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Abstract

Atypical Atrial Flutter (AAF) is the most common car-
diac arrhythmia to develop following catheter ablation
for atrial fibrillation. Patient-specific computational sim-
ulations of propagation have shown promise in prospec-
tively predicting AAF reentrant circuits and providing use-
ful insight to guide successful ablation procedures. These
patient-specific models require a large number of inputs,
each with an unknown amount of uncertainty. Uncertainty
quantification (UQ) is a technique to assess how variabil-
ity in a set of input parameters can affect the output of a
model. However, modern UQ techniques, such as poly-
nomial chaos expansion, require a well-defined output to
map to the inputs. In this study, we aimed to explore the
sensitivity of simulated reentry to the selection of fibrosis
threshold in patient-specific AAF models. We utilized the
image intensity ratio (IIR) method to set the fibrosis thresh-
old in the LGE-MRI from a single patient with prior abla-
tion. We found that the majority of changes to the duration
of reentry occurred within an IIR range of 1.01 to 1.39, and
that there was a large amount of variability in the result-
ing arrhythmia. This study serves as a starting point for
future UQ studies to investigate the nonlinear relationship
between fibrosis threshold and the resulting arrhythmia in
AAF models.

1. Introduction

Atypical Atrial Flutter (AAF) is the most common car-
diac arrhythmia to develop following catheter ablation for
atrial fibrillation [1]. Additional catheter ablation is the
most common treatment for AAF; however, up to 63% of
patients experience AAF recurrence 1-year post-ablation
[2]. There is a critical need to develop more robust and
lasting AAF treatment strategies.

Patient-specific computational simulations of propaga-

tion have shown promise in prospectively predicting AAF
reentrant circuits and providing useful insight to guide suc-
cessful ablation procedures [3]. However, these simula-
tions require the user to create geometric models from im-
ages and select ionic model parameters, both of which in-
troduce sources of uncertainty and error to the resulting
AAF. Variability in the ionic model parameters has been
shown to affect the output of patient-specific simulations
[4]. Variability in the geometric models, which are often
based on Late Gadolinium Enhanced (LGE) MRI images,
arises from several user-defied image-intensity thresholds.
Each of the thresholds, of which there are several in use,
[5] introduce variability into the fibrosis region defined in
the geometric model. This variability has an unknown ef-
fect on the output of these patient-specific simulations. In
order to use patient-specific models clinically in a safe and
effective manner, we must understand the relationship be-
tween the variability of the input parameters and the output
of the simulation.

Uncertainty quantification (UQ) is a technique to as-
sess how variability in a set of input parameters can af-
fect the output of a model [6]. However, modern UQ
techniques, such as polynomial chaos expansion, require
a well-defined output to map to the inputs. Clinically, the
desired outputs from patient-specific AAF simulations are
the locations and characteristics of the AAF circuits. Be-
cause subtle changes to the model parameters may result
in substantial changes to the AAF reentry circuits, auto-
matically identifying these characteristics from simulation
results and formulating them into an interpretable yet com-
prehensive UQ output is challenging. Initial studies must
first explore the broad behavior of such AAF models in the
context of input uncertainty to identify a suitable strategy
for the application of more advanced UQ techniques.

In this study, we focused on changes to the threshold
used to identify fibrosis from LGE MRI images. We aimed
to explore the sensitivity of simulated reentry to the se-



lection of fibrosis threshold and identify simulation output
metrics that could be used to create an interpretable and
comprehensive understanding of model behavior in sub-
sequent UQ analyses based on realistic ranges of fibrosis
values. Using a single patient-specific atrial geometry, we
varied the fibrosis threshold and tracked changes in simu-
lated reentrant activity across these models.

2. Methods

2.1. Geometric Model Generation

An LGE-MRI of a patient with a previous ablation was
obtained from the University of Utah hospital database.
All data acquisition and procedures were approved by
a University of Utah internal review board. The LGE-
MRI images were manually segmented to obtain the left
atrial endocardial surface using Corview (The University
of Utah, Salt Lake City, United States). Scar and fibro-
sis were mapped to the endocardial surface from the seg-
mentation, which was then dilated by 1.5 mm to obtain
the epicardial surface. Using these surfaces, we generate
a tetrahedral mesh with TetGen [7]. The myocardial fiber
orientation was then mapped from the human atrial fiber
atlas to our meshes using the universal atrial coordinate
system [8, 9]. The average edge length of the meshes was
0.644 mm.

2.2. Grid Search of Fibrosis Thresholds

We applied fibrosis and scar thresholding using the im-
age intensity ratio (IIR) based on a range of approaches
described in the literature [10–12]. Pixels with an IIR
> 1.62 were considered scar; for fibrosis, we selected
eight evenly spaced thresholds, ranging from 0.93 to 1.46.
These thresholds became the major source of variability in
the simulations.

2.3. Computational Simulations of AAF

Simulations were performed using the monodomain for-
mulation in openCARP [13] with the Courtemanche ionic
model to generate human atrial action potentials [14]. The
parameters of the Courtemanche models were adjusted in
each tissue region as shown in Table 1. The conductivities
of each tissue region were also adjusted to achieve a lon-
gitudinal conduction velocity of 0.80 m/s and transverse
conduction velocity of 0.40 m/s in the healthy tissue (Ta-
ble 2) [15].

To induce atrial flutter, we stimulated from 9 different
sites. Each stimulus consisted of eight S1 pulses with a
cycle length of 600 ms. The S1 pulses were followed by
a premature S2 pulse, ranging from 180 to 250 ms. If ac-
tivity was detected (nodes with potential > -40 mV), the

Tissue Region GKr GNa GK1 Gto GCaL

Healthy 1.6 2.0 0.8 0.5 0.3
Fibrosis 1.6 1.2 0.4 0.5 0.15

Scar 1.6 1.2 0.4 0.5 0.15

Table 1. Ionic Model Factors. The Ionic model parameters
and the factor they were multiplied by for each region.

Tissue Region Longitudinal (S/m) Transverse (S/m)
Healthy 0.3479 0.1606
Fibrosis 0.0627 0.0627

Scar 0.0000 0.0000

Table 2. Conductivity Parameters. The conductivity pa-
rameters in each fiber direction for all three regions.

simulation was continued for 1.9 s after the S2 beat to let
the reentrant activity propagate and either become stable
or fade away. Stable reentrant activity that sustained for
the entire 1.9 seconds was defined as AAF.

3. Results

3.1. Reentry Duration

The ability to induce flutter across all thresholds and
stimulus sites is shown in Figure 1. Reentrant activity oc-
curred at all stimulus sites. Stimulus site 3 was the only
site incapable of inducing AAF. Stimulus sites 4 and 9 had
AAF across all fibrosis thresholds. The ability to induce
AAF varied based on the fibrosis levels for stimulus sites
1, 2, 5, 6, 7, and 8.

Figure 1. The inducibility at each fibrosis threshold. The
rows correspond to the fibrosis threshold, and the columns
to the stimulus site. Only durations of > 1.9 ms were con-
sidered to be AAF (green). Durations of < 1.9 ms were
considered ”some reentry” (yellow), while duration of 0
were ”no induction” (red). The number of unique circuits
observed at each threshold is shown in the final column.



3.2. Activation Maps

The sensitivity of simulated activation to threshold se-
lection is illustrated in Figure 2, which shows activation
maps for stimulus site 2 across fibrosis thresholds. These
activation maps correspond to the reentrant activity plotted
in Figure 1. The maps showed three substantially different
sites of reentrant activity corresponding to three different
fibrosis thresholds. The first site appeared to rotate around
a patch of fibrosis on the lower anterior part of the atrium,
and was observed at IIR thresholds of 0.93 and 1.01. The
next site of reentrant activity was around a large patch of
scar on the posterior side of atrium, only observed with a
threshold of 1.08. The final site of reentrant activity was
around a patch of fibrosis on the roof, which occurred at
the thresholds, 1.16, 1.24, 1.31, and 1.39.

4. Discussion

In this study, we simulated atypical atrial flutter using a
typical range of fibrosis thresholds in a single patient ge-
ometry. Our aims were 1) to explore the sensitivity of sim-
ulated reentry to the selection of fibrosis threshold used
to create the geometric model of the atria, 2) to identify
simulation output metrics that could be used to create an
interpretable and comprehensive understanding of model
behavior, and 3) to determine a suitable range of fibrosis
values over which to apply a more extensive UQ analysis.

The most notable result was the dramatic changes
in reentrant duration and location in response to small
changes in the threshold levels of fibrosis, even when pac-
ing occurred from the same site. The ability to sustain
flutter also depended sharply on the fibrosis threshold and,
less surprisingly, on the pacing site location. Reentry du-
ration and the stability of sustained AAF appeared to be
independent of the location of the flutter circuit. While we
observed changes in simulation behavior throughout the
range of fibrosis-threshold values, the majority of changes
to the duration of reentry occurred within an IIR range of
1.01 to 1.39, a range that captures the values proposed
in the literature [10, 11]. This study verifies that while
this is an appropriate range to identify fibrosis, the pro-
found variability of the resulting arrhythmias calls for fur-
ther study using sophisticated UQ approaches to capture
what is clearly a nonlinear relationship.

Our second goal remains unresolved, limited by the abil-
ity of a single output metric to capture such variability as
the path of a reentrant circuit. The duration of each cir-
cuit is a possible candidate metric; however, it is not clear
what clinical meaning this value has when characterizing
a circuit or suggesting possible ablation targets.

This study was limited to a single patient and their atrial
anatomy and scar pattern; the obvious next step is to ex-
pand to more cases. There are also other factors besides fi-

brosis that previous studies have shown can affect reentry,
such as shape, size, and baseline conduction velocities[16].
Each of these parameters introduces another source of un-
certainty in parameter selection and another motivation for
advanced UQ studies to establish the sensitivity of simula-
tion outputs to these uncertainties.
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