Testing

of a New Positivity-Preserving Interpolation Algorithm." Technical Report. arXiv

preprint arXiv:2009.08535. 2020.

4. Timbwaoga A. J. Ouermi, Robert M. Kirby, and Martin Berzins. "Performance Opti-

mization Strategies for WRF Physics Schemes Used in Weather Modeling. International

Journal of Networking and Computing 8(2), pp. 301-327. 2018.

5. Timbwaoga A. J. Ouermi, Aaron Knoll, Robert M. Kirby, and Martin Berzins. “Openmp

4 Fortran Modernization of WSM6 for KNL." In Proceedings of the Practice and Experience

in Advanced Research Computing 2017 on Sustainability, Success and Impact, pp. 1-8. 2017.

6. Timbwaoga A. J. Ouermi , Aaron Knoll, Robert M. Kirby, and Martin Berzins. “Opti-

mization Strategies for WRF Single-Moment 6-Class Microphysics Scheme (WSM6)

on Intel Microarchitectures." In 2017 Fifth International Symposium on Computing and

Networking (CANDAR), pp. 146-152. IEEE, 2017.

REFERENCES

[1] D. S. Balsara, “Self-adjusting, positivity preserving high order schemes for hydrody-
namics and magnetohydrodynamics,” J. Comput. Phys., vol. 231, no. 22, pp. 7504–7517,
2012.

[2] P. Bauer, A. Thorpe, and G. Brunet, “The quiet revolution of numerical weather
prediction,” Nature, vol. 525, no. 7567, pp. 47–55, Sep. 2015.

[3] M. Berzins, “Nonlinear data-bounded polynomial approximations and their applica-
tions in eno methods,” Numer. Algor., vol. 55, no. 2, pp. 171–189, 2010.

[4] M. Berzins, P. J. Capon, and P. K. Jimack, “On spatial adaptivity and interpolation
when using the method of lines,” Appl. Numer. Math., vol. 26, no. 1, pp. 117–133, 1998.

[5] M. Berzins, “Adaptive polynomial interpolation on evenly spaced meshes,” SIAM
Rev., vol. 49, no. 4, pp. 604–627, 2007.

[6] J. M. Bull, “Measuring synchronisation and scheduling overheads in OpenMP,” in
Proc. 1st Eur. Workshop on OpenMP, Sep. 1999, pp. 99–105.

[7] J. M. Bull and D. O’Neil, “A microbenchmark suite for OpenMP 2,” in Proc. 3rd Eur.
Workshop on OpenMP (EWOMP’01), Sep. 2001.

[8] J. M. Bull, F. Reid, and N. McDonnell, “A microbenchmark suite for OpenMP tasks,”
in Proc. 8th Int. Conf. on OpenMP in a Heterogeneous World, ser. IWOMP’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 271–274.

[9] D. Buono, M. Danelutto, T. D. Matteis, G. Mencagli, and M. Torquati, “A lightweight
run-time support for fast dense linear algebra on multi-core.” in Proc. of the 12th Int.
Conf. Parallel Distrib. Comput. Netw. (PDCN 2014). IASTED, ACTA Press, Feb. 2014.

[10] S. Butt and K. Brodlie, “Preserving positivity using piecewise cubic interpolation,”
Comput. Graph., vol. 17, no. 1, pp. 55 – 64, 1993.

[11] E. Chan and B. Ong, “Range restricted scattered data interpolation using convex
combination of cubic Bézier triangles,” J. Comput. Appl. Math., vol. 136, no. 1, pp. 135 –
147, 2001.

[12] G. Chrysos, “Intel Xeon Phi coprocessor (codename knights corner),” in 2012 IEEE
Hot Chips 24 Symposium (HCS), Aug. 2012, pp. 1–31.

[13] P. Costantini, On Some Recent Methods for Bivariate Shape-Preserving Interpolation. Basel:
Birkhäuser Basel, 1990, pp. 55–68.

[14] ——, “Algorithm 770: Bvspis–a package for computing boundary-valued shape-
preserving interpolating splines,” ACM Trans. Math. Softw., vol. 23, no. 2, pp. 252–254,
Jun 1997.

177

[15] ——, “Boundary-valued shape-preserving interpolating splines,” ACM Trans. Math.
Softw., vol. 23, no. 2, pp. 229–251, Jun 1997.

[16] P. Costantini and F. Fontanella, “Shape-preserving bivariate interpolation,” SIAM J.
Numer. Anal., vol. 27, no. 2, pp. 488–506, 1990.

[17] L. Dagum and R. Menon, “OpenMP: An industry-standard api for shared-memory
programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55, Jan. 1998.

[18] M. Danelutto, T. D. Matteis, D. D. Sensi, G. Mencagli, and M. Torquati, “P3arsec:
towards parallel patterns benchmarking,” in In Proc. of the Symp. on Appl. Comput.
(SAC ’17). New York, NY, USA: ACM, Apr. 2017, pp. 1582–1589.

[19] C. De Boor, A Practical Guide to Splines. springer-verlag New York, 1978, vol. 27.

[20] V. V. Dimakopoulos, P. E. Hadjidoukas, and G. C. Philos, A Microbenchmark Study
of OpenMP Overheads under Nested Parallelism. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 1–12.

[21] R. Dougherty, A. Edelman, and J. Hyman, “Nonnegativity-, monotonicity-, or
convexity-preserving cubic and quintic hermite interpolation,” Math. Comput., vol. 52,
no. 186, pp. 471–494, 1989.

[22] P. E., M. J., H. M., H. B, H. H. L. A., and L. T., “GPU-accelerated longwave radiation
scheme of the rapid radiative transfer model for general circulation models (rrtmg),”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 8, pp. 3660–3667, Aug.
2014.

[23] J. F. Epperson, “On the Runge example,” The Amer. Math. Mon., vol. 94, no. 4, pp.
329–341, 1987.

[24] R. T. Farouki, C. Giannelli, C. Manni, and A. Sestini, “Identification of spatial ph
quintic Hermite interpolants with near-optimal shape measures,” Comput. Aided Geom.
Des., vol. 25, no. 4, pp. 274 – 297, 2008.

[25] R. T. Farouki, C. Manni, M. L. Sampoli, and A. Sestini, “Shape-preserving interpola-
tion of spatial data by Pythagorean-hodograph quintic spline curves,” IMA J. Numer.
Anal., vol. 35, no. 1, pp. 478–498, Feb. 2014.

[26] R. T. Farouki, C. Manni, and A. Sestini, “Shape-preserving interpolation by G1 and
G2 PH quintic splines,” IMA J. Numer. Anal., vol. 23, no. 2, pp. 175–195, 04 2003.

[27] G. E. Fasshauer and J. G. Zhang, “On choosing “optimal" shape parameters for rbf
approximation,” Numer. Algor., vol. 45, no. 1, pp. 345–368, 2007.

[28] U. S. Fjordholm, S. Mishra, and E. Tadmor, “Arbitrarily high-order accurate entropy
stable essentially nonoscillatory schemes for systems of conservation laws,” SIAM J.
Numer. Anal., vol. 50, no. 2, pp. 544–573, 2012.

[29] ——, “Eno reconstruction and eno interpolation are stable,” Found. Comput. Math.,
vol. 13, no. 2, pp. 139–159, 2013.

[30] B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids,”
Math. comput., vol. 51, no. 184, pp. 699–706, 1988.

178

[31] M. P. Forum, “MPI: A message-passing interface standard,” Knoxville, TN, USA, 1994.
[Online]. Available: https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

[32] H. A. Friedman, G. Conrad, and J. D. McFadden, “Essa research flight facility aircraft
participation in the Barbados oceanographic and meteorological experiment,” Bull.
Amer. Meteorol. Soc., vol. 51, no. 9, pp. 822–834, 1970.

[33] F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpolation,” SIAM J.
Numer. Anal., vol. 17, no. 2, pp. 238–246, 1980.

[34] F. X. Giraldo, J. F. Kelly, and E. M. Constantinescu, “Implicit-explicit formulations of
a three-dimensional nonhydrostatic unified model of the atmosphere (numa),” SIAM
J. Sci. Comput., vol. 35, no. 5, pp. B1162–B1194, 2013.

[35] C. E. Goodyer and M. Berzins, “Adaptive timestepping for elastohydrodynamic
lubrication solvers,” SIAM J. Sci. Comput., vol. 28, no. 2, pp. 626–650, 2006.

[36] N. Hale and A. Townsend, “Fast and accurate computation of Gauss–Legendre and
Gauss–Jacobi quadrature nodes and weights,” SIAM J. Sci. Comput., vol. 35, no. 2, pp.
A652–A674, 2013.

[37] A. Harten, “Eno schemes with subcell resolution,” J. Comput. Phys., vol. 83, no. 1, pp.
148–184, 1989.

[38] ——, “Multiresolution algorithms for the numerical solution of hyperbolic conserva-
tion laws,” Commun. Pure Appl. Math., vol. 48, no. 12, pp. 1305–1342, 1995.

[39] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, “Uniformly high order
accurate essentially non-oscillatory schemes, iii,” J. Comput. Phys., vol. 131, no. 1, pp.
3 – 47, 1997.

[40] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and P. Sadayappan,
“Data layout transformation for stencil computations on short-vector SIMD architec-
tures,” in Proc. 20th Int. Conf. on Compiler Construction: Part of the Joint Eur. Conf. Theor.
Pract. Softw., ser. CC’11/ETAPS’11. Berlin, Heidelberg: Springer-Verlag, 2011, p.
225–245.

[41] W. Heß and J. W. Schmidt, “Positive quartic, monotone quintic C2-spline interpolation
in one and two dimensions,” J. Comput. Appl. Math., vol. 55, no. 1, pp. 51 – 67, 1994.

[42] M. Hirzel, “Data layouts for object-oriented programs,” SIGMETRICS Perform. Eval.
Rev., vol. 35, no. 1, pp. 265–276, Jun. 2007.

[43] H. Homann and F. Laenen, “Soax: A generic C++ structure of arrays for handling
particles in HPC codes,” CoRR, vol. abs/1710.03462, 2017.

[44] S.-Y. Hong and J.-O. jade Lim, “The WRF single-moment 6-class microphysics scheme
(wsm6),” J. of the Korean Meteor. Soc., vol. 42, no. 2, pp. 129–151, Apr. 2006.

[45] X. Y. Hu, N. A. Adams, and C.-W. Shu, “Positivity-preserving method for high-order
conservative schemes solving compressible euler equations,” J. Comput. Phys., vol.
242, pp. 169–180, 2013.

https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

179

[46] M. Z. Hussain, M. Hussain, and Z. Yameen, “A C2-continuous rational quintic
interpolation scheme for curve data with shape control,” J. Nat. Sci. Found. of Sri
Lanka, vol. 46, p. 341, 2018.

[47] M. Z. Hussain and M. Sarfraz, “Positivity-preserving interpolation of positive data
by rational cubics,” in Proc. 12th Int. Congr. Comput. Appl. Math., vol. 218, no. 2, 2008,
pp. 446 – 458.

[48] M. Hussain, M. Z. Hussain, and R. J. Cripps, “C2 rational quintic function,” J. Prime
Res. Math., vol. 5, pp. 115–123, 2009.

[49] James D. Doyle and P. A. Reinecke, K. C. Viner, S. Gabersek, M. Martini, D.
D. Flagg, J. Michalakes, D. R. Ryglicki, and F. X. Giraldo, “Next generation
nwp using a spectral element dynamical core,” Jan. 2017. [Online]. Available:
https://ams.confex.com/ams/97Annual/webprogram/Paper304323.html

[50] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High Performance
Programming. Morgan Kaufmann, 2016.

[51] ——, “Chapter 4 - knights landing architecture,” in Intel Xeon Phi Processor High
Performance Programming (Second Edition), second edition ed., J. Jim, R. James, and
A. Sodani, Eds. Boston: Morgan Kaufmann, 2016, ch. 4, pp. 63–84.

[52] H.-M. H. Juang and S.-Y. Hong, “Forward semi-lagrangian advection with mass
conservation and positive definiteness for falling hydrometeors,” Mon. Weather Rev.,
vol. 138, no. 5, pp. 1778 – 1791, 2010.

[53] H.-M. H. Juang and S.-Y. Honmg., “Forward semi-lagrangian advection with mass
conservation and positive definiteness for falling hydrometeors,” Mon. Weather Rev.,
vol. 138, no. 04, pp. 1778–1791, 2010.

[54] A. Karim, S. Ariffin, K. Voon Pang, and A. Saaban, “Positivity preserving interpolation
using rational bicubic spline,” J. Appl. Math., vol. 2015, 2015.

[55] S. A. A. Karim and K. P. Pang, “Shape preserving interpolation using rational cubic
spline,” J. Appl. Math., vol. 2016, 2016.

[56] F. T. Krogh, “Efficient algorithms for polynomial interpolation and numerical differ-
entiation,” Math. Comput., vol. 24, no. 109, pp. 185–190, 1970.

[57] J. LaGrone, A. Aribuki, and B. Chapman, “A set of microbenchmarks for measuring
OpenMP task overheads,” in Proc. Int. Conf. Parallel Distrib. Process. Techn. Appl.
(PDPTA). Citeseer, Nov. 2011, pp. 594–600.

[58] J. Lawson, M. Berzins, and P. M. Dew, “Balancing space and time errors in the method
of lines for parabolic equations,” SIAM J. Sci. Statist. Comput., vol. 12, no. 3, pp.
573–594, 1991.

[59] D. Light and D. Durran, “Preserving nonnegativity in discontinuous galerkin approx-
imations to scalar transport via truncation and mass aware rescaling (tmar),” Mon.
Weather Rev., vol. 144, no. 12, pp. 4771–4786, 2016.

[60] P. Lin, P. Yew, P. R. Woodward, and J. Jayaraj, “Moving scientific codes to multicore
microprocessor cpus,” Comput. Sci. Eng., vol. 10, no. 6, pp. 16–25, 2008.

https://ams.confex.com/ams/97Annual/webprogram/Paper304323.html

180

[61] H. Liu, Z. Gao, C. Jiang, and C. Lee, “Numerical study of combustion effects on
the development of supersonic turbulent mixing layer flows with weno schemes,”
Computers and Fluids, vol. 189, pp. 82–93, 2019.

[62] X.-D. Liu, S. Osher, and T. Chan, “Weighted essentially non-oscillatory schemes,” J.
Comput. Phys., vol. 115, no. 1, pp. 200–212, 1994.

[63] T. C. H. Lux, L. T. Watson, and T. H. Chang, “An algorithm for constructing monotone
quintic interpolating splines,” in 2020 Spring Simulation Conf. (SpringSim), 2020, pp.
1–12.

[64] G. Mencagli, M. Vanneschi, and S. Lametti, “The home-forwarding mechanism to
reduce the cache coherence overhead in next-generation cmps,” Future Gener. Comput.
Syst., 2017.

[65] J. Michalakes and M. Vachharajani, “GPU acceleration of numerical weather predic-
tion,” in 2008 IEEE Int. Symp. Parallel Distrib. Process., Apr. 2008, pp. 1–7.

[66] J. Michalakes, M. J. Iacono, and E. R. Jessup, “Optimizing weather model radiative
transfer physics for Intel’s many integrated core (MIC) architecture,” Parallel Process.
Lett., vol. 27, no. 04, p. 1650019, 2016.

[67] ——, “Optimizing weather model radiative transfer physics for Intel’s many inte-
grated core (MIC) architecture,” Parallel Processing Letters, vol. 26, no. 04, p. 1650019,
2016.

[68] J. Mielikainen, B. Huang, and A. H.-L. Huang, “Intel Xeon Phi accelerated weather
research and forecasting (WRF) Goddard microphysics scheme,” Geoscientific Model
Development Discussions, vol. 7, pp. 8941–8973, Dec. 2014.

[69] J. Mielikainen, B. Huang, and A. H.-L. Huang, “Optimizing Purdue-Lin Microphysics
scheme for Intel Xeon Phi coprocessor,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens. 9, Jan. 2016.

[70] J. Mielikainen, B. Huang, H. L. A. Huang, and M. D. Goldberg, “Improved
GPU/CUDA based parallel weather and research forecast (wrf) single moment 5-class
(wsm5) cloud microphysics,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5,
no. 4, pp. 1256–1265, Aug. 2012.

[71] C. B. Moler, Numerical computing with MATLAB. SIAM, 2004.

[72] A. Müller, M. A. Kopera, S. Marras, L. C. Wilcox, T. Isaac, and F. X. Giraldo, “Strong
scaling for numerical weather prediction at petascale with the atmospheric model
NUMA,” CoRR, vol. abs/1511.01561, 2015.

[73] P. Neumann, P. Düben, P. Adamidis, P. Bauer, M. Brück, L. Kornblueh, D. Klocke,
B. Stevens, N. Wedi, and J. Biercamp, “Assessing the scales in numerical weather and
climate predictions: will exascale be the rescue?” Philos. Transact. Royal Soc. A: Math.,
Phys. Eng. Sci., vol. 377, no. 2142, p. 20180148, 2019.

[74] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming
with cuda,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.

181

[75] OpenMP Architecture Review Board, “OpenMP application program interface
version 4.0,” Jul. 2013. [Online]. Available: http://www.openmp.org/wp-content/
uploads/OpenMP4.0.0.pdf

[76] T. A. J. Ouermi, R. M. Kirby, and M. Berzins, “Numerical testing of a
new positivity-preserving interpolation algorithm,” 2020. [Online]. Available:
https://arxiv.org/abs/2009.08535

[77] ——, “HPPIS: A high-order positivity-preserving mapping software for structured
meshes,” Manuscript Submitted to TOMS, 2022.

[78] T. A. Ouermi, A. Knoll, R. M. Kirby, and M. Berzins, “OpenMP 4 Fortran modern-
ization of WSM6 for KNL,” in Proc. Pract. Experience Adv. Res. Comput. 2017 Sustain.
Success and Impact, ser. PEARC17. New York, NY, USA: ACM, 2017, pp. 12:1–12:8.

[79] T. Ouermi, R. Kirby, and M. Berzins, “Performance optimization strategies for WRF
physics schemes used in weather modeling,” Int. J. Netw. Comput., vol. 8, no. 2, pp.
301–327, 2018.

[80] T. Ouermi, A. Knoll, R. M. Kirby, and M. Berzins, “Optimization strategies for WRF
single-moment 6-class microphysics scheme (wsm6) on Intel microarchitectures,” in
2017 Fifth International Symposium on Computing and Networking (CANDAR), 2017, pp.
146–152.

[81] T. A. Ouermi, R. M. Kirby, and M. Berzins, “Eno-based high-order data-bounded and
constrained positivity-preserving interpolation,” Numer. Algor., Jul. 2022.

[82] A. R. M. Piah, T. N. T. Goodman, and K. Unsworth, “Positivity-preserving scattered
data interpolation,” in Mathematics of Surfaces XI, R. Martin, H. Bez, and M. Sabin,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 336–349.

[83] E. Price, J. Mielikainen, B. Huang, H. A. Huang, and T. Lee, “GPU acceleration expe-
rience with rrtmg long wave radiation model,” in Proc. SPIE 8895 High-Performance
Computing in Remote Sensing III,, B. Huang, A. J. Plaza, and Z. Wu, Eds., vol. 8895,
2013.

[84] A. Rogerson and E. Meiburg, “A numerical study of the convergence properties of
eno schemes,” J. of Sci. Comput., vol. 5, no. 2, pp. 151–167, 1990.

[85] L. D. Rotstayn, B. F. Ryan, and J. J. Katzfey, “A scheme for calculation of the liquid
fraction in mixed-phase stratiform clouds in large-scale models,” Mon. Weather Rev.,
vol. 128, no. 4, pp. 1070–1088, 04 2000.

[86] D. Sahasrabudhe, M. Berzins, and J. Schmidt, “Node failure resiliency for Uintah
without checkpointing,” Concurrency and Computation: Practice and Experience, p. e5340,
2019.

[87] M. Sarfraz, “A C2 rational cubic spline alternative to the Nurbs,” Comput. Graph.,
vol. 16, no. 1, pp. 69 – 77, 1992.

[88] J. W. Schmidt and W. Heß, “Positive interpolation with rational quadratic splines,”
Comput., vol. 38, no. 3, pp. 261–267, Sep. 1987.

http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://arxiv.org/abs/2009.08535

182

[89] ——, “Positivity of cubic polynomials on intervals and positive spline interpolation,”
BIT Numer. Math., vol. 28, no. 2, pp. 340–352, Jun. 1988.

[90] M. Sekora and P. Colella, “Extremum-preserving limiters for muscl and ppm,” 2009.

[91] C. Shen, J.-M. Qiu, and A. Christlieb, “Adaptive mesh refinement based on high order
finite difference weno scheme for multi-scale simulations,” J. Comput. Phys., vol. 230,
no. 10, pp. 3780–3802, 2011.

[92] C.-W. Shu, “Numerical experiments on the accuracy of eno and modified eno
schemes,” J. Sci. Comput., vol. 5, no. 2, pp. 127–149, 1990.

[93] ——, “High-order finite difference and finite volume weno schemes and discontinu-
ous galerkin methods for cfd,” Int. J. Comput. Fluid Dyn., vol. 17, no. 2, pp. 107–118,
2003.

[94] ——, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes,”
Acta Numerica, vol. 29, p. 701–762, 2020.

[95] C.-W. Shu, T. A. Zang, G. Erlebacher, D. Whitaker, and S. Osher, “High-order eno
schemes applied to two- and three-dimensional compressible flow,” Appl. Numer.
Math., vol. 9, no. 1, pp. 45–71, 1992.

[96] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and
J. G. Powers, “A description of the advanced research wrf version 3.” 2008. [Online].
Available: https://opensky.ucar.edu/islandora/object/technotes:500

[97] W. C. Skamarock and M. L. Weisman, “The Impact of Positive-Definite Moisture
Transport on NWP Precipitation Forecasts,” Mon. Weather Rev., vol. 137, no. 1, pp.
488–494, 2009.

[98] P. K. Subbareddy, A. Kartha, and G. V. Candler, “Scalar conservation and boundedness
in simulations of compressible flow,” J. Comput. Phys., vol. 348, pp. 827–846, 2017.

[99] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear
conservation laws and related time-dependent problems,” Acta Numerica, vol. 12, p.
451–512, 2003.

[100] E. Tadmor and J. Tanner, “Adaptive mollifiers for high resolution recovery of
piecewise smooth data from its spectral information,” Found. Comput. Math., vol. 2,
no. 2, pp. 155–189, Jan. 2002.

[101] H. Tal-Ezer, “High degree polynomial interpolation in newton form,” SIAM J. Sci.
Statist. Comput., vol. 12, no. 3, pp. 648–667, 1991.

[102] G. Ulrich and L. T. Watson, “Positivity conditions for quartic polynomials,” SIAM J.
Sci. Comput., vol. 15, no. 3, pp. 528–544, 1994.

[103] C. Wang, X. Dong, and C.-W. Shu, “Parallel adaptive mesh refinement method based
on weno finite difference scheme for the simulation of multi-dimensional detonation,”
J. Comput. Phys., vol. 298, pp. 161–175, 2015.

https://opensky.ucar.edu/islandora/object/technotes:500

183

[104] P. R. Woodward, J. Jayaraj, and R. Barrett, “mppm, viewed as a co-design effort,” in
Proc. 1st Int. Workshop on Hardware-Software Co-Design for High Performance Comput.,
ser. Co-HPC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 33–40.

[105] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson, “An experimental
comparison of cache-oblivious and cache-conscious programs,” in Proc. 9th Annu.
ACM Symp. Parallel Algor. Architectures, ser. SPAA ’07. New York, NY, USA: ACM,
2007, pp. 93–104.

[106] V. Zala, M. Kirby, and A. Narayan, “Structure-preserving function approximation via
convex optimization,” SIAM J. Sci. Comput., vol. 42, no. 5, pp. A3006–A3029, 2020.

[107] V. Zala, R. M. Kirby, and A. Narayan, “Structure-preserving nonlinear filtering for
continuous and discontinuous galerkin spectral/hp element methods,” 2021.

[108] X. Zhang, “On positivity-preserving high order discontinuous galerkin schemes for
compressible navier–stokes equations,” J. Comput. Phys., vol. 328, pp. 301 – 343, 2017.

[109] X. Zhang and C.-W. Shu, “Maximum-principle-satisfying and positivity-preserving
high-order schemes for conservation laws: survey and new developments,” in Proc.
of the Royal Soc. of London A: Math. Phys. Eng. Sci., vol. 467, no. 2134. The Royal Soc.,
2011, pp. 2752–2776.

[110] ——, “Positivity-preserving high order finite difference weno schemes for compress-
ible euler equations,” J. Comput. Phys., vol. 231, no. 5, pp. 2245–2258, Mar. 2012.

[111] X. Zhang, Y. Xia, and C.-W. Shu, “Maximum-principle-satisfying and positivity-
preserving high order discontinuous galerkin schemes for conservation laws on
triangular meshes,” J. Sci. Comput., vol. 50, no. 1, pp. 29–62, Jan. 2012.

	Abstract
	Introduction
	Motivation
	Optimization of Physics Schemes
	Positivity-Preserving Mapping

	Overview of WRF/NEPTUNE
	Contributions
	Outline

	Parallelism Challenges in WRF Codes
	Background
	Experimental Setup and Methodology
	Methodology and Measurement Parameters
	KNL Architecture

	Standalone OpenMP Fortran Experiments
	Overhead Associated with OpenMP on KNL
	Overhead Per Thread Minimization
	Keeping Threads Active/Alive
	OpenMP Versus Pthreads Overhead
	KNL versus Haswell Overhead

	Thread Scalability
	Base Case
	Function Calls Performance Analysis
	Subroutine Calls Performance Analysis
	Nested Conditionals

	Vectorization
	OMP SIMD

	Modernization of WSM6
	Code Overview
	WSM6 Results

	Summary and Discussion
	Scalability Challenges
	Remaining Bottlenecks
	Flat Versus Cache Mode on KNL
	Summary

	Performance Optimization Approaches For Physics Schemes in NWP
	Background
	Experimental Setup and Methodology
	Strategies for OpenMP Parallelism
	Task Granularity (High-Level Versus Low-Level OpenMP)
	Data Granularity, Chunks, and SOA
	GFS Physics Code Modifications

	Experimental Setup

	Standalone Experiments
	Synthetic Codes
	Rain Routines

	Optimization Results with WSM6 and GFS-Physics
	WSM6
	GFS Physics Results
	GFS radiation

	Summary and Discussion

	Adaptive High-Order Data-Bounded and Positivity-Preserving Interpolation
	Introduction
	Previous Work

	Background
	Data-Bounded Interpolation
	Constrained Positivity-Preserving Interpolation
	Hidden Local Extrema
	Algorithm

	Numerical Experiments
	1D Example: Runge Function
	1D Example: Smoothed Heaviside Function
	Hidden Local Extrema Examples

	Summary and Discussion

	Numerical Testing of the Positivity-Preserving and Data-bounded Interpolation
	Examples of Existing Interpolation Methods
	Cubic Splines
	Quartic and Quintic Splines
	SPS and B-Spline Higher Order Splines
	DBI and PPI Methods

	Comparison Methodology
	Compared Methods
	Comparison Criteria

	Positivity-Preserving Interpolants
	Example I f1(x)
	Example II f2(x)
	Example III f3(x)
	Example IV f4(x)
	Example V f5(x)

	Convergence
	Results
	Example I f1(x)
	Example II f2(x)
	Example III f3(x)
	Example IV f4(x)
	Example V f5(x)
	Example VII f7(x)
	Example VIII f8(x)
	Example IX f9(x)
	Example X f10(x)

	Discussion and Conclusion

	HiPPIS: A High-order Positivity-Preserving Mapping Software for Structured Meshes
	Introduction
	Mathematical Framework
	Adaptive Polynomial Construction
	Positivity-Preserving and Data-Bounded Interpolation

	Algorithms and Software
	Algorithms
	Software Description
	Implementation and Performance

	Numerical Examples
	Example I: Modified Runge Function
	Example II: 1D Smoothed Heaviside Function
	Example III
	Example IV: 2D Modified Runge Function
	Example V: 2D Smoothed Heaviside Function
	Example VI

	Mapping Error in an Application Example
	Mapping Examples
	1D Modified Runge Function
	TWP-ICE Example
	BOMEX Example

	Discussion and Concluding Remarks

	Summary and Future Work
	Summary and Contributions
	Lessons Learned
	Future Directions
	Publications

	REFERENCES

