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Abstract

Introduction: The inverse problem of ECGI is ill-posed,
so regularization must be applied to constrain the solu-
tion. Regularization is typically applied to each individ-
ual time point (instantaneous) or to the beat as a whole
(global). These techniques often lead to over- or under-
regularization. We aimed to develop an inverse formula-
tion that strikes a balance between these two approaches
that would realize the benefits of both by implementing
a sliding-window regularization. Methods: We formu-
lated sliding-window regularization using the boundary el-
ement method with Tikhonov 0 and 2nd order regulariza-
tion. We applied regularization to a varying time window
of the body-surface potentials centered around each time
sample. We compared reconstructed potentials from the
sliding-window, instantaneous, and global regularization
techniques to ground truth potentials for 10 heart beats
paced from the ventricle in a large-animal model. Results:
The sliding-window technique provided smoother transi-
tions of regularization weights than instantaneous regu-
larization while improving spatial correlation over global
regularization. Discussion: Although the differences in
regularization weights were nuanced, smoother transitions
provided by the sliding-window regularization have the
ability to eliminate discontinuities in potential seen with
instantaneous regularization.

1. Introduction

Electrocardiographic imaging (ECGI) is a technique
used to noninvasively reconstruct parameters of an electri-
cal cardiac source model from measured body-surface po-
tentials that also requires detailed knowledge of torso ge-
ometry and the electrical conductivity of all the elements
of the torso. [1] The resulting inverse problem is known

to be ill-posed and requires regularization in order to con-
strain the solution within physiological values. [2] ECGI
is similar to many reconstruction approaches in that it bal-
ances matching the products of a forward model against
adhering to physiological constraints, a process known as
regularization.

Tikhonov regularization is a common approach in ECGI
and works by adding a weighted regularization weight and
operator matrix to the least-square solution of the forward
model. [2] This operator matrix represents some physi-
ological penalty assumption about the solution, based on
e.g., amplitude (Tikhonov 0 order) or spatial smoothness
(Tikhonov 2nd order). Regularization can be applied in-
stantaneously or globally, i.e., at every time point in a so-
lution independently, or across the entire signal simultane-
ously. [3,4] Instantaneous regularization can produce rapid
changes in the regularization weight, which, in turn, causes
discontinuities in the reconstructed signals. [3] Global
regularization, by contrast, applies a single regularization
weight to the whole solution, which ensures smoothness
but can lead to over-regularization in areas with a high
signal-to-noise (SNR) ratio, such as the QRS complex, and
under-regularization in areas with a low SNR, such as the
ST segment [4].

In this study, we aimed to develop an inverse formu-
lation that allows for the regularization weight to change
throughout the signal, while maintaining smoothness in the
solution. To achieve this balance, we propose regularizing
around a window at each time point in our reconstructed
solution and refer to this as ‘sliding window regulariza-
tion’. To evaluate this approach, we tested it on 10 experi-
mentally obtained beats following pacing from the anterior
ventricle. We tested a variety of window sizes, and com-
pared the resulting solutions to those obtained using the
instantaneous and global regularization techniques.
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2. Methods

ECGI Formulation: Our regularization technique is
based on a standard Tikhonov inverse formulation that as-
sumed epicardial potentials as the source model. We can
write the resulting minimization as

argmin
X

||AX−B ||2F + λ||RX ||2F , (1)

where the matrix A is a M × N transfer matrix between
the epicardium and torso, M is the number of torso mea-
surement points, and N is the number of epicardial mea-
surement points. For this study, A was calculated using the
boundary element method implemented in the open-source
SCIRun software. [5] The N × T matrix X contains the
epicardial potentials and the M × T matrix B the corre-
sponding body surface potentials, where T is the number
of time instances. The second term of Eq 1 shows how reg-
ularization is applied, where R is the M ×N regularizing
operator matrix and λ is the regularization weight.

How λ is chosen depends on the method of regulariza-
tion. When using instantaneous regularization, there is a
separate λ value for each time t. In this context, B and X
are reduced to b (a M × 1 vector) and x (a N × 1 vec-
tor) and a separate inverse solution is computed for each
time instant in the original recording. The resulting x vec-
tors are then concatenated into the final X solution ma-
trix. The global regularization technique uses a single λ
value for the whole beat simultaneously, resulting in a sin-
gle inverse solution matrix. The λ values are typically de-
termined using either instantaneous or Frobenius L-curve
methods. [4, 6]

Our sliding-window regularization approach selects a
value for λ at each t using a window of time around that
individual time instance. Applying the approach requires
two steps for each time instant: 1) identify the λ value us-
ing a window of time, and 2) calculate an inverse solution
using the resulting value of λ. For a given time instant t,
we first replace B and X in Eq 1 with B∗ (a M ×W ma-
trix) and X∗ (a N × W matrix) where W is the window
size. The values of B∗ are selected as the time window
of size W centered on the time instant t. The value of λ
is then determined for this window using the Frobenius L-
curve method. Once identified, the λ value for this time
instant (λt) is used to calculate an inverse solution vector
for xn using the vector bt. Once all x have been found,
they are concatenated into the X solution matrix. The B
matrix is padded by taking the first and last (W − 1)/2
columns from B, mirroring them, and then placing them
at the beginning and end of B.

Dataset: To test this regularization technique, we uti-
lized 10 beats paced from the left ventricle recorded from a
modified Langendorff preparation that has been described
previously [7,8]. Briefly, an isolated heart was surrounded

by a 256-electrode pericardial cage (N = 256) and sub-
merged in an electrolyte filled torso tank with 192 em-
bedded electrodes (M = 192). The signals from the
tank and cage electrodes were recorded simultaneously at
a rate of 1 kHz using a custom recording system through-
out a variety of interventions.[7] These recorded signals
were filtered and processed as described previously.[9] The
recordings from the pericardial cage were treated as the
ground truth epicardial potentials in this study.

Analysis: We generated inverse solutions for each of the
10 beats with the sliding window regularization for win-
dow sizes of W = 3, 9, 19, 29, and 39 milliseconds, as
well as with instantaneous and global regularization using
Tikhonov 0 (Tik 0) and Tikhonov 2nd (Tik 2) order reg-
ularization. The largest window size (39 ms) was chosen
so that when in the middle of the QRS complex, it would
encompass the entire QRS complex. The accuracy of re-
construction from each technique was assessed using three
metrics: 1) root mean squared error (RMSE), 2) spatial
correlation (SC), and 3) temporal correlation (TC) [8]. We
also compared the λ values selected for each method.

3. Results

Tikhonov 0: Figure 1 summarizes the results, from
which the RMSE with Tik 0 regularization ranged
marginally, from only 0.573 to 0.551 mV across all reg-
ularization techniques. SC showed decreasing median val-
ues as the window size increased. The median SC for
the instantaneous and global regularizations were 0.79 and
0.74, respectively. The sliding window regularizations had
medians of 0.787 for a 3-ms window, 0.789 for a 9-ms win-
dow, 0.785 for a 19-ms window, 0.776 for a 29-ms window,
and 0.768 for a 39-ms window. Conversely, the temporal
correlation increased as the window size increased. The
median temporal correlation values for instantaneous, 3-
ms, 9-ms, 19-ms, 29-ms, 39-ms and global regularization
were 0.888, 0.888, 0.890, 0.893, 0.895, 0.896, and 0.904,
respectively.

Tikhonov 2: The error metrics for Tik 2 regularization
followed similar overall patterns but with reduced error
and great variation over the different beats. RMSE ranged
from 0.531 mV to 0.626 mV across all regularization tech-
niques (Figure 1) with little variation in the median RMSE
values across window sizes. The median SC followed
a similar trend to the Tik 0, with spatial correlation de-
creasing as window size increased. However, the differ-
ence between the instantaneous regularization (median =
0.810) and the global regularization (median = 0.797) was
less pronounced than with Tik 0 regularization. The me-
dian temporal correlation stayed approximately constant at
0.929 with varying window sizes.

Regularization Weights: The λ values and RMS values
of a sample inverse solution are shown in Figure 2. Visual
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Figure 1. Reconstruction Statistics. Boxplots showing the RMSE (top row), spatial correlation, SC (middle row), and
temporal correlation, TC (bottom row) are shown for both Tikhonov 0 (left column) and 2nd (right column) order. The
x-axis of each plot goes from instantaneous regularization, through increasing window sizes, to global regularization.

comparison of the regularization weights shows that the
sliding window technique had much smoother transitions
of weights across the signal. The instantaneous regular-
ization technique showed large jumps at the beginning and
end of the beat. With these rapid spikes, the regularization
weight jumped from 2.5×10−4 to 6.2×10−3 for tik 0 and
230 to 5466 for tik 2. The global regularization had a rela-
tively low λ value of 2.53 × 10−4 for Tik 0 and 229.3 for
Tik 2. The RMS signals from the different reconstructions
showed only small variations.

4. Discussion

In this study, we aimed to develop an inverse formula-
tion that provides a compromise between locally optimal
regularization and temporal continuity. We implemented a
sliding window approach to Tikhonov regularization and
tested it against global and instantaneous regularization
approaches using 10 experimentally obtained paced beats
from a torso tank experiment [7, 8]. We found that the sta-
tistical metrics (RMSE, SC, and TC) showed sliding win-
dow regularization to be a compromise between the instan-
taneous and global regularization techniques. The sliding
window regularization solutions had an RMSE compara-

ble to the instantaneous and global solutions. However,
the spatial correlation decreased as the window size in-
creased, with the windowed regularization values falling
between those for instantaneous and global regularization.
The temporal correlation increased as window sized in-
creased, again with the windowed regularization values
falling between those of instantaneous and global regular-
ization. A window length of 19 ms marked a sweet spot
that achieved acceptable temporal correlation while avoid-
ing the sharp drop in spatial correlation that occurred with
longer window duration.

The changes to the λ value throughout the beat were
nuanced. Figure 2 shows that the sliding window regu-
larization smoothed over the rapid increases seen in the
instantaneous regularization, while maintaining a low reg-
ularization weight during the QRS complex. Based on this
ability to smoothly change the regularization weight, the
sliding window regularization technique offers a compro-
mise between instantaneous and global regularization.

Our sliding window regularization technique had differ-
ent effects with Tik 0 and Tik 2 regularization. The dif-
ferences in spatial correlation were larger when increas-
ing window size with Tik 0 regularization than with Tik
2 regularization. We theorize that this difference may be
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Figure 2. Regularization weights throughout an exam-
ple beat. The regularization weights (λ values) are shown
in the upper plot for the instantaneous and 19-ms sliding
window regularization methods with Tikhonov 0 and 2nd

order regularization. The lower plot shows the root mean
square (RMS) values of the solutions from each regular-
ization technique.

due to the differing constraints applied by Tik 0 and Tik
2. The sliding window regularization applies a temporal
constraint on the solution, albeit a simple one. Tik 0 reg-
ularization applies a general amplitude constraint, so the
temporal constraints of the sliding window regularization
and Tik 0 regularization may work together, leading to a
more profound effect when compared to Tik 2 regulariza-
tion. Previous studies that described temporal constraints
in ECGI found these constraints often improved the recon-
structed solution [3, 10, 11]. In the future, we hope to ap-
ply our sliding window technique along with other spatial
and temporal regularization techniques to identify possible
causes for this discrepancy.

Overall, the sliding window regularization technique
provided a middle ground to instantaneous and global reg-
ularization. Although the differences were nuanced, it did
show smoother transitions of regularization weight across
the signal. The sliding window regularization also ap-
peared to have a larger effect on Tik 0 than Tik 2, provid-
ing an avenue for future research to investigate its effects
on models that use spatial or temporal constraints.
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