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Abstract—Optimizations in the petascale era require modifi-
cations of existing codes to take advantage of new architectures
with large core counts and SIMD vector units. This paper
examines high-level and low-level optimization strategies for
numerical weather prediction (NWP) codes. These strategies
employ thread-local structures of arrays (SOA) and an OpenMP
directive such as OMP SIMD. These optimization approaches are
applied to the Weather Research Forecasting single-moment 6-
class microphysics schemes (WSM6) in the US Navy NEPTUNE
system. The results of this study indicate that the high-level
approach with SOA and low-level OMP SIMD improves thread
and vector parallelism by increasing data and temporal locality.
The modified version of WSM6 runs 70x faster than the original
serial code. This improvement is about 23.3x faster than the
performance achieved by Ouermi et al. [1], and 14.9x faster
than the performance achieved by Michalakes et al. [2]

Index Terms—Structure of arrays; OpenMP; Knights; Land-
ing; Numerical Weather Prediction; Thread parallelism; Vector
parallelism

I. INTRODUCTION

The Weather Research and Forecasting (WRF) [23] model
is a numerical weather prediction (NWP) software used by
atmospheric researchers and weather forecasters at operational
centers throughout the world. WRF is used in over 150 coun-
tries, thus making it one of the most widely used numerical
weather prediction models. The model was developed to help
scientists study and better understand weather phenomena.
Optimizing the performance of NWP codes is important to
improve the accuracy and the time requirements for forecasts.
Thus the scientific community and governments have invested
significant time and efforts to modernize NWP codes for
current and future architectures.

In the last decade, various computational architectures have
increased the core counts per node, decreased the clock fre-
quency and adopted wide SIMD vector units. For instance, the
Intel Xeon Phi Knights Landing [11] has dual 8-lane double
precision (DP) floating point units on each of its 64 cores
with a clock frequency of 1.3 Ghz. This growing complexity
of computing architectures makes it difficult to develop and
maintain performance-portable codes. Legacy codes such as
the NWP codes must be re-architected to leverage thread

and SIMD parallelism while maintaining data and temporal
locality.

This work focuses on optimizing the WRF Single-Moment
6-Class Microphysics Scheme (WSM6) [3]. WSM6 is a phys-
ical parameterization that simulates processes in the atmo-
sphere that cause precipitation in the form of rain, snow, grau-
pel, water vapor, cloud water and cloud ice. The optimization
efforts target the Intel KNL [11] and potential future computer
architectures. This work employs OpenMP4 as a vehicle for
portability across various platforms as it is a well-established
and widely adopted interface for shared memory parallelism.

This paper presents an evaluation of high-level and low-
level approaches for shared parallelism using thread-local
structures of arrays (SOA). The high-level approach consists
of parallelizing large blocks of code at the parent level in the
call stack whereas the low-level approach targets individual
instructions. SOA are employed to accelerate computation
in WSM6 by improving data locality and taking advantage
of thread and vector parallelism. To our knowledge, this is
the first attempt to apply SOA to NWP codes. The various
optimizations on WSM6 have resulted in a significant increase
in speed-ups. For instance, the use of SOA coupled with OMP
SIMD for vectorization led to a speed-up of 70x.

II. RELATED WORK

A significant effort has been invested to port and optimize
NWP codes on various architectures. Mielikaimen et al. [4]
optimized the Goddard microphysics scheme for the Intel
Xeon phi 7120P. This work on the Goddard microphysics
scheme focused on removing temporary variables to reduce
the memory footprint and restructuring loops to enable vec-
torization. This optimization effort led to a 4.7x speed-up from
the original code on Xeon phi 7120P.

Mielikainen et al. [5] improved the Perdu-Lin microphysics
performance by reducing the memory footprint and increasing
vectorization. The memory footprint was reduced by fusing
and collapsing loops. Vector alignment and SIMD directives
were employed to improve vectorization. These various trans-
formations resulted in a speed-up of 4.7x on Intel Xeon phi
7120P.



Ouermi et al. [1] adopted a low-level optimization approach
to improve the performance of WSM6 on the KNL. This
work employed OpenMP 4 [6] directives. In addition, minor
code restructuring is used to enable and improve locality and
vectorization. This optimization approach on WSM6 yielded
about 50x speed-up on the optimized part of WM6 and a
3x speed-up on the entire WSM6, including the unoptimized
sections (serial bottleneck).

In optimizing the Weather Model Radiative Transfer Physics
on Intel MIC, Michalakes et al. [2] focused on increasing con-
currency, vectorization and locality. Improving concurrency
involved increasing the number of subdomains to be com-
puted by threads. Vectorization and locality were improved
by restructuring the loops to compute over smaller tiles and
exposing vectorizable loops. This effort led to a 3x speed-up
over the original 1.3x speed-up over Xeon Sandybridge.

Data layout plays a key role in performance optimization.
The optimal data layout minimizes the memory footprint,
reduces cache misses and allows better usage of vector units.
This study uses thread-local structures of arrays (SOA) data
layout to improve memory access. The SOA approach and
similar approaches have been used to accelerate many scien-
tific applications on various architectures.

Henretty et al. [12] used data layout transformation to
improve the performance of stencil computation. These op-
timizations remove alignment conflicts, reduce cache misses
and improve vectorization.

Woodward et al. [13], [14] used briquette data structures
to accelerate a Piecewise Parabolic Method (PPM) code by
reducing memory traffic. A briquette is a small region of a
uniform grid. The size of the briquette is chosen in relation
to the cache size and vector unit. These data transformations
enable high performance because they reduce the memory
footprint and traffic. In addition, such transformations improve
vectorization.

The work presented in this paper relies on the OpenMP
runtime system for task scheduling and OpenMP “pragma”
directives for parallelization. Other approaches could be em-
ployed. Mencagli et al. [21] used a runtime support to reduce
the effective latency of inter-thread cooperation. This latency
reduction is done with a “home-fowarding” mechanism that
uses a cache-coherent protocol to reduce cache-to-cache inter-
action. Buono et al. [20] prosed a light-weight runtime system
as an approach to optimize linear algebra routines on MIC.
This runtime system focuses on efficient scheduling of tasks
from a directed acyclic graph (DAG) that is generated “on
the fly” during execution. Danelutto et al. [19] suggested a
pattern-based framework for parallelization. This paralleliza-
tion approach targets known patterns that can be represented
with well-known operations such as map, reduce, scan, etc.

Although this work focuses on MIC, it is important to point
out that efforts have been made to port and optimize WRF
physics schemes for GPUs [7], [10], [8]. GPU-based optimiza-
tions show better performance than MIC-based optimizations.
For instance, Mielikainen et al. [7], using CUDA [22], were
able to acheive a speed-up of two orders of magnitude.

However, porting to GPUs often requires significant code
rewrites.

III. OVERVIEW OF NEPTUNE AND WSM6

The work presented in this paper is part of a larger ef-
fort to accelerate the Navy Environmental Prediction sysTem
Utilizing the Nonhydrostatic Unified Model of the Atmo-
sphere (NUMA) corE [17], [18] (NEPTUNE). NEPTUNE uses
NUMA, introduced by Giraldo et al. [15], and various physics
schemes. This paper presents optimization efforts focused
on the WRF Single-Moment 6-class Microphysics (WSM6)
scheme. NUMA, the dynamical core of NEPTUNE, uses a
three-dimensional spectral element technique with a sphere-
centered Cartesian coordinate sysem. A spectral element is
the numerical method of choice because of the small commu-
nication footprint, which enables large scalability.

WSM6 is a physical parameterization that simulates pro-
cesses in the atmosphere that cause precipitation in the form
of rain, snow, graupel, water vapor, cloud water and cloud
ice. WSM6 improves on WSM5 by introducing graupel par-
ticles and other variables to better model the precipitation of
hydrometeors. The computation in the scheme is organized
along both the horizontal and vertical directions. There is no
interaction among the horizontal grid points, which allows
straightforward parallelism cases.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

A. Strategies for OpenMP Parallelism

1) Motivation: The work of Ouermi et al. [1] on WSM6
used low-level OpenMP optimization of individual loops,
which was appropriate due to the relatively small size of the
code (3K lines) and numerous serial sections obstructing high-
level parallelism. This low-level approach is not suitable for
many modules in NEPTUNE. For instance, the GFS physics
module http://www.dtcenter.org/GMTB/gfs phys doc/ poses
different challenges: principally, it is a far larger codebase,
has fewer serial bottlenecks and is more amenable to high-
level parallelism. This work presents studies on both high-
and low-level approaches with synthetic examples, which are
subsequently applied to WSM6. The following two sections
provide a brief overview of these concepts.

2) Task Granularity (High-Level Versus Low-Level
OpenMP): High-level parallelism consists of parallelizing
large blocks of code at a parent level in the function
call stack. This approach stands in contrast to low-level
parallelization, which operates at the individual instruction
level (i.e., loops, arithmetic, etc.). The high-level approach
has the advantage of requiring few modifications within
the parallelized code regions, assuming these code sections
are thread-safe and do not contain serial bottlenecks. From
a performance standpoint, the high-level approach entails
relatively few individual parallel sections. In contrast, the low-
level approach has the advantage of permitting parallelism in
selectively parallelizable code punctuated by serial sections.
If these serial bottlenecks are not easily removed, or if their
relative cost is low, this may be a valid approach. Low-level

http://www.dtcenter.org/GMTB/gfs_phys_doc/


approaches may also be appropriate for codes that require
multiple different parallelization approaches (i.e., static versus
dynamic scheduling, tasking, etc.) within different logical
blocks or subroutines.

Whether high-level or low-level parallelism is best depends
on the individual code in question. High-level OpenMP is
typically more elegant, but requires code that is already
intrinsically parallel. Low-level requires adding more parallel
directives, but allows the original code structure to be used
more or less as is.

High-level and low-level approaches relate to task granular-
ity, i.e., at which level logic is parallelized within a call stack.
The length and the complexity of the logic within each task
may have an impact on scheduling and load balancing, as well
as on inter-task dependency.

3) Data Granularity, Chunks and SOA: Orthogonally, data
granularity considers how data are divided among threads. In
the physics and microphysics systems within NEPTUNE, data
granularity refers to the size of arrays (or subarrays) processed
by each thread. Generally, coarse-grain data parallelism entails
dividing up the available work by the number of workers (more
amenable to static distribution with OpenMP). Fine-grain
data parallelism involves further subdividing the workload
into smaller chunks. The minimum granularity beneficial for
modern architectures is determined by SIMD size (8 or 16 on
Xeon Phi KNL), or the number of cores per compute block
(SM) on a GPU. The granularity size is often referred to as
the chunk size.

In determining appropriate data granularity, the goal is to
keep the data as local as possible to each thread, i.e., within the
L1 and L2 caches. It is often advantageous to use thread-local
data structures and copy to and from global (shared-memory)
arrays as necessary. Thread-local subarrays are most effective
when aligned to SIMD/chunk-size boundaries in memory, and
organized in SOA fashion. Thus, for each thread, the local
array data can be packed together closely in memory, requiring
fewer cache misses and requests from L3, MCDRAM (on the
KNL) or main memory.

Intuitively, data are often organized as an array of structures
(AOS). However, such an approach for data organization is not
suitable for vectorization and memory locality. Using SOA
instead of AOS is a common technique used to address this
limitation. Figure 1 shows an example of transformation from
AOS to SOA. SOA improve memory locality and allow for
more contiguous memory accesses.

Fig. 1. Transformation from AOS to SOA

B. Experimental Setup

1) Methodology: This paper adopts a methodology similar
to that employed by Ouermi et al. [1] to explore different
parallelism strategies. This methodology consists of designing
standalone experiments to study the behavior of the various
approaches for parallelism. The findings from the standalone
experiments inform the optimization decision in the module
of interest, in this case WSM6.

2) KNL Architecture: The Intel Knights Landing (KNL)
[11] architecture consists of 36 tiles interconnected with a
2D mesh, MCDRAM of 16GB high bandwidth memory on
one socket. The KNL architecture has a clock frequency of
1.3 GHz, which is lower than the 2.5 GHz of Haswell. The
Knights Landing tile is the basic unit that is replicated across
the entire chip. This tile consists of two cores, each connected
to two vector processing units (VPUs). Both cores share a
1 MB L2 cache. Two AVX-512 vector units process eight
double-precision lanes each; a single core can execute two
512-bit vector multiply-add instructions per clock cycle.

V. RESULTS

A. Standalone Experiments

These experiments analyze SOA with different array sizes
and dimensions in order to find a suitable structure for WSM6.
The SOA in Code 1 use 1D arrays whereas those in Code 2
use 2D arrays. In Code 1 the k-loop is vectorized whereas in
Code 2 the vectorization is along the i-loop. The access pattern
is more involved in Code 1 compared to Code 2 because
of the 1D versus 2D data layout. The performance results
from the data transpose approach, as shown in Figure 2, and
the original code are compared against results from the SOA
approach. The original WSM6 code takes 2D and 3D arrays.
For a long ”skinny” data matrix as shown in Figure 2, thread
parallelism across the k loop is limited to 39 of the 256 threads
on the KNL. With this approach, the computer resources are
underutilized. Transposing the data matrix from im × km to
km × im allows for better thread parallelism and maintains
a good memory access pattern as shown in Figure 2. This
transformation does not impact computation results because
the standalone experiments and WSM6 have no dependencies
along the horizontal direction (i-loop).

CODE 1

!$OMP PARALLEL DEFAULT( sh ar ed )
!$OMP PRIVATE ( i t s , i t e , i c e , t soa , t h r e a d i d , c )
!$OMP DO
do c =1 , i t e

do j =1 , j e
t s o a%a ( j ) = a ( c , j )
t s o a%b ( j ) = b ( c , j )
t s o a%d ( j ) = d ( c , j )
t s o a%e ( j ) = e ( c , j )

enddo
c a l l work ( t s o a%a , t s o a%b , t s o a%d , t s o a%e , 1 , i c e )
do j =1 , j e

a ( c , j ) = t s o a%a ( j )
b ( c , j ) = t s o a%b ( j )
d ( c , j ) = t s o a%d ( j )
e ( c , j ) = t s o a%e ( j )

enddo
enddo
!$OMP END DO



!$OMP END PARALLEL

s u b r o u t i n e work ( a , b , c , d )
i m l i c i t none
rea l , i n t e n t ( i n o u t ) : : a ( : ) , b ( : ) , c ( : ) , d ( : )
i n t e g e r : : j
!$OMP SIMD
do j =2 , j e−1

a ( j ) = 0 .1+ c ( j ) / d ( j )
b ( j ) = ( 0 . 2 + c ( j−1)−c ( j ) ) / ( c ( j )−c ( j −1)+0.5)

enddo
end s u b r o u t i n e work

CODE 2

!$OMP PARALLEL DEFAULT( s har ed )
!$OMP PRIVATE ( i t s , i t e , i c e , t soa , t h r e a d i d , c )
!$OMP DO
do c =1 , i t e

i t s = 1+ ( c−1)∗CHUNK
i t e = min ( i t s +CHUNK−1, i e )
i c e = i t e−i t s +1
do j =1 , j e

t s o a%a ( 1 : i c e , j ) = a ( i t s : i t e , j )
t s o a%b ( 1 : i c e , j ) = b ( i t s : i t e , j )
t s o a%d ( 1 : i c e , j ) = d ( i t s : t t e , j )
t s o a%e ( 1 : i c e , j ) = e ( i t s : i t e , j )

enddo
c a l l work ( t s o a%a , t s o a%b , t s o a%d , t s o a%e , 1 , i c e )
do j =1 , j e

a ( i t s : i t e , j ) = t s o a%a ( 1 : i c e , j )
b ( i t s : i t e , j ) = t s o a%b ( 1 : i c e , j )
d ( i t s : i t e , j ) = t s o a%d ( 1 : i c e , j )
e ( i t s : i t e , j ) = t s o a%e ( 1 : i c e , j )

enddo
enddo
!$OMP END DO
!$OMP END PARALLEL

s u b r o u t i n e work ( a , b , c , d )
i m l i c i t none
rea l , i n t e n t ( i n o u t ) : : a ( : , : ) , b ( : , : ) , c ( : , : ) , d ( : , : )
i n t e g e r , i n t e n t ( in ) : : i s , i e
i n t e g e r : : i , j
do j =2 , j e−1

!$OMP SIMD
do i = i s , i e

a ( i , j ) = 0 .1+ c ( i , j ) / d ( i , j )
b ( i , j ) = ( 0 . 2 + c ( i , j−1)−c ( i , j ) ) / ( c ( i , j )−c ( i , j −1)+0.5)

enddo
enddo
end s u b r o u t i n e work

Figure 3 shows a code example. Following the column
major in Fortran, the i loop becomes the outer loop with im
= 10586. Furthermore, there are no dependencies along the i
indices, which allows parallelism in i to be exploited.

Table I shows performance results from using SOA with
1D arrays, transposed data matrices and unmodified original
data. The SOA approach yields significant speed-ups with a
maximum speed-up of about 34x. The data transpose performs
the best in this particular experiment, with a maximum speed-
up of about 41x. The length of the arrays in the SOA is 48.
This small array length translates to small amount of work for
the innermost loop in Code 1.

Table II shows performance results similar to those in Table
I with an increased problem size given by ke = 768. The arrays
in the SOA are 16 times larger that those used in previous
experiments. In both cases, these results indicate that the
transpose approach for data organization yields better results.

Table III shows performance results from using SOA with
2D arrays, transposed data matrices and unmodified original
data. In this experiment, the OpenMP chunk size is set to 8.

Fig. 2. Transpose representation.

Fig. 3. Code transformation with transpose.

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 2.06 3.3 6 3.33 1 0.61 0.62
2 1.59 1.97 1.74 1.30 1.05 1.18
4 0.91 1.44 0.84 2.26 1.43 2.45
8 0.67 0.5 0.41 3.07 4.12 5.02
16 0.55 0.26 0.18 3.75 7.92 11.44
32 0.54 0.17 0.15 3.81 12.12 13.73
64 0.72 0.05 0.11 2.86 41.20 18.73

128 0.87 0.05 0.06 2.37 41.20 34.33
256 1.35 0.1 0.49 1.53 20.60 4.20

TABLE I
RESULTS FROM CODE 1 COMPARED TO TRANSPOSE APPROACH AND

ORIGINAL CODE.

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 33.82 29.53 75.45 1.00 1.15 0.45
2 26.98 19.44 45.7 1.25 1.74 0.74
4 15.54 13.47 23.37 2.18 2.51 1.45
8 10.9 5.09 7.44 3.10 6.64 4.55
16 8.86 2.98 5.96 3.82 11.35 5.67
32 8.93 2.61 1.72 3.79 12.96 19.66
64 10.97 0.95 1.39 3.08 35.60 24.33

128 16.14 1.17 5.93 2.10 28.91 5.70
256 22.27 2.17 9.57 1.52 15.59 3.53

TABLE II
RESULTS FROM CODE 1 COMPARED TO TRANSPOSE APPROACH AND

ORIGINAL CODE WITH LARGE ARRAY SIZES.

In contrast to the previous experiments, these results show
that the SOA approach yields higher speed-ups than the
other methods for data organization. The maximum speed-up
observed is 103x.

The results from Table I, Table II and Table III indicate



Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 2.06 3.36 1.99 1.00 0.61 1.04
2 1.59 1.97 1.07 1.30 1.05 1.93
4 0.91 1.44 0.53 2.26 1.43 3.89
8 0.67 0.5 0.14 3.07 4.12 14.71
16 0.55 0.26 0.07 3.75 7.92 29.43
32 0.54 0.17 0.02 3.81 12.12 103.00
64 0.72 0.05 0.06 2.86 41.20 34.33

128 0.87 0.05 0.27 2.37 41.20 7.63
256 1.35 0.1 0.04 1.53 20.60 51.50

TABLE III
RESULTS FROM CODE 2 COMPARED TO TRANSPOSE APPROACH AND

ORIGINAL CODE.

that the size and the structure of the arrays in the SOA play
an important role in the performance. Vectorizing along the
k-loop, in the 1D case, has a more involved access pattern
than vectorizing along the i-loop, in the 2D case. In addition,
there are no dependencies along the i-loop, which allows for
trivial vectorization. Furthermore, the L2 cache is about 16
times the size of the input data in each SOA. Thus the thread-
local SOA fit in the L2 cache, which allows for fast memory
access. When the thread-local SOA do not fit in the L2 cache,
as shown in Table IV, the speed-ups are significantly lower
than the ones observed in Table III.

Threads Time (ms) Speed-up
Orig. Transp. SOA Orig. Transp. SOA

1 264.71 194.94 159.98 1.00 1.36 1.65
2 119.93 120.69 113.15 2.21 2.19 2.34
4 98.89 61.57 57.08 2.68 4.30 4.64
8 54.17 25.57 34.25 4.89 10.35 7.73

16 30.11 16.3 22.83 8.79 16.24 11.59
32 16.87 13.51 34.23 15.69 19.59 7.73
64 13.81 13.15 29.72 19.17 20.13 8.91
128 15.74 6.56 38.25 16.82 40.35 6.92
256 23.33 13.24 45.51 11.35 19.99 5.82

TABLE IV
RESULTS FROM CODE 2 COMPARED TO TRANSPOSE APPROACH AND

ORIGINAL CODE WITH LARGE ARRAYS.

Figure 4 shows the performance results from choosing
different lengths for i. All the chunk sizes considered yield
higher speed-ups than transpose. The best performance is
observed when using a chunk size of 32.

B. Rain Routines and WSM6

nisflfv rain plm6 and nisflv rain plm are semi-Lagrangian
routines [16] for falling hydrometeors. These semi-Lagrangian
routines employ forward advection to determine the advection
path, and they are designed to replaced the traditional Eulerian
scheme.

The original nislfv rain plm6 routine makes use of Fortran
keywords exit, cycle and goto. These keywords prevent paral-
lelism because the termination criteria of a given loop are not
known a priori. These key words were replace by carefully
designed logics that performed the same task. The keyword
exit was replaced by masking, goto by a loop coupled with a
conditional and cycle by a conditional.

Fig. 4. Plots of SOA performance with different chunk sizes

The findings in previous sections are applied to the
nisfl rain plm6 routine in WSM6. Table V and Figure 5 show
performance results from applying the SOA approach to the
nisfl rain plm6 routine with chunk=32. As shown in Figure 5,
the SOA technique yields higher speed-ups than the transpose
technique. These results indicate significant speed-ups with a
maximum speed-up of 50x. In the same way as Code 2 above,
the nisfl rain plm6 routine does not have dependencies along
the i loop, and the thread-local SOA version of it fits in the
L2 cache.

Fig. 5. Transpose vs SOA speed-ups on nisflv rain plm6

The high-level SOA coupled with the low-level SIMD
approach was applied to the WSM6 module. In a similar way
to the optimization in the nivfl rain plm6 routine, all the key-
words preventing parallelism were removed. In addition, the
nivfl rain plm6 and nivfl rain plm routines were restructured
to allow thread and vector parallelism across the i loop.

Table VI and Figure 6 summarize performance results from
applying the SOA approach to WSM6. Figure 6 indicates
that setting the KNL to the flat mode yields better results
than the cache mode. The flat mode maximum performance is
about 1.5x the cache mode maximum performance. Overall,



Threads Transpose (ms) SOA (ms)
1 250 450
2 127 220
4 74 112
8 37 60

16 24 31.2
32 20 16.3
64 19 10.1

128 17 8.9
256 18 12.3

TABLE V
SOA AND TRANSPOSE APPROACH APPLIED TO NISFL RAIN PLM6

SOA coupled with SIMD led to a speed-up of 70x. This
performance result is about 23.3x faster than the results
presented by Ouermi et al. [1].

Fig. 6. SOA speed-ups on WSM6

Threads cache (ms) flat (ms)
1 1079.3 1084.32
2 570.51 574.92
4 325.86 324.91
8 171.67 167.61
16 93.3 90.32
32 53.66 50.21
64 35.4 31.66

128 45.39 23.45
256 65.59 24.2

TABLE VI
SOA APPROACH APPLIED TO WSM6 WITH FLAT AND CACHE MODES

VI. DISCUSSION

The results presented in previous sections indicate that the
use of thread-local SOA is a suitable approach for optimizing
WSM6 and other physics schemes in NEPTUNE. The stan-
dalone experiments were instrumental in identifying the ap-
propriate techniques to optimize WSM6 and nisfl rain plm6.
These experiments enable the study of different high-level and
low-level optimization strategies that are not easily or trivially
implementable in WSM6.

The size of the SOA is chosen to fit in the L2 cache. The
data in the L2 cache are comprised of the inputs necessary to
compute the physics in one or multiple columns. Since there
are no dependencies between the columns, the computation
is self-contained. This approach to data granularity reduces
memory traffic and increases locality. The transpose approach
to two-dimesnional loops requires code transformations that
introduce temporary arrays. The temporary arrays often cause
cache spills, thus increasing cache misses, which limit perfor-
mance. In addition, the transpose approach often requires a
significant code restructuring compared to the SOA approach.

The use of OpenMP directive OMP SIMD at the low level
improves vectorization. Furthermore, it enables vectorization
in the cases where the loop body has conditionals present.
The dependencies along the k loop limit vectorization. This
limitation is addressed by vectorizing along the i loop, which
has no dependencies. Each SOA i loop is chosen to be a
multiple of the vector unit length by setting the chunk size
to 8, 16, 32, 64, 128, which improves data alignment.

With regard to peak performance, some of the challenges
faced by the WSM6 code are illustrated by CODE 2 in Section
V. In this case, there are only 9 flops in the inner loop. This is
typical of some of the loops in WSM6. As a result, with array
dimensions of 10592 and 39, there are only 3.7M flops. A
loop time of 0.02ms gives a flop rate of 185 GFLOPs, which
is about 6.6% of peak and is not unexpected for loops that
have low flop counts.

All the tables show a performance decrease from 128 to
256 threads with two to four threads per core. In the KNL,
all active threads in a given core flow through the same
pipeline, and thus they share resources such as instruction
cache and instruction queue. The increase in the number of
threads per cores leads to the division of the shared resources
among threads, and to an increase in memory access conflicts.
This competition for resources indicates why a performance
decrease is observed between 128 threads and 256 threads.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this study demonstrates the efficiency of
a high-level method using thread-local SOA, coupled with
low-level SIMD using OMP SIMD. As shown in the vari-
ous experiments, this optimization approach enables a better
utilization of the KNL resources by improving locality and
vectorization. The use of thread-local SOA increases locality
and decreases cache misses. The use of OMP SIMD along the
i loop, coupled with chunk sizes that are multiples of SIMD
length, improves vectorization. The high-level and low-level
optimization techniques increase WSM6 performance by 70x
speed-up compared to the original code and 23.3x speed-up
compared to the results of Ouermi et al. [1]. As shown in the
discussion, it is still a challenge to achieve high percentages
of peak performance for the relatively simple and short loops
of WSM6, and this is our continuing focus. As this work
continues, we plan to investigate other optimization strategies
with various data layouts, including a block-base data layout.
In addition, applying the findings of this study to the remaining



physics modules in NEPTUNE may result in performance
gains. Understanding how to better use hyper-threading may
further improve performance on KNL. Studying performance
of larger test cases with MPI and OpenMP level parallelism
will help us understand how to better parallelize NEPTUNE
on supercomputers.
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