
Noname manuscript No.
(will be inserted by the editor)

ENO-Based High-Order Data-Bounded and
Constrained Positivity-Preserving Interpolation

T. A. J. Ouermi
Robert M. Kirby
Martin Berzins

Received: date / Accepted: date

Abstract A number of key scientific computing applications that are based
upon tensor-product grid constructions, such as numerical weather prediction
(NWP) and combustion simulations, require property-preserving interpolation.
Essentially Non-Oscillatory (ENO) interpolation is a classic example of such in-
terpolation schemes. In the aforementioned application areas, property preser-
vation often manifests itself as a requirement for either data boundedness or
positivity preservation. For example, in NWP, one may have to interpolate
between the grid on which the dynamics is calculated to a grid on which the
physics is calculated (and back). Interpolating density or other key physical
quantities without accounting for property preservation may lead to negative
values that are nonphysical and result in inaccurate representations and/or
interpretations of the physical data.

Property-preserving interpolation is straightforward when used in the con-
text of low-order numerical simulation methods. High-order property-preserving

T. A. J. Ouermi
University of Utah School of Computing
U of U Scientific Computing and Imaging Institute
Salt Lake City, Utah, USA
E-mail: touermi@cs.utah.edu

Robert M. Kirby
University of Utah School of Computing
U of U Scientific Computing and Imaging Institute
Salt Lake City, Utah, USA
E-mail: kiby@cs.utah.edu

Martin Berzins
University of Utah School of Computing
U of U Scientific Computing and Imaging Institute
Salt Lake City, Utah, USA
E-mail: mb@sci.utah.edu

2 T. A. J. Ouermi Robert M. Kirby Martin Berzins

interpolation is, however, nontrivial, especially in the case where the interpo-
lation points are not equispaced. In this paper, we demonstrate that it is
possible to construct high-order interpolation methods that ensure either data
boundedness or constrained positivity preservation. A novel feature of the al-
gorithm is that the positivity-preserving interpolant is constrained; that is, the
amount by which it exceeds the data values may be strictly controlled. The
algorithm we have developed comes with theoretical estimates that provide
sufficient conditions for data boundedness and constrained positivity preser-
vation. We demonstrate the application of our algorithm on a collection of 1D
and 2D numerical examples, and show that in all cases property preservation
is respected.

Keywords Data-Bounded Interpolation · Positivity-Preserving Inter-
polation · Newton Polynomial · Essentially Non-Oscillatory Methods ·
Property-Preserving

Mathematics Subject Classification (2020) MSC 65D05 · MSC 65D15

1 Introduction

A number of key scientific computing applications that are based upon high-
order methods over tensor-product grid constructions, such as numerical weather
prediction (NWP) and combustion simulations, require property-preserving in-
terpolation. In the aforementioned application areas, property preservation
often manifests itself as a requirement for either data boundedness or pos-
itivity preservation. The particular application motivating this work is the
Navy Environmental Prediction System Using the NUMA Core (NEPTUNE).
NEPTUNE is a next-generation global NWP system being developed at the
Naval Research Laboratory (NRL) and the Naval Postgraduate School (NPS)
[32]. NEPTUNE makes use of the Nonhydrostatic Unified Model of the At-
mosphere (NUMA) [10] three-dimensional spectral element dynamical core,
but currently uses physics routines that were developed assuming uniform
grid spacing on the elements. At least two options are available for combining
these two NWP building blocks: either (1) evaluate the physics routines at
the (nonuniformly-spaced) quadrature points on the spectral element with ac-
knowledgment that a modeling ‘crime’ has been committed or (2) interpolate
between the grid (quadrature points) on which the dynamics is calculated to
a grid on which the physics is calculated (and back), and hence incur an in-
terpolation error. Since there is a long-standing history of using the validated
physics routines designed for use on uniformly-spaced grids, there is a strong
incentive to apply the second option. However, interpolating density or other
key physical quantities without accounting for property preservation may lead
to negative values that are nonphysical and result in inaccurate representa-
tions and/or interpretations of the physical data. For example, Skamrock et
al. [28] demonstrated that not preserving positivity may lead to a positive bias
in a predicted physical quantity of interest (e.g., prediction of moisture). The

Title Suppressed Due to Excessive Length 3

second option mentioned above of moving information from nonuniform to
uniform and back via ENO-type interpolation schemes, explored in [21] in the
context of high-order methods for numerical weather prediction, is the main
motivation for this work.

Property-preserving interpolation is straightforward when used in the con-
text of low-order numerical simulation methods. High-order property-preserving
interpolation is, however, nontrivial, especially when the interpolation points
are not uniformly-spaced. In this paper, we demonstrate that it is possible to
adaptively construct high-order interpolation methods over unevenly-spaced
tensor product grids in a way that ensures either data boundedness or positiv-
ity preservation (within user-supplied bounds). The algorithm we have devel-
oped comes with theoretical estimates, presented herein, that provide sufficient
conditions for data boundedness and positivity preservation.

1.1 Previous Work

In this section, we provide an overview of various numerical approaches to
data bounded and positivity preservation. This overview is not meant to be
exhaustive, but instead to summarize the various ways by which researchers
have attempted to tackle this challenging problem.

Introduced by Harten et al. [15], Essentially Non-Oscillatory (ENO) schemes
were developed to solve problems with sharp gradients and discontinuities
while achieving high-order accuracy in both smooth and non-smooth regions.
As with many finite-difference based methods, the backbone of these schemes
is interpolation methods. In the context of this paper, which is to propose
ENO-like interpolation schemes that are property preserving, we briefly re-
view ENO methods.

In the context of finite volume schemes, Fjordholm et al. [8] demonstrated
that ENO schemes are stable, in the sense that the jump of the reconstructed
value at each cell interface has the same sign as the jump in the underlying
cell average. Building on the work [29] and [8], Fjordholm et al. [7] developed
a high-order entropy stable ENO scheme for conservation laws. This approach
consists of using entropy conservative flux based on [29], adding a numerical
diffusion to obtain a stable scheme, and obtaining the high-order accuracy via
ENO reconstruction.

Harten [12,13] developed an ENO scheme for subcell resolution in the
cases where a discontinuity lies inside a given cell. Weighted Essentially Non-
Oscillatory (WENO) schemes were later proposed by Liu et al. [18] to address
some of the shortcomings of the ENO schemes. Shu [27] provided a compre-
hensive overview of different applications and problems in which ENO and
WENO schemes are used. Shen et al. [25] proposed an adaptive mesh refine-
ment method (AMR) based on WENO schemes for hyperbolic conservation
laws. In this approach, high-order WENO interpolation is used for the pro-
longation. A generalization of the AMR-WENO in [33] was used to solve a
multi-dimension detonation problem.

4 T. A. J. Ouermi Robert M. Kirby Martin Berzins

Another body of literature sometimes considered around property-preserving
methods is computer-aided design and visualization. Although different from
the finite difference (stencil) methods that we seek, we briefly review this lit-
erature. In that literature, “shape” preservation is often used to describe the
preservation of properties like monotonicity and convexity, and may include
positivity and data boundedness [4] and [3]. We only briefly review this liter-
ature as the additional smoothness constraints at the stencil points enforced
by these methods introduce a level of complexity not needed for our appli-
cation domain. Our focus is finite difference ENO-type schemes. Perhaps the
most widely used approach for preserving monotonicity in many applications is
PCHIP by Fritch and Carlson [9], who derived necessary and sufficient condi-
tions for monotone cubic interpolation, and provided an algorithm for building
a piecewise cubic approximation from data. This algorithm calculates the val-
ues of the first derivatives at the nodes based on the necessary and sufficient
conditions. Lux et al. [19] proposed a monotone quintic spline (MQS) algo-
rithm that relies on the results of Heß and Schmidt [23] and Ulrich and Watson
[31]. This method is dependent on the value of the first and second derivatives
at the node. The algorithm uses the sufficient conditions from [23] to check for
monotonicity. When the conditions are not met, the method in [31] is used to
modify the values of the first and second derivatives to ensure monotonicity.
The work of Dougherty et al. [5] extends these ideas to preserving convexity
and concavity and also to quintic splines.

A second area in which one often finds the development of methods for
property preservation is numerical methods for partial differential equations
(PDEs). Various methods have been developed to enable, for example, positivity-
preserving approximations. To preserve positivity in discontinuous Galerkin
(dG) schemes, Zhang et al. [36,39,37] introduced a linear rescaling of poly-
nomials that ensures that the evaluation of the polynomial at the quadrature
points remains positive. In addition, the linear rescaling of the polynomial
conserves mass. Light et al. [17] developed a similar approach with a more
involved linear polynomial rescaling that preserves positivity at the quadra-
ture nodes and conserves mass. The polynomial rescaling does not address the
case of interpolating between different meshes, which is the primary focus of
this work. Harten et al. [15] developed an Essentially Non-Oscillatory (ENO)
piecewise polynomial reconstruction that enables interpolation between dif-
ferent meshes. The ENO method adaptively chooses stencil points for the
interpolation and helps remove Gibbs-like effects but does not guarantee posi-
tivity. As previously mentioned, extensions of these ideas to a Weighted ENO
(WENO) combination of these schemes have been proposed by Zhang et al.
[38] and others. Finally, Zala et al. [34,35] developed a nonlinear filtering op-
erator for property-preservation by casting it as an optimization problem in
which the desired “structures” (properties) are encoded as constraints.

The data-bounded interpolation (DBI) method of Berzins [1] builds on
three ideas from these ENO and WENO algorithms in the area of the numerical
solution of advection equations: adaptively selecting stencils as in the ENO
methods to reduce oscillations [15]; altering the polynomial approximation so

Title Suppressed Due to Excessive Length 5

that any discontinuities in higher derivatives are removed [14]; and altering
the polynomial degree and/or terms so that the ratio of successive divided
differences in the series is strictly limited to enforce the boundedness of the
interpolation [1]. The work in [2] extends the earlier proof to 1D unevenly-
spaced points where, in addition to the interval points, all the remaining points
used to build the interpolant are to the right or left of the interval of interest.
In addition, the work in [2] recognizes that switching off data boundedness
when extrema are present is important for maintaining accuracy. Positivity
is important in interpolation cases in which extrema lie between data points
and where the data-bounded interpolant will “clip” the function, resulting in
a loss of accuracy. A novel feature of the approach addresses the fact that
preserving positivity alone may still produce undesirable oscillations that lead
to an inaccurate representation and/or interpretation of the underlying data.
These oscillations are removed here by imposing strict user-supplied bounds on
the positive interpolants as a way of limiting oscillations and correspondingly
improving accuracy.

This work extends the ideas in [1] by addressing data boundedness and pos-
itivity (within user-supplied bounds) in the same framework and by allowing
meshes of unevenly-spaced points. The DBI method presented in this paper
introduces more relaxed conditions for data-boundedness which give greater
accuracy than the conditions used in [1]. Thus, these new proofs provide the
previously missing theoretical underpinning for complex interpolation cases
such as those like the NWP case described above. The new approach used
here both generalizes the DBI method to unevenly-spaced structured meshes
and extends the approach to preserve positivity (positivity-preserving inter-
polation (PPI)) rather than the more restrictive data-bounded approach in [1]
and [2].

1.2 Outline

The paper proceeds as follows. In Section 2, we provide a review of Newton
interpolation with particular emphasis on the properties on Newton polynomi-
als required in this work. In Section 3, we present our first major contribution:
theoretical guarantees for adaptive high-order data bounded polynomial in-
terpolation on nonuniformly-spaced points. In Section 4, we extend the ideas
presented in Section 3 to positivity. We present our second major contribution:
theoretical guarantees for adaptive high-order positivity-preserving polynomial
interpolation on nonuniformly-spaced points. In Section 4, we also address the
case of hidden extrema with the new limiting approach and provided an al-
gorithm for the DBI and PPI methods. In Section 5, we provide 1D and 2D
results demonstrating the properties of our proposed algorithms. We summa-
rize and conclude the paper in Section 6.

6 T. A. J. Ouermi Robert M. Kirby Martin Berzins

2 Background

The approach introduced in this work relies on the Newton polynomial [30,16]
representation to build interpolants that are positive or bounded by the data
values. The ability to adaptively select the divided differences or the stencil as
in ENO methods [15] is central to the data-bounded and positivity-preserving
interpolation approaches presented in this paper.

Consider a 1D mesh defined as follows:

M = {xi−J , · · · , xi, xi+1, · · · , xi+L}, (1)

where xi−J < · · · < xi < xi+1 < · · · < xi+L, and {ui−J , · · · , ui+L} is the set of
data values associated with the mesh points. In the definition of the meshM,
the subscripts J , L, i,∈ N0 = N ∪ {0}, and xk, uk ∈ R for i− J ≤ k ≤ i+ L.
For the given meshM, the Newton divided differences are recursively defined
as follows: {

U [xi] = ui

U [xi, · · · , xi+j] =
U [xi+1,··· ,xi+j]−U [xi,··· ,xi+j−1]

xi+j−xi
.

(2)

The ENO procedure starts by setting the initial stencil V0:

V0 = {xi, xi+1} = {xl0, xr0}. (3)

The stencil V0 is expanded by successively appending a point to right or left
of Vj to form Vj+1. The point appended is selected by picking the smallest
divided difference at each step.

Given Vj , let xlj and xrj be the leftmost and rightmost stencil points, re-
spectively. In addition, let xp and xq be the stencil points immediately to the
left and right of Vj . The stencil is expanded from Vj to Vj+1 based on the
following rules:

– if |U [xp, x
l
j , · · · , xrj]| < |U [xlj , · · · , xrj , xq]| then

Vj+1 = {xp,Vj} with xlj+1 = xp and xrj+1 = xrj .
– otherwise
Vj+1 = {Vj , xq} with xlj+1 = xlj and xrj+1 = xq.

Let

Ii = [xi, xi+1], for 0 ≤ i ≤ n− 1. (4)

Once the final stencil Vn−1 is obtained, the interpolant of degree n defined on
Ii can be written as

Un(x) = ui + U [xl0, x
r
0]π0,i(x) + U [xl1, · · · , xr1]π1,i(x) + · · ·

· · ·+ U [xln−1, · · · , xrn−1]πn−1,i(x),
(5)

where π0,i(x) = (x− xi), π1,i(x) = (x− xi)(x− xe1), · · · are the Newton basis
functions. xej is the point added to expand the stencil Vj−2 to Vj−1 and can

Title Suppressed Due to Excessive Length 7

be explicitly expressed as
xe0 = xi,

xe1 = xi+1,

xej = Vj−1 \ Vj−2, 2 ≤ j ≤ n− 1.

(6)

The first step in developing the DBI and PPI methods consists of reorga-
nizing the terms in the polynomial Un(x) defined in Equation (5) to expose the
features used to enforce data boundedness and positivity. The reorganization
begins by defining λj as follows:

λj =

1, j = 0
U [xl

j ,··· ,x
r
j]

U [xl
j−1,··· ,xr

j−1]
(xrj − xlj), 1 ≤ j ≤ n− 1.

(7)

Expressing Un(x) in terms of λj , for j > 0 gives

Un(x) = ui + (ui+1 − ui)
x− xe0
xr0 − xl0

(
1 +

(x− xe1)

(xr1 − xl1)
λ1(

1 +
(x− xe2)

(xr2 − xl2)
λ2

(
· · ·λn−2

(
1 +

(x− xen−1)

(xrn−1 − xln−1)
λn−1

)
· · ·
)
.

(8)

For x ∈ Ii, s, tj , and dj are defined as follows:

0 ≤ s =
x− xi

xi+1 − xi
=

x− xe0
xr0 − xl0

≤ 1, (9)

tj = −
xi − xej
xr0 − xl0

, and (10)

0 ≤ dj =
xrj − xlj
xr0 − xl0

. (11)

s and dj are defined such that s ∈ [0, 1] and dj ≥ 0. Expressing
x−xe

j

xr
j−xl

j

in terms

of s, tj , and dj gives

x− xej
xrj − xlj

=

x−xi

xr
0−xl

0
+

xi−xe
j

xr
0−xl

0

xr
j−xl

j

xr
0−xl

0

=
s− tj
dj

. (12)

Using the results from Equation (12), the polynomial Un(x) as expressed in
Equation (8) can be written as

Un(x) = ui + (ui+1 − ui)Sn(x) (13)

with Sn(x) defined as

Sn(x) = s

(
1 +

(s− 1)

d1
λ1

(
1 +

(s− t2)

d2
λ2

(
· · ·
(

1 +
(s− tn−1)

dn−1
λn−1

)
· · ·
)
.

(14)

8 T. A. J. Ouermi Robert M. Kirby Martin Berzins

For future use below, Sn(x) can be compactly represented by introducing δj
defined as 

δn = 1

δj = 1 +
s−tj
dj

λjδj+1 2 ≤ j ≤ n− 1

δ1 = s+ s(s−1)
d1

δ2 = Sn(x).

(15)

Together, Un(x) and Sn(x) in Equations (13) and (14) are reorganizations
needed to construct the DBI and PPI algorithm. The general approach is to
first bound the quadratic term in Sn(x) and then to increase the order to
cubic, quartic, and higher order polynomials. This iterative procedure is used
to define computational bounds on the values of λ̄j =

∏j
k=0 λk. λ̄j can be

explicitly written as

λ̄j = λj λ̄j−1 =

j∏
k=1

λk =

{
1 j = 0,
U [xl

j ,··· ,x
r
j]

U [xl
0,x

r
0]

∏j
k=1(xrk − xlk), 1 ≤ j ≤ n− 1.

(16)

3 Data-Bounded Interpolation

The DBI method builds on three ideas from algorithms in the area of the
numerical solution of advection equations: adaptively selecting stencils as in
the ENO methods to reduce oscillations [15]; altering the polynomial approx-
imation so that any discontinuities in higher derivatives are removed [14]; and
altering the polynomial degree and/or terms so that the ratio of successive
divided differences in the series is strictly limited to enforce the boundedness
of the interpolation [1]. In the DBI method introduced here, more relaxed
bounds on λ̄j defined in Equation (16) are derived which gives greater accu-
racy than those in [1]. The work in [1] requires that the absolute values of λ̄j
decrease as more terms are added (|λ̄j | > |λ̄j+1|) and |λ̄j | < 1 which are more
restrictive than the bounds in Equation (27). For a given set of mesh points
and the data values associated with those mesh points, we approximate the
data with a C0 continuous function that is built by fitting a polynomial in
each subinterval Ii. The fitted polynomial is constructed in such a way that it
is bounded by ui and ui+1. Given that this work concerns itself with locally
fitting a polynomial in the interval Ii, let us assume, for the remaining parts
of this paper, that x ∈ Ii and that building the interpolant always starts with
the stencil V0 = {xi, xi+1}.

Let U l(x) be the limited polynomial defined as in Equation (13) and
bounded by ui and ui+1. For the polynomial U l(x) to be bounded by ui and
ui+1, it follows that for x ∈ Ii

0 ≤ Sn(x) ≤ 1, (17)

with Sn(x) defined in Equation (14). The reconstruction procedure begins by
considering the linear and quadratic terms from Sn(x) in Equation (14), and

Title Suppressed Due to Excessive Length 9

imposing the following bounds:

0 ≤ s
(
1 +

s− 1

d1
λ̄1
)
≤ 1. (18)

As s ∈ [0, 1] and isolating λ̄1 in Equation (18) gives

−d1
s
≤ λ̄1 ≤

d1
1− s

, and (19)

−d1 ≤ λ̄1 ≤ d1. (20)

The bounds from Equation (20) are extended to bound the cubic form by
requiring that what multiplies λ̄1 must fit into the inequality in Equation
(20). Thus, for the cubic case Equation (20) becomes

−d1 ≤ λ̄1
(
1 +

(s− t2)

d2
λ2
)
≤ d1. (21)

Subtracting λ̄1 from this inequality gives

−d1 − λ̄1 ≤
(s− t2)

d2
λ̄2 ≤ d1 − λ̄1. (22)

In the case when t2 is negative, s − t2 has a maximum value at s = 1 and a
minimum value at s = 0. λ̄2 is then bounded by

d2
(1− t2)

(−d1 − λ̄1
)
≤ λ̄2 ≤ (d1 − λ̄1)

d2
(1− t2)

. (23)

When t2 positive, 1
1−t2 is substituted by 1

−t2 and the inequalities ≤ with ≥
and vice versa are swapped. In the quartic case, we require that

d2
1− t2

(−d1 − λ̄1) ≤ λ̄2
(

1 +
(s− t3)

d3
λ3

)
≤ d2

1− t2
(d1 − λ̄1). (24)

If we assume that t3 is negative

d3
1− t3

(
d2

1− t2
(−d1− λ̄1

)
− λ̄2

)
≤ λ̄3 ≤

d3
1− t3

(
d2

1− t2
(d1− λ̄1)− λ̄2

)
. (25)

This reconstruction procedure can be continued to higher orders provided
that care is taken to correctly manage the impact of the signs of tj . For the
boundary and nearby boundary intervals, fewer choices are available, and the
final stencil is biased towards the interior of the domain because there are no
points to choose from beyond the boundaries. In the process of constructing
Vn−1, when the left or right boundary are reached, the remaining mesh points
are obtained from the side that is towards the interior of the domain.

10 T. A. J. Ouermi Robert M. Kirby Martin Berzins

For a more formal and complete expression of this recursive procedure, the
bounds on λ̄j can be defined as follows:

B−j =


−d1 j = 0

(B−j−1 − λ̄j−1)
dj

1−tj , tj ∈ (−∞, 0] j > 1

(B+
j−1 − λ̄j−1)

dj

−tj , tj ∈ (0,+∞) j > 1,

(26a)

and

B+
j =


d1, j = 1

(B+
j−1 − λ̄j−1)

dj

1−tj , tj ∈ (−∞, 0] j > 1

(B−j−1 − λ̄j−1)
dj

−tj , tj ∈ (0,+∞) j > 1.

(26b)

The sign of tj is incorporated into the definitions of B−j and B+
j in Equations

(26a) and (26b), respectively. The sufficient conditions for data boundedness
such as Equations (20), (23) and (25) can now be written as

B−j ≤ λ̄j ≤ B
+
j , for j ≥ 0. (27)

Lemma 1 Let us assume that for x ∈ Ii, B−j and B+
j are defined as in Equa-

tions (26b) and (26a), respectively. In addition, let δj be defined as in Equation
(15). If for x ∈ Ii, B−j is negative, B+

j is positive, and B−j ≤ λ̄jδj+1 ≤ B+
j ,

then

B−j−1 ≤ λ̄j−1δj ≤ B
+
j−1.

Proof The proof is split into two cases that take into consideration the different
possible values of tj , and in each case we consider the left and right side of the
inequality separately.

(I) tj ∈ (−∞, 0]
Let us start with the left side of the inequality (i.e., B−j−1 ≤ λ̄j−1δj). Noting

that
1−tj
s−tj ≥ 1 for s ∈ [0, 1], and using B−j ≤ 0 and B−j ≤ λ̄jδj+1, we have

(B−j−1 − λ̄j−1)
dj

s− tj
=

1− tj
s− tj

B−j

≤B−j
≤λ̄jδj+1.

(28)

Isolating B−j−1 in Equation (28) and using Equations (15) and (16) leads
to

B−j−1 ≤λ̄j−1 +
s− tj
dj

λ̄jδj+1

≤λ̄j−1
(

1 +
s− tj
dj

λjδj+1

)
=λ̄j−1δj .

(29)

Title Suppressed Due to Excessive Length 11

Now, let us focus on the right side of the inequality (i.e., B+
j−1 ≥ λ̄j−1δj)

Again, observing that
1−tj
s−tj ≥ 1 for s ∈ [0, 1] and using B+

j ≥ 0 and

B+
j ≥ λ̄jδj+1 yields

(B+
j−1 − λ̄j−1)

dj
s− tj

=
1− tj
s− tj

B+
j

≥B+
j

≥λ̄jδj+1.

(30)

Isolating B+
j−1 in Equation (30) yields

B+
j−1 ≥λ̄j−1 +

s− tj
dj

λ̄jδj+1

≥λ̄j−1
(

1 +
s− tj
dj

λjδj+1

)
=λ̄j−1δj .

(31)

(II) tj ∈ (0,+∞)
Let us consider the left side of the inequality (i.e., B−j−1 ≤ λ̄j−1δj). Multi-

plying B−j by
−tj
s−tj yields

(B+
j−1 − λ̄j−1)

dj
s− tj

=
−tj
s− tj

B−j . (32)

Given that B−j ≤ 0 and B−j ≤ λ̄jδj+1, and noting that
−tj
s−tj ≥ 1 for

s ∈ [0, 1], the right side of Equation (32) can be bounded by B−j to give

(B+
j−1 − λ̄j−1)

dj
s− tj

≤B−j

≤λ̄jδj+1.

(33)

Isolating B+
j−1 in Equation (33) leads to

B+
j−1 ≥λ̄j−1 +

s− tj
dj

λ̄jδj+1

≥λ̄j−1
(

1 +
s− tj
dj

λjδj+1

)
=λ̄j−1δj .

(34)

For the right side of the inequality (i.e. B−j−1 ≤ λ̄j−1δj),
−tj
s−tj ≥ 1 for

s ∈ [0, 1], and using B−j ≤ 0 and B−j ≤ λ̄jδj+1 yields

(B−j−1 − λ̄j−1)
dj

s− tj
=
−tj
s− tj

B+
j

≥B−j
≥λ̄jδj+1.

(35)

12 T. A. J. Ouermi Robert M. Kirby Martin Berzins

Isolating B−j−1 in Equation (35) yields

B−j−1 ≤λ̄j−1 +
s− tj
dj

λ̄jδj+1

≤λ̄j−1
(

1 +
s− tj
dj

λjδj+1

)
=λ̄j−1δj .

(36)

The results from Equations (29), (31), (29), and (31) can be summarized as

B−j−1 ≤ λ̄j−1δj ≤ B
+
j−1.

Theorem 1 Assuming that for x ∈ Ii, the polynomial Sn(x) of degree n is
built starting from the stencil V0 = {xi, xi+1}, and then by successively ap-
pending mesh points from the left and/or right of the interval Ii to obtain the
final stencil Vn−1. The construction of Vn−1 does not require the points to be
added in a symmetric fashion alternating from left to right. If for x ∈ Ii, B−j
defined in Equation (26a) is negative, B+

j defined in Equation (26b) is positive,

and B−j ≤ λ̄j ≤ B
+
j then for x ∈ Ii

0 ≤ SN (x) ≤ 1.

Proof This proof builds on the results from Lemma 1 and starts by using
B−j ≤ λ̄j ≤ B

+
j to bound λ̄n−1 as follows:

B−n−1 ≤ λ̄n−1 ≤ B
+
n−1. (37)

By Lemma 1, Equation (37) then leads to

B−n−2 ≤ λ̄n−2δn−1 ≤ B
+
n−2. (38)

Successively, using the results from Lemma 1 to bound λ̄n−2δn−1, λ̄n−3δn−2,
· · · , λ̄1δ2, yields

B−1 ≤ λ̄1δ2 ≤ B
+
1 , (39)

where δj is defined in Equation (15). The results from Equation (39) may now
be used to derive the target bounds (i.e., 0 ≤ SN (x) ≤ 1). Considering the left

side of Equation (39) (i.e., B−1 ≤ λ̄1δ2), and noting that (s−1)
s(s−1) ≥ 1, gives

− (s− 1)

s(s− 1)
d1 =B−1

(s− 1)

s(s− 1)

≤B−1
≤λ̄1δ2.

(40)

Isolating δ1 from Equation (40) gives

1 ≥ s+
s(1− s)
d1

λ̄1δ2 = δ1 = Sn(x). (41)

Title Suppressed Due to Excessive Length 13

Considering the right side of Equation (39) (i.e. B+
1 ≥ λ̄1δ2), and noting that

(−s)
s(s−1) ≥ 1, gives

(−s)
s(s− 1)

d1 =B+
1

(−s)
s(s− 1)

≥B+
1

≥λ̄1δ2.

(42)

Isolating δ1 from Equation (42) gives

0 ≤ s+
s(1− s)
d1

λ̄1δ2 = δ1 = Sn(x). (43)

The proof concludes by combining the results from Equations (41) and (43)
to obtain

0 ≤ s+
s(1− s)
d1

λ̄1δ2 = δ1 = Sn(x) ≤ 1. (44)

4 Constrained Positivity-Preserving Interpolation

In many cases, it is sufficient to preserve positivity through interpolation and
not to enforce the stricter requirement of data boundedness. As mentioned
in the introduction, the case of unknown extrema between data points is an
important example. Let Up(x) be a positive polynomial of degree n defined
over the interval Ii as in Equation (13). For x ∈ Ii, the polynomial Up(x)
is allowed to grow beyond ui and ui+1 but must remain positive. For the
polynomial to be positive, one requires that

Up(x) ≥ 0. (45)

However, in practice, enforcing positivity alone may still result in large oscilla-
tions and in extrema that degrade the approximation. We observe this behavior
because enforcing positivity alone does not restrict how much the polynomial
is allowed to grow beyond the data values. In addition to enforcing positivity,
it is important to remove the undesirable oscillations and extrema as much as
possible. Let us define umin and umax as

umin = min(ui, ui+1)−∆min, (46)

and

umax = max(ui, ui+1) +∆max, (47)

where ∆min and ∆max are user-defined parameters used to bound the positive
polynomial Up(x). To allow the polynomial to grow beyond the data values
but not produce extrema that are too large, we bound Up(x) as follows:

umin ≤ Up(x) = ui + (ui+1 − ui)Sn(x) ≤ umax. (48)

14 T. A. J. Ouermi Robert M. Kirby Martin Berzins

The interpolant Up(x) is now positive and bounded by umin and umax. Equa-
tion (48) is equivalent to bounding Sn(x) as follows:

m` ≤ Sn(x) ≤ mr, (49)

where the factors m` and mr are expressed as

(I) : ui+1 > ui

m` = min

(
0,
umin − ui
ui+1 − ui

)
, and mr = max

(
1,
umax − ui
ui+1 − ui

)
(50)

(II) : ui+1 < ui

m` = min

(
0,
umax − ui
ui+1 − ui

)
, and mr = max

(
1,
umin − ui
ui+1 − ui

)
. (51)

We note that if we set ∆min = 0 and ∆max = 0, we recover Equation (45).
The PPI method is constructed by relaxing the bounds imposed on λ̄1 as

follows: (
− 4(mr − 1)− 1

)
d1 ≤ λ̄1 ≤

(
− 4m` + 1

)
d1. (52)

Let us demonstrate how the PPI method is constructed in the case of a
quadratic interpolant. Starting from the DBI results in the Theorem 1, it
follows that

0 ≤ s+
s(s− 1)

d1
λ̄1 ≤ 1. (53)

Relaxing the left and right bounds in Equation (53) by m` and mr, respectively
leads to

m` ≤ s+
s(s− 1)

d1
λ̄1 ≤ mr. (54)

Isolating λ̄1 from Equation (54) leads to

mr − s
s(s− 1)

d1 ≤ λ̄1 ≤
m` − s
s(s− 1)

d1. (55)

Equation (55) can be reorganized to obtain(
mr − 1

s(s− 1)
+

1− s
s(s− 1)

)
d1 ≤ λ̄1 ≤

(
m`

s(s− 1)
− s

s(s− 1)

)
d1 (56)

and then (
mr − 1

s(s− 1)
− 1

s

)
d1 ≤ λ̄1 ≤

(
m`

s(s− 1)
− 1

(s− 1)

)
d1. (57)

Noting that 1
s(s−1) ≤ −4, 1

s ≥ 1, and 1
s−1 ≤ −1, we obtain(

− 4(mr − 1)− 1

)
d1 ≤ λ̄1 ≤

(
− 4m` + 1

)
d1. (58)

Title Suppressed Due to Excessive Length 15

Once the bounds on λ̄1 and the quadratic interpolant are determined, the
extension to cubic, quartic, and higher order interpolants follows the same
reconstruction procedure used in the DBI method and outlined from Equation
(21) to (25). As in the case of the DBI method, fewer choices are available for
Vn−1 at the boundary and nearby boundary intervals because there are no
points to choose from beyond the boundaries. When a boundary is reached
during the process of constructing the stencil Vn−1, the remaining mesh points
are picked from the side that is towards the interior of the domain. The final
stencil at the boundary and nearby the boundary intervals are biased towards
the interior of the domain. The recursive expression for the bounds on λ̄j for
the PPI method becomes

B−j =


(−4(mr − 1)− 1)d1 j = 1

(B−j−1 − λ̄j−1)
dj

1−tj , if tj ∈ (−∞, 0] j > 1

(B+
j−1 − λ̄j−1)

dj

−tj , if tj ∈ (0, 1) ∪ (1,+∞) j > 1,

(59a)

and

B+
j =


(−4m` + 1)d1, j = 1

(B+
j−1 − λ̄j−1)

dj

1−tj , if tj ∈ (−∞, 0] j > 1

(B−j−1 − λ̄j−1)
dj

−tj , if tj ∈ (0,+∞) j > 1.

(59b)

The difference between the DBI and PPI methods is highlighted in how the
bounds B−1 and B+

1 are calculated. More precisely, B−1 and B+
1 are defined

as −d1 and d1 for the DBI method, whereas for the PPI method, they are
defined as (−4(mr−1)−1)d1 and (−4m` +1)d1, respectively. In addition, the
DBI method can be recovered from the PPI methods by setting m` = 0 and
mr = 1. For example, in the case of the right boundary Equations (20) and
(58) can be written as

−d1 ≤ λ̄1 =
U [xN−2, xN−1, xN]

U [xN−1, xN]
(xN − xN−1) ≤ d1, and (60)

(
−4(mr−1)−1

)
d1 ≤ λ̄1 =

U [xN−2, xN−1, xN]

U [xN−1, xN]
(xN−xN−1) ≤

(
−4m`+1

)
d1,

(61)
where xN is the mesh point at the right boundary, m` ≤ 0, mr ≥ 1, and

d1 =
xN − xN−2
xN − xN−1

. (62)

From Equations (50) and (51), mr = 18.94 and m` = −18.94 for the right
boundary of the Runge example in Figure 1 below. Equations (60) and (61)
show the bounds on λ̄1 for data-boundedness and positivity, respectively.
Given that (−4(mr − 1)− 1) ≤ 0 and (−4m` + 1) ≥ 1, the bounds for positiv-
ity are more relaxed than data-boundedness. Thus, enabling the use of higher
degree polynomials for the PPI method than for the DBI method.

16 T. A. J. Ouermi Robert M. Kirby Martin Berzins

Theorem 2 Let us assume that for x ∈ Ii, the polynomials Un(x) and Sn(x)
of degree n are defined as in Equations (13) and (14), respectively. Both poly-
nomials are built starting from the stencil V0 = {xi, xi+1}, and then by suc-
cessively appending mesh points from the left and/or right of the interval Ii
to obtain the final stencil Vn−1. The construction of Vn−1 does not require
the points to be added in a symmetric fashion alternating from left to right. If
for x ∈ Ii, B−j defined in Equation (26a) is negative, B+

j defined in Equation

(26b) is positive, and B−j ≤ λ̄j ≤ B
+
j then for x ∈ Ii

m` ≤ Sn(x) ≤ mr,

where m` and mr are provided in Equations (50) and (51).

Proof As in Theorem 1, the proof begins by using the results from Lemma 1
and the expression B−j ≤ λ̄j ≤ B+

j to bound λ̄n−2δn−1, λ̄n−3δn−2, · · · , λ̄1δ2
and so to obtain the result

B−1 ≤ λ̄1δ2 ≤ B
+
1 . (63)

Equation (63) is then used to derive the target bounds. Starting with the left
side of the inequality (i.e., B−1 ≤ λ̄1δ2) and noting that 1

s(s−1) ≤ −4 and

− 1
s ≤ −1, yields

mr − s
s(s− 1)

d1 =

(
mr − 1

s(s− 1)
+

1− s
s(s− 1)

)
d1

=

(
mr − 1

s(s− 1)
− 1

s

)
d1

≤
(
− 4(mr − 1)− 1

)
d1

=B−1
≤λ̄1δ2.

(64)

Isolating mr, leads to the desired result

mr ≥ s+
s(s− 1)

d1
λ̄1δ2 = δ1 = Sn(x). (65)

Now, addressing the right side of the inequality (i.e. B+
1 ≥ λ̄1δ2) and noting

that 1
s(s−1) ≤ −4 and − 1

s−1 ≥ 1, gives

m` − s
s(s− 1)

d1 =

(
m`

s(s− 1)
− s

s(s− 1)

)
d1

=

(
m`

s(s− 1)
− 1

(s− 1)

)
d1

≥
(
− 4m` + 1

)
d1

=B+
1

≥λ1δ2.

(66)

Title Suppressed Due to Excessive Length 17

Isolating m` leads to the desired bound

m` ≤ s+
s(s− 1)

d1
λ̄1δ2 = δ1 = Sn(x). (67)

The proof is concluded by combining Equations (65) and (67) to obtain

m` ≤ s+
s(s− 1)

d1
λ̄1δ2 = δ1 = Sn(x) ≤ mr. (68)

At the boundary intervals both the DBI and PPI methods construct the in-
terpolants using a left- or right-biased stencil. For the left boundary, the final
stencil is built by successively appending mesh points from the right side of
the of the interval Ii. In the same way, the final stencil for the right boundary
interval is obtained by successively appending the mesh points from the left
side. For the nearby boundary intervals, the stencil points selection process
could reach the boundary before completing the final stencil. In such a case,
the remaining points are selected from the right if the left boundary is reached
and from the left is the right boundary is reached.

4.1 Hidden Local Extrema

The interval Ii may contain a hidden extremum when two of three divided dif-
ferences U [xi−1, xi], U [xi+1, xi] and U [xi+1, xi+2] of the neighboring intervals
are of opposite signs. In this case, the PCHIP and DBI algorithms truncate the
extremum whereas the relaxed nature of the PPI algorithm allows for a better
approximation of the extremum. In [2], when an extremum is detected, the
ENO approach is used to construct the interpolant. The ENO approach may
fail to recover the extremum or result in oscillations that violate the require-
ments for positivity and reduce the accuracy. The data-bounded method in
[2] is much more restrictive and does not address positivity. These limitations
can be addressed by using a bounded positive interpolant.

To simplify the notation, let us defined σi−1, σi and σi+1 such that

σi−1 = U [xi−1, xi], σi = U [xi+1, xi], and σi+1 = U [xi+1, xi+2]. (69)

As in [2] and [24], we assume that there exists an extremum in Ii if

σi−1σi+1 < 0, or σi−1σi < 0. (70)

To address the cases with and without extremum, we choose the parameters
∆min and ∆max according to

∆min =


∣∣min

(
ui, ui+1

)∣∣ if σi−1σi+1 < 0 and σi−1 < 0

or σi−1σi+1 ≥ 0 and σi−1σi < 0

ε
∣∣min

(
ui, ui+1

)∣∣ otherwise,

(71)

18 T. A. J. Ouermi Robert M. Kirby Martin Berzins

and

∆max =


∣∣max

(
ui, ui+1

)∣∣ if σi−1σi+1 < 0 and σi−1 > 0

or σi−1σi+1 ≥ 0 and σi−1σi < 0

ε
∣∣max

(
ui, ui+1

)∣∣ otherwise.

(72)

ε is a parameter introduced to adjust ∆min and ∆max when no extremum is
detected. In Equation (71), the interval Ii has a local maximum if σi−1σi+1 < 0
and σi−1 < 0. Correspondingly, in Equation (72), the interval Ii has a local
minimum if σi−1σi+1 < 0 and σi−1 > 0. In both Equations (71) and 72,
the type of extremum is ambiguous if σi−1σi+1, and σi−1σi < 0. When an
extremum is identified,∆min and/or∆max are chosen to be sufficiently large to
allow the interpolant Up(x) to grow beyond the data as needed to approximate
the extremum without violating the requirement for positivity. In the case
where no extremum is identified, the parameter ε is used to adjust∆min and/or
∆max to be sufficiently large to allow higher degree interpolants compared to
the DBI method, but sufficiently small to not allow for large oscillations that
will degradate the accuracy of the approximation.

In Figure 1, we approximate the Runge function with N = 17 LGL points
and different values of ε, and the target polynomial degree is set to d = 16
for each interval. For ε > 0.01, the PPI method leads to oscillations, whereas
for ε ≤ 0.01 the oscillations are removed. Similar oscillations are seen when
using high-order Chebyshev polynomials. The cutoff for the positive parameter
ε depends on the underlying function and the input data. For the Runge
example with N = 17 uniformly-spaced points, the spurious oscillations are
removed for ε ≤ 0.05. With the same Runge example with N = 129 and
d = 16, the unconstrained approximation does not produce oscillations and
ε can be set to any value in [0, 1]. In the case of the smoothed Heaviside
examples, setting ε = 0.05 with N = 17 uniformly-spaced points lead to
large oscillations that degrade the approximations. However, for ε ≤ 0.01 with
N = 17, the oscillations are significantly reduced, and the approximation
improved, as shown on the bottom part of Figure 1. Setting ε = 0.0 will
completely eliminate the oscillations. Overall, using ε ≤ 0.01 is sufficient to
remove or significantly reduce the oscillations and improve the approximation.
For an interval Ii with no extremum, as ε approaches zero and both ∆min

and ∆max get smaller, the approximation method becomes closer to the DBI
approach. As for the DBI approach, the PPI method may become restrictive
for higher degree polynomial interpolants as ε approaches zero. This approach
is also further explored for a variety of practical applications [21].

The right part of Figure 1 shows the interpolants used at the right bound-
aries in both the Runge and smoothed Heaviside examples. At the right bound-
ary of the Runge example, the stencil {xN−12 · · ·xN} is used to build the data-
bounded interpolant and the stencil {xN−16, · · · , xN} is used for the positive
interpolant with ε = 1. As the positive parameter ε gets smaller the upper and
lower bounds for the interpolant gets tighter and converges to the DBI bounds.
The stencil used for both the DBI and PPI are the same for ε ≤ 0.01. At the

Title Suppressed Due to Excessive Length 19

boundary intervals the PPI method allows for higher degree interpolants com-
pared to the DBI method. However, these higher degree interpolants while
positive may introduce oscillations that can be removed using the parameter
ε.

Fig. 1: The top row shows an approximation of f1(x) from N = 17 LGL points using DBI
and PPI with different values of ε. The bottom row shows an approximation of f2(x) from
N = 17 uniformly-spaced points using DBI and PPI with different values of ε. The target
polynomial degree is set to d = 16 for both f1(x) and f2(x).

For ui = ui+1, m`, mr and Un(x) as written in Equations (50), (51) and
(13) are not defined. The PPI algorithm addresses this limitation by re-writing
Un(x) as

Un(x) = ui + U [xl1, · · · , xr1](xi+1 − xi)(xr1 − xl1)Sn(x), (73)

20 T. A. J. Ouermi Robert M. Kirby Martin Berzins

where Sn(x) is expressed as follows:

Sn(x) =

n−1∑
j=1

s̄j . (74)

The summation starts at j = 1 because the linear term ui+1−ui

xi+1−xi
(x − xi) = 0.

Let

w = U [xl1, · · · , xr1](xi+1 − xi)(xr1 − xl1). (75)

λ̄j in this context is defined as

λ̄j =
U [xlj , · · · , xrj]

w

j∏
k=0

(xrk − xlk). (76)

For ui = ui+1, the parameters m` and mr are then defined according to

(I) : U [xl1, · · · , xr1] > 0

m` = min

(
0,
umin − ui

w

)
, and mr = max

(
1,
umax − ui

w

)
(77)

(II) : U [xl1, · · · , xr1] < 0

m` = min

(
0,
umax − ui

w

)
, and mr = max

(
1,
umin − ui

w

)
. (78)

For U [xi, xi+1] = U [xl1, · · · , xr1] = 0, the data ui−1, ui, ui+1, and ui+2 have
the same value (ui−1 = ui = ui+1 = ui+2). In this case, the algorithm ap-
proximates the function in the interval Ii with a linear interpolant. For both
cases U [xl1, · · · , xr1] < 0 and U [xl1, · · · , xr1] > 0, B+

j and B−j remain defined as
previously in Equations (59b) and (59a). Lemma 1 and Theorem 2 still hold
and remain unchanged.

Figure 2 shows an example with ui = ui+1 and a hidden local extremum
at x = 0. In Figure 2, we approximate the Runge function f1(x) using the
PCHIP, DBI, and PPI methods from 16 uniformly-spaced data points. The
PPI method is able to better capture the peak compared to the DBI and
PCHIP methods.

Title Suppressed Due to Excessive Length 21

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1

y

True

PCHIP

DBI

PPI

Fig. 2: Approximation of f1(x) with N = 16 points using PCHIP, DBI and PPI. The
interpolants from DBI and PPI are in P8, where 8 is the target polynomial degree.

4.2 Algorithm

The ENO reconstruction can result in a stencil that is biased to the left or
right. Rogerson et al. [22] demonstrated that a biased ENO stencil may lead
to some stability issues when used to solve hyperbolic equations, and a refined
resolution may lead to even larger errors. To address this limitation, Shu [26]
developed a modified ENO reconstruction that uses a bias coefficient to target
a preferred final stencil. Furthermore, a left- and right-biased stencil may fail to
recover hidden local extrema. For instance, if U [xi−1, xi] > 0, U [xi, xi+1] < 0,
and U [xi+1, xi+2] > 0, the interval Ii has an extremum. In such a case, if the
points in the final stencil are all to the right or left of xi, the interpolant may
fail to recover the extremum. The points xi−1 and xi+2 are important for iden-
tifying and reconstructing a hidden local extremum. However, the right-biased
stencils does not include xi−1, and the left-biased stencil does not include xi+2.
To resolve these issues due to biased stencils, the algorithm introduced here
favors a symmetric stencil over the ENO stencil in addition to enforcing the
requirements for data boundedness or positivity preservation. A symmetric
stencil centered around xi includes xi−1 and xi+2 and better approximates a
hidden local extremum compared to a biased stencil.

Before we present the algorithm for the DBI and PPI method, let us define
λ̄−j+1 and λ̄+j+1. At any given step j, the next point inserted into Vj can be

to the right or left. λ̄−j+1 and λ̄+j+1 correspond to the case where the stencil
inserted is to the left and right, respectively.{

λ̄−j+1 = λ̄j+1 with Vj+1 = {xp} ∪ Vj
λ̄+j+1 = λ̄j+1 with Vj+1 = Vj ∪ {xq}.

(79)

As a reminder, xp and xq are the mesh points immediately to the left and
right of Vj . Given Vj , let µl

j be the number of points to the left of xi and µr
j

22 T. A. J. Ouermi Robert M. Kirby Martin Berzins

the number of points to the right. Below we introduce an algorithm for DBI
and PPI based on the procedures introduced above.
Input: {xi}ni=0, {ui}ni=0, {x̃i}ñi=0, ε and d. Output: {ũi}ñi=0.

1. Select an interval [xi, xi+1]. Let V0 = {xi, xi+1} = {xl0, xr0}.
2. If σi−1σi+1 < 0 or σi−1σi < 0, then the interval Ii has a hidden local ex-

tremum. For the boundary intervals, we assume that the divided differences
to the left and right have the same sign.

3. Compute umin and umax using Equations (46) and (47).
4. Compute mr and m` based on Equations (50) and (51) or Equations (72)

and (73). For DBI, set mr = 1 and m` = 0.
5. Given a stencil Vj ,

– if B−j+1 ≤ λ̄
+
j+1 ≤ B

+
j+1 and B−j+1 ≤ λ̄

−
j+1 ≤ B

+
j+1

– if µl
j < µr

j then insert a new stencil point to the left;

– else if µl
j > µr

j then insert a new stencil point to the right;

– else insert a new stencil point to the right if |λ̄lj+1| ≥ |λ̄rj+1|, oth-
erwise insert a new point to left;

– else if B−j+1 ≤ λ̄
−
j+1 ≤ B

+
j+1, then insert a new stencil point to the left;

– else if B−j+1 ≤ λ̄
+
j+1 ≤ B

+
j+1, then insert a new stencil point to the right;

6. This process (Steps 3) iterates until the halting criterion that the ratio
of divided differences lies outside the required bounds stated above or the
stencil has d+ 1 points, with d being the target degree for the interpolant.

7. Evaluate the final interpolant U l(x) (for DBI) or Up(x) (for PPI) at the
output points x̃i that are in Ii.

8. Repeat Steps 1–7 for each interval in the input 1D mesh.

At the left and right boundary intervals there are no mesh points beyond
the boundaries to calculate σi−1 and σi+1, respectively. At both boundaries
σi−1 is set to σi+1 (σi−1 = σi+1) to ensure that no new extrema are intro-
duced. At the boundary and nearby boundary intervals the algorithm allows
for hidden local extrema to be recovered. For example, if the right boundary
interval has a hidden extremum σi−1σi < 0 (from Step 2) then the algorithm
will relax the bounds on the interpolant and allow for the extremum to be
recovered.

5 Numerical Experiments

In this section, we present both 1D and 2D numerical experiments that demon-
strate the properties of our proposed methods. These experimental studies use
the PCHIP, DBI, and PPI methods. The test functions used here are taken
from test problems 1, 2, 7, and 10 in [20]. A full suite of test problems has been
undertaken by the authors in [20]. In that study, nine test problems are used
with both uniform and nonuniform Legendre-Gauss-Lobatto (LGL) meshes.
The Legendre-Gauss-Lobatto mesh consists of uniform elements with eight
LGL quadrature nodes [11] inside each element. The number of elements is
determined by (N − 1)/8 and (N − 1)2/16 for the 1D and 2D examples. The

Title Suppressed Due to Excessive Length 23

integrals in the L2−norm calculation are approximated using the trapezoid
rule with 104 and 103 × 103 uniformly-spaced points for the 1D and 2D ex-
amples, respectively. The parameter ε is set to 0.01 and this choice is to allow
the interpolant in each interval to grow beyond the data in a bounded way.

For various problems, including all the examples below, a standard La-
grange interpolant leads to large oscillations and negative values. While the
ENO and WENO methods reduce the oscillations, they do not address the
issue of preserving data boundedness or positivity. The DBI and PPI meth-
ods resolve both issues. The numerical experiments compare the DBI and PPI
methods against the widely used PCHIP method, and show approximation
errors using the algorithm described in Section 4.2.

5.1 1D Example: Runge Function

Our first example uses the Runge [6] function, defined as follows:

f1(x) =
1

1 + 25x2
, x ∈ [−1, 1]. (80)

Approximating the Runge function via a standard global polynomial using
the set of points provided for the experiment leads to large oscillations and
negative values.

Tables 1 and 2 show L2-errors and convergence rates when approximating
the Runge function f1(x) using the uniform and LGL meshes. For the ap-
proximations in Table 1, we use the PCHIP, DBI, and PPI methods with a
target polynomial degree d = 3; whereas in Table 2, we use the DBI and PPI
methods with the target polynomial degree varying from d = 1 to d = 16. The
results in Table 1 show that the DBI and PPI methods lead to smaller er-
rors and larger convergence rates compared to PCHIP for N larger than 17 in
both the uniform and LGL mesh examples. For N = 17, the PCHIP approach
leads to smaller errors. For higher polynomial degrees, the PPI method gives
better results compared to the DBI and PCHIP, as demonstrated in Table
2. These results demonstrate that the PPI method is a suitable approach for
interpolating data from one mesh to another when the underlying function is
similar to the Runge function. For N = 17 in this example, the higher order
terms added when going from P8 to P16 increase the L2−error norms. These
results indicate that resolution for N = 17 is not sufficient to see polynomial
convergence when going from P8 to P16. The L2−errors norms decrease with
larger values of N .

Figure 3 shows the errors found when approximating the Runge function
f1(x) with PCHIP, DBI, and PPI. The top and bottom plots in Figure 3 show
the absolute errors when approximating the Runge example using N = 33
and N = 129 uniformly-spaced points, respectively. The target polynomial
degree is set to d = 8 for both the DBI and PPI methods and ε = 0.01. The
errors around the middle of the domain dominate the overall error. The relaxed
nature of the PPI method allows for higher degree interpolants compared to

24 T. A. J. Ouermi Robert M. Kirby Martin Berzins

the DBI and PCHIP which leads to better approximations, as shown in the
bottom plots in Figure 3.

N PCHIP Rate DBI Rate PPI Rate
Uniform Mesh

17 7.15E-03 – 1.01E-02 – 1.01E-02 –
33 1.91E-03 1.99 1.21E-03 3.20 1.59E-03 2.78
65 3.70E-04 2.42 9.64E-05 3.73 1.12E-04 3.92
129 6.79E-05 2.47 6.29E-06 3.98 6.29E-06 4.20
257 1.22E-05 2.49 3.94E-07 4.02 3.94E-07 4.02

LGL Mesh
17 4.75E-03 – 8.36E-03 – 8.38E-03 –
33 1.30E-03 1.96 1.84E-03 2.28 1.84E-03 2.28
65 2.86E-04 2.23 2.05E-04 3.24 2.05E-04 3.24
129 5.81E-05 2.32 1.17E-05 4.17 1.17E-05 4.17
257 1.15E-05 2.35 1.04E-06 3.51 1.04E-06 3.51

Table 1: L2-errors and rates of convergence when using the PCHIP, DBI, and PPI methods
to approximate the function f1(x). N represents the number of input points used to build
the approximation. The approximation functions for the DBI and PPI methods are cubic
interpolants.

Uniform Mesh LGL Mesh
N DBI PPI DBI PPI

L2-error Rate L2-error Rate L2-error Rate L2-error Rate
P1

17 2.16E-02 – 2.16E-02 – 1.69E-02 – 1.69E-02 –
33 6.02E-03 1.92 6.02E-03 1.92 5.84E-03 1.60 5.84E-03 1.60
65 1.52E-03 2.03 1.52E-03 2.03 1.66E-03 1.86 1.66E-03 1.86
129 3.82E-04 2.02 3.82E-04 2.02 5.80E-04 1.53 5.80E-04 1.53
257 9.56E-05 2.01 9.56E-05 2.01 1.52E-04 1.94 1.52E-04 1.94

P4

17 8.34E-03 – 7.02E-03 – 6.55E-03 – 6.54E-03 –
33 5.91E-04 3.99 5.91E-04 3.73 7.62E-04 3.24 7.62E-04 3.24
65 4.26E-05 3.88 2.39E-05 4.73 5.30E-05 3.93 5.29E-05 3.94
129 2.68E-06 4.03 8.00E-07 4.95 3.44E-06 3.99 3.44E-06 3.99
257 8.63E-08 4.99 2.55E-08 5.00 8.88E-08 5.31 8.87E-08 5.31

P8

17 4.61E-03 – 3.11E-03 – 3.49E-03 – 4.40E-03 –
33 4.43E-04 3.53 1.51E-04 4.56 1.76E-04 4.50 1.76E-04 4.85
65 3.67E-05 3.67 1.05E-06 7.33 3.25E-06 5.89 3.01E-06 6.00
129 2.56E-06 3.88 3.10E-09 8.50 5.64E-08 5.91 8.82E-09 8.51
257 8.24E-08 4.99 6.80E-12 8.88 3.51E-09 4.03 3.96E-11 7.84

P16

17 4.34E-03 – 3.44E-03 – 4.89E-03 – 5.01E-03 –
33 4.21E-04 3.52 4.85E-05 6.43 1.18E-04 5.62 1.17E-04 5.67
65 3.67E-05 3.60 5.92E-08 9.89 1.22E-06 6.75 9.40E-08 10.51
129 2.56E-06 3.88 4.21E-12 13.94 5.57E-08 4.50 1.02E-11 13.32
257 8.24E-08 4.99 2.18E-16 14.32 3.51E-09 4.01 5.04E-16 14.38

Table 2: L2-errors and rates of convergence when using the DBI and PPI methods to ap-
proximate the function f1(x). N represents the number of input points used to build the
approximation. The interpolants are in Pj , where j is the target polynomial degree.

Title Suppressed Due to Excessive Length 25

-1 -0.5 0 0.5 1

x

0

1

2

3

4

5

6

7
e
rr

o
r

10
-3

PCHIP

DBI

PPI

-1 -0.5 0 0.5 1

x

0

0.5

1

1.5

2

e
rr

o
r

10
-5

PCHIP

DBI

PPI

Fig. 3: Error plots when approximating f1(x). The top and bottom error plots are obtained
from approximating f1(x) with N = 33 and N = 129 uniformly-spaced points, respectively.
The target polynomial degree is set to d = 8 and ε = 0.01.

5.2 1D Example: Smoothed Heaviside Function

This 1D example uses an analytic approximation of the Heaviside function
defined as

f2(x) =
1

1 + e−2kx
, k = 100, and x ∈ [−0.2, 0.2]. (81)

A polynomial approximation of f2(x) is challenging because of the large solu-
tion gradient around x = 0. Attempts to use a standard polynomial approxi-
mation for this function result in oscillations and negative values.

Tables 3 and 4 show L2-errors and convergence rates when approximating
the smoothed Heaviside function f2(x) using the uniform and LGL meshes.
Table 4 shows that for a target polynomial of degree d = 3, the errors for

26 T. A. J. Ouermi Robert M. Kirby Martin Berzins

PCHIP, DBI, and PPI are comparable. When the target degree increases from
d = 1 to d = 16, the errors for the DBI and PPI methods decrease, as shown
in Table 4. Overall, the errors from the DBI and PPI methods are comparable
with DBI yielding slightly smaller errors than PPI. The uniform mesh leads
to better approximation results compared to the LGL mesh. These results
demonstrate that the DBI and PPI methods are both suitable for mapping
data between different meshes when the underlying function is similar to the
smoothed Heaviside function.

Figure 4 provides examples of error plots for approximating the smoothed
Heaviside function f2(x) with PCHIP, DBI, and PPI. The top and bottom
plots in Figure 4 show the absolute error when approximating the smoothed
Heaviside function f2(x) using N = 33 and N = 129 uniformly-spaced points,
respectively. The global error is dominated by the errors in the region with the
steep gradient around x = 0. The error from DBI and PPI are identical for
N = 129 because the stencil selected by both methods are the same around
the region with the steep gradients. Away from the steep gradient the DBI and
PPI methods use different stencils but the errors in those regions are negligible
compared to the errors around x = 0.

N PCHIP Rate DBI Rate PPI Rate
Uniform Mesh

17 2.02E-02 – 1.97E-02 – 1.97E-02 –
33 3.38E-03 2.70 3.53E-03 2.59 3.54E-03 2.59
65 3.59E-04 3.31 5.00E-04 2.88 5.00E-04 2.89
129 4.21E-05 3.13 4.51E-05 3.51 4.51E-05 3.51
257 5.12E-06 3.06 3.01E-06 3.93 3.01E-06 3.93

LGL Mesh
17 3.65E-03 – 5.38E-03 – 5.38E-03 –
33 1.45E-03 1.39 1.55E-03 1.88 1.56E-03 1.86
65 4.07E-04 1.87 6.49E-04 1.28 6.49E-04 1.30
129 8.85E-05 2.23 9.77E-05 2.76 9.77E-05 2.76
257 1.38E-05 2.70 9.06E-06 3.45 9.06E-06 3.45

Table 3: L2-errors and rates of convergence when using the PCHIP, BDI, and PPI methods
to approximate the function f2(x). N represents the number of input points used to build
the approximation. The approximation functions for the DBI and PPI methods are cubic
interpolants.

Title Suppressed Due to Excessive Length 27

Uniform Mesh LGL Mesh
N DBI PPI DBI PPI

L2-error Rate L2-error Rate L2-error Rate L2-error Rate
P1

17 2.89E-02 – 2.89E-02 – 8.58E-03 – 8.58E-03 –
33 7.69E-03 1.99 7.69E-03 1.99 5.24E-03 0.74 5.24E-03 0.74
65 1.80E-03 2.14 1.80E-03 2.14 2.20E-03 1.28 2.20E-03 1.28
129 4.58E-04 2.00 4.58E-04 2.00 8.08E-04 1.47 8.08E-04 1.47
257 1.15E-04 2.00 1.15E-04 2.00 2.01E-04 2.01 2.01E-04 2.01

P4

17 2.23E-02 – 2.23E-02 – 5.24E-03 – 5.24E-03 –
33 4.09E-03 2.56 4.10E-03 2.56 1.10E-03 2.36 1.11E-03 2.34
65 3.05E-04 3.83 3.05E-04 3.84 3.06E-04 1.88 3.07E-04 1.89
129 1.35E-05 4.55 1.35E-05 4.55 3.32E-05 3.24 3.32E-05 3.24
257 4.71E-07 4.87 4.71E-07 4.87 1.17E-06 4.85 1.17E-06 4.85

P8

17 2.08E-02 – 2.08E-02 – 4.87E-03 – 4.68E-03 –
33 3.36E-03 2.75 3.33E-03 2.76 8.71E-04 2.59 7.84E-04 2.69
65 1.38E-04 4.70 1.38E-04 4.69 7.57E-05 3.60 1.24E-04 2.72
129 1.22E-06 6.90 1.22E-06 6.90 2.17E-06 5.19 2.17E-06 5.90
257 4.44E-09 8.15 4.44E-09 8.15 1.95E-08 6.83 1.95E-08 6.83

P16

17 2.00E-02 – 2.00E-02 – 4.83E-03 – 4.64E-03 –
33 2.93E-03 2.90 2.91E-03 2.91 7.38E-04 2.83 7.27E-04 2.80
65 9.17E-05 5.11 9.17E-05 5.10 7.60E-05 3.35 9.41E-05 3.02
129 1.70E-07 9.17 1.70E-07 9.17 2.88E-07 8.14 2.88E-07 8.45
257 2.64E-11 12.73 2.64E-11 12.73 5.39E-11 12.45 5.39E-11 12.45

Table 4: L2-errors and rates of convergence when using the DBI and PPI methods to ap-
proximate the function f2(x). N represents the number of input points used to build the
approximation. The interpolants are in Pj , where j is the target polynomial degree.

28 T. A. J. Ouermi Robert M. Kirby Martin Berzins

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

x

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

e
rr

o
r

PCHIP

DBI

PPI

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

x

0

0.5

1

1.5

2

2.5

3

3.5

e
rr

o
r

10
-5

PCHIP

DBI

PPI

Fig. 4: Error plots when approximating f2(x). The top and bottom error plots are obtained
from approximating f1(x) with N = 33 and N = 129 uniformly-spaced points, respectively.
The target polynomial degree is set to d = 8 and ε = 0.01.

5.3 2D Example: Runge Function

The 2D example uses an extended version of the 1D Runge function defined
in Equation (80) to give

f7(x, y) =
1

1 + 25(x2 + y2)
, x, y ∈ [−1, 1]. (82)

Tables 5 and 6 show L2-errors and convergence rates when approximating
the 2D Runge function f7(x, y) using the uniform and LGL meshes. Table 5
compares PCHIP against DBI, and PPI with a target degree d = 3. Table 6
focuses on high-order interpolants using the DBI and PPI methods. Both the
DBI and PPI methods have smaller errors compared to the PCHIP approach.

Title Suppressed Due to Excessive Length 29

As the target polynomial degree increases, the PPI method gives better ap-
proximation results compared to DBI and PCHIP.

The errors in the DBI method drop more slowly than PPI when more
mesh points are used because the PPI method uses higher degree interpolants
compared to the DBI method. The bounds on the interpolants and λ̄j for data-
boundedness (DBI) are more restrictive than the bounds for positivity (PPI).
In Tables 6 and 2, when going from d = 8 to 16 with N = 65, 129, and 257 the
relaxed nature of the PPI method allows for more stencil points to be used to
construct the final interpolant for each interval. However, the conditions for
data-boundedness are more restrictive and do not allow for more stencil points
to be added when going from d = 8 to 16.

N2 PCHIP Rate DBI Rate PPI Rate
Uniform Mesh

172 5.01E-03 – 7.14E-03 – 7.28E-03 –
332 1.23E-03 2.12 7.82E-04 3.33 8.55E-04 3.23
652 2.33E-04 2.45 5.65E-05 3.88 5.59E-05 4.02
1292 4.27E-05 2.48 3.59E-06 4.02 3.63E-06 3.99
2572 7.72E-06 2.48 2.24E-07 4.03 2.27E-07 4.02

LGL Mesh
172 3.26E-03 – 5.62E-03 – 5.60E-03 –
332 8.58E-04 2.01 1.09E-03 2.48 1.09E-03 2.47
652 1.88E-04 2.24 1.17E-04 3.29 1.17E-04 3.29
1292 3.75E-05 2.35 7.05E-06 4.09 7.05E-06 4.09
2572 7.32E-06 2.37 6.07E-07 3.56 6.07E-07 3.56

Table 5: L2-errors and rates of convergence when using the PCHIP, DBI, and PPI methods
to approximate the function f7(x, y). N2 represents the number of input points used to
build the approximation. The approximation functions for the DBI and PPI methods are
cubic interpolants.

30 T. A. J. Ouermi Robert M. Kirby Martin Berzins

Uniform Mesh LGL Mesh
N2 DBI PPI DBI PPI

L2-error Rate L2-error Rate L2-error Rate L2-error Rate
P1

172 1.60E-02 – 1.60E-02 – 1.10E-02 – 1.10E-02 –
332 4.42E-03 1.94 4.42E-03 1.94 3.62E-03 1.68 3.62E-03 1.68
652 1.12E-03 2.02 1.12E-03 2.02 1.20E-03 1.62 1.20E-03 1.62
1292 2.82E-04 2.02 2.82E-04 2.02 4.27E-04 1.51 4.27E-04 1.51
2572 7.06E-05 2.01 7.06E-05 2.01 1.11E-04 1.96 1.11E-04 1.96

P4

172 5.07E-03 – 4.63E-03 – 4.02E-03 – 4.05E-03 –
332 3.71E-04 3.94 3.60E-04 3.85 4.45E-04 3.32 4.45E-04 3.33
652 2.62E-05 3.91 1.31E-05 4.89 3.08E-05 3.94 3.08E-05 3.94
1292 1.23E-06 4.46 4.36E-07 4.96 1.88E-06 4.08 1.88E-06 4.08
2572 4.96E-08 4.66 1.39E-08 5.00 4.80E-08 5.32 4.79E-08 5.32

P8

172 3.24E-03 – 3.41E-03 – 3.56E-03 – 3.47E-03 –
332 2.88E-04 3.65 1.95E-04 4.31 9.39E-05 5.48 9.34E-05 5.45
652 2.35E-05 3.70 5.14E-07 8.76 1.80E-06 5.83 1.51E-06 6.08
1292 1.16E-06 4.39 1.49E-09 8.53 4.43E-08 5.41 4.53E-09 8.48
2572 4.78E-08 4.63 3.25E-12 8.89 1.73E-09 4.71 1.87E-11 7.96

P16

172 3.69E-03 – 3.89E-03 – 4.18E-03 – 4.18E-03 –
332 2.85E-04 3.86 1.85E-04 4.59 5.62E-05 6.50 5.68E-05 6.48
652 2.35E-05 3.68 2.63E-08 13.07 1.19E-06 5.69 4.28E-08 10.61
1292 1.16E-06 4.38 1.77E-12 14.01 5.42E-08 4.51 4.31E-12 13.43
2572 4.76E-08 4.64 1.89E-15 9.93 2.02E-09 4.77 1.02E-14 8.77

Table 6: L2-errors and rates of convergence when using the DBI and PPI methods to ap-
proximate the function f7(x, y). N2 represents the number of input points used to build the
approximation. The interpolants are in Pj , where j is the target polynomial degree.

5.4 2D Example: Smoothed Heaviside Function

This 2D example uses an extension of the 1D approximation of the Heaviside
function f2(x) defined in Equation (81). The extended version is defined as
follows:

f10(x, y) =
1

1 + e−
√
2k(x+y)

, k = 100, and x, y ∈ [−0.2, 0.2]. (83)

The function f10(x, y) is challenging because of the large gradient at y = −x.
Tables 7 and 8 show L2-errors and convergence rates when approximating

the smoothed Heaviside function f10(x, y) using the uniform and LGL meshes.
For a target polynomial of degree d = 3, the errors for PCHIP, DBI, and PPI
are comparable. As the target degree increases, the errors for the DBI and
PPI decrease, as shown in Table 4. Overall, the errors from the DBI and PPI
approaches are similar.

In Tables 8 and 4, the errors for the DBI and PPI methods are the same
because the example used has no extrema and the interpolants used in the
regions with steep gradients are the same for both the DBI and PPI methods.
The global errors in both examples are dominated by errors in the regions

Title Suppressed Due to Excessive Length 31

with steep gradients. These regions are around x = 0 and y = −x for the 1D
and 2D examples, respectively. Away from the steep gradients DBI and PPI
use different interpolants and the errors are small compared to errors around
x = 0 and y = −x.

N2 PCHIP Rate DBI Rate PPI Rate
Uniform Mesh

172 8.07E-03 – 1.04E-02 – 1.05E-02 –
332 1.26E-03 2.80 2.06E-03 2.44 2.05E-03 2.47
652 1.44E-04 3.20 2.38E-04 3.18 2.38E-04 3.17
1292 1.63E-05 3.18 1.64E-05 3.90 1.64E-05 3.90
2572 1.94E-06 3.08 1.05E-06 3.99 1.05E-06 3.99

LGL Mesh
172 1.23E-02 – 1.54E-02 – 1.56E-02 –
332 2.51E-03 2.39 3.86E-03 2.09 3.83E-03 2.11
652 3.37E-04 2.96 5.53E-04 2.87 5.53E-04 2.86
1292 4.19E-05 3.04 4.09E-05 3.80 4.09E-05 3.80
2572 5.96E-06 2.83 2.50E-06 4.05 2.50E-06 4.05

Table 7: L2-errors and rates of convergence when using the PCHIP, DBI, and PPI methods
to approximate the function f10(x, y). N2 represents the number of input points used to
build the approximation. The approximation functions for the DBI and PPI methods are
cubic interpolants.

32 T. A. J. Ouermi Robert M. Kirby Martin Berzins

Uniform Mesh LGL Mesh
N2 DBI PPI DBI PPI

L2-error Rate L2-error Rate L2-error Rate L2-error Rate
P1

172 1.50E-02 – 1.50E-02 – 2.05E-02 – 2.05E-02 –
332 4.57E-03 1.79 4.57E-03 1.79 6.79E-03 1.66 6.79E-03 1.66
652 1.26E-03 1.90 1.26E-03 1.90 1.89E-03 1.89 1.89E-03 1.89
1292 3.23E-04 1.98 3.23E-04 1.98 4.86E-04 1.98 4.86E-04 1.98
2572 8.15E-05 2.00 8.15E-05 2.00 1.24E-04 1.98 1.24E-04 1.98

P4

172 9.45E-03 – 9.42E-03 – 1.37E-02 – 1.36E-02 –
332 1.33E-03 2.95 1.31E-03 2.98 2.72E-03 2.43 2.71E-03 2.44
652 9.29E-05 3.93 9.29E-05 3.90 2.39E-04 3.59 2.39E-04 3.58
1292 3.67E-06 4.71 3.67E-06 4.71 1.10E-05 4.49 1.10E-05 4.49
2572 1.21E-07 4.95 1.21E-07 4.95 3.90E-07 4.84 3.90E-07 4.84

P8

172 8.04E-03 – 8.00E-03 – 1.22E-02 – 1.21E-02 –
332 1.03E-03 3.10 9.30E-04 3.25 1.76E-03 2.91 1.75E-03 2.92
652 4.83E-05 4.51 4.89E-05 4.35 4.98E-05 5.26 4.98E-05 5.25
1292 2.57E-07 7.64 2.57E-07 7.66 4.03E-07 7.03 4.03E-07 7.03
2572 5.27E-10 8.98 5.27E-10 8.98 1.21E-09 8.42 1.21E-09 8.42

P16

172 7.32E-03 – 7.31E-03 – 1.17E-02 – 1.16E-02 –
332 1.03E-03 2.96 8.90E-04 3.17 1.46E-03 3.14 1.44E-03 3.15
652 2.13E-04 2.32 2.09E-04 2.13 1.83E-04 3.06 1.64E-04 3.20
1292 1.03E-06 7.78 1.03E-06 7.76 2.15E-07 9.85 2.15E-07 9.69
2572 4.41E-11 14.59 4.41E-11 14.59 9.37E-12 14.57 9.37E-12 14.57

Table 8: L2-errors and rates of convergence when using the DBI and PPI methods to ap-
proximate the function f10(x, y). N2 represents the number of input points used to build
the approximation. The interpolants are in Pj , where j is the target polynomial degree.

5.5 Hidden Local Extrema Examples

This numerical study demonstrates the ability of the PPI method to recover
hidden extrema. The study uses the Runge functions f1(x) and f7(x, y) with
a uniform meshes. The uniformly-spaced mesh points are constructed such
that the extremum at x = 0 lies inside of an interval. Tables 9 and 10 show
L2-error norms and convergence rates when approximating f1(x) and f7(x, y)
from Equations (80) and (82). The results from both tables show that the PPI
method leads to smaller errors and larger convergence rates compared to the
DBI method. The DBI approach uses a bounded interpolant that fails to rep-
resent the extremum at x = 0, whereas the relaxed nature of the PPI approach
allows for a more accurate representation of the extremum. In the case of DBI,
as the target polynomial degree increases from P4 to P16, the errors and con-
vergence rates do not improve because the global error is dominated by the
local error in the interval with the hidden extremum. The DBI approach only
achieves an O(h2.5) accuracy as opposed to the PPI method, that achieves the
same high accuracy regardless of whether or not the extremal values are data
points. These results highlight the advantage of the PPI method over the DBI
method for recovering hidden extrema from data. Overall, the PPI method

Title Suppressed Due to Excessive Length 33

achieves high-order accuracy when approximating the Runge functions from
data with and without hidden extrema.

N DBI PPI
L2-error Rate L2-error Rate

P1

16 2.81E-02 – 2.81E-02 –
32 6.41E-03 2.13 6.41E-03 2.13
64 1.57E-03 2.03 1.57E-03 2.03
128 3.88E-04 2.02 3.88E-04 2.02
256 9.63E-05 2.01 9.63E-05 2.01

P4

16 2.81E-02 – 1.37E-02 –
32 4.72E-03 2.57 6.85E-04 4.32
64 8.14E-04 2.54 2.57E-05 4.73
128 1.42E-04 2.52 8.32E-07 4.95
256 2.49E-05 2.51 2.60E-08 5.00

P8

16 2.74E-02 – 1.07E-02 –
32 4.69E-03 2.55 2.06E-04 5.70
64 8.14E-04 2.53 1.19E-06 7.43
128 1.42E-04 2.52 3.32E-09 8.49
256 2.49E-05 2.51 7.04E-12 8.88

P16

16 2.75E-02 – 1.02E-02 –
32 4.69E-03 2.55 1.43E-04 6.16
64 8.14E-04 2.53 7.18E-08 10.96
128 1.42E-04 2.52 4.74E-12 13.89
256 2.49E-05 2.51 2.77E-16 14.06

Table 9: L2-errors and rates of convergence when using the DBI and PPI methods to approx-
imate the function f1(x). The uniform mesh used to build the approximation is constructed
with N points . The interpolants are in Pj , where j is the target polynomial degree.

34 T. A. J. Ouermi Robert M. Kirby Martin Berzins

N2 DBI PPI
L2-error Rate L2-error Rate

P1

162 1.97E-02 – 1.97E-02 –
322 4.71E-03 2.07 4.71E-03 2.07
642 1.16E-03 2.02 1.16E-03 2.02
1282 2.86E-04 2.02 2.86E-04 2.02
2562 7.11E-05 2.01 7.11E-05 2.01

P4

162 1.91E-02 – 7.97E-03 –
322 3.27E-03 2.55 3.83E-04 4.38
642 5.43E-04 2.59 1.41E-05 4.76
1282 9.18E-05 2.56 4.53E-07 4.96
2562 1.59E-05 2.53 1.41E-08 5.00

P8

162 1.90E-02 – 6.03E-03 –
322 3.27E-03 2.53 1.05E-04 5.84
642 5.43E-04 2.59 5.83E-07 7.49
1282 9.18E-05 2.56 1.59E-09 8.51
2562 1.59E-05 2.53 3.36E-12 8.89

P16

162 1.91E-02 – 6.06E-03 –
322 3.28E-03 2.54 8.11E-05 6.22
642 5.43E-04 2.60 3.19E-08 11.31
1282 9.18E-05 2.56 2.00E-12 13.96
2562 1.59E-05 2.53 2.83E-15 9.46

Table 10: L2-errors and rates of convergence when using the DBI and PPI methods to
approximate the function f7(x, y). The uniform mesh used to build the approximation is
constructed with N2 points. The interpolants are in Pj , where j is the target polynomial
degree.

6 Summary and Conclusions

In this paper, we present both an algorithm and theoretical foundations for
sufficient conditions to ensure data boundedness and positivity on any set
of mesh points via a Newton polynomial formulation. The one-dimensional
PPI and DBI methods analyzed herein are building blocks that have been
extended to multidimensional PPI and DBI methods using tensor-products.
This extension consists of successively applying the one-dimensional PPI or
DBI method on each dimension to generate the multidimensional results.

The DBI method imposes restrictions on the ratio of divided differences
to ensure that the interpolants are bounded by the input data. The proof of
the DBI approach presents new challenges because the configuration of mesh
points may not exhibit a regular structure. The PPI method starts from the
DBI method and relaxes the bounds on the ratio of divided differences, thereby
allowing the interpolants to grow beyond the data as needed while remaining
positive. The positive interpolant is further bounded by the parameters umin

and umax to remove undesirable oscillations that may potentially degrade the
approximation. The proofs of both the DBI and PPI approaches rely on the
results from Lemma 1, which consist of using the definition of B+

j , B−j to

Title Suppressed Due to Excessive Length 35

arrive at the bounds B−j−1 ≤ λ̄j−1δj ≤ B+
j−1. The proofs from Theorems 1

and 2 use Lemma 1 to show that 0 ≤ Sn(x) ≤ 1 for the DBI method and
m` ≤ Sn(x) ≤ mr for the PPI method.

Note that one observation we have made is that the PPI method uses
higher order interpolants compared to the DBI method. Relaxing the bounds
on the ratio of divided differences increases the range of polynomial degrees
that meet the desired requirement. The 1D and 2D numerical results, in Tables
1-8, indicate that the DBI or PPI methods provided herein are appropriate
for ensuring data boundedness or positivity preservation, and both methods
converge as the interpolant degree and resolution increase. Figure 1 demon-
strates that enforcing positivity alone may not be sufficient to remove large
oscillations. We resolve this issue by bounding the positive polynomial with
umin and umax, which are determined based on user-supplied values, such as
ε = 0.01 for the numerical examples in Section 5. In addition, Figure 2 demon-
strates that for an interval Ii where there exists a local extremum, the PCHIP
and DBI methods truncate the extremum whereas the PPI method leads to
a better approximation of the extremum. The different results demonstrated
that the PPI method is able to produce high-order accurate approximations
in examples with and without a hidden extremum.

As this work continues, we plan to investigate different methods for accel-
erating the algorithm. The performance optimization will focus on different
strategies to enable data locality and vectorization of the PPI and DBI al-
gorithm to better take advantage of different computational architectures. In
addition, we will evaluate the use of both DBI and PPI methods for various
practical applications. This work is ongoing [21].

Acknowledgements This work has been supported by the US Naval Research Labora-
tory (559000669), the National Science Foundation (1521748), and the Intel Graphics and
Visualization Institute at the University of Utah’s Scientific Computing and Imaging (SCI)
Institute (29715). The authors would like like to thank Dr. Alex Reinecke of the Naval
Research Laboratory for his constant support and help.

References

1. Berzins, M.: Adaptive polynomial interpolation on evenly spaced meshes. SIAM Review
49(4), 604–627 (2007). DOI https://doi.org/10.1137/050625667

2. Berzins, M.: Nonlinear data-bounded polynomial approximations and their ap-
plications in ENO methods. Numer. Algor. 55(2), 171–189 (2010). DOI
https://doi.org/10.1007/s11075-010-9395-8

3. Costantini, P.: On some recent methods for bivariate shape-preserving interpolation. In:
W. Haußmann, K. Jetter (eds.) Multivariate Approximation and Interpolation: Proceed-
ings of an International Workshop held at the University of Duisburg, August 14–18,
1989, pp. 55–68. Birkhäuser Basel, Basel (1990). DOI https://doi.org/10.1007/978-3-
0348-5685-0 4

4. Costantini, P.: Boundary-valued shape-preserving interpolating splines. ACM Trans.
Math. Softw. 23(2), 229–251 (1997). DOI https://doi.org/10.1145/264029.264050

5. Dougherty, R.L., Edelman, A., Hyman, J.M.: Nonnegativity-, monotonicity-, or
convexity-preserving cubic and quintic hermite interpolation. Math. Comput. 52(186),
471–494 (1989). DOI https:doi.org/10.1090/S0025-5718-1989-0962209-1

36 T. A. J. Ouermi Robert M. Kirby Martin Berzins

6. Epperson, J.F.: On the runge example. Amer. Math. Monthly 94(4), 329–341 (1987).
DOI https://doi.org/10.1080/00029890.1987.12000642

7. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable
essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer.
Anal. 50(2), 544–573 (2012)

8. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO inter-
polation are stable. Found. Comput. Math. 13(2), 139–159 (2013). DOI
https://doi.org/10.1007/s10208-012-9117-9

9. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer.
Anal. 17(2), 238–246 (1980). DOI https://doi.org/10.1137/0717021

10. Giraldo, F.X., Kelly, J.F., Constantinescu, E.M.: Implicit-explicit formulations of a
three-dimensional nonhydrostatic unified model of the atmosphere (numa). SIAM J.
Sci. Comput. 35(5), B1162–B1194 (2013). DOI https://doi.org/10.1137/120876034

11. Hale, N., Townsend, A.: Fast and accurate computation of gauss–legendre and gauss–
jacobi quadrature nodes and weights. SIAM J. Sci. Comput. 35(2), A652–A674 (2013).
DOI https://doi.org/10.1137/120889873

12. Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83(1), 148–184
(1989). DOI https://doi.org/10.1016/0021-9991(89)90226-X

13. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic
conservation laws. Comm. Pure Appl. Math. 48(12), 1305–1342 (1995). DOI
https://doi.org/10.1002/cpa.3160481201

14. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conser-
vation laws. Communications on Pure and Applied Mathematics 48(12), 1305–1342
(1995). DOI https://doi.org/10.1002/cpa.3160481201

15. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate
essentially non-oscillatory schemes, iii. J. Comput. Phys. 131(1), 3 – 47 (1997). DOI
https://doi.org/10.1006/jcph.1996.5632

16. Krogh, F.T.: Efficient algorithms for polynomial interpolation and numerical differenti-
ation. Math. Comput. 24(109), 185–190 (1970). DOI https://doi.org/10.2307/2004888

17. Light, D., Durran, D.: Preserving nonnegativity in discontinuous galerkin approxima-
tions to scalar transport via truncation and mass aware rescaling (TMAR). Mon.
Weather Rev. 144(12), 4771–4786 (2016). DOI https://doi.org/10.1175/MWR-D-16-
0220.1

18. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput.
Phys. 115(1), 200–212 (1994). DOI https://doi.org/10.1006/jcph.1994.1187

19. Lux, T.C.H., Watson, L.T., Chang, T.H.: An algorithm for constructing monotone quin-
tic interpolating splines. In: 2020 Spring Simulation Conference (SpringSim), pp. 1–12
(2020). DOI https://doi.org/10.22360/SpringSim.2020.HPC.003

20. Ouermi, T.A.J., Kirby, R.M., Berzins, M.: Numerical testing of
a new positivity-preserving interpolation algorithm (2020). DOI
https://doi.org/10.48550/arxiv.2009.08535

21. Ouermi, T.A.J., Kirby, R.M., Berzins, M.: HPPIS: A high-order positivity-preserving
mapping software for structured meshes. Manuscript in preparation (20xx)

22. Rogerson, A.M., Meiburg, E.: A numerical study of the convergence prop-
erties of ENO schemes. J. Sci. Comput. 5(2), 151–167 (1990). DOI
https://doi.org/10.1007/BF01065582

23. Schmidt, J.W., Heß, W.: Positivity of cubic polynomials on intervals and pos-
itive spline interpolation. BIT Numer. Math. 28(2), 340–352 (1988). DOI
https://doi.org/10.1007/BF01934097

24. Sekora, M., Colella, P.: Extremum-preserving limiters for muscl and ppm (2009). DOI
https://doi.org/10.48550/arXiv.0903.4200

25. Shen, C., Qiu, J.M., Christlieb, A.: Adaptive mesh refinement based on high order
finite difference WENO scheme for multi-scale simulations. J. Comput. Phys. 230(10),
3780–3802 (2011). DOI https://doi.org/10.1016/j.jcp.2011.02.008

26. Shu, C.W.: Numerical experiments on the accuracy of ENO and modified ENO schemes.
J. Sci. Comput. 5(2), 127–149 (1990). DOI https://doi.org/10.1007/BF01065581

27. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes.
Acta Numer. 29, 701762 (2020). DOI https://doi.org/10.1017/S0962492920000057

Title Suppressed Due to Excessive Length 37

28. Skamarock, W.C., Weisman, M.L.: The Impact of Positive-Definite Moisture Transport
on NWP Precipitation Forecasts. Mon. Weather Rev. 137(1), 488–494 (2009). DOI
https://doi.org/10.1175/2008MWR2583.1

29. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear con-
servation laws and related time-dependent problems. Acta Numer. 12, 451512 (2003).
DOI https://doi.org/10.1017/S0962492902000156

30. Tal-Ezer, H.: High degree polynomial interpolation in Newton form. SIAM J. Sci.
Statist. Comput. 12(3), 648–667 (1991). DOI https://doi.org/10.1137/0912034

31. Ulrich, G., Watson, L.T.: Positivity conditions for quartic polynomials. SIAM J. Sci.
Comput. 15(3), 528–544 (1994). DOI https://doi.org/10.1137/0915035

32. Viner, K., Reinecke, P., Doyle, J., Gabersek, S., Martini, M., Flagg, D., Michalakes,
J., Ryglicki, D., Giraldo, F.: Next generation NWP using a spectral element dynamical
core. AGU Fall Meeting Abstracts A34A-02 (2016)

33. Wang, C., Dong, X., Shu, C.W.: Parallel adaptive mesh refinement method based on
WENO finite difference scheme for the simulation of multi-dimensional detonation. J.
Comput. Phys. 298, 161–175 (2015). DOI https://doi.org/10.1016/j.jcp.2015.06.001

34. Zala, V., Kirby, M., Narayan, A.: Structure-preserving function approximation via
convex optimization. SIAM J. Sci. Comput. 42(5), A3006–A3029 (2020). DOI
https://doi.org/10.1137/19M130128X

35. Zala, V., Kirby, R.M., Narayan, A.: Structure-preserving nonlinear filtering for contin-
uous and discontinuous galerkin spectral/hp element methods. SIAM J. Sci. Comput.
43(6), A3713–A3732 (2021). DOI https://doi.org/10.1137/20M1337223

36. Zhang, X.: On positivity-preserving high order discontinuous galerkin schemes for com-
pressible navier–stokes equations. J. Comput. Phys. 328, 301 – 343 (2017). DOI
https://doi.org/10.1016/j.jcp.2016.10.002

37. Zhang, X., Shu, C.W.: Maximum-principle-satisfying and positivity-preserving high-
order schemes for conservation laws: survey and new developments. Proc. Math. Phys.
Eng. Sci. 467(2134), 2752–2776 (2011). DOI https://doi.org/10.1098/rspa.2011.0153

38. Zhang, X., Shu, C.W.: Positivity-preserving high order finite difference WENO schemes
for compressible euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012). DOI
https://doi.org/10.1016/j.jcp.2011.11.020

39. Zhang, X., Xia, Y., Shu, C.W.: Maximum-principle-satisfying and positivity-preserving
high order discontinuous galerkin schemes for conservation laws on triangular meshes.
J. Sci. Comput. 50(1), 29–62 (2012). DOI https://doi.org/10.1007/s10915-011-9472-8

