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ABSTRACT
Parallel code portability in the petascale era requires modifying ex-
isting codes to support new architectures with large core counts and
SIMD vector units. OpenMP is a well established and increasingly
supported vehicle for portable parallelization. As architectures ma-
ture and compiler OpenMP implementations evolve, best practices
for code modernization change as well. In this paper, we examine
the impact of newer OpenMP features (in particular OMP SIMD) on
the Intel Xeon Phi Knights Landing (KNL) architecture, applied in
optimizing loops in the single moment 6-class microphysics mod-
ule (WSM6) in the US Navy’s NEPTUNE code. We �nd that with
functioning OMP SIMD constructs, low thread invocation over-
head on KNL and reduced penalty for unaligned access compared
to previous architectures, one can leverage OpenMP 4 to achieve
reasonable scalability with relatively minor reorganization of a
production physics code.
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1 INTRODUCTION
�e Weather Research and Forecasting (WRF) Model is an open
source numerical weather prediction so�ware used by atmospheric
researchers and weather forecasters at operational center and other
parties. WRF is designed to help scientists study and be�er un-
derstand weather phenomena. As with many other computational
models, signi�cant e�ort is put intomodernizing numerical weather
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codes for current and future architectures to continue to bene�t
from Moore’s Law [16]. In the case of weather codes, the goals
are to improve the accuracy and reduce the time requirements of
forecasts.
Traditionally, MPI-level [7] distribution of serial codes has been
the primary vehicle for exploiting parallelism in these predomi-
nately serial Fortran weather codes. However, in the last decade in
particular computational architectures have increased core counts,
decreased clock speeds and adopted wide SIMD vector units. �e
Intel Xeon Phi Knights Landing (KNL) [20] architecture, for exam-
ple, employs dual 8-lane double precision (DP) �oating point units
on each of 64 cores running at 1.3 GHz. MPI alone is not suited for
this �ne granularity; codes must be re-architected to exploit thread
and SIMD parallelism.
OpenMP [17] is a compelling model for portable parallelism in
that it requires relatively li�le modi�cation of potentially large,
complex codes. However, actual best practices for OpenMP vary
widely with the code in question, compiler implementation and
underlying architecture. In the past, most e�ective OpenMP op-
timizations have used high-level parallel constructs for threading
(i.e., mirroring MPI-level parallelism), carefully aligned arrays, and
explicit rewrites to eliminate branching. �ese optimizations are
no doubt e�ective, but require signi�cant modi�cation of exist-
ing codes. However, new architectures such as KNL boast lower
thread creation times and no longer carry the same penalty for
unaligned memory access. OpenMP 4 features such as OMP SIMD
promise control over how vectorization is expressed, beyond the
autovectorization capabilities of the compiler. Consequently, as
OpenMPmatures, “naive” approaches may prove almost as e�ective
as wholesale rewrites.
�is paper dissects the WSM6 single-moment 6-class [9] microph-
syics code in the context of NEPTUNE [5, 6] and examine OpenMP
optimization of individual loops, �rst using synthetic examples
and subsequently in WSM6 itself. �e experiments suggest sev-
eral interesting �ndings – particularly involving thread invocation
time on Xeon and KNL and e�ectiveness of OMP SIMD on code
with branching and nested subroutines. Extending these lessons to
WSM6, straightforward OMP DO SIMD constructs can deliver over
50x speedup over serial for several loops. Moreover, while not the
most e�ective, low-level OpenMP with OMP DO SIMD can be a
valid approach for accelerating serial codes with minimal changes
to source.

2 RELATEDWORK
Various optimization approaches have been applied to di�erent
component of NEPTUNE and other weather prediction systems.
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Michalakes et al. [11]. optimized the Weather Model Radiative
Transfer Physics by restructuring the code to expose concurrency,
vectorization, and locality. In this approach they explicitly reorga-
nized the arrays dimension, and lowered the inner loop size to �t
into the vector lane in order to take advantage of the vector units.
�ese optimizations yielded about 3x speedup.

Mielikainen et al. [14] optimize the Purdue-LinMicrophysics Scheme
by applying thread level parallelism across the horizontal grid
points because there is no communication among them. Further-
more, they collapse the loops into smaller loop sizes, reduce the
amount of temporary variables and use SIMD for explicit vectoriza-
tion. �ese modi�cations led to a speed up of 4.7x on the Intel Xeon
Phi 7120p. In an similar work Mielikainen et al. [13] improved the
Goddard microphysics scheme’s, in WRF, performance on the Intel
Xeon Phi. In this particular work they focused on exposing vector
level parallelism and reducing the memory footprint.
Although �is work here focuses on the Intel MIC, there are have
been some work on optimizing physics schemes for GPU [12, 15,
18, 19]. �e GPU base optimization shows be�er speed ups than
the MIC. For instance Mielikainen et al. [15] using CUDA achieve
a speedup of 2 orders of magnitude.

OpenMP is increasingly becoming the standard for shared memory
parallelism. It o�ers a simple high level abstraction for thread and
vector parallelism. In order to leverage OpenMP features, di�erent
groups investigated the overheads associated with OpenMP direc-
tives [1–3, 10]. �e overhead is not only dependent of the OpenMP
implementation but also of the architecture. LaGrone et al. [10]
developed a benchmark for measuring the overhead associated with
the tasking model and the synchronization in OpenMP on a 2.27
GHz 8-core Intel Xeon Nethalem E5520 processors. Dimakopoulos
et al [4]. studied OpenMP overheads under nested parallelism for
di�erent compilers. In both these studies, they extended the EPCC
benchmark to include the OpenMP directives of interest. In this
work we investigated the overheads on the Intel Knights Landing
and the e�ort necessary to minimize such overhead.

3 OVERVIEW OF NEPTUNE/WRF ANDWSM6
�e “Navy Environmental Prediction sysTem Utilizing the NUMA
corE” (NEPTUNE) is part of the United States Navy’s e�ort to de-
velop the next generation weather prediction system using the Non-
hydrostatic Uni�ed Model of the Atmosphere [5, 6]. �e Weather
Research Forecasting Model infrastructure is composed of multi-
ple modules. �e main components are the dynamic solvers and
the physics schemes; this work targets the WRF Single-Moment
6-class Microphysics scheme (WSM6).�e microphysics scheme
is a physical parametrization that simulates processes in the at-
mosphere that cause precipitation of rain, snow, graupel, water
vapor, cloud water, cloud ice. WSM6 is an improvement of WSM5
that introduce graupel particles and other variables to be�er model
precipitation of hydrometeors. �e computation in the scheme is
organized along a horizontal and a vertical direction. �ere is no
interaction among the horizontal grid points which allows straight
forward parallelism cases. Furthermore, the problem size studied,
WSM6 supercell test case, �ts in the MCDRAM.

4 EXPERIMENTAL SET UP
4.1 Methodology
In order to systematically and rigorously investigate the perfor-
mance bo�lenecks in WSM6 this work used a methodology that
consisted of four steps.

(1) Understanding code: �is consisted of analysing the loop
structures and the data dependencies that exist among the
loops.

(2) Identifying bo�lenecks: Pro�ling the code using Intel VTune
and wall clock timers to identify the bo�lenecks.

(3) Building and testing stand alone experiments base on bot-
tlenecks: we designed standanlone experiments to address
the bo�lenecks identi�ed in previous steps. �ese experi-
ments allow us to identify what approach is be�er suited
for a speci�c bo�leneck in WSM6.

(4) Applying �ndings to WSM6: �e �ndings in step three
guide the di�erent optimization decision in WS6 loops.

4.2 Measurement Parameters
�is section summarizes experiments conducted to explore various
optimization strategies for the WRF WSM6 module on the Intel
Knights Landing (KNL). �is e�ort focuses on understanding the
KNL and the steps necessary to e�ectively exploit the resources
o�ered by the KNL architecture. Performance of a given code is
evaluated using seven a�ributes: number of threads, serial time,
parallel time, work/thread, overhead, speedup, and e�ciency.

• Overhead: the overhead associated with thread creation,
thread binding, scheduling, etc [10]:

Overhead =
n ×Tp −Ts

n
(1)

where n is the number of threads, Ts is the serial time, and
Tp is the parallel time.

• Work/thread: the average work, in Floating Point Opera-
tions Per Second (FLOPS), per thread. �e work per thread
is calculated by dividing the total amount of work in a loop
by the number of threads used.

wthread =
work in loop

number of threads (2)

• E�ciency:

E f f icency =
Ts

n ·Tp
(3)

where n is the number of threads, Ts is the serial time, and
Tp is the parallel time.

4.3 KNL Architecture
�e Intel Knights Landing architecture consists of 36 tiles inter-
connected with a 2D mesh, MCDRAM of 16G High Bandwidth,
and 1 socket. It has a clock frequency of 1.3 GHz which is lower
than the 2.5 GHz of Haswell. �e Knights Landing tile is the basic
unit that is replicated across the entire chip. �e tile consist of two
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cores each connected to two Vector Processing Units (VPUs). Both
cores share a 1 MB L2 cache. Two AVX-512 vector units process 8
double-precision lanes each; a single core can execute two 512-bit
vector multiply-add instructions per clock cycle. �e results and
experiments presented in this paper use the default thread and
processor binding.

5 STANDALONE OPENMP FORTRAN
EXPERIMENTS

�is section describes standalone experiments designed to verify
the functionality of OpenMP, and mimic the behavior of WSM6
in a minimal reproducible fashion. In the following pseudocode,
work(i, j) denotes computations similar to

a(i, j, 1) = 0.1 ∗ b(i, j, 1) + c(i, j, 1)/d(i, j, 1).
�e computation is always the same, but di�erent outer dimensions
are used to simulate access of multiple arrays. �is behavior is
similar to the array operations in WSM6.

5.1 Overhead associated with OpenMP on KNL
5.1.1 Overhead Per Thread Minimization. �is experiment ana-

lyzes di�erent methods that aim to minimize the overhead/thread.
It determines the amount of work in FLOPS per thread required
to minimize the overhead and maximize the speedup. Synthetic
examples similar to the loops in WSM6 are used for this experiment.
Code 1, shown below, is used to measure a baseline overhead. Code
2 is used to analyze the overhead/thread of a WSM6-like loop. �e
variables ie and je are 10592 and 39 respectively. In theory, given
“su�cient” work for each thread the performance results from Code
2 should be comparable to Code 1 results.

Code 1: Code2:
1 !$OMP PARALLEL 1 !$OMP PARALLEL
2 !$OMP DO 2 !$OMP DO
3 DO i=1,100 3 do j=1, je
4 work(i) 4 do i=1, ie
5 ENDDO 5 work(i,j)
6 !$OMP END DO 6 end do
7 !$OMP END PARALLEL 9 end do

7 !$OMP END DO
8 !$OMP END PARALLEL

n Ts Tp Overhead wthread Speedup E�ciency
2 92.797 46.500 0.22 1000000 1.995 99.78
4 92.865 23.335 0.51 500000 3.98 99.49
8 92.770 12.209 5.00 250000 7.59 94.98
16 92.826 6.608 12.26 125000 14.05 87.79
32 92.944 3.831 24.27 62500 24.26 75.82

Table 1: Performance results from Code 1.

n Ts Tp Overhead wthread Speedup E�ciency
2 27.636 15.848 2.03 1858896 1.74 87.19
4 27.352 8.099 1.26 929448 3.38 84.43
8 27.439 4.108 0.68 464724 6.68 83.49
16 27.422 2.586 0.87 232362 10.60 66.27
32 27.507 1.780 0.92 116181 15.45 48.29

Table 2: Modi�ed Code 2 with !$OMP DO placed outside j
loop.

�e results from Table 1 show that the average overhead/thread
is less than 1 microsecond. By increasing the number of threads,
the number of FLOPS per thread decreases. �is decrease causes
the overhead per thread to increase. �e minimal overhead/thread,
0.1 microsecond, is observed at about 1 million FLOPS per thread.
However, with 0.03 million FLOPS per thread, the measured over-
head remains below 1 microsecond.
�e results from Table 2 show higher overheads and lower speedups
compared to Table 1 results. Code 2 is structured di�erently com-
pared to Code 1. �e compuatation in work(i) is done with a 1D
array while the computation in work(i,j) is done with a 2D array.
Futhermore the dimension of the arrays are di�erent. �ese di�er-
ences explain di�erent observed overheads and speedups.
When the !$OMP PARALLEL and !$OMP DO are moved to the i
loop or !$OMP PARALLEL at the j loop and !$OMP DO at the i
loop, larger overheads and lower speedups occur, compared to the
results from Tables 1 and 2

5.1.2 Keeping Threads Active/Alive. Keeping threads active/alive
during computation reduces thread creation and cancellation over-
heads. !$OMP PARALLEL is the directive that creates the pool of
threads (fork), and !$OMP END PARALLEL cancels the created
threads (join). �us, creating threads at the beginning of a compu-
tation and canceling them at the end should reduce the overhead
associated with the creation and cancellation of threads. Further-
more, the OpenMP environment variable KMP BLOCKTIME can be
used to keep threads alive for a certain Time. �is experiment com-
pares a single parallel block performance against multiple parallel
blocks. One would expect Code 4 to outperform Code 3. Because
Code 4 is constructed with and single parallel block, it does not
incur the thread creation overhead caused by the multiple !$OMP
PARALLEL blocks.

Code 3: Code 4:
1 !$OMP PARALLEL 1 !$OMP PARALLEL
2 !$OMP DO 2 !$OMP DO
3 do j=1, je 3 do j=1, je
4 do i=1, ie 4 do i=1, ie
5 3 x work(i,j) 5 3 x work(i,j)
6 end do 10 end do
7 end do 11 end do
8 !$OMP END DO 12 !$OMP END DO
9 !$OMP END PARALLEL

13 !$OMP DO
10 !$OMP PARALLEL 14 do j=1, je
11 !$OMP DO 15 do i=1, ie
12 do j=1, je 16 3 x work(i,j)
13 do i=1, ie 21 end do
14 3 x work(i,j) 22 end do
15 end do 23 !$OMP END DO
16 end do
17 !$OMP END DO 24 !$OMP DO
18 !$OMP END PARALLEL 25 do j=1, je

26 do i=1, ie
19 !$OMP PARALLEL 27 3 x work(i,j)
20 !$OMP DO 28 end do
21 do j=1, je 29 end do
22 do i=1, ie 30 !$OMP END DO
23 3 x work(i,j) 31 !$OMP END PARALLEL
24 end do
25 end do
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26 !$OMP END DO
27 !$OMP END PARALLEL

n Ts Tp Overhead Speedup E�ciency
2 81.597 47.119 6.32 1.73 86.58
4 81.398 24.080 3.73 3.38 84.50
8 81.222 12.360 2.20 6.57 82.14
16 81.357 7.479 2.39 10.87 67.98
32 81.755 5.150 2.59 15.87 49.60

Table 3: Multiple parallel blocks with KMP BLOCKTIME in
Code 3.

n Ts Tp Overhead Speedup E�ciency
2 81.597 46.300 5.50 1.76 88.12
4 81.398 23.560 3.21 3.45 86.37
8 81.222 12.021 1.87 6.75 84.46
16 81.930 7.188 2.07 11.39 71.24
32 81.755 5.028 2.47 16.26 50.81

Table 4: Single parallel block with KMP BLOCKTIME in
Code 4.

Table 3 and Table 4 show performance results for multiple par-
allel blocks and a single parallel block, respectively. �e single
parallel block from Code 4 performs slightly be�er than the multi-
ple blocks case from Code 3, which supports the initial assumptions.

5.1.3 OpenMP Versus Pthreads Overhead. �is experiment an-
alyzes the overhead associated with thread creation and context
switches in the OpenMP and Pthreads libraries. In order to establish
a fair comparison both libraries, the synthetic experiment has been
done in C, because Pthreads does not have an equivalent in Fortran.

Pthreads OpenMP
n �read creation Context �read creation Context
2 199 0.631 14311 6.017
4 183 0.736 8047 3.336
8 121 1.182 4209 1.375
16 107 1.067 4115 1.046
32 102 1.041 1654 0.797
64 99 1.035 1417 0.943
128 120 1.27 653 1.579

Table 5: �read creation and context switch overhead mea-
surements with Pthreads and OpenMP.

Table 5 shows the thread creation overhead and context switches
measurements for Pthreads and OpenMP. �ese results indicate
that OpenMP has signi�cantly higher thread creation overhead
compared to Pthreads. the context switch measurements observed
in OpenMP are slightly but not signi�cantly higher than the ones
in Pthreads but not signi�cant.
�ese experiments show that the use of a single parallel block cou-
pled with the environment variable KMP BLOCKTIME contributes
to reducing the overheads and increasing the speedups slightly.

5.1.4 KNL vs Haswell overhead. �read overhead is dependent
on the implementation of OpenMP and the architecture used. Here,
performance of Code 1 on KNL and Haswell are compared.

n Ts Tp Overhead wthread Speedup E�ciency
2 67.825 34.225 0.31 1000000 1.981 99.08
4 67.77 17.263 0.32 500000 3.925 98.14
8 67.729 9.079 0.61 250000 7.459 93.25
16 68.099 5.015 0.76 125000 13.579 84.86
32 67.973 2.861 0.73 62500 23.758 74.25
Table 6: Performance results from Code 1 on Haswell.

�e results from Tables 1 and 6 indicate that the KNL have a lower
overhead than Haswell. �e average overhead on KNL is about
0.51 whereas the overhead on Haswell is about 0.61. In addition,
the speedups observed on KNL are greater than the ones onHaswell.

5.2 �read Scalability
5.2.1 Base case. �e previous section analyzed examples of

loops that do not exhibit signi�cant complexity. �is section fo-
cuses on understanding the performance impact of function calls.
�e example examined here is a loop with nested functions calls.

�is experiment analyzes a base case that is used as a reference.
Code 5 measures, how its performance scales with the number of
threads before transformation.

Code 5 : WSM6 loop with conditionals and function calls
1 do k = kte, kts, -1
2 do i = its, ite
3 ...
4 if(t(i,k).gt.t0c) then
5 ...
6 work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
7 if(qrs(i,k,2).gt.0.) then
8 ...
9 psmlt(i,k) = xka(t(i,k),den(i,k))
10 ...
11 endif
12 if(qrs(i,k,3).gt.0.) then
13 ...
14 pgmlt(i,k) = xka(t(i,k),den(i,k))
15 ...
16 endif
17 endif
18 enddo
19 enddo

A close analysis of Code 5 shows two function calls: xka and venfac.
�ese functions are implemented by calling two other functions,
viscos and di�us. Furthermore, all the functions call intrinsic math
functions such as sqrt, for which most current compilers now emit
vector instructions.

n Ts Tp Overhead Speedup E�ciency
2 2109.055 944.316 -110.21 2.23 111.67
4 2107.635 499.088 -27.82 4.23 105.57
8 2109.226 262.901 -0.75 8.02 100.27
16 2109.020 234.1 102.28 9.01 56.30
32 2110.18 231.294 165.35 9.12 28.51
40 2109.158 218.183 165.45 9.67 24.16

Table 7: Performance results from Code 5.

Table 7 shows that Code 5 scales up to 8 threads. A�er 8 threads the
overhead increases drastically and the speedup plateaus at about 9x.
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n Ts Tp Overhead Speedup E�ciency
2 90.567 57.241 11.95 1.58 79.11
4 90.427 29.06 6.45 3.11 77.79
8 90.480 14.7601 3.45 6.13 76.62
16 90.581 8.721 3.06 10.39 64.92
32 90.631 5.882 3.05 15.41 48.15
40 90.973 3.064 0.79 29.69 74.22

Table 8: Code 5 without function calls and conditionals.

As mentioned before Code 5 has nested functions and conditionals.
Such complexities may cause performance limitations for threading
and vectorization.
Table 8 shows performance results from Code 5 with all function
calls and conditionals removed. By removing the function calls, the
amount of computation in the loop is signi�cantly reduced. �is
reduction resulted in the serial time in Table 8 being much smaller
than that in Table 7. Table 8 has signi�cantly higher speedups and
lower overheads than Table 7. �ese results indicate that the condi-
tionals and the function calls are responsible for the performance
limitations observed.

5.2.2 Function Calls Performance Analysis. As mentioned above,
Code 5 has nested function calls. �is experiment compares the
performance of a modi�ed version of Code 5 against Code 6. In the
modi�ed version of Code 5, the conditionals have been removed
but the function calls le� intact. In Code 6 the function calls are
replaced by some code that performs the same task as the functions.

Code 6 : WSM6 complex Code with no function calls.
1 !$OMP PARALLEL DEFAULT(shared) PRIVATE(i, k)
2 !$OMP DO
3 do k = kte, kts, -1
4 do i = its, ite
5 ...
6 !!--work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
7 temp0 = 1.496e-6 * (t(i,k)*sqrt(t(i,k))) / &

(t(i,k)+120)/den(i, k)
8 temp1 = 8.794e-5 * exp(log(p(i,k))* (1.81)) / t(i,k)
9 work2(i,k) = exp(log((temp0/temp1))* ((.3333333))) &
10 /sqrt(temp0)*sqrt(sqrt(den0/den(i,k)))

11 !!-- xka(t(i, k), den(i, k))
12 temp3 = 1.414e3*1.496e-6 * (t(i,k)*sqrt(t(i,k)))/

(t(i,k)+120)/den(i, k)*den(i,k)
13 ...
14 enddo
15 enddo
16 !$OMP END DO
17 !$OMP END PARALLEL

n Ts Tp Overhead Speedup E�ciency
2 1909.236 594.708 -359.910 3.21 160.51
4 1909.292 297.209 -180.114 6.42 160.60
8 1909.105 149.470 -89.17 12.77 159.65
16 1909.222 89.801 -29.52 21.26 132.88
32 1910.795 60.320 0.61 31.68 98.99
40 1910.146 30.584 -17.17 62.45 156.15

Table 9: Performance results from Code 6.

�e modi�ed version of Code 5 yielded a maximum speedup of
about 3x whereas Code 6 yielded a maximum speedup of 62x. Table
9 report the results from Code 6.

5.2.3 Subroutine Calls Performance Analysis. �is experiment
measures the performance impact of subroutine calls. Code 7 below
contains a subroutine call and few conditionals.

Code 7
1 !$OMP PARALLEL DEFAULT(shared) PRIVATE(i,j,m,thread_id)
2 do j=1, je
3 thread_id = OMP_GET_THREAD_NUM()

4 !$OMP DO SIMD
5 do i=1, ie
6 do m=1, M_LOOPS
7 #if OMPTEST_SUBROUTINE
8 call do_work(i,j)
9 #else
10 3 x work(i,j)
11 if (b(i,j,1) .gt. 0.0) then
12 3 x work()
13 endif
14 #endif
15 enddo
16 enddo
17 !$OMP END DO SIMD NOWAIT
18 end do
19 !$OMP END PARALLEL

20 subroutine do_work(i,j)
21 !$OMP DECLARE SIMD(do_work)
22 integer :: i,j
23 3 x work()
24 if (b(i,j,1) .gt. 0.0) then
25 3 x work(i,j)
26 endif
27 end subroutine do_work

Table 10 reports the following experimental cases:
• case 1 represents results fromCode 7 with OMP PARALLEL
+ OMP DO SIMD;
• case 2 represents results fromCode 7 with OMP PARALLEL
+ OMP DO SIMD and subroutine; and
• case 3 represents results from Code 7 with OMP PARAL-

LEL + OMP DO SIMD, subroutine and DECLARE SIMD on
functions.

case n Ts Tp Speedup E�ciency
case 1 64 69 1.46 47.26 73.84
case 2 64 69 1.45 62.09 74.35
case 3 64 90 1.48 60.81 95.02

Table 10: Code 7 results.

Table 10 shows the performance result from Code 7. �e DECLARE
SIMD use in this experiment does not have a signi�cant perfor-
mance impact. Table 10 cases 2 and 3 report additional variations
that were tested as given by their captions. �ese results show
signi�cant speedups. �is indicates that a single level (no nesting)
subroutine and and conditionals are not a performance bo�leneck
and various combination of !$OMP PARALLEL and !$OMP SIMD
yield signi�cant speedups.

5.2.4 Nested Conditionals. �is experiment focuses on studying
the performance impact of conditionals. It compares the perfor-
mance of Code 9 against amodi�ed versions of Code 6. �emodi�ed
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version of Code 6 include nested conditionals.

Code 9 : WSM6 loop with masking and no function calls.
1 compute bool_val1, bool_val2, and bool_val3

2 !$OMP PARALLEL DEFAULT(shared) PRIVATE(i, k)
3 !$OMP DO
4 do k = kte, kts, -1
5 do i = its, ite
6 ..
7 !!--work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
8 temp0 = 1.496e-6 * (t(i,k)*sqrt(t(i,k))) / &

(t(i,k)+120)/den(i, k)
9 temp1 = 8.794e-5*exp(log(p(i,k))*(1.81))/t(i,k)
10 work2(i,k) = exp(log((temp0/temp1))* ((.3333333))) &
11 /sqrt(temp0)*sqrt(sqrt(den0/den(i,k)))
12 ...
13 compute result1
14 ...
15 !!-- xka(t(i, k), den(i, k))
16 temp3 = 1.414e3*1.496e-6 * (t(i,k)*sqrt(t(i,k)))/ &

(t(i,k)+120)/den(i, k) &
17 den(i,k)
18 ...
19 compute result2
20 final_result = (result1*bool_val1 &

+ result2*bool_val2)*bool_val0
21 enddo
22 enddo
23 !$OMP END DO
24 !$OMP END PARALLEL

n Ts Tp Overhead Speedup E�ciency
2 2102.487 691.904 -359.34 3.04 151.93
4 2099.805 344.800 -180.15 6.09 152.24
8 2099.784 172.063 -90.41 12.20 154.25
16 2106.650 104.066 -27.60 20.24 126.52
32 2112.524 69.479 3.46 30.40 95.02
40 2100.923 35.199 -17.32 59.69 141.22
Table 11: Performance results from a Code 9.

�e modi�ed version of Code 6 obtains a maximum speedup of
about 8x. Using SIMD decrease the speedup to about 3x. SIMD
fails to vectorize because of the nested conditionals. Moving the
conditionals outside the loops as shown in Code 9 to address the bot-
tleneck observed. �is transformation yields signi�cant speedups
and low overheads as shown in Table 11.
�ese experiments indicate that nested conditionals hurt perfor-
mance. Eliminating branching yields signi�cant improvements.
�is approach can be used in many of the WSM6 codes that exhibit
similar pa�erns.

5.3 Vectorization
5.3.1 OMP SIMD. �is section analyzes the performance im-

pact of SIMD. In this experiment a simple compute-only code is
considered. It compares the performance of various parallel ver-
sions and Code 8 against the serial version. Furthermore, the thread
binding is done manually.

Code 8 : WSM6 loop with masking and no function calls
1 !$OMP PARALLEL DEFAULT(none)

!$OMP SHARED(a, b, c, d, je, ie,num_tasks)
!$OMP PRIVATE(i,j,m,its,ite,Thread_id)

2 thread_id = omp_get_thread_num()
3 its = 1 + thread_id * num_tasks * VLEN
4 ite = min(its + num_tasks * VLEN - 1, ie)
5 do j=1, je
6 !$OMP SIMD
7 do i=its, ite
8 do m=1, 10

3 x work(i,j)
12 enddo
13 if (b(i,j,1) .gt. 0.0) then
14 3 x work(i,j)
17 endif
18 enddo
19 !$OMP END SIMD
20 !$OMP END PARALLEL

Table 12 reports the following experimental cases:
• case 1 represents results from Code 8 with OMP DO placed

right before the i loop;
• case 2 represents results from Code 8 with only manual

implementation of thread binding;
• case 3 represents results from Code 8 withwith OMP DO

SIMD at the i loop; and
• case 4 represents results from Code 8 SIMD and manual

implementation of thread binding.

case n Ts Tp Speedup E�ciency
case 1 64 69 2.88 24 37.43
case 2 64 69 0.63 109 171.13
case 3 64 69 0.614 112 175.59
case 4 64 69 0.614 112 175.59

Table 12: Code 8 results.

Table 12 shows the speedups when the di�erent directives are
placed right before the i loop. OMP PARALLEL + OMP SIMD yields
the highest speedup among the di�erent experiments.

6 MODERNIZATION OF WSM6
6.1 Code Overview
�eWSM6 supercell test case of WSM6 consists of 27 loops around
10K (i) rows, with three subroutines (slope wsm6, nislfv rain plm,
nislfv rain plm6) [8]. �e last two subroutines contain non-trivial
control �ow (cycle/goto statements). �e other loops are generally
memory intensive, with signi�cant branching.
Applying the �ndings of the standalone tests, WSM6 was modi�ed
with OpenMP directives as follows:

• OpenMP initialization code in init microphysics()
in mod microphysics.f90;

• Consistent use of OMP PARALLEL and OMP DO SIMD as
presented in case 3 of Table 12;

• Minor code modi�cation to remove nested conditionals
and function calls as demonstrated in Code 9;

• Use of OMP PARALLEL sections around multiple loops as
shown in Code 3 to reduce thread invocation overhead;

• Elimination of false sharing and speci�cation of PRIVATE
variables ;

• Merging smaller loops involving the same arrays, to miti-
gate thrashing; and
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• Using C preprocessor macros to enable and measure run-
time of parallel, serial or both implementations.

�e decision to �rst pursue OMP DO SIMD, despite worse perfor-
mance than OMP SIMD with manual indices from Table 12, was
due to the presence of many temporary arrays in between loops
and dependency-heavy subroutines in WSM6. Moreover, the aim
is to �rst explores what naive “low-level” OpenMP parallelization
could deliver with miminal reorganization of the code.

6.2 WSM6 Results
Tests were conducted on a 4-socket (Haswell) Intel Xeon E7-8890
v3 with 3 TB RAM, and Intel Xeon Phi 7210 (“Knights Landing”, or
KNL) with 16 GB MCDRAM and 96 GB DRAM. �e compiler was
Intel Parallel Studio 2016, update 3 (build 67), due to issues with
Parallel Studio 2017 in other modules within NEPTUNE.

Overall scalability. Results up to all cores (64 cores on KNL, 72
on Haswell) on these respective systems are shown in Table 13, for
di�erent values of OMP NUM THREADS. We see limited bene�t
from hyperthreading on either platform. �ough not shown in the
table, we found that 18 cores of KNL performed 2.12x be�er than a
single-socket equivalent Haswell (with OMP NUM THREADS=18).
Moreover, using the default maximum number of threads (144
on Haswell, 256 on KNL), KNL performs roughly 2x faster than
Haswell core-for-core. �is suggests be�er scalability on KNL than
on Haswell. We note, however, that we used default thread a�nity
se�ings (i.e., KMP AFFINITY). Our Brickland-EX Haswell system
has a non-conventional memory architecture supporting up to 6
TB RAM, generally exhibiting higher inter-socket latencies than
comparable Xeon workstations, which could a�ect performance.
Further work may be required to scale speci�cally on this platform.

Haswell KNL KNL vs HSW
n Tp Speedup Tp Speedup KNL vs HSW
1 0.46 1 1.77 1 0.26
4 0.116 4 0.222 8 0.52
16 0.068 6.9 0.067 26 1
32 0.067 7.9 0.04 44 1.7
64 0.064 18 0.031 57 2.1
128 0.06 19 0.035 50 1.7
256 0.19 6 0.037 47 5

Table 13: Scalability and speedup (over serial) on 72-
core Haswell-EX and 64-core KNL with di�erent values of
OMP NUM THREADS.

6.3 WSM6 Discussion
Scalability challenges. �ough these results show good perfor-

mance on KNL, the current implementation does not scale well
beyond 36 cores (2-socket equivalent) on Xeon. �is is perhaps a
result of slightly higher thread invocation time on Xeon, but more
likely due to the higher clock speed of that architecture and worse
“base” speedup of threads compared to serial. �ough the use of
multiple parallel sections scales well on KNL, these standalone ex-
periments with thread overhead suggest that fewer parallel sections,
and use of manual indexing (i.e. OMP PARALLEL and OMP SIMD
instead of OMP DO SIMD directives) are necessary for be�er Xeon
performance.

KNL Haswell
Loop Ts Tp Ts Tp

Init loops 2.88 × 10−3 – 2.92 × 10−3 –
loop 1 16.8 1.19 6.76 1.58
loop 2 122 1.37 15.6 3.45
loop 5 46.8 1.28 15.9 1.58
loop 7 17.9 1.22 6.56 1.57

slope wsm6 98.6 1.81 41.5 4.76
loop 8 19.1 1.33 7.77 2.10

rain plm 260 – 39.0 –
rain plm 220 – 62 –
loop 9-11 10.3 1.49 11.7 3.12

slope wsm6 60.7 1.48 13.0 4.51
loop 12-14 176 2.37 36.1 1.86
loop 15-17 2.96 0.859 2.53 0.598
loop 18-19 102 2.26 13.1 2.36
slope wsm6 59.7 1.77 12.5 4.42
loop 20-21 524 5.32 76.4 5.92
loop 22 246 4.32 119 9.91
loop 23 193 1.95 32.6 6.02

loop 24-26 156 2.99 26.8 3.65
loop 27 4.52 5.85 5.61 6.98

wsm6 total 1860 38.9 440 64.3
Table 14: Wall clock time measurements of individual
WSM6 loops, inmilliseconds, on 72-core Haswell-EX and 64-
core KNL, using all available hardware threads.

KNL Haswell
Loop speedup E�ciency speedup E�ciency

Init loops – – – –
loop 1 14.06 21.00 4.91 5.94
loop 2 89.10 139.14 4.53 6.28
loop 5 36.44 56.15 10.07 13.97
loop 7 14.67 22.92 4.16 5.80

slope wsm6 54.56 85.12 8.71 12.08
loop 8 14.44 22.43 3.70 5.13

rain plm – – – –
rain plm – – – –
loop 9-11 6.90 10.80 3.73 5.20

slope wsm6 40.87 64.08 2.95 4.00
loop 12-14 74.41 116.03 19.36 26.95
loop 15-17 3.45 5.38 4.22 5.87
loop 18-19 45.11 70.51 5.56 7.70
slope wsm6 33.69 52.70 2.83 3.93
loop 20-21 98.48 153.90 12.93 17.92
loop 22 57.13 88.97 12.01 16.68
loop 23 99.53 154.64 5.42 7.52

loop 24-26 52.26 81.52 7.31 10.19
loop 27 0.77 1.20 0.80 1.11

wsm6 total 47.81 74.71 6.91 9.50
Table 15: Speedup over serial from Table 14.

Remaining bo�lenecks. Non-parallelizable and poorly paralleliz-
able subroutines in wsm6 and mod microphysics remain a bo�le-
neck. Complicated subroutines with dependencies such as
nislfv rain plm and nislfv rain plm6 require extensive rewrites to
achieve speedup; currently only 2x speedup is achieved for the
former. More signi�cantly, horizontal-to-vertical memory copies
of arrays in both WSM6 and mod microphysics in Neptune are
di�cult to parallelize, achieving at best 2x speedup. �ese require
further investigation. In addition to bo�lenecks originating from
loops with dependencies, the microphysics code as a whole remains
bo�lenecked by horizontal-to-vertical copying and integration of
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arrays. To address this, one should consider interleaving these
copy statements with parallel computation, and re-evaluating how
data are warehoused in the calling code.With bo�lenecks, the en-
tire microphysics module achieves only a modest 3x improvement
over serial on KNL, and 2x on Xeon. Ultimately, one would like to
restructure all WSM6 directives, moving from OMP DO SIMD to
chunks with OMP SIMD and a single high-level OMP PARALLEL
section, similar to the approach of Michalakes et al. [11]. �is will
require parallelizing all remaining sections and eliminating copies
of full arrays within WSM6.

Flat vs. Cache Mode on KNL. �ememory modes of the Xeon Phi
KNL architecture are of signi�cant interest in many code modern-
ization e�orts. In “�at mode”, the 16 GB MCDRAM are treated as
main memory by the OS; in “cache mode” the MCDRAM serve as a
cache for larger pool of DRAM (96 GB on the workstation). In prin-
ciple KNL hosts deployed in cache mode incur higher cache miss
costs, as memory are pulled from DRAM. WSM6 results showed
negligible di�erence between �at and cache modes (in fact, an un-
expected 1% advantage for cache mode, which is within the 5%
margin of error between individual timesteps of the microphysics
code). �is merits further investigation, but for the current work
we conclude the di�erence between �at and cache modes are not
major factors in the runtime of WSM6.

Summary. Overall speedups achieved compared to serial are
convincing: 57x over serial on KNL suggests 5.6% of peak (1024x,
64 cores x 16 SIMD lanes). Although this corresponds only to easily
parallelizable loops within WSM6, it encompasses non-trivial code
with branching, subroutines and incoherent memory access. In all,
the WSM6 work is encouraging in that signi�cant speedup was
possible with relatively small changes to code – exactly what is
desired in a code portability e�ort.

7 CONCLUSION AND FUTUREWORK
We have examined the impact of OpenMP directives on a Fortran-
basedWSM6microphysics code inWRF. In standalone experiments,
we measured the cost of thread overhead and tested the e�ective-
ness of various directives with and without OMP SIMD. �ese
suggest that while greater scalablity may be possible with high-
level OpenMP constructs, parallelization of dependency-free code
sections is possible with few modi�cations to the original code.
Moreover, we have found cases in which straightforward low-level
OpenMP methodologies may work, delivering satisfactory 50x–
100x speedups over serial. �e fact that modern compilers can emit
reasonably e�cient threaded and SIMD instructions from complex
code with branching, subroutines and unaligned arrays suggests
the OpenMP methodology holds promise.
Future work in this e�ort will pursue a more traditional high-level
OpenMP approach in the spirit of Michalakes et al. [11], and more
explicitly compare OMP SIMD to branch removal with autovec-
torization. Hybrid performance with MPI would be of interest as
well; strong scaling would reduce the e�ective size of arrays and
pose new challenges for thread and SIMD-level parallelism. Lastly,
a goal is to apply these methodologies to other weather physics
modules in NEPTUNE, such as GFS operational physics.
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