
Numerical Testing of a New Positivity-Preserving Interpolation

Algorithm

T. A. J. Ouermi

University of Utah School of Computing

U of U Scientific Computing and Imaging Institute

touermi@cs.utah.edu

Robert M. Kirby

University of Utah School of Computing

U of U Scientific Computing and Imaging Institute

kiby@cs.utah.edu

Martin Berzins

University of Utah School of Computing

U of U Scientific Computing and Imaging Institute

mb@sci.utah.edu

Revised version June 15, 2022

Abstract

An important component of a number of computational modeling algorithms is an inter-

polation method that preserves the positivity of the function being interpolated. This report

describes the numerical testing of a new positivity-preserving algorithm that is designed to be

used when interpolating from a solution defined on one grid to different spatial grid. The mo-

tivating application for this work was a numerical weather prediction (NWP) code that uses a

spectral element mesh discretization for its dynamics core and a cartesian tensor product mesh

for the evaluation of its physics routines. This coupling of spectral element mesh, which uses

nonuniformly spaced quadrature/collocation points, and uniformly-spaced cartesian mesh com-

bined with the desire to maintain positivity when moving between these meshes necessitates our

work. This new approach is evaluated against several typical algorithms in use on a range of

test problems in one or more space dimensions. The results obtained show that the new method

is competitive in terms of observed accuracy while at the same time preserving the underlying

positivity of the functions being interpolated.

1



Introduction

Interpolating from one grid to another is a fundamental part of a number of computational prob-

lems. Furthermore, when interpolating solution values, it is important in some applications to

conserve properties such as non-negativity of the solution. For example in weather forecasting,

when mapping between the different grids used to calculate the dynamics and those used to calcu-

late the physics, the polynomial approximation of positive quantities such as mass, density, or cloud

mixing ratio may introduce negative values that are nonphysical. These negative values may cause

incorrect representations of other calculations that are dependent on these approximations. In other

applications such as parallel resilience [1], combustion simulations and the solution of hyperbolic

equations with ENO and WENO schemes, it is important to have polynomial approximations that

preserve positivity on general meshes [2, 3]. A somewhat stronger condition is to use methods that

preserve the local boundedness of the solution [4] when interpolating.

The particular example motivating this experimental study is the physics-dynamics coupling

(PDC) module in the Navy Environmental Prediction System using the NUMA Core (NEPTUNE)

[5, 6]. NEPTUNE is a next-generation global NWP system being developed at the Naval Research

Laboratory (NRL) and the Naval Postgraduate School (NPS) [6]. In NEPTUNE [5, 6], the dynamics

calculations are done on a spectral element mesh, whereas the physics routines require values on

a uniform mesh. In the context of NEPTUNE and similar codes, interpolating the solution values

produced by the dynamics routines to the spatial points used by the physics routines and vice

versa may lead to negative values unless care is taken. This result was shown by Skamarock et al.

[7] who demonstrated that not preserving positivity may lead to unphysical results in a predicted

physical quantity of interest, such as moisture. Moreover, the nonphysical values introduced through

interpolation may lead to spurious values in the results, compared to those produced with positivity-

preserving interpolation [8].

This report is concerned with the numerical testing of a new interpolation algorithm that has

been proposed for positivity preservation when mapping solution values between structured meshes.

The theoretical basis for the algorithm builds on the data-bounded work of Berzins [4] to develop a

new data-bounded and positivity-preserving methods for both evenly- and unevenly-spaced struc-

ture meshes. The new data-bounded interpolation (DBI) method in [9] relaxes conditions for

data-boundedness, which gives greater accuracy than the conditions used in [4]. Ouermi et al. [9]

further extended the DBI method to give a new positivity-preserving interpolation (PPI) method.

The application of these new methods to numerical weather prediction examples is described in [8].

In this report, a number of possible alternative interpolation schemes are introduced. A represen-

tative sample of such methods is compared against the new approaches on a number of different

test functions, including smooth, C0, discontinuous, and steep-gradient functions. The comparison

undertaken focuses on how accurately the different methods are able to represent this underlying

set of test functions. In addition, a representative weather model problem is considered. Overall,

it will be shown that the new methods are well suited for function approximation and mapping

data values between meshes for numerical weather examples. The generality of this approach sug-

2



gests that these methods also have application to other problems for which preserving positivity is

important.

1 Examples of Existing Interpolation Methods

This section highlights several approaches that have been developed to address the need for data-

bounded, positivity-preserving, and shape-preserving interpolation. While this selection of methods

is not all-inclusive, it is intended to illustrate the main types of polynomial-based approaches.

1.1 Cubic Splines

In Computer-Aided Design (CAD), graphics, and visualization, significant contributions have been

made to develop and advance shape-preserving methods. Many of the approaches for shape-

preservation are based on cubic splines. In [10] and [11], Schmidt and Heß introduced positive

interpolation methods using rational quadratic and cubic splines respectively. Necessary and suffi-

cient conditions for positivity are provided for both the rational quadratic and cubic interpolants.

These conditions impose some restrictions on the values of the first derivatives at each node. As in

[12], both approaches lead to multiple solutions, and the one with the minimal curvature is selected.

The work in [13], [14], and [15] presented positivity-preserving interpolation methods that rely on

rational cubic splines. The C2 continuity in [13] is obtained by solving a tridiagonal system of

linear equations. All three methods introduce free parameters that are used to derive and enforce

conditions for positivity. Butt and Brodlie [16] provide a method for constructing C1 cubic Hermite

splines. This method is dependent on the availability of values of first derivatives at the nodes,

which may not be available in practice. Positivity is enforced by imposing a bound on the values

of the derivatives. In the case where bounds on the derivatives are not met, one or two knots are

inserted to ensure that the constructed spline is positive. Perhaps the most widely used approach

for preserving monotonicity in many applications is PCHIP by Fritch and Carlson [17] who derived

necessary and sufficient conditions for monotone cubic interpolation, and provided an algorithm for

building a piecewise cubic approximation from data. This algorithm calculates the values of the

first derivatives at the nodes based on the necessary and sufficient conditions.

1.2 Quartic and Quintic Splines

Although many shape-preserving interpolation methods are cubic or lower order, a number of

approaches target higher-order interpolants, with an emphasis on quartic or quintic polynomial

approximations. The work in [18] and [19] presents geometric or visual continuity G1 and G2 con-

tinuous shape-preserving interpolation using Pythagorean-Hodograph quintic splines curves. This

approach uses Bernstein basis functions and a parametric representation of the interpolant in each

interval. A sufficient condition for shape preservation is constructed based on free angular parame-

ters that influence the shape of the curve in each interval. The appropriate angular parameters are

3



selected based on the cubic-cubic (CC) criterion introduced in [20]. The G2 case requires a tridi-

agonal solve and use of a Newton-Raphson iteration, which potentially affects the computational

performance.

Hussain et al. [21] and Hussain et al. [22] introduced C2 rational quintic interpolation inter-

polation approaches that preserve positivity. These rational quintic functions are constructed with

free parameters that are used to enforce positivity. Both methods require the approximation of

values of first and second derivatives at the nodes if these derivatives are not available. In addition,

the rational quintic interpolation methods in [21] and [22] have a O(h3) order of accuracy.

Heß and Schmidt [12] developed interpolation schemes that preserve positivity and monotonicity

using C2 quartic and quintic splines. Positivity and monotonicity are achieved by imposing some

restrictions on the values of the first and second derivatives at each node. This approach leads to

a potentially infinite number of solutions that meet the required conditions. Of these solutions,

the solution with minimal curvature is selected using global minimization. The global nature

of the minimization makes the algorithm challenging to parallelize and may have an impact on

computational performance. MQS [23] is an example of a monotonic quintic spline method that

was developed by Lux et al. [23] who built on the work of Heß and Schmidt [24], and Ulrich

and Watson [25]. This algorithm uses the sufficient conditions from [24] to check for monotonicity

and the work in [25] to adjust values of the first and second derivatives to ensure monotonicity.

This method requires the values of the first and second derivatives at the nodes, which may not

be available in practice. In this report, the first and second derivatives are approximated using a

fourth-order finite difference stencil based on [26].

1.3 SPS and B-spline Higher Order Splines

Costantini [27, 28] developed a C1 and C2 Shape-Preserving Spline (SPS) interpolation method

using Berstein-Bezier polynomials of an arbitrary degree. The desired shape property is obtained

by imposing restrictions on the value of the first derivatives at the nodes. The Bezier coefficients

for each spline are derived from a linear function. For a given interval, the coefficients of the

Berstein-Bezier polynomial interpolant are selected from a linear function. The first derivatives at

the nodes are calculated such that the sufficient conditions for shape preservation given in [27] are

met. The approximation of the first derivatives at the node is third-order accurate. In addition,

Theorem 9 of [29] shows that the spline method presented in [27, 28] has an error of O(h4). More

details on the construction of the splines, an algorithm and a software package for the SPS method

can be found in [27, 28]. In addition to the positivity-preserving approaches, conventional B-splines

[30] are also used here. Although the B-spline approach does not preserve-positivity, many of the

approaches mentioned in this work are based on B-splines and so the use of unmodified B-splines

provides an accuracy check on the other spline methods.

4



1.4 DBI and PPI Methods

The numerical solution of partial differential equations (PDEs), particularly hyperbolic equations,

is an another area in which various methods have been developed to enable data-bounded and

positivity-preserving approximations. In order to preserve positivity in discontinuous Galerkin (dG)

schemes, Zhang et al. [31, 32, 33] and Light et al. [34] introduced a linear rescaling of polynomials

that ensures that the evaluation of the polynomial at the quadrature points is positive. In addition,

this linear rescaling of the polynomial conserves mass. The polynomial rescaling, however, does

not address the case of interpolating between different meshes, which is the primary focus of

this work. Harten et al. [35] developed an essentially non-oscillatory (ENO) piece-wise polynomial

reconstruction that is suitable for interpolating between different meshes. ENO methods adaptively

build an interpolant based on Newton divided differences and can help remove Gibbs-like effects

but do not guarantee positivity. A weighted combination of ENO schemes, (WENO) has been used

by Zhang et al. [36] and many others.

A DBI method was developed by Berzins using evenly spaced meshes from ENO methods [4].

This method was extended by the authors in [9, 8] to work for both evenly and unevenly spaced

meshes and, more importantly, to the PPI method. Ouermi et al. [9] relaxed the conditions for

data-boundedness which, gives greater accuracy compared to the conditions used in [4]. Both

the improved DBI and the new PPI methods are used in this report. The PPI method further

extends the DBI method by relaxing the bounds on the ratio of divided differences and so allows

the interpolant to grow beyond the data, while still remaining positive. For a given interval, the

DBI and PPI methods successively select stencil points until the required bounds are violated or

d+ 1 points are selected, with d being the target degree of the interpolant. In addition to enforcing

data-boundedness and positivity, the algorithm in [8] uses a user-supplied parameter st to guide

the stencil construction procedure. When adding the next point to both the right or left of the

current stencil meets the requirements for data-boundedness or positivity, the algorithm makes the

selection based on the three cases below.

• If st = 1, the algorithm chooses the point with the smallest divided difference, as in the ENO

stencil.

• If st = 2, the point to the left of the current stencil is selected if the number of points to the

left of xi is smaller than the number of points to right. Similarly, the point to the right is

selected if the number of points to the right of xi is smaller than the number of points to the

left. When both the number of points to right and left are the same, the algorithm chooses

the point with the smallest ratio of divided differences.

• If st = 3, the algorithm chooses the point that is closest to the starting interval Ii.

Enforcing positivity alone may still lead to undesirables oscillations. To address this limitation the

algorithm, provides the parameters ε0 and ε1 that are used to impose an upper and lower bound

for each interpolant. For each interval Ii, the bounds are constructed using the parameters ε0 and

5



ε1, and the data values ui and ui+1. Both the DBI and PPI methods and the algorithm details are

described in [8] with numerical examples pertaining to NWP.

2 Comparison Methodology

2.1 Compared Methods

The numerical experiments in this report use the PCHIP [17], MQS [23], SPS [27, 28], B-splines

[30], the improved DBI [4], and the new PPI methods [9]. These methods are available as follows:

PCHIP: The version of the PCHIP algorithm used in this report is implemented in Fortran

90 and can be found at https://people.sc.fsu.edu/~jburkardt/f_src/pchip/pchip.html.

MQS: The method of Lux et al. [23] is an example of a method for monotonic quintic

splines. The algorithm is implemented in Python3 and can be found https://github.com/tchlux/

papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline).

SPS: Costantini [27, 28] introduced a high-order Shape-Preserving (monotonicity-, and convexity-

preserving) Spline (SPS) method using Berstein-Bezier polynomials of arbitrary degree. The SPS

method is implemented in the BVSPIS software package in Fortran 77 and is available from ACM as

Algorithm 770 [28] https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F264029.

264059&file=770.gz&download=true.

B-splines: PPPACK, a Fortran 90 library that evaluates piecewise polynomial functions, in-

cluding cubic splines. The original FORTRAN77 library is by Carl de Boor [30]. The package is

available from https://people.sc.fsu.edu/~jburkardt/f_src/pppack/pppack.html.

HPPIS: The DBI and PPI methods have been developed based on the theory and

algorithm in [9, 8]. The software and implementation details can be found in [8].

2.2 Comparison Criteria

The three steps outlined below are used to compare the different methods when used to approximate

smooth and nonsmooth functions. The errors are measured in a discrete approximation to the L2-

error norm.

• The first step consists of demonstrating that the various schemes preserve positivity for each

of the test functions used. In addition, this step is used to show that a standard polynomial

interpolation method does not guarantee positivity.

• The second step experimentally investigates the convergence of the various schemes when

using smooth functions. This step tests the ability of the different methods to accurately

represent smooth functions as the resolution increases. For the Shape-Preserving Spline (SPS)

[27, 28], DBI and PPI methods, we also investigate the approximation accuracy obtained with

varying interpolant polynomial degrees.

6

https://people.sc.fsu.edu/~jburkardt/f_src/pchip/pchip.html
https://github.com/tchlux/papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline)
https://github.com/tchlux/papers/tree/master/%5B2019-11%5D_HPC_(quintic_spline)
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=true
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F264029.264059&file=770.gz&download=true
https://people.sc.fsu.edu/~jburkardt/f_src/pppack/pppack.html


• The third step focuses on the ability of the different methods to represent a set of challenging

test functions with large gradients and/or discontinuities. This step represents situations

often encountered in computational science problems, such as mapping between physics and

dynamics meshes in NEPTUNE.

3 Positivity-Preserving Interpolants

Preserving positivity while maintaining accuracy is perhaps the key property needed when mapping

from one mesh to another in NEPTUNE and similar applications. This section compares the

PCHIP, MQS, SPS, DBI, and PPI against a standard interpolation method using five examples.

The standard polynomial interpolation approach (STD) uses the points in each element to build a

standard Lagrange interpolant for that element. In each of the examples, the different interpolants

are constructed using:

1. a uniform mesh that is constructed using uniformly spaced points. In this mesh, all the

elements have the same size and the nodes are uniformly spaced inside each element.

2. an LGL mesh that consists of uniform elements with Legendre Gauss-Lobatto (LGL) quadra-

ture nodes [37]. For example, the global interval is divided into (Ni − 1)/j and (Ni − 1)2/j2

elements for the 1D and 2D examples, respectively. Ni is the total number of points used for

the approximation and j is the target polynomial degree. For the 1D examples, j + 1 LGL

quadrature nodes are placed inside each element. The 2D examples use a tensor product of

(j + 1)× (j + 1) = (j + 1)2 LGL nodes in each element. This LGL mesh is different than the

one used in [9] where the node distribution in each element remains fixed ((Ni − 1)/8 and

(Ni − 1)2/16) as the target polynomial changes. This fixed number of nodes in each element

enables the study of the DBI and PPI methods in the case of a fixed LGL mesh with varying

polynomial degrees.

In the figures presented in this section, the black and red plots represent the underlying function

and its approximation using the different interpolation methods. Both the DBI and PPI methods

use a mesh point selection method that favors a symmetric stencil about xi by setting st = 1 with

ε0 = 0.01 and ε1 = 1.0. The results in Figures 1 to 6 below demonstrate that the PCHIP, MQS,

DBI, SPS, and PPI methods preserve positivity, whereas the standard interpolation methods lead

to oscillations and fail to preserve positivity. Using an LGL mesh reduces oscillations compared to

the uniform mesh, but does not guarantee that the interpolating polynomials will be positive.

3.1 Example I f1(x)

This example uses the famous Runge function [38] defined as follows:

f1(x) =
1

1 + 25x2
, x ∈ [−1, 1]. (1)

7



Figures 1 and 2 show the different polynomial approximations for this function using 17 uniformly

spaced and LGL points, respectively. The target polynomial degree for the standard interpolation,

DBI, and PPI is set to d = 16. The standard polynomial interpolation approach, STD, does not

preserve positivity with the uniform mesh and generates oscillations in both meshes. The PCHIP,

MQS, DBI, SPS and PPI methods preserve positivity for both the uniform and LGL meshes.

Figure 1: Approximation of the Runge function with the N = 17 points that are uniformly dis-
tributed on the interval [−1, 1].

8



Figure 2: Approximation of the Runge function with the N = 17 LGL quadrature points distributed
on the interval [−1, 1].

3.2 Example II f2(x)

The second example uses an analytic approximation of the Heaviside function defined as follows:

f2(x) =
1

1 + e−2kx
, k = 100, and x ∈ [−0.2, 0.2]. (2)

9



A polynomial approximation of f2(x) is challenging because of the large gradient at about x =

0. Attempts to use a global polynomial approximation for this function result in unacceptable

oscillations and negative values as observed in the Runge example above. Figures 3 and 4 show

interpolations of f2(x) using a uniform mesh of 17 points and an LGL mesh with two elements

each with nine LGL quadrature points in each element. Standard polynomial interpolation, DBI,

and PPI are used with an interpolant of degree d = 8 for each interval. Standard polynomial

interpolation fails to preserve positivity in both uniform and LGL meshes. The results demonstrate

that the PCHIP, MQS, DBI, SPS and PPI methods preserve positivity with both the uniform and

LGL meshes.

10



Figure 3: Approximation of f2(x) = 1
1+e−2kx , k = 100, and x ∈ [−0.2, 0.2], with N = 17 points.

The points are uniformly distributed and the target polynomial degree for the DBI and PPI is
d = 8.

11



Figure 4: Approximation of f2(x) = 1
1+e−2kx , k = 100, and x ∈ [−0.2, 0.2], with N = 17 points.

The interval [−0.2, 0.2] is divided in two elements and 9 LGL quadrature points are used in each
interval.

3.3 Example III f3(x)

The third example uses a modified version of a function introduced by Tadmor and Tanner [39] and

used by Berzins [4] in the context of DBI based upon uniform mesh points. The original function

was modified by adding the value one to ensure that the function is positive over the interval [−1, 1].

12



The modified function is defined as

f3(x) =


1 + 2e2π(x+1)−1−eπ

eπ−1 , x ∈ [−1,−0.5)

1− sin
(
2πx
3 + π

3

)
, x ∈ [−0.5, 1].

(3)

This function is particularly challenging because of the discontinuity at x = −0.5. This example

uses uniform and LGL meshes of 17 points. The LGL mesh consists of four elements and LGL

quadrature points are used as the mesh points within each element. The target interpolant degree

for the standard interpolation, DBI, and PPI methods is d = 4. Figures 5 and 6 demonstrate

that the interpolants built using the PCHIP, MQS, SPS, SPS and PPI methods remain positive

whereas the standard polynomial interpolation approach fails to preserve positivity. In addition,

the oscillations observed with the standard polynomial interpolation method are more pronounced

with the uniform mesh compared to the LGL mesh.

13



Figure 5: Approximation of f3(x) with N = 17 points. The points are distributed uniformly over
the interval [−1, 1].

14



Figure 6: Approximation of f3(x) with N = 17 points. The interval [−1, 1] is divided into four
elements, and d+ 1 LGL quadrature points are used in each element.

3.4 Example IV f4(x)

This example consists of a function with multiple spikes defined as follows:

f4(x) = 1.0−
∣∣∣∣ 2πarctan

(
sin
(
π xh
)

δ

)∣∣∣∣, x ∈ [0, 1], (4)

15



where h represent the element size, and δ = 0.01. f4(x) depends on the element size h and therefore,

on the number of element in a given interval. At the element boundaries, f4(x) is C0-continuous

with large gradients of opposite signs. This example uses 33 points, four elements, and nine points

in each element. The approximations in Figures 7 and 8 use uniform and LGL quadrature points,

respectively. The plots in Figures 7 and 8 show the standard polynomial interpolation approach

lead to oscillation and negative values, whereas the PCHIP, MQS, SPS, DBI, and PPI methods

preserve positivity and remove the oscillations.

Figure 7: Approximation of f4(x), with N = 33 points. The points are uniformly distributed, and
the target polynomial degree for the DBI and PPI is d = 8.

16



Figure 8: Approximation of f4(x), with N = 33 points. The interval [0, 1] is divided into four
elements, and 9 quadrature points are used in each interval.

17



3.5 Example V f5(x)

This example is constructed using the tanh function and by introducing C0-continuities at the

elements boundaries. The constructed function is defined as follows:

f5(x) =



tanh(xk) if x ∈ [a, a+ h]

2tanh(xk)− tanh((a+ h)k) if x ∈ [a+ h, a+ 2h]

3tanh(xk)− tanh((a+ h)k)− tanh((a+ 2h)k) if x ∈ [a+ 2h, a+ 3h]
...

(5)

where the overall interval is [−2, 0] with a = −2 and k = 10. h represents the size of each element.

f5(x) depends on the element size h and, therefore, on the number of elements in a given interval.

This example is built to mirror the C0-continuity at the elements boundaries in the spectral element

method used in NEPTUNE. In this example, the gradients at the elements boundaries are always

positive, and are not as large as the ones in f4(x) from Example IV. The approximations shown

in Figures 9 and 10 use 17 points, four elements, and five points inside each element. The plots

in Figures 9 and 10 show that the standard interpolation method does not preserve positivity and

that the PCHIP, MQS, SPS, DBI, and PPI can be used to enforce positivity as required.

18



Figure 9: Approximation of f5(x), with N = 17 points. The points are uniformly distributed and
the target polynomial degree for the DBI and PPI is d = 4.

19



Figure 10: Approximation of f5(x), with N = 17 points. The interval [−2, 0] is divided in four
elements and 5 quadrature points are used in each interval.

4 Convergence

This section focuses on the second comparison criterion, which consists of evaluating the conver-

gence of the different methods when applied to a smooth function. As NUMA [5], the dynamics

part of NEPTUNE uses a spectral element method that has high-order accuracy, especially in

smooth regions. It is important when interpolating solution values between dynamics and physics

20



meshes for the interpolation scheme to not degrade the accuracy obtained from the spectral element

method.

The test function

f6(x) = 1 + sin(x), x ∈ [0, π] (6)

is used to study the convergence of the different methods. f6(x) is infinitely smooth with no sharp

gradients or discontinuities. These characteristics make f6(x) a suitable test function for evaluating

which approach is a good choice for representing smooth functions. These experiments focus on

the accuracy of the approximation as the resolution and the polynomial degree both increase.

Table 1 shows L2-errors when approximating f6(x) using the different interpolation methods.

In this experiment, the parameters ε0, ε1, and st are chosen to be 0.01, 1, and 1, respectively. In all

cases, the L2-error is estimated by sampling the error at 10000 equally spaced points in the interval

and using trapezoidal quadrature.

Table 2 shows the ratio, eNi/eNi+1 of the L2-errors in Table 1 as the resolution increases. The

DBI and PPI methods lead to smaller error compared to the PCHIP, MQS, and SPS methods.

As the average polynomial degree increases, the approximation using the DBI method does not

improve because the global error is dominated by the local error from the intervals using lower

degree interpolants compared to PPI. These results show that the conditions for data-boundedness

may be more restrictive when it comes to enforcing positivity. The SPS method shows smaller errors

compared to the other methods. Furthermore, as the polynomial degree increases, the accuracy of

the approximation decreases. These results are consistent with those in [27, 28]. Costantini [29, 27]

demonstrated that the SPS method is bounded by O(h4) and in the limit (as the spline degree

increases) the spline tends to a linear interpolation. The B-spline and PPI methods have smaller

L2-errors compared to the other methods, and their accuracy improves as the polynomial degree

increases. Table 2 shows that both methods have better convergence rates compared to PCHIP,

MQS, and SPS. The PPI method leads to slightly smaller errors compared to the unmodified B-

spline approach. For P8 and P16 the approximation errors are close to machine precision, which

explains the slow rate of convergence observed for B-spline and PPI in Table 2.

21



Ni PCHIP MQS SPS B-spline DBI PPI

L2-error L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – – 2.49E-3 1 2.49E-3 1

33 – – – – 6.22E-4 1 6.22E-4 1

65 – – – – 1.56E-4 1 1.56E-4 1

129 – – – – 3.89E-5 1 3.89E-5 1

257 – – – – 9.72E-6 1 9.72E-6 1

P3 P5 P4
17 4.49E-4 4.47E-5 4.84E-4 4.52E-6 6.70E-06 3.94 2.52E-06 4

33 7.83E-5 7.42E-6 1.20E-4 2.07E-7 2.85E-07 3.97 6.94E-08 4

65 1.38E-5 1.31E-6 3.01E-5 1.22E-8 1.24E-08 3.98 1.96E-09 4

129 2.45E-6 2.31E-7 7.52E-6 7.56E-10 5.43E-10 3.99 5.73E-11 4

257 4.34E-7 4.09E-8 1.88E-6 4.72E-11 2.39E-11 4.00 1.73E-12 4

P8
17 – – 2.00E-3 2.45E-9 6.21E-06 7.69 1.06E-09 8

33 – – 4.96E-4 3.47E-12 2.76E-07 7.84 1.83E-12 8

65 – – 1.24E-4 6.11E-15 1.22E-08 7.92 3.44E-15 8

129 – – 3.10E-5 3.23E-15 5.40E-10 7.96 1.00E-15 8

257 – – 7.74E-6 2.93E-15 2.39E-11 7.98 9.64E-16 8

P16
17 – – 3.10E-3 5.61E-15 6.21E-06 15.19 3.98E-15 16

33 – – 7.75E-4 4.35E-13 2.76E-07 15.59 1.95E-15 16

65 – – 1.94E-4 2.75E-13 1.22E-08 15.80 4.65E-15 16

129 – – 4.84E-5 9.00E-14 5.40E-10 15.90 2.33E-15 16

257 – – 1.21E-5 6.83E-14 2.39E-11 15.95 1.10E-15 16

Table 1: L2-errors when using the PCHIP, MQS, SPS, B-splines, DBI, and PPI methods to approxi-
mate the function f6(x). Ni represents the number of input points used to build the approximation.
Pj represents the space of polynomials of degree j, with j being the target degree for each interval.
The seventh and ninth columns show the average polynomial degree used for the DBI and PPI
methods, respectively. The input points are uniformly distributed over the interval [0, π].

22



eNi/eNi+1 PCHIP MQS SPS B-spline DBI PPI

P1
e17/e33 – – – – 4 4

e33/e65 – – – – 4 4

e65/e129 – – – – 4 4

e129/e257 – – – – 4 4

P3 P5 P4
e17/e33 5.73 6.02 4.03 21.84 24 36

e33/e65 5.67 5.67 3.99 16.97 23 35

e65/e129 5.63 5.66 4.00 16.13 23 34

e129/e257 5.64 5.66 4.00 16.02 23 33

P8
e17/e33 – – 4.03 706.05 22 576

e33/e65 – – 4.00 567.92 23 533

e65/e129 – – 4.00 1.89 23 3

e129/e257 – – 4.01 1.10 23 1

P16
e17/e33 – – 4.01 0.01 22 2

e33/e65 – – 3.99 1.58 23 0

e65/e129 – – 4.01 3.06 23 2

e129/e257 – – 4.00 1.32 23 2

Table 2: Ratio of L2-errors from Table 1 (eNi/eNi+1). Ni represents the number of input points
used to build the approximation. Pj represents the space of polynomials of degree j, with j being
the target degree for each interval.

5 Results

In this section, the different interpolation methods are used to approximate functions with steep

gradients, C0-continuity, and discontinuities. These experiments focus on the third criterion, which

consists of evaluating the ability of the different methods to represent nonsmooth functions. The

data points for the interpolation are sampled from 1D and 2D functions. Two types of meshes are

used for the various experiments. The first type of mesh uses uniform elements and uniformly spaced

nodes within each element. The second type of mesh uses uniform elements and Legendre Gauss-

Lobatto (LGL) quadrature nodes [37] within each element. The experimental results compare the

DBI and PPI methods against the SPS, PCHIP [17], and MQS [23] methods.

The MQS algorithm is designed for monotonically increasing data. In order to use the MQS

approach with the different 1D examples, we divide the data into monotonically increasing and

decreasing regions. For the monotonically increasing data, the MQS algorithm is applied directly.

For the monotonically decreasing data, we uses the reflection of the data about a vertical axis and

23



applied the MQS algorithm. Because of the data transformation involved, the MQS method is used

only for the 1D examples.

Tables 3 – 8 and 15 – 18 show L2-errors when using the different methods to approximate the

1D and 2D functions, respectively. The ‘avg. deg.’ columns in these tables represent the average

polynomial degree used in the DBI and PPI method.

5.1 Example I f1(x)

This example is the 1D Runge function [38] defined in Equation 1 with ε0 = 0.01, ε1 = 1 and

st = 2. Tables 3 and 4 demonstrate that the PPI method gives smaller approximation errors when

compared to the other approaches. The requirements of data boundedness in the DBI method are

restrictive compared to the positivity requirements in PPI. These restrictions lead to lower average

polynomial degrees for DBI compared to PPI, as shown in the sixth and eighth columns in Tables 3

and 4. In the case of the uniform mesh, as the average degree used by DBI increases the L2-errors

remain the same. The approximation error using the DBI method does not improve as the average

degree increases because the global error is dominated by the local error of those subintervals with

low degree interpolants. The polynomial degree of the interpolants used for these intervals remains

the same as the average polynomial degree of the interpolant increases elsewhere. The PPI methods

uses higher order interpolants compared to the SPS, DBI, PCHIP, and MQS methods in both the

uniform and LGL meshes. The uniform mesh leads to slightly more accurate results than the LGL

mesh. These results show that the PPI method is a suitable approach for interpolating data from

one mesh to another in cases where the underlying function is similar to the Runge function.

24



Ni PCHIP MQS SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 2.16E-2 1 2.16E-2 1

33 – – – 6.02E-3 1 6.02E-3 1

65 – – – 1.52E-3 1 1.52E-3 1

129 – – – 3.82E-4 1 3.82E-4 1

257 – – – 9.56E-5 1 9.56E-5 1

P3 P5 P4
17 7.15E-3 5.72E-3 8.34E-3 8.34E-3 4 7.02E-3 4

33 1.91E-3 3.95E-4 5.91E-4 5.91E-4 4 5.91E-4 4

65 3.70E-4 6.44E-5 4.26E-5 4.26E-5 3.98 2.39E-5 4

129 6.79E-5 5.27E-6 2.68E-6 2.68E-6 3.98 8.00E-7 4

257 1.22E-5 6.83E-7 8.63E-8 8.63E-8 4.00 2.55E-8 4

P8
17 – – 1.21E-2 4.61E-3 7.88 3.11E-3 7.88

33 – – 2.74E-3 4.43E-4 7.88 1.51E-4 8

65 – – 6.86E-4 3.67E-5 7.92 1.05E-6 8

129 – – 1.72E-4 2.56E-6 7.92 3.10E-9 8

257 – – 4.30E-5 8.24E-8 7.97 6.80E-12 8

P16
17 – – 1.64E-2 4.34E-3 11.31 3.44E-3 11.75

33 – – 4.25E-3 4.21E-4 15.62 4.85E-5 16

65 – – 1.07E-3 3.67E-5 15.69 5.92E-8 16

129 – – 2.69E-4 2.56E-6 15.80 4.21E-12 16

257 – – 6.71E-5 8.24E-8 15.91 2.18E-16 16

Table 3: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate the
Runge function f1(x) = 1

1+25x2
, x ∈ [−1, 1]. Ni represents the number of input points used to

build the approximation. Pj represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eighth columns show the average polynomial degree used
for the DBI and PPI methods, respectively. The input points are uniformly distributed over the
interval [−1, 1].

25



Ni PCHIP MQS SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 2.16E-2 1 2.16E-2 1

33 – – – 6.02E-3 1 6.02E-3 1

65 – – – 1.52E-3 1 1.52E-3 1

129 – – – 3.82E-4 1 3.82E-4 1

257 – – – 9.56E-5 1 9.56E-5 1

P3 P5 P4
17 1.02E-2 6.29E-3 9.73E-3 8.63E-3 4 8.39E-3 4

33 1.86E-3 9.13E-4 1.63E-3 7.95E-4 4 7.80E-4 4

65 3.68E-4 8.47E-5 2.24E-4 4.76E-5 3.98 4.64E-5 4

129 7.20E-5 6.23E-6 6.03E-5 1.49E-6 3.98 1.27E-6 4

257 1.52E-5 5.72E-7 1.48E-5 4.68E-8 4 3.95E-8 4

P8
17 – – 8.44E-3 3.49E-3 8.00 4.40E-3 8

33 – – 2.69E-3 1.76E-4 7.88 1.76E-4 8

65 – – 7.59E-4 3.25E-6 7.92 3.01E-6 8

129 – – 2.61E-4 5.64E-8 7.94 8.82E-9 8

257 – – 6.85E-5 3.51E-9 7.96 3.96E-11 8

P16
17 – – 2.29E-2 9.12E-3 12.19 1.25E-2 12.62

33 – – 3.26E-3 5.87E-5 15.28 5.86E-5 16

65 – – 1.11E-3 1.41E-7 15.62 1.17E-7 16

129 – – 3.12E-4 3.52E-9 15.90 4.44E-11 16

257 – – 1.08E-4 1.56E-10 15.91 2.88E-15 16

Table 4: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate the
Runge function f1(x) = 1

1+25x2
, x ∈ [−1, 1]. Ni represents the number of input points used to

build the approximation. Pj represents the use of polynomials of degree j, with j being the target
degree for each interval. The sixth and eight columns show the average polynomial degree used for
the DBI and PPI methods respectively. The interval [-1,1] is divided into (Ni−1)/j and j+ 1 LGL
quadrature points are used in each element.

5.2 Example II f2(x)

The second example uses the analytic approximation of the Heaviside function defined in Equation

2 with ε0 = 0.01, ε1 = 1 and st = 2. As mentioned in Section 3.2, this function, f2(x), is challenging

because of the sharp gradient around x = 0. For polynomial degree five or less, the results from

Tables 5 and 6 suggest that the MQS method leads to slighter better approximations than DBI and

PPI for f2(x). Overall, the results from Tables 5 and 6 indicate that the DBI and PPI methods have

26



smaller L2-errors compared to the other methods. Approximating f2(x) from data on a uniform

mesh leads to slightly better results compared to LGL mesh data. For smooth data with a large

gradient, these results indicate that both the DBI and PPI approaches are suitable for interpolating

from one mesh to another.

Ni PCHIP MQS SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 2.89E-2 1 2.89E-2 1

33 – – – 7.69E-3 1 7.69E-3 1

65 – – – 1.80E-3 1 1.80E-3 1

129 – – – 4.58E-4 1 4.58E-4 1

257 – – – 1.15E-4 1 1.15E-4 1

P3 P5 P4
17 2.02E-02 1.67E-2 1.82E-2 2.23E-2 2.75 2.23E-2 3.38

33 3.38E-03 4.16E-3 3.72E-3 4.09E-3 3.62 4.10E-3 3.72

65 3.59E-04 2.29E-4 3.40E-4 3.05E-4 3.86 3.05E-4 3.86

129 4.21E-05 7.48E-6 5.36E-5 1.35E-5 3.88 1.35E-5 3.88

257 5.12E-06 2.16E-7 1.27E-5 4.71E-7 3.85 4.71E-7 3.86

P8
17 – – 3.75E-3 2.08E-2 3.25 2.08E-2 5.50

33 – – 5.24E-3 3.36E-3 3.88 3.33E-3 5.72

65 – – 8.71E-4 1.38E-4 7.59 1.38E-4 7.59

129 – – 2.08E-4 1.22E-6 7.68 1.22E-6 7.73

257 – – 5.17E-5 4.44E-9 7.61 4.44E-9 7.67

P16
17 – – 5.90E-3 2.00E-2 4.25 2.00E-2 6.62

33 – – 6.34E-3 2.93E-3 4.38 2.91E-3 9.72

65 – – 1.30E-3 9.17E-5 14.64 9.17E-5 14.86

129 – – 3.23E-4 1.70E-7 15.15 1.70E-7 15.41

257 – – 8.08E-5 2.64E-11 15.05 2.64E-11 15.30

Table 5: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate the
function f2(x) = 1

1+e−2kx , k = 100, and x ∈ [−0.2, 0.2]. Ni represents the number of input points
used to build the approximation. Pj represents the use of polynomials of degree j, with j being the
target degree for each interval. The sixth and eighth columns show the average polynomial degree
used for the DBI and PPI methods respectively. The input points are uniformly distributed over
the interval [−1, 1].

27



Ni PCHIP MQS SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 2.89E-2 1 2.89E-2 1

33 – – – 7.69E-3 1 7.69E-3 1

65 – – – 1.80E-3 1 1.80E-3 1

129 – – – 4.58E-4 1 4.58E-4 1

257 – – – 1.15E-4 1 1.15E-4 1

P3 P5 P4
17 8.60E-3 7.38E-3 7.15E-3 1.26E-2 2.88 1.25E-2 3.44

33 2.50E-3 2.50E-3 8.04E-4 3.11E-3 3.03 2.83E-3 3.44

65 6.36E-4 2.11E-4 4.18E-4 3.28E-4 3.81 3.72E-4 3.84

129 1.02E-4 1.01E-5 9.07E-5 1.55E-5 3.88 1.55E-5 3.88

257 1.83E-5 2.93E-7 1.83E-5 6.29E-7 3.85 6.29E-7 3.86

P8
17 – – 4.43E-3 4.87E-3 3.50 4.68E-3 5.00

33 – – 2.51E-3 8.71E-4 4.34 7.84E-4 5.75

65 – – 1.00E-3 7.57E-5 6.64 1.24E-4 7.28

129 – – 3.65E-4 2.17E-6 7.65 2.17E-6 7.73

257 – – 9.11E-5 1.95E-8 7.55 1.95E-8 7.73

P16
17 – – 4.52E-2 3.77E-2 3.81 3.73E-2 7.25

33 – – 2.03E-3 2.53E-4 5.56 5.23E-4 9.84

65 – – 9.55E-4 1.37E-5 10.53 6.95E-5 12.56

129 – – 4.16E-4 2.19E-7 15.16 2.19E-7 15.30

257 – – 1.51E-4 1.56E-10 14.96 1.56E-10 15.30

Table 6: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate the
function f2(x) = 1

1+e−2kx , k = 100, and x ∈ [−0.2, 0.2]. Ni represents the number of input points
used to build the approximation. Pj represents the use of polynomials of degree j, with j being the
target degree for each interval. The sixth and eighth columns show the average polynomial degree
used for the DBI and PPI methods respectively. The interval [−0.2, 0.2] is divided into (Ni − 1)/j
elements and j + 1 LGL quadrature points are used in each element.

5.3 Example III f3(x)

The third example uses the modified function introduced in Equation 3 with ε0 = 0.01, ε1 = 1 and

st = 2. The function f3(x) is particularly challenging because of the discontinuity at x = −0.5.

The results from Tables 7 and 8 show that the L2-errors from the four interpolation methods

have the same order of accuracy. The DBI and PPI methods give slightly better approximation

results compared to the other methods. The average polynomial degrees for the DBI and PPI

28



approaches show that high-order polynomials are used. This suggest that in the smooth regions

away from the discontinuity the DBI and PPI approaches lead to high-order accuracy. However,

at the discontinuity, the DBI and PPI and other methods struggle to represent the underlying

function. This example shows that both the DBI and PPI methods are appropriate approaches

for interpolating from one mesh to another, because around the discontinuity, the methods are as

accurate as the other ones, and in smooth regions the method gives better approximation results

than the other approaches. The results from Tables 7 and 8 show that the L2-error from the four

interpolation methods have the same order.

29



Ni PCHIP MQS SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 1.82E-1 1 1.82E-1 1

33 – – – 1.39E-1 1 1.39E-1 1

65 – – – 1.01E-1 1 1.01E-1 1

129 – – – 7.16E-2 1 7.16E-2 1

257 – – – 5.05E-2 1 5.05E-2 1

P3 P5 P4
17 1.77E-1 1.59E-1 2.32E-1 1.82E-1 3.62 1.71E-1 3.81

33 1.39E-1 1.11E-1 1.56E-1 1.39E-1 3.97 1.29E-1 3.97

65 1.03E-1 7.90E-2 1.09E-1 9.38E-2 3.98 9.38E-2 3.98

129 7.42E-2 5.63E-2 7.69E-2 6.69E-2 3.99 6.70E-2 3.99

257 5.28E-2 4.04E-2 5.45E-2 4.73E-2 4 4.74E-2 4

P8
17 – – 2.25E-1 1.83E-1 6.62 1.70E-1 7.06

33 – – 1.53E-1 1.36E-1 7.81 1.31E-1 7.81

65 – – 1.07E-1 9.62E-2 7.92 9.65E-2 7.92

129 – – 7.58E-2 6.90E-2 7.96 6.93E-2 7.96

257 – – 5.37E-2 4.90E-2 7.98 4.92E-2 7.98

P16
17 – – 2.25E-1 1.82E-1 12.06 1.66E-1 13.06

33 – – 1.50E-1 1.37E-1 14.09 1.33E-1 14.19

65 – – 1.05E-1 9.75E-2 15.78 9.81E-2 15.78

129 – – 7.45E-2 7.02E-2 15.90 7.07E-2 15.90

257 – – 5.29E-2 4.99E-2 15.95 5.03E-2 15.95

Table 7: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate the
function f3(x). Ni represents the number of input points used to build the approximation. Pj
represents the use of polynomials of degree j, with j being the target degree for each interval. The
fifth and seventh columns show the average polynomial degree used for the DBI and PPI methods,
respectively. The input points are uniformly distributed over the interval [−1, 1].

30



Ni PCHIP MQS SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – – 1.82E-1 1 1.82E-1 1

33 – – – 1.39E-1 1 1.39E-1 1

65 – – – 1.01E-1 1 1.01E-1 1

129 – – – 7.16E-2 1 7.16E-2 1

257 – – – 5.05E-2 1 5.05E-2 1

P3 P5 P4
17 1.64E-1 1.39E-1 1.87E-1 1.61E-1 3.81 1.58E-1 3.81

33 1.20E-1 9.79E-2 1.29E-1 1.18E-1 3.97 1.18E-1 3.97

65 8.70E-2 6.94E-2 9.04E-2 8.32E-2 3.98 8.53E-2 3.98

129 6.21E-2 4.96E-2 6.39E-2 5.93E-2 3.99 6.08E-2 3.99

257 4.39E-2 3.58E-2 4.54E-2 4.19E-2 4.00 4.29E-2 4

P8
17 – – 2.84E-1 1.85E-1 7.38 1.81E-01 7.50

33 – – 9.61E-2 9.38E-2 7.62 1.27E-01 7.66

65 – – 6.79E-2 6.75E-2 7.92 9.33E-02 7.92

129 – – 4.82E-2 4.79E-2 7.96 6.72E-02 7.96

257 – – 3.44E-2 3.37E-2 7.98 4.77E-02 7.98

P16
17 – – 1.11E-1 1.08E-1 11.62 1.51E-1 12.12

33 – – 1.86E-1 1.66E-1 14.31 1.55E-1 14.88

65 – – 4.91E-2 5.06E-2 15.56 8.28E-2 15.58

129 – – 3.51E-2 3.56E-2 15.90 5.92E-2 15.90

257 – – 2.53E-2 2.48E-2 15.94 4.19E-2 15.94

Table 8: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate the
function f3(x). Ni represents the number of input points used to build the approximation. Pj
represents the use of polynomials of degree j, with j being the target degree for each interval. The
sixth and eighth columns show the average polynomial degree used for the DBI and PPI methods
respectively. The interval [−1, 1] is divided into (Ni − 1)/j elements and j + 1 LGL quadrature
points are used in each element.

5.4 Example IV f4(x)

The fourth example uses the function f4(x) defined in Equation 4 with ε0 = 0.01, ε1 = 1 and st = 2.

f4(x) depends on the size h of each element, and as the number of element changes, so does the

element size h and the function f4(x).

At the element boundaries f4(x) is only C0-continuous with large gradients of opposite signs.

The results from Tables 9 and 10 show that all the methods all the methods struggle to approximate

31



the underlying function. With the exception of using a uniform mesh with PCHIP and SPS, the

remaining results from Tables 9 and 10 show that all the methods have the same order of accuracy

for both uniform and LGL meshes. The PPI and DBI methods give slightly smaller L2-errors

compared to the other approaches.

Ni PCHIP MQS Pj SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

ne = 4

17 3.74E-01 3.95E-1 P4 3.72E-1 3.49E-1 2.62 3.49E-1 2.88

33 2.47E-01 2.59E-1 P8 2.46E-1 2.19E-1 5.19 2.19E-1 6.19

65 1.55E-01 1.63E-1 P16 1.54E-1 1.32E-1 13.34 1.32E-1 15.34

ne = 8

33 3.84E-01 3.94E-1 P4 3.83E-1 4.04E-1 2.69 4.04E-1 2.94

65 2.54E-01 2.59E-1 P8 2.52E-1 2.60E-1 5.34 2.74E-1 6.34

129 1.61E-01 8.23E-2 P16 1.57E-1 1.67E-1 13.55 1.78E-1 15.30

ne = 16

65 3.90E-01 3.93E-1 P4 3.89E-1 3.61E-1 2.72 3.61E-1 2.97

129 2.58E-01 2.58E-1 P8 2.55E-1 2.26E-1 5.42 2.26E-1 6.42

257 1.63E-01 8.06E-2 P16 1.58E-1 1.36E-1 13.65 1.36E-1 15.65

Table 9: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate the
Runge function f4(x). Ni represents the number of input points used to build the approximation.
Pj represents the use of polynomials of degree j, with j being the target degree for each interval.
The value ne represents the number of elements. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods, respectively. The input points are uniformly
distributed over the interval [0, 1].

32



Ni PCHIP MQS Pj SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

ne = 4

17 3.02E-1 3.18E-1 P4 3.02E-1 2.32E-1 2.75 2.32E-1 3.00

33 1.33E-1 1.39E-1 P8 1.33E-1 9.60E-2 5.25 9.60E-2 6.25

65 3.80E-2 3.92E-2 P16 3.77E-2 2.11E-2 11.88 2.11E-2 13.31

ne = 8

33 3.10E-1 3.17E-1 P4 3.10E-1 3.42E-1 2.75 3.42E-1 3.00

65 1.37E-1 1.39E-1 P8 1.36E-1 1.59E-1 5.25 1.65E-1 6.12

129 3.98E-2 3.72E-2 P16 3.87E-2 5.33E-2 11.88 5.60E-2 13.31

ne = 16

65 3.14E-1 3.16E-1 P4 3.14E-1 2.32E-1 2.75 2.32E-1 3.00

129 1.39E-1 1.38E-1 P8 1.37E-1 9.60E-2 5.25 9.60E-2 6.25

257 4.07E-2 3.37E-2 P16 3.90E-2 2.11E-2 11.88 2.11E-2 13.31

Table 10: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate the
Runge function f4(x). Ni represents the number of input points used to build the approximation.
Pj represents the use of polynomials of degree j, with j being the target degree for each interval.
The value ne represents the number of elements. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods respectively. The interval [0, 1] is divided
into (Ni − 1)/j elements and j + 1 LGL quadrature points are used in each element.

5.5 Example V f5(x)

The fifth experiment uses the function f5(x) defined in Equation 5 with ε0 = 0.01, ε1 = 1 and st = 1.

f5(x) depends on the size h of each element and as the number of elements changes, so does the

element size h and f5(x). Similarly to f4(x), f5(x) is only C0-continuous at the element boundaries.

However, the gradients remain positive over the entire interval. This example is constructed to

reflect the C0-continuity observed in the spectral element method used in NEPTUNE. Tables 11

and 12 shows that the approximation errors from PCHIP, MQS, and SPS methods improve slowly

compared to the DBI and PPI methods, as we increase the polynomial degree and the number

of points. The PCHIP, SPS, and MQS methods use approximations of the first derivatives and

enforce C1-continuity at the element boundaries. Overall, the results from Tables 11 and 12 show

that the DBI and PPI methods has smaller L2-errors compared to the remaining methods.

33



Ni PCHIP MQS Pj SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

ne = 4

17 1.68E-2 4.50E-2 P4 1.23E-2 2.36E-2 3.56 2.36E-2 3.56

33 9.95E-3 6.04E-3 P8 1.36E-2 4.20E-4 7.59 4.20E-4 7.62

65 1.67E-3 3.82E-4 P16 5.77E-3 3.65E-5 14.98 3.65E-5 14.98

ne = 8

33 1.99E-2 1.20E-2 P4 1.29E-2 1.65E-2 3.91 1.65E-2 3.91

65 3.35E-3 7.63E-4 P8 7.42E-3 2.17E-4 7.67 2.17E-4 7.67

129 3.70E-4 4.44E-5 P16 2.89E-3 5.01E-5 14.84 5.01E-5 14.88

ne = 16

33 6.73E-3 2.46E-3 P4 4.57E-3 1.18E-3 3.86 1.18E-3 3.86

65 8.22E-4 4.53E-4 P8 3.61E-3 5.27E-5 7.51 5.27E-5 7.51

256 1.53e-4 1.59E-4 P16 1.42E-3 4.27E-11 14.65 4.27E-11 14.70

Table 11: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f5(x). Ni represents the number of input points used to build the approximation.
Pj represents the use of polynomials of degree j, with j being the target degree for each interval.
The value ne is the number of elements used. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods respectively. The input points are uniformly
distributed over the interval [−2, 0].

34



Ni PCHIP MQS Pj SPS DBI PPI

L2-error L2-error L2-error L2-error avg. deg. L2-error avg. deg.

ne = 4

17 4.64E-2 3.10E-2 P4 1.23E-2 5.09E-2 3.06 5.09E-2 3.06

33 7.43E-3 4.29E-3 P8 1.36E-2 1.47E-3 6.34 1.47E-3 6.44

65 9.48E-4 1.58E-4 P16 5.77E-3 3.15E-6 14.83 3.15E-6 14.84

ne = 8

33 2.57E-2 9.45E-3 P4 1.29E-2 1.52E-2 3.84 1.52E-2 3.84

65 3.18E-3 9.15E-4 P8 7.42E-3 2.66E-4 7.66 2.66E-4 7.67

129 4.08E-4 2.71E-5 P16 2.89E-3 3.75E-4 14.88 4.53E-4 14.88

ne = 16

33 8.03E-3 3.77E-3 P4 4.57E-3 1.91E-3 3.81 1.91E-3 3.81

65 9.93E-4 2.22E-4 P8 3.61E-3 2.23E-6 7.51 2.23E-6 7.51

256 1.23E-4 3.30E-5 P16 1.42E-3 2.63E-12 14.37 2.63E-12 14.50

Table 12: L2-errors when using the PCHIP, MQS, SPS, DBI, and PPI methods to approximate
the function f5(x). Ni represents the number of input points used to build the approximation.
Pj represents the use of polynomials of degree j, with j being the target degree for each interval.
The value of ne is the number of elements used. The seventh and ninth columns show the average
polynomial degree used for the DBI and PPI methods respectively. The interval [−2, 0] is divided
into (Ni − 1)/j elements and j + 1 LGL quadrature points are used in each element.

5.6 Example VI BOMEX

The 1D Barbados Oceanographic and Meteorological Experiment (BOMEX) [40] is a single column

test case that was developed to measure and study changes in the properties of heat, moisture, and

momentum. In this example, the dynamics and physics results are calculated on different meshes.

The dynamics uses uniformly spaced points that indicate the boundary of each level in the vertical

column. The physics mesh is constructed using the mid-point of each level. The advections in

the dynamics are approximated using a fifth order weighted essentially non-oscillatory (WENO)

and third-order Runge-Kutta methods [41]. At each time step, the dynamics are calculated on

the dynamics mesh, and the results are interpolated to the physics mesh for the use of the physics

routines. The physics terms are calculated using the physics mesh, and the results are interpolated

back to the dynamics mesh.

As in [42], let qc be the cloud water mixing ratio profile in the different experiments. Figures

11-15 show the cloud mixing ratio profile qc at t = 5h that is used as input for the physics routines.

The physics calculations require positive input values for qc. Figure 11 shows the target profile

for qc. This target profile is obtained by using the same mesh for both dynamics and physics

calculations where mapping is not required and qc remains positive during the simulation. In

addition, as the temporal and spatial resolution increases, qc converges to the profile shown in

Figure 11. Figures 12-15 are used to investigate different interpolation methods for mapping the

35



solution values between meshes in the case where the dynamics and physics are calculated using

different meshes.

0 0.1 0.2 0.3

g/kg

0.5

1

1.5

2

z
 (

k
m

)

Figure 11: Target cloud mixing ratio qc profile from BOMEX test case at t = 5h with nz = 600
points. A fifth-order WENO and third-order Runge-Kutta schemes with CFL = 0.1 are used for
the dynamics (advection). The same mesh is used for the dynamics and physics calculations.

Figure 12 shows the cloud mixing ratio profiles qc for the target and approximated solution at

t = 5h. In the case of the approximated solution, a fifth-order standard polynomial interpolation is

used when mapping between dynamics and physics meshes. For a given interval Ii, the polynomial

interpolant is constructed using the stencil V4 = {xi−2, xi−1, xi, xi+1, xi+2, xi+3, }. At the boundary

and nearby boundary intervals, the stencil V4 is biased toward the interior of the domain. The

results in Figure 12 demonstrate that using the standard polynomial interpolation lead to oscil-

lations, negatives values, and an overestimation of the peak and total cloud mixing ratio of the

profile qc. Using standard polynomial interpolation leads to an overproduction of the total cloud

mixing ratio by 93.45%. The peak is max(qc) = 0.46g/kg, which is larger than the target peak

max(qc) = 0.28g/kg.

36



0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10 -3

1.5

1.505

1.51

1.515

1.52

1.525

1.53

1.535

1.54

1.545

1.55

Figure 12: Cloud mixing ratio qc profile from BOMEX test case at t = 5h with nz = 600 points. The
profile in black is the target solution. The profile in blue is obtained using a standard interpolation
method when mapping solution values between dynamics and physics meshes. A fifth-order WENO
and third-order Runge-Kutta schemes with CFL = 0.1 are used for the dynamics (advection).

The negative values in Figure 12 can be removed via “clipping”. “Clipping” is a procedure

that consists of removing the negative values by setting them to zero. Figure 13 shows the cloud

mixing ratio profiles for the target solution and an approximated solution that uses “clipping”

to remove the negative values at each time step. The approximated solution uses a standard

interpolation to map the data values from one mesh to another. The interpolant for each interval is

constructed using the stencil V4 = {xi−2, xi−1, xi, xi+1, xi+2, xi+3, } with a fifth order polynomial.

Once the interpolation is completed, “clipping” is used to remove the negative values. Figure 13

shows that using “clipping” still allows for oscillations and a positive bias in the prediction of cloud

mixing ratio qc. The total cloud mixing ratio is 2.09 greater than the target solution and the peak

max(qc) = 0.46g/kg is larger than the target peak max(qc) = 0.28g/kg.

37



0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10 -3

1.51

1.515

1.52

1.525

1.53

1.535

1.54

1.545

1.55

Figure 13: Cloud mixing ratio qc profile from BOMEX test case at t = 5h with nz = 601 points. The
profile in black is the target solution. The profile in blue is obtained using a standard interpolation
method when mapping solution values between dynamics and physics meshes. “Clipping is used
after the interpolation to remove any negative value. A fifth-order WENO and third-order Runge-
Kutta schemes with CFL = 0.1 are used for the dynamics (advection).

Using PCHIP for the mapping between the dynamics and physics meshes eliminates the nega-

tive values, remove oscillations, and reduces the positive bias in the cloud mixing ratio prediction

compared to the standard interpolation with and without “clipping”. Figure 14 shows the tar-

get profile qc and an approximated profile that uses PCHIP for mapping solution values between

dynamics and physics meshes. The total cloud mixing ratio is now 27.21% less than the target

with a peak max(qc) = 0.21g/kg. In the case of the BOMEX test case, NEPTUNE, and similar

codes, using PCHIP for mapping data values from one mesh to another can degrade the high-order

accuracy obtained from the high-order methods used for the dynamics calculations. PCHIP is only

third-order whereas the dynamics calculations use a fifth order method. This limitation can be

addressed via high-order data-bounded or positivity-preserving methods.

38



0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10 -3

1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

Figure 14: Cloud mixing ratio qc profile from BOMEX test case at t = 5h with nz = 600 points.
The profile in black is the target solution. The profile in blue is obtained using the PCHIP method
when mapping solution values between dynamics and physics meshes. A fifth-order WENO and
third-order Runge-Kutta schemes with CFL = 0.1 are used for the dynamics (advection).

Figure 15 shows cloud mixing ratio profiles for the target and approximated solutions that use

the DBI and PPI methods to map the solution values between meshes. The maximum polynomial

degree for the DBI and PPI methods is set to 5 and 7, and the parameters ε0 and ε1 are both set

a value of 10−5. For larger values of ε0 and ε1, the PPI approach introduces oscillations that lead

to positive bias prediction of the cloud mixing ratio. These oscillation are caused by the relaxed

nature of the PPI approach, which still allows the interpolants to oscillate while remaining positive.

The positive bias and oscillations can be removed using the DBI or PPI method with small values

for ε0 and ε1. When using the PPI method for mapping, the total amount of the cloud mixing

ratio is less than the target for st = 1 and more than the target for st = 2 and st = 3. The

parameter st is described in Section 1.4. Figure 15 shows that using the DBI and PPI methods

with ε0 = ε1 = 10−5 to map data values between the dynamics and physics meshes eliminates

the negative values, removes the oscillations, and significantly reduces the positive bias in the

cloud mixing ratio prediction. Using the DBI and PPI methods leads to better approximation of

the peak value of the total cloud mixing ratio compared to using the standard interpolation and

PCHIP approaches. The best approximation of the total amount of the cloud mixing ratio is with

the DBI method, which is 7.57% more than the target with a peak of max(qc) = 0.28g/kg.

39



0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)
-5 0 5

10
-3

1.35

1.4

1.45

(a)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.37

1.38

1.39

1.4

1.41

1.42

(b)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.4

1.42

1.44

1.46

1.48

1.5

(c)

0 0.1 0.2 0.3 0.4

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.42

1.43

1.44

1.45

1.46

1.47

1.48

1.49

(d)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.4

1.41

1.42

1.43

1.44

1.45

(e)

0 0.1 0.2 0.3

g/kg

0.8

1

1.2

1.4

1.6

1.8

2

z
 (

k
m

)

-5 0 5

10
-3

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

(f)

Figure 15: Cloud mixing ratio qc profile from BOMEX test case at t = 5h with nz = 600 points
with ε0 = ε1 = 10−5. The profile in black is the target solution. The profiles on the left and right
are obtained using the DBI and PPI methods, respectively, to map solution values between meshes.
The maximum polynomial degrees are set to 5 and 7 for the blue and red plots, respectively. A fifth-
order WENO and third-order Runge-Kutta schemes with CFL = 0.1 are used for the dynamics
(advection).

40



In summary, using DBI and PPI methods to map data values between both dynamics and

physics meshes produces better approximation results compared to the standard interpolation and

PCHIP methods. Tables 13 and 14 provide a summary of the maximum values and the total amount

of the cloud mixing ratios for each case. The DBI and PPI methods with a target polynomial

set to d = 7 lead to a better approximation of the peak and the total the cloud mixing ratios

compared to the standard interpolation and PCHIP approaches. The results from Tables 13 and

14 indicate that the DBI method is the most suitable approach to map data values between meshes

for the BOMEX test case. This study provided an example demonstrating how to use the DBI

and PPI methods for mapping data values between meshes in the context of NWP. The BOMEX

example also demonstrated that positivity alone may not be sufficient to remove oscillations in the

solution, and the interpolants may need to be constrained to be between the data values for better

approximation.

Target STD Clipping PCHIP

maximum qc 0.28 0.46 0.46 0.21

total qc 69.82 135.07 145.89 50.82

Table 13: Maximum values of qc and the total amount of the cloud mixing ratio at t = 5h with
nz = 600 points. The total amount of the cloud mixing ratio is calculated by estimating the integral
qc. The units of qc are is g/kg.

st = 1 st = 2 st = 3 st = 1 st = 2 st = 3

P5 P7 Target

DBI

maximum qc 0.20 0.20 0.31 0.30 0.30 0.28 0.28

total qc 45.91 47.74 87.98 86.57 82.67 75.11 69.82

PPI

maximum qc 0.20 0.21 0.33 0.32 0.29 0.29 0.28

total qc 47.87 50.09 97.60 92.54 81.44 78.85 69.82

Table 14: Maximum values of qc and the total amount of the cloud mixing ratio at t = 5h with
nz = 600 points and ε0 = ε1 = 10−5. The total amount of the cloud mixing ratio is calculated by
estimating the integral qc. The units of qc are is g/kg.

5.7 Example VII f7(x)

This example uses an extended version of the 1D Runge function defined in Equation 1 from Section

3.1 to a 2D function:

f7(x, y) =
1

1 + 25(x2 + y2)
, x, y ∈ [−1, 1] (7)

41



For the DBI and PPI algorithm, ε0 = 0.01, ε1 = 1 and st = 2. The results from Tables 15 and 16

show that the DBI and PPI methods give smaller approximation errors compared to the PCHIP

and SPS methods. In this case, the DBI and PPI methods use higher order polynomial interpolants

for each interval. These higher order interpolants help improve the approximation compared to the

PCHIP and SPS.

Ni PCHIP SPS DBI PPI

L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 1.60E-2 1 1.60E-2 1

33 – – 4.42E-3 1 4.42E-3 1

65 – – 1.12E-3 1 1.12E-3 1

129 – – 2.82E-4 1 2.82E-4 1

257 – – 7.06E-5 1 7.06E-5 1

P3 P4
17 5.01E-3 3.61E-3 5.16E-3 3.97 4.28E-3 4

33 1.23E-3 5.44E-4 3.51E-4 3.98 3.31E-4 4

65 2.33E-4 1.23E-4 2.55E-5 3.98 1.31E-5 4

129 4.27E-5 3.07E-5 1.20E-6 3.99 4.36E-7 4

257 7.72E-6 3.34E-6 4.96E-8 4 1.39E-8 4

P8
17 – 8.55E-3 3.19E-3 7.75 1.84E-3 7.99

33 – 1.99E-3 2.78E-4 7.82 7.86E-5 8

65 – 4.97E-4 2.31E-5 7.90 5.14E-7 8

129 – 1.25E-4 1.13E-6 7.95 1.49E-9 8

257 – 3.16E-5 4.78E-8 7.98 3.25E-12 8

P16
17 – 1.19E-2 3.49E-3 13.15 2.83E-3 14.26

33 – 3.10E-3 2.74E-4 15.43 2.68E-5 16

65 – 7.82E-4 2.30E-5 15.69 2.63E-8 16

129 – 1.96E-4 1.13E-6 15.84 1.77E-12 16

257 – 4.93E-5 4.76E-8 15.92 1.89E-15 16

Table 15: L2− errors when approximating f7(x, y) with Ni×Ni points. Ni represents the number
of input points used in each dimension to build the approximation. Pj represents the use of
polynomials of degree j, with j being the target degree. The fourth and sixth columns show the
average polynomial degree used for the DBI and PPI methods, respectively. The mesh points are
uniformly distributed on each dimension.

42



Ni PCHIP SPS DBI PPI

L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 1.60E-2 1 1.60E-2 1

33 – – 4.42E-3 1 4.42E-3 1

65 – – 1.12E-3 1 1.12E-3 1

129 – – 2.82E-4 1 2.82E-4 1

257 – – 7.11E-5 1 7.11E-5 1

P3 P4
17 6.31E-03 5.41E-3 5.54E-3 3.97 5.33E-3 4

33 4.15E-04 1.05E-3 4.59E-4 3.98 4.53E-4 4

65 1.07E-04 1.61E-4 2.67E-5 3.98 2.54E-5 4

129 2.46E-05 4.31E-5 7.97E-7 3.99 6.86E-7 4

257 5.20E-06 1.12E-5 2.79E-8 4.00 2.15E-8 4

P8
17 – 5.89E-3 3.02E-3 7.75 2.81E-3 7.99

33 – 1.72E-3 9.41E-5 7.82 9.34E-5 8

65 – 5.44E-4 1.78E-6 7.90 1.51E-6 8

129 – 1.90E-4 4.31E-8 7.95 4.53E-9 8

257 – 4.91E-5 1.73E-9 7.98 1.87E-11 8

P16
17 – 1.88E-2 6.31E-3 13.15 8.93E-3 14.26

33 – 2.11E-3 2.93E-5 15.43 2.91E-5 16

65 – 6.96E-4 8.12E-7 15.69 5.41E-8 16

129 – 2.25E-4 2.27E-8 15.84 1.97E-11 16

257 – 7.93E-5 9.21E-10 15.92 7.22E-15 16

Table 16: L2− errors when approximating f7(x, y) with Ni×Ni points. Ni represents the number
of input points used in each dimension to build the approximation. Pj represents the use of
polynomials of degree j, with j being the target degree. The fourth and sixth columns show the
average polynomial degree used for the DBI and PPI methods respectively. For each dimension,
the interval [−1, 1] is divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are used
in each element.

43



5.8 Example VIII f8(x)

This example uses a 2D function that is used to study positive and monotonic splines [43, 44, 45].

The function is defined as follows:

f8(x, y) =



2(y − x) if 0 ≤ y − x ≤ 0.5

1 if y − x ≥ 0.5

cos

(
4π
√

(x− 1.5)2 + (y − 0.5)2
)

if (x− 1.5)2 + (y − 0.5)2 ≤ 1
16

0 otherwise

(8)

For the DBI and PPI algorithm, ε0 = 0.01, ε1 = 1 and st = 2. As in Example V, the function

f8(x) is C0-continuous and the underlying mesh used for the approximations does not capture the

sharp corners. The L2-errors from the DBI and PPI methods are dominated by the local errors of

the intervals with C0-continuity and low degree polynomial interpolants. Tables 17 and 18 show

that the L2-errors from the three methods have the same order, with DBI and PPI having slightly

smaller errors than the other approaches. In the cases where the underlying function is C0, the

results from DBI and PPI are comparable to the other approaches. Furthermore, the results from

DBI and PPI can be improved by using a mesh that captures C0-continuity, as is the case with the

spectral element methods in NEPTUNE.

44



Ni PCHIP SPS DBI PPI

L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 2.70E-2 1 2.70E-2 1

33 – – 9.51E-3 1 9.51E-3 1

65 – – 3.40E-3 1 3.40E-3 1

129 – – 1.20E-3 1 1.20E-3 1

257 – – 4.30E-4 1 4.30E-4 1

P3 P4
17 1.91E-2 1.87E-2 1.77E-2 2.04 1.73E-2 2.06

33 6.92E-3 6.11E-3 6.22E-3 1.93 6.21E-3 1.95

65 2.47E-3 2.69E-3 2.24E-3 1.89 2.24E-3 1.90

129 8.99E-4 7.71E-4 8.17E-4 1.88 8.16E-4 1.88

257 3.23E-4 2.77E-4 2.95E-4 1.87 2.94E-4 1.87

P8
17 – 1.91E-2 1.73E-2 3.19 1.69E-2 3.31

33 – 6.46E-3 6.20E-3 3.09 6.19E-3 3.16

65 – 2.24E-3 2.21E-3 3.04 2.20E-3 3.09

129 – 8.12E-4 7.98E-4 3.03 7.97E-4 3.04

257 – 2.92E-4 2.87E-4 3.01 2.87E-4 3.02

P16
17 – 2.19E-2 2.02E-2 4.58 2.34E-2 4.94

33 – 7.57E-3 6.14E-3 5.13 6.17E-3 5.35

65 – 2.68E-3 2.25E-3 5.25 2.26E-3 5.38

129 – 9.63E-4 8.07E-4 5.29 8.08E-4 5.35

257 – 3.45E-4 2.89E-4 5.29 2.89E-4 5.32

Table 17: L2− errors when approximating f8(x, y) with Ni×Ni points. Ni represents the number
of input points used in each dimension to build the approximation. Pj represents the use of
polynomials of degree j, with j being the target degree. The fourth and sixth columns show
the average polynomial degree used for the DBI and PPI methods, respectively. The points are
uniformly distributed in each dimension.

45



Ni PCHIP DBI PPI

L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 2.70E-2 1 2.70E-2 1

33 – – 9.51E-3 1 9.51E-3 1

65 – – 3.40E-3 1 3.40E-3 1

129 – – 1.20E-3 1 1.20E-3 1

257 – – 4.30E-4 1 4.30E-4 1

P3 P4
17 1.91E-2 2.55E-2 2.18E-2 2.04 2.17E-2 2.06

33 6.92E-3 5.76E-3 7.22E-3 1.93 7.18E-3 1.95

65 2.47E-3 2.11E-3 2.74E-3 1.89 2.72E-3 1.90

129 8.99E-4 8.08E-4 9.93E-4 1.88 9.87E-4 1.88

257 3.23E-4 2.92E-4 3.61E-4 1.87 3.59E-4 1.87

P8
17 – 4.06E-2 3.42E-2 3.19 3.19E-2 3.31

33 – 9.69E-3 8.68E-3 3.09 8.67E-3 3.16

65 – 2.46E-3 2.76E-3 3.04 2.82E-3 3.09

129 – 9.83E-4 1.09E-3 3.03 1.12E-3 3.04

257 – 3.63E-4 3.85E-4 3.01 3.99E-4 3.02

P16
17 – 4.36E-2 3.35E-2 4.58 2.81E-2 4.94

33 – 1.53E-2 1.06E-2 5.13 1.06E-2 5.35

65 – 4.31E-3 3.42E-3 5.25 3.46E-3 5.38

129 – 1.13E-3 9.84E-4 5.29 1.29E-3 5.35

257 – 4.38E-4 3.95E-4 5.29 5.07E-4 5.32

Table 18: L2− errors when approximating f8(x, y) with Ni×Ni points. Ni represents the number
of input points used in each dimension to build the approximation. Pj represents the use of
polynomials of degree j, with j being the target degree. The fourth and sixth columns show the
average polynomial degree used for the DBI and PPI methods respectively. For each dimension,
the interval [−1, 1] is divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are used
in each element.

5.9 Example IX f9(x)

This example is used herein to study shape-preserving (monotonicity and convexity) splines [46].

f9(x, y) = max

(
0, sin(πx)sin(πy)

)
x, y ∈ [−1, 1] (9)

46



For the DBI and PPI algorithm, ε0 = 0.01, ε1 = 1 and st = 2. The function f9(x, y) is a

C0-continuous function. Tables 19 and 18 show L2-errors when approximating f9(x, y) with the

PCHIP, SPS, DBI, and PPI methods. The underlying mesh is such that the C0-continuities are

at the elements boundaries except for P16 and N = 17. The PCHIP and SPS methods struggle to

capture the C0-continuities because both methods enforce C1-continuity. The L2-error from DBI is

dominated by the local error from the intervals with low-degree interpolants and so as the average

polynomial degree increases the L2-errors do not improve. The L2-error for P16 and N = 17 is

larger compared to the other cases when the PPI method is used. For P16 and N = 17, there is no

mesh point at the points of C0-continuity and so the L2-error is dominated by the local error from

those intervals where low degree interpolants are used. Overall, the results from Tables 19 and 18

demonstrate that the DBI and PPI methods lead to smaller approximation errors than the PCHIP

and SPS methods.

47



Ni PCHIP SPS DBI PPI

L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 5.80E-2 1 5.80E-2 1

33 – – 1.88E-2 1 1.88E-2 1

65 – – 6.27E-3 1 6.27E-3 1

129 – – 2.17E-3 1 2.17E-3 1

257 – – 7.87E-4 1 7.87E-4 1

P3 P4
17 1.91E-2 1.80E-2 1.20E-2 2.56 1.20E-2 2.66

33 6.77E-3 6.21E-3 4.25E-3 2.53 4.25E-3 2.58

65 2.39E-3 2.18E-3 1.50E-3 2.52 1.50E-3 2.54

129 8.47E-4 7.70E-4 5.30E-4 2.51 5.30E-4 2.52

257 3.01E-4 2.74E-4 1.88E-4 2.50 1.88E-4 2.51

P8
17 – 1.47E-2 1.27E-2 4.22 1.27E-2 4.72

33 – 4.57E-3 4.48E-3 4.37 4.48E-3 4.61

65 – 1.51E-4 1.58E-3 4.44 1.58E-3 4.56

129 – 5.16E-4 5.60E-4 4.47 5.60E-4 4.53

257 – 1.84E-4 1.98E-4 4.48 1.98E-4 4.51

P16
17 – 1.50E-2 2.22E-2 5.92 2.74E-2 7.11

33 – 4.03E-3 4.79E-3 8.05 4.79E-3 8.67

65 – 1.15E-3 1.69E-3 8.28 1.69E-3 8.58

129 – 3.50E-4 5.98E-4 8.39 5.98E-4 8.54

257 – 1.17E-4 2.12E-4 8.44 2.12E-4 8.52

Table 19: L2− errors when approximating f9(x, y) with Ni×Ni points. Ni represents the number
of input points used in each dimension to build the approximation. Pj represents the use of
polynomials of degree j, with j being the target degree. The fourth and sixth columns show
the average polynomial degree used for the DBI and PPI methods respectively. The points are
uniformly distributed on each dimension.

48



Ni PCHIP SPS DBI PPI

L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 5.80E-2 1 5.80E-2 1

33 – – 1.88E-2 1 1.88E-2 1

65 – – 6.27E-3 1 6.27E-3 1

129 – – 2.17E-3 1 2.17E-3 1

257 – – 7.87E-4 1 7.87E-4 1

P3 P4
17 3.56E-02 1.05E-2 1.85E-2 2.52 1.46E-4 3.91

33 1.79E-03 3.61E-3 4.74E-3 2.61 4.77E-6 3.95

65 2.53E-04 1.26E-3 1.19E-3 2.62 1.43E-7 3.98

129 9.94E-05 4.44E-4 2.98E-4 2.62 9.16E-9 3.99

257 3.26E-05 1.61E-4 7.45E-5 2.62 5.52E-9 3.99

P8
17 – 1.61E-2 1.85E-2 4.04 6.01E-8 7.36

33 – 3.34E-3 4.74E-3 4.57 1.37E-8 7.89

65 – 8.74E-4 1.19E-3 4.57 9.43E-9 7.95

129 – 2.40E-4 2.98E-4 4.56 6.15E-9 7.97

257 – 7.32E-5 7.45E-5 4.56 3.57E-9 7.99

P16
17 – 2.72E-2 1.85E-2 4.29 2.35E-3 8.75

33 – 6.65E-3 4.74E-3 7.93 9.88E-9 15.31

65 – 1.33E-3 1.19E-3 8.57 6.44E-9 15.88

129 – 3.35E-4 2.98E-4 8.54 3.78E-9 15.94

257 – 8.41E-5 7.45E-5 8.55 1.75E-9 15.97

Table 20: L2− errors when approximating f9(x, y) with Ni×Ni points. Ni represents the number
of input points used in each dimension to build the approximation. Pj represents the use of
polynomials of degree j, with j being the target degree. The fourth and sixth columns show the
average polynomial degree used for the DBI and PPI methods respectively. For each dimension,
the interval [−1, 1] is divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are used
in each element.

5.10 Example X f10(x)

This example uses a 2D extension of the 1D approximation of the Heaviside function f2(x) defined

in Equation 2 which is defined as follows:

f10(x, y) =
1

1 + e−
√
2k(x+y)

, x, y ∈ [−0.2, 0.2] (10)

49



For the DBI and PPI algorithm, ε0 = 0.01, ε1 = 1 and st = 2. The function f10(x, y) is challenging

because of the large gradient at y = −x. Tables 21 and 22 show L2-errors when approximating

f10(x) using PCHIP, SPS, DBI, and PPI. As the average polynomial degree increases the accuracy

of the DBI and PPI methods improves. In this case, the L2-error is dominated by the local error

of the region with the steep gradient. The errors for the DBI and PPI methods are similar because

the stencils used for both methods are the same in the region with the large gradient. Overall, the

results from the Tables 21 and 22 show that the DBI and PPI methods lead to smaller L2-errors

compared to the other methods.

50



Ni PCHIP SPS DBI PPI

L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 1.50E-2 1 1.50E-2 1

33 – – 4.57E-3 1 4.57E-3 1

65 – – 1.26E-3 1 1.26E-3 1

129 – – 3.23E-4 1 3.23E-4 1

257 – – 8.15E-5 1 8.15E-5 1

P3 P4
17 8.07E-3 1.99E-3 9.45E-3 2.75 9.44E-3 3.23

33 1.26E-3 2.43E-4 1.33E-3 3.53 1.29E-3 3.65

65 1.44E-4 4.92E-5 9.29E-5 3.82 9.29E-5 3.82

129 1.63E-5 1.20E-5 3.67E-6 3.81 3.67E-6 3.81

257 1.94E-6 3.05E-6 1.21E-7 3.79 1.21E-7 3.79

P8
17 – 1.80E-1 8.05E-3 3.15 8.67E-3 5

33 – 1.22E-1 1.03E-3 5.78 9.05E-4 6.55

65 – 8.48E-2 4.83E-5 7.54 4.99E-5 7.57

129 – 1.04E-1 2.57E-7 7.53 2.57E-7 7.55

257 – 8.02E-2 5.27E-10 7.49 5.27E-10 7.52

P16
17 – 4.72E-3 7.39E-3 3.57 1.86E-2 7.45

33 – 1.22E-3 1.02E-3 6.71 2.33E-3 10.23

65 – 3.11E-4 2.12E-4 14.76 2.41E-4 14.94

129 – 7.80E-5 1.03E-6 14.93 1.03E-6 15.05

257 – 1.95E-5 4.41E-11 14.83 4.41E-11 14.97

Table 21: L2 − errors when approximating f10(x, y) with Ni × Ni points. Ni represents the
number of input points used in each dimension to build the approximation. Pj represents the use
of polynomials of degree j, with j being the target degree. The fourth and sixth columns show
the average polynomial degree used for the DBI and PPI methods, respectively. The points are
uniformly distributed on each dimension.

51



Ni PCHIP SPS DBI PPI

L2-error L2-error L2-error avg. deg. L2-error avg. deg.

P1
17 – – 1.50E-2 1 1.50E-2 1

33 – – 4.57E-3 1 4.57E-3 1

65 – – 1.26E-3 1 1.26E-3 1

129 – – 3.23E-4 1 3.23E-4 1

257 – – 8.15E-5 1 8.15E-5 1

P3 P4
17 1.32E-2 2.79E-3 1.12E-2 2.75 1.11E-2 3.23

33 2.75E-3 3.49E-4 1.73E-3 3.53 1.68E-3 3.65

65 3.57E-4 6.87E-5 1.28E-4 3.82 1.28E-4 3.82

129 4.09E-5 1.64E-5 5.47E-6 3.81 5.47E-6 3.81

257 5.04E-6 4.12E-6 1.77E-7 3.79 1.77E-7 3.79

P8
17 – 5.82E-3 1.22E-2 3.15 1.20E-2 5.00

33 – 1.26E-3 1.82E-3 5.78 1.67E-3 6.55

65 – 3.00E-4 4.98E-5 7.54 4.98E-5 7.57

129 – 7.58E-5 4.03E-7 7.53 4.03E-7 7.55

257 – 1.90E-5 1.21E-9 7.49 1.21E-9 7.52

P16
17 – 8.05E-3 1.34E-2 3.57 1.31E-2 7.45

33 – 2.06E-3 2.04E-3 6.71 1.92E-3 10.23

65 – 5.14E-4 3.81E-5 14.76 3.84E-5 14.94

129 – 1.26E-4 6.20E-8 14.93 6.20E-8 15.05

257 – 3.18E-5 6.20E-12 14.83 6.20E-12 14.97

Table 22: L2 − errors when approximating f10(x, y) with Ni × Ni points. Ni represents the
number of input points used in each dimension to build the approximation. Pj represents the use
of polynomials of degree j, with j being the target degree. The fourth and sixth columns show the
average polynomial degree used for the DBI and PPI methods respectively. For each dimension,
the interval [−0.2, 0.2] is divided into (Ni − 1)/j elements and j + 1 LGL quadrature points are
used in each element.

6 Discussion and Conclusion

In this report, a representative sample of existing methods is compared against our new approaches

on a number of different test functions, including smooth, C0, discontinuous, and steep functions.

The comparison undertaken here focuses on how accurately the different methods are able to

represent this underlying set of test functions. Overall, the DBI and PPI methods perform well

52



and are suited to the C0 continuity of the spectral element methods in NEPTUNE. The experiments

show that the DBI and PPI methods are suitable approaches for interpolating smooth functions

and C0 continuous functions while enforcing positivity. In detail the summary is that:

• The results in Section 3 Examples I, II, and III show that the improved DBI and new PPI

approaches preserve positivity exactly as the proofs in [9] indicate;

• The results in Section 4 and Sections 5.1, 5.2, and 5.3 show that the DBI and PPI approaches

give much higher levels of accuracy than the DBI method by allowing the solution to be outside

the local bounds while remaining positive. The PPI method also appears to give better results

than the SPS method in line with the studies in [29] and [27] which demonstrate that the

SPS method does not achieve high-order accuracy; and

• In Examples V and VI, better approximations are obtained using st = 1 and st = 3, respec-

tively, for the PPI and DBI methods. These results show that in some cases the appropriate

choice of the parameter st can further improve the approximation in addition to preserving

data-boundedness or positivity. Additional studies evaluating the different choices of ε0, ε1,

and st are presented in [8].

• In the cases when steep gradients or discontinuities force the use of low-order approximations,

the DBI and PPI methods compete against the well-known cubic spline method PCHIP and

the higher order MQS and the SPS spline methods.

Overall, it would seem that when it is possible to use higher-order polynomial approximations the

PPI method appears to give levels of accuracy that compete with standard unmodified high-order

spline methods while at the same time preserving positivity.

Acknowledgements

This work has been supported by the US Naval Research Laboratory (559000669), the National

Science Foundation (1521748), and the Intel Graphics and Visualization Institute at the University

of Utah’s Scientific Computing and Imaging (SCI) Institute (29715). The authors would like to

thank Dr. Alex Reinecke of the Naval Research Laboratory for his constant support and help.

References

[1] D. Sahasrabudhe, M. Berzins, and J. Schmidt. Node failure resiliency for uintah without

checkpointing. Concurrency and Computation: Practice and Experience, page e5340, 2019.

[2] M. Berzins. Nonlinear data-bounded polynomial approximations and their applications in eno

methods. Numerical Algorithms, 55(2):171, 2010.

53



[3] M. Berzins. Data and range-bounded polynomials in eno methods. Journal of Computational

Science, 4(1-2):62–70, 2013.

[4] M. Berzins. Adaptive Polynomial Interpolation on Evenly Spaced Meshes. SIAM Review,

49(4):604–627, 2007.

[5] F. X. Giraldo, J. F. Kelly, and E. M. Constantinescu. Implicit-explicit formulations of a

three-dimensional nonhydrostatic unified model of the atmosphere (numa). SIAM Journal on

Scientific Computing, 35(5):B1162–B1194, 2013.

[6] K.C. Viner, J.D. Doyle P.A. Reinecke, M. Martini S. Gabersek, J. Michalakes D.D. Flagg,

and F.X. Giraldo D.R. Ryglicki. Next Generation NWP Using a Spectral Element Dynamical

Core. AGU Fall Meeting Abstracts, pages A34A–02, December 2016.

[7] William C. Skamarock and Morris L. Weisman. The Impact of Positive-Definite Moisture

Transport on NWP Precipitation Forecasts. Monthly Weather Review, 137(1):488–494, 2009.

[8] T. A. J. Ouermi, Robert M. Kirby, and Martin Berzins. HPPIS: A high-order positivity-

preserving mapping software for structured meshes. Manuscript in preparation, 2022.

[9] Timbwaoga AJ Ouermi, Robert M Kirby, and Martin Berzins. Eno-based high-order data-

bounded and constrained positivity-preserving interpolation. Accepted by Numerical Algo-

rithms, June 2022. https://doi.org/10.48550/arXiv.2204.06168.

[10] J. W. Schmidt and W. Heß. Positive interpolation with rational quadratic splines. Computing,

38(3):261–267, Sep 1987.

[11] Schmidt, Jochen W. and Heß , Walter. Positivity of Cubic Polynomials on Intervals and

Positive Spline Interpolation. BIT Numerical Mathematics, 28(2):340–352, Jun 1988.

[12] Walter Heß and Jochen W. Schmidt. Positive quartic, monotone quintic c2-spline interpolation

in one and two dimensions. Journal of Computational and Applied Mathematics, 55(1):51 –

67, 1994.

[13] Samsul Ariffin Abdul Karim and Kong Pang Pang. Shape preserving interpolation using

rational cubic spline. Journal of Applied Mathematics, 2016, 2016.

[14] Abdul Karim, Samsul Ariffin, Kong Voon Pang, and Azizan Saaban. Positivity Preserving

Interpolation using Rational Bicubic Spline. Journal of Applied Mathematics, 2015, 2015.

[15] Malik Zawwar Hussain and Muhammad Sarfraz. Positivity-Preserving Interpolation of Positive

Data by Rational Cubics. Journal of Computational and Applied Mathematics, 218(2):446 –

458, 2008. The Proceedings of the Twelfth International Congress on Computational and

Applied Mathematics.

54



[16] S. Butt and K.W. Brodlie. Preserving Positivity Using Piecewise Cubic Interpolation. Com-

puters and Graphics, 17(1):55 – 64, 1993.

[17] Frederick N Fritsch and Ralph E Carlson. Monotone piecewise cubic interpolation. SIAM

Journal on Numerical Analysis, 17(2):238–246, 1980.

[18] Rida T. Farouki, Carla Manni, and Alessandra Sestini. Shape-preserving interpolation by G1

and G2 PH quintic splines. IMA Journal of Numerical Analysis, 23(2):175–195, 04 2003.

[19] Rida T. Farouki, Carla Manni, Maria Lucia Sampoli, and Alessandra Sestini. Shape-preserving

interpolation of spatial data by Pythagorean-hodograph quintic spline curves. IMA Journal

of Numerical Analysis, 35(1):478–498, 02 2014.

[20] Rida T. Farouki, Carlotta Giannelli, Carla Manni, and Alessandra Sestini. Identification of

spatial ph quintic Hermite interpolants with near-optimal shape measures. Computer Aided

Geometric Design, 25(4):274 – 297, 2008. Pythagorean-Hodograph Curves and Related Topics.

[21] Malik Zawwar Hussain, Maria Hussain, and Zahra Yameen. A C2-continuous rational quintic

interpolation scheme for curve data with shape control. Journal of The National Science

Foundation of Sri Lanka, 46:341, 2018.

[22] Maria Hussain, Malik Zawwar Hussain, and Robert J Cripps. C2 rational quintic function.

Journal of Prime Research in Mathematics, 5:115–123, 2009.

[23] Thomas C. H. Lux, Layne T. Watson, and Tyler H. Chang. An algorithm for contructing

monotone quintic interpolating splines. In SpringSim ’20: Proceedings of the 2020 Spring

Simulation Conference, May 2020, pages 1–12, 2019.

[24] Jochen W. Schmidt and Walter Heß. Positivity of cubic polynomials on intervals and positive

spline interpolation. BIT, 28(2):340–352, feb 1988.

[25] Gary Ulrich and Layne T. Watson. Positivity conditions for quartic polynomials. SIAM

Journal on Scientific Computing, 15(3):528–544, 1994.

[26] Bengt Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathe-

matics of computation, 51(184):699–706, 1988.

[27] P. Costantini. Boundary-valued shape-preserving interpolating splines. ACM Trans. Math.

Softw., 23(2):229–251, jun 1997.

[28] P. Costantini. Algorithm 770: Bvspis a package for computing boundary-valued shape-

preserving interpolating splines. ACM Trans. Math. Softw., 23(2):252–254, jun 1997.

[29] P. Costantini. On some recent methods for bivariate shape-preserving interpolation. In

W. Haußmann and K. Jetter, editors, Multivariate Approximation and Interpolation: Proceed-

ings of an International Workshop held at the University of Duisburg, August 14–18, 1989,

pages 55–68, Basel, 1990. Birkhäuser Basel.

55



[30] Carl De Boor. A practical guide to splines, volume 27. springer-verlag New York, 1978.

[31] Xiangxiong Zhang. On positivity-preserving high order discontinuous Galerkin schemes for

compressible NavierStokes equations. Journal of Computational Physics, 328:301 – 343, 2017.

[32] Xiangxiong Zhang, Yinhua Xia, and Chi-Wang Shu. Maximum-Principle-Satisfying and

Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on

Triangular Meshes. Journal of Scientific Computing, 50(1):29–62, Jan 2012.

[33] Xiangxiong Zhang and Chi-Wang Shu. Maximum-principle-satisfying and positivity-preserving

high-order schemes for conservation laws: survey and new developments. Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, 467(2134):2752–

2776, 2011.

[34] Devin Light and Dale Durran. Preserving Nonnegativity in Discontinuous Galerkin Approx-

imations to Scalar Transport via Truncation and Mass Aware Rescaling (TMAR). Monthly

Weather Review, 144(12):4771–4786, 2016.

[35] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R. Chakravarthy. Uniformly High

Order Accurate Essentially Non-oscillatory Schemes, III. Journal of Computational Physics,

131(1):3 – 47, 1997.

[36] Xiangxiong Zhang and Chi-Wang Shu. Positivity-preserving high order finite difference weno

schemes for compressible euler equations. J. Comput. Phys., 231(5):2245–2258, mar 2012.

[37] Nicholas Hale and Alex Townsend. Fast and accurate computation of gauss–legendre

and gauss–jacobi quadrature nodes and weights. SIAM Journal on Scientific Computing,

35(2):A652–A674, 2013.

[38] James F. Epperson. On the Runge Example. The American Mathematical Monthly, 94(4):329–

341, 1987.

[39] Eitan Tadmor and Jared Tanner. Adaptive mollifiers for high resolution recovery of piece-

wise smooth data from its spectral information. Foundations of Computational Mathematics,

2(2):155–189, Jan 2002.

[40] Howard A Friedman, Gerald Conrad, and James D McFadden. ESSA Research Flight Facility

Aircraft Participation in the Barbados Oceanographic and Meteorological Experiment. Bulletin

of the American Meteorological Society, 51(9):822–834, 1970.

[41] Chi-Wang Shu. High-order finite difference and finite volume weno schemes and discontinuous

galerkin methods for cfd. International Journal of Computational Fluid Dynamics, 17(2):107–

118, 2003.

56



[42] Leon D. Rotstayn, Brian F. Ryan, and Jack J. Katzfey. A scheme for calculation of the liquid

fraction in mixed-phase stratiform clouds in large-scale models. Monthly Weather Review,

128(4):1070–1088, 04 2000.

[43] E.S. Chan and B.H. Ong. Range restricted scattered data interpolation using convex combina-

tion of cubic bzier triangles. Journal of Computational and Applied Mathematics, 136(1):135

– 147, 2001.

[44] Abd. Rahni Mt. Piah, Tim N. T. Goodman, and Keith Unsworth. Positivity-preserving scat-

tered data interpolation. In Ralph Martin, Helmut Bez, and Malcolm Sabin, editors, Mathe-

matics of Surfaces XI, pages 336–349, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[45] Peter Lancaster and Kestutis Šalkauskas. Curve and surface fitting: an introduction. csfa,

1986.

[46] Paolo Costantini and Ferruccio Fontanella. Shape-preserving bivariate interpolation. SIAM

Journal on Numerical Analysis, 27(2):488–506, 1990.

57


	Examples of Existing Interpolation Methods
	Cubic Splines
	Quartic and Quintic Splines
	SPS and B-spline Higher Order Splines
	DBI and PPI Methods

	Comparison Methodology
	Compared Methods
	Comparison Criteria

	Positivity-Preserving Interpolants
	Example I f1(x)
	Example II f2(x)
	Example III f3(x)
	Example IV f4(x)
	Example V f5(x)

	Convergence
	Results
	Example I f1(x)
	Example II f2(x) 
	Example III f3(x)
	Example IV f4(x) 
	Example V f5(x)
	Example VI BOMEX
	Example VII f7(x)
	Example VIII f8(x)
	Example IX f9(x)
	Example X f10(x) 

	Discussion and Conclusion

