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We describe the use of a higher-order singular value decomposition
(HOSVD) in transforming a data tensor of genes � ‘‘x-settings,’’ that
is, different settings of the experimental variable x � ‘‘y-settings,’’
which tabulates DNA microarray data from different studies, to a
‘‘core tensor’’ of ‘‘eigenarrays’’ � ‘‘x-eigengenes’’ � ‘‘y-eigengenes.’’
Reformulating this multilinear HOSVD such that it decomposes the
data tensor into a linear superposition of all outer products of an
eigenarray, an x- and a y-eigengene, that is, rank-1 ‘‘subtensors,’’ we
define the significance of each subtensor in terms of the fraction of
the overall information in the data tensor that it captures. We
illustrate this HOSVD with an integration of genome-scale mRNA
expression data from three yeast cell cycle time courses, two of which
are under exposure to either hydrogen peroxide or menadione. We
find that significant subtensors represent independent biological
programs or experimental phenomena. The picture that emerges
suggests that the conserved genes YKU70, MRE11, AIF1, and ZWF1,
and the processes of retrotransposition, apoptosis, and the oxidative
pentose phosphate pathway that these genes are involved in, may
play significant, yet previously unrecognized, roles in the differential
effects of hydrogen peroxide and menadione on cell cycle progres-
sion. A genome-scale correlation between DNA replication initiation
and RNA transcription, which is equivalent to a recently discovered
correlation and might be due to a previously unknown mechanism of
regulation, is independently uncovered.

cell cycle � DNA replication initiation � N-mode singular value
decomposition � oxidative stress � yeast Saccharomyces cerevisiae

DNA microarrays make it possible to record the genome-
scale signals, for example, mRNA expression levels (1–4)

and proteins’ DNA-binding occupancy levels (5–7), that guide
the progression of cellular processes. Future discovery and
control in biology and medicine will come from the mathemat-
ical modeling of these data, where the mathematical variables
and operations represent biological reality: The variables, pat-
terns uncovered in the data, might correlate with activities of
cellular elements, such as regulators or transcription factors, that
drive the measured signals. The operations, such as data classi-
fication and reconstruction in subspaces of selected patterns,
might simulate experimental observation of the correlations and
possibly also causal coordination of these activities (8). Com-
parative analyses of these data among two or more organisms
might give insights into the universality and specialization of
evolutionary, biochemical, and genetic pathways (9). Integrative
analyses of different types of signals from the same organism
might reveal cellular mechanisms of regulation (10).

The structure of DNA microarray data integrated from dif-
ferent studies is of an order higher than that of a matrix. Each
of the multiple biological and experimental settings under which
the data are measured represents a degree of freedom in a tensor
(11). Unfolded into a matrix, these degrees of freedom are lost
and much of the information in the data tensor might also be lost.

We describe the use of a higher-order singular value decom-
position (HOSVD) (12–14) in transforming a data tensor of

genes � ‘‘x-settings,’’ that is, different settings of the experi-
mental variable x � ‘‘y-settings,’’ which tabulates DNA microar-
ray data from different studies, to a ‘‘core tensor’’ of ‘‘eigenar-
rays’’ � ‘‘x-eigengenes’’ � ‘‘y-eigengenes.’’ The eigenarrays and
x- and y-eigengenes are unique orthonormal superpositions of
the arrays and the genes across the x- and y-settings, respectively.
Reformulating this multilinear HOSVD, also known as the
N-mode singular value decomposition (SVD) (15–17), such that
it decomposes the data tensor into a linear superposition of all
outer products of an eigenarray, an x- and a y-eigengene, that is,
rank-1 ‘‘subtensors’’ (12), the superposition coefficients of which
are the ‘‘higher-order singular values’’ tabulated in the core
tensor, we define the significance of each subtensor in terms of
the fraction of the overall information in the data tensor that it
captures.

We illustrate this HOSVD with an integration of genome-
scale mRNA expression data from three yeast cell cycle time
courses, two of which are exposed to either hydrogen peroxide
(HP) or menadione (MD) (1, 2). We find that significant
subtensors represent independent biological programs or exper-
imental phenomena common to all three studies or exclusive to
either one or two of the studies (18), including the subtle
differential effects of HP and MD on cell cycle progression. We
also find that this subtensor interpretation is robust to variations
in the data selection cutoffs.

The picture that emerges from this data-driven analysis sug-
gests that the conserved genes YKU70, MRE11, AIF1, and ZWF1,
and the processes of retrotransposition, apoptosis, and the
oxidative pentose phosphate pathway, that these genes are
involved in, may play significant, yet previously unrecognized,
roles in the differential effects of HP and MD on cell cycle
progression (1, 19–27). A genome-scale correlation between
DNA replication initiation and RNA transcription, which is
equivalent to a recently discovered correlation (10), is consistent
with the current understanding of replication initiation (28–31)
and recent experimental results (32–36), and might be due to a
previously unknown mechanism of regulation, is independently
uncovered.

Mathematical Methods: HOSVD
A single DNA microarray probes the genome-scale signal of K
genes of a cellular system in a single sample. A series of L arrays
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probes L different samples under L different settings of the
experimental variable x, that is, x-settings. A series of M arrays
probes the genome-scale signal under M different y-settings for
each given x-setting. Let the third-order tensor T, of size
K-genes � L-x-settings � M-y-settings, tabulate the genome-
scale signal for all genes and under all x- and y-settings, assuming
that LM � K. Each element of T, that is, Tklm, is the signal
measured for the kth gene under the lth x- and mth y-settings.
Each column vector of T, that is, T:lm, lists the genome-scale
signal measured under the lth x- and mth y-settings. The x- and
y-row vectors, Tk:m and Tkl:, list the signal measured for the kth
gene under the mth y-setting across all x-settings, and under the
lth x-setting across all y-settings, respectively.

The N � 3-mode SVD, a HOSVD (12–14) of the third-order
data tensor, is then a transformation of the data tensor from the
space of K-genes � L-x-settings � M-y-settings to the reduced
space of LM � K-eigenarrays � L-x-eigengenes � M-y-
eigengenes [supporting information (SI) Fig. 4],

T � R �a U �b Vx �c Vy,

Tklm � �
a�1

LM �
b�1

L �
c�1

M

R abcUkaVx,bl
T Vy,cm

T , [1]

where �a U, �b Vx, and �c Vy denote multiplications of the
tensor R and the matrices U, Vx, and Vy, which contract the first,
second, and third indices of R with the second indices of U, Vx,
and Vy or, equivalently, the first indices of UT, Vx

T, and Vy
T,

respectively. In this space the data tensor is represented by the
third-order core tensor R , which in general, is full. The trans-
formation matrix U defines the K-genes � LM-eigenarrays basis
set. The vector in the ath column of U, U:a, lists the genome-scale
signal of the ath eigenarray. The transformation matrices Vx

T

and Vy
T define the L-x-eigengenes � L-x-settings and M-y-

eigengenes � M-y-settings basis sets, respectively. The vectors
in the bth and cth rows of Vx

T and Vy
T, Vx,b:

T and Vy,c:
T , list the signal

of the bth x-eigengene across all y-settings and that of the cth y-
eigengene across all x-settings, respectively. The eigenarrays and
the x- and y-eigengenes are orthonormal superpositions of the
arrays and the genes across the x- and y-settings, respectively.

The multilinear HOSVD of Eq. 1 can be reformulated such
that it decomposes the data tensor T into a linear superposition
of � (LM)2 rank-1 subtensors, the superposition coefficients of
which are the higher-order singular values, tabulated in the core
tensor R (12), that is,

T � �
a�1

LM �
b�1

L �
c�1

M

R abcUa � Vx,b:
T � Vy,c:

T

� �
a�1

LM �
b�1

L �
c�1

M

R abcS�a, b, c�. [2]

where the subtensor S(a, b, c) is the outer product, denoted by
R, of the ath eigenarray U:a and the bth x- and cth y-eigengenes,
Vx,b:

T and Vy,c:
T (SI Fig. 5). Following Eq. 2, we define the

significance of a subtensor S(a, b, c) relative to all other
subtensors in terms of the ‘‘fraction’’ Pabc,

Pabc �
R abc

2

�
a�1

LM �
b�1

L �
c�1

M

R abc
2

, [3]

which measures the fraction of the overall information in the
data tensor that this subtensor captures. The ‘‘Shannon en-
tropy’’ d,

0 � d �
� 1

2 log�LM�
�
a�1

LM �
b�1

L �
c�1

M

Pabclog�Pabc� � 1, [4]

measures the complexity of the data tensor from the distribution
of the overall information among the different subtensors. This
HOSVD holds for a tensor T of any order N. For a second-order
tensor, that is, a matrix, this HOSVD reduces to the matrix
SVD (15).

HOSVD Computation. We compute the transformation matrix U
from the SVD of the matrix Tk � (T:11, . . . , T:1M, . . . , T:LM) �
UDVT, which is obtained by appending all column vectors {T:lm}
along the K-genes axis. Note that U is independent of the order
of the appended arrays. The singular values, which are tabulated
in the diagonal matrix D, are ordered in decreasing order, such
that the eigenarrays, the column vectors of U, are ordered in
decreasing order of their relative significance in terms of the
fraction of the overall information in the data tensor that each
eigenarray captures (SI Fig. 6). Similarly, we compute the
transformation matrices Vx and Vy from the SVD of the matrices
Tl � UxDxVx

T and Tm � UyDyVy
T, which are obtained by appending

all x-row vectors {Tk:m} along the L-x-settings axis and all y-row
vectors {Tkl:} along the M-y-settings axis, respectively (SI Figs. 7
and 8). For a real data tensor, the eigenarrays and the x- and y-
eigengenes are unique up to phase factors of �1, such that each
eigenarray and each x- and y-eigengene capture both parallel and
antiparallel data patterns, except in degenerate subspaces, de-
fined by equal corresponding singular values in the diagonal
matrices D, Dx, or Dy, respectively. For example, the y-eigengenes
Vy,c:

T and Vy,m:
T , which satisfy Dy,cc � Dy,mm, span an approxi-

mately degenerate subspace. We reformulate the HOSVD of
Eqs. 1 and 2 with a unique orthogonal rotation of these two y-
eigengenes, which is selected by subjecting the rotated y-
eigengenes to a constraint, that may be advantageous in the
interpretation and visualization of the data (SI Fig. 9). We then
compute the core tensor by multiplying the data tensor T and the
transformation matrices U, Vx, and Vy, that is, R � T �k UT �l
Vx

T �m Vy
T (SI Fig. 10).

Approximately Degenerate Subtensor Space Rotation. We define a
subset of subtensors as approximately degenerate if their cor-
responding higher-order singular values are approximately equal
in magnitude and if N 	 1 � 2 of their N � 3 indices are equal,
such that they are listed in a single vector in the core tensor R.
For example, the subtensors S(a, b, c) and S(k, b, c), which satisfy
�R abc� � �R kbc�, span an ‘‘approximately degenerate subtensor
space.’’ We reformulate the HOSVD of Eq. 2 with a single
rank-1 subtensor S(a 
 k, b, c) unique to the data tensor, which
is composed of these two subtensors, with the corresponding
higher-order singular value R a
k,b,c, that is, R abcS(a, b, c) 

R kbcS(k, b, c) � R a
k,b,cS(a 
 k, b, c). The subtensor S(a 
 k,
b, c) � U:,a
k RVx,b:

T
R Vy,c:

T is computed from the outer product
of U:,a
k � R a
k,b,c

	1 (R abcU:a 
 R kbcU:k), a normalized super-
position of the eigenarrays U:a and U:k, and the shared x- and y-
eigengenes, Vx,b:

T and Vy,c:
T (Fig. 1). This subtensor is unique to the

data tensor, because it is defined by a unique rotation in the
space spanned by S (a, b, c) and S (k, b, c).

Subtensor Interpretation. We associate a subtensor with an inde-
pendent biological program or experimental phenomenon when
a consistent biological or experimental theme is reflected in the
interpretations of the patterns of the eigenarray, or superposi-
tion of eigenarrays, and the x- and y-eigengenes, which outer
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product defines the subtensor mathematically, taking into ac-
count the sign of the superposition coefficient of this subtensor,
that is, the sign of the corresponding higher-order singular value.
We parallel- and antiparallel-associate an eigenarray with the
most likely parallel and antiparallel cellular states according to
the annotations of the two groups of k genes, one with largest and
one with smallest levels of biological signal in this eigenarray
among all K genes, respectively. The P value of a given associ-
ation is calculated assuming hypergeometric probability distri-
bution of the J annotations among the K genes, and of the subset
of j � J annotations among the subset of k genes, P( j; k, K, J) �
(k

K)	1 ¥i�j
k (i

J) (k 	 i
K 	 J) (18). We associate the x- and y-eigengenes

with a biological or experimental process when their patterns of
variation across the x- and y-settings, respectively, are interpret-
able (Fig. 2). For visualization, we set the average of each array
across the genes and of each gene across the x- and y-settings to
zero, such that the signal of each array and gene is centered at
its gene- or x- and y-setting-invariant level, respectively.

Biological Results: Integrative Analysis of mRNA Expression
from Yeast Cell Cycle Time Courses Under Different Oxidative
Stress Conditions
The data tensor we analyze (SI Dataset 1) tabulates relative
mRNA expression levels of K � 4,329 yeast Saccharomyces
cerevisiae genes across L � 13 time points sampled from each of
M � 3 cell cycle time courses of cultures synchronized by the
pheromone �-factor, under different oxidative stress conditions:
Exposures to (i) �0.2 mM HP, and (ii) �2 mM MD, starting at
25 min after 90 min of incubation in �7 nM �-factor, monitored
by Shapira et al. (1) and (iii) a control time course, synchronized
by 120 min of incubation in �7 nM �-factor, monitored by
Spellman et al. (2). The time points sample approximately two
cell cycle periods in the control culture. The first period of 63 min
is sampled at 7-min intervals. The second period is sampled at
77, 98, and 119 � 2 min. Each relative expression level is
presumed valid when the signal-to-background ratio is �1.1 for
both the synchronized culture and asynchronous reference, and
each of the 4,329 genes has valid data in at least eight time points
in each course, and at least 32 of the LM � 39 arrays.

We use SVD to estimate the missing data in each time course
separately (9). After normalizing each array by its norm �T:lm�,
and computing the transformation matrices U, Vx, and Vy (SI
Figs. 6–8), we rotate the approximately degenerate second and
third y-eigengenes, Vy,2:

T and Vy,3:
T , such that the rotated Vy,3:

T

describes over- and underexpression in response to HP and MD,
respectively, and steady-state expression in the control time
course (SI Mathematica Notebook). We then compute the
HOSVD of the data tensor (SI Fig. 9), and rotate the approx-
imately degenerate subtensor spaces S(4, 2
3, 1), S(5
2, 1, 3),
S(8
2, 4, 3), and S(3
7, 2, 3) (Fig. 1).

Of the 4,329 genes, the mRNA expression of 579 was tradi-
tionally or microarray-classified as cell cycle-regulated (2). The
expression of 312 and 680 genes was microarray-classified as
regulated by pheromone (3) or environmental stress (4), respec-
tively (SI Dataset 2). We annotate each of the genes as a
DNA-binding target of either one of 19 transcription factors and
four replication initiation proteins if the microarray-assigned P
value for the binding of that protein to at least one of the probes
that maps to that gene is �0.02 (5–7) (SI Datasets 3–6). The
DNA-binding occupancy levels of the oxidative stress response
activators and the pheromone response factors were measured
after a 30-min exposure to �4 mM HP or 3 nM �-factor,
respectively. The cell cycle factors, Stb5 and the replication
initiation proteins were measured at steady growth conditions
(Fig. 2).

We find that significant subtensors represent independent
biological programs or experimental phenomena common to all
three studies or exclusive to either one or two of the studies,
including the subtle differential effects of HP and MD on cell
cycle progression. We also find that this subtensor interpretation
is robust to variations in the data selection cutoffs.

Significant Subtensors Represent Independent Biological Programs or
Experimental Phenomena. Steady state. The first and most signifi-
cant subtensor S(1, 1, 1) captures P111 �70% of the overall
expression information in the data tensor, with the correspond-
ing higher-order singular value R111 � 0 (Fig. 1a). Following the
P values for the distribution of the genes among each of the

Fig. 1. Significant HOSVD subtensors, after rotation of the approximately degenerate subtensor spaces S(4, 2
3, 1), S(5
2, 1, 3), S(8
2, 4, 3), and S(3
7, 2,
3). (a) Bar chart of the fractions of the 11 most significant subtensors. The higher-order singular values corresponding to subtensors highlighted in gray are �0.
The entropy of the data tensor is 0.27. (b) Line-joined graphs of the first (red), second (blue), third (green), and fourth (orange) x-eigengenes and the
superposition of the second and third x-eigengenes (violet), which define the expression variation across time in these subtensors. The time points are color-coded
according to their cell cycle classification in the control time course: M/G1 (yellow), G1 (green), S (blue), S/G2 (red), and G2/M (orange). The grid lines mark the
dissipation of the response to �-factor in the control time course (dashed) and the start of exposure to either HP or MD, at �20 and 25 min, respectively.
(c) Line-joined graphs of the first y-eigengene (red), and the second (blue) and third (green) rotated y-eigengenes, which define the expression variation across
the oxidative stress conditions.
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subsets of k � 200 genes with largest and smallest levels of
expression in the first eigenarray U:1 (SI Dataset 7), which
defines the expression variation across the genes in this subten-
sor, this eigenarray is antiparallel-associated with mRNA ex-
pression in response to environmental stress and the pheromone,
and is parallel-associated with overexpression during the cell
cycle stage M/G1 (Fig. 2). Consistently, this eigenarray is also
antiparallel-associated with the expression of genes bound by
oxidative stress response activators and the pheromone response
factors Dig1 and Tec1, and is parallel-associated with the
expression of genes bound by the M/G1 factor Ace2. The
first x-eigengene Vx,1:

T , which defines the expression variation
across time in this subtensor, describes time-invariant underex-
pression (Fig. 1b). The first y-eigengene Vy,1:

T , which defines the
expression variation across the oxidative stress conditions, de-
scribes condition-invariant overexpression (Fig. 1c). Taken to-
gether, the first subtensor is inferred to represent the steady state
of mRNA expression in response to HP, MD, or �-factor,
averaged over time and conditions.
Oxidative stress responses. The second, third, and seventh subten-
sors, S (2, 1, 2), S (2, 2, 1), and S (2, 2, 2), capture �6%, 3.3%,

and 1% of the overall information, respectively, with R 212 � 0
and R 221, R 222 � 0. The second eigenarray is parallel-associated
with expression in response to environmental stress and is
antiparallel-associated with pheromone response and G1. The
second x-eigengene describes a transition from under- to over-
expression at �35 min. The second y-eigengene describes over-
expression in the HP- and MD-treated cultures and underex-
pression in the control culture. These subtensors are inferred to
represent expression in response to oxidative stress: The second
subtensor represents time-averaged response to the oxidative
stress induced by HP and MD vs. the time-averaged response
induced by �-factor. The third subtensor represents condition-
averaged expression variation across time in response to HP or
MD exposure starting at 25 min, or in response to �-factor, which
in the control culture dissipates at �20 min. The seventh
subtensor represents oxidative stress response that varies across
both time and conditions.
Pheromone responses. The fourth, fifth, and sixth subtensors,
S(4, 2
3, 1), S (3, 2, 2), and S(3, 1, 2), capture �1.6%, 1.4%, and
1% of the overall information, with R4,2
3,1 � 0 and R322, R312
� 0. The superposition of the second and third x-eigengenes

Fig. 2. Associations by annotations of the eigenarrays and superpositions of eigenarrays that define expression variation across genes in all ten most significant
subtensors. Bar chart of 	log10(P value) for parallel (Right) and antiparallel (Left) enrichments of genes, which are expressed in response to environmental stress
(red) or the pheromone (blue) or during the cell cycle (green), or of genes that are binding targets of oxidative stress activators (red), pheromone response (blue),
or cell cycle (green) transcription factors, Stb5 (orange) or replication initiation proteins (violet).
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describes a time-decaying transition from over- to underexpres-
sion at �20 min. Both third and fourth eigenarrays are antipa-
rallel- and parallel-associated with expression in response to
environmental stress and the pheromone, respectively. These
subtensors are inferred to represent pheromone and phero-
mone-induced oxidative stress responses: The fourth subtensor
represents a condition-averaged, time-decaying response. The
fifth subtensor represents an �-factor response that varies across
time and conditions. The sixth subtensor represents a time-
averaged response to the �-factor in the HP- and MD-treated
cultures vs. that in the control culture.

HP- vs. MD-Induced Expression. The eighth, ninth, and tenth
subtensors, S(5
2, 1, 3), S(8
2, 4, 3), and S(3
7, 2, 3), capture
�0.9%, 0.75%, and 0.6% of the overall information, with the
corresponding higher-order singular values � 0. Of the corre-
sponding superpositions of eigenarrays, U:,5
2 is antiparallel- and
U:,8
2 and U:,3
7 are parallel-associated with expression in
response to environmental stress and of oxidative stress activa-
tor-bound genes. Also, U:,5
2 is parallel- and U:,8
2 and U:,3
7 are
antiparallel-associated with expression activated by the G2/M
factor Ndd1. These subtensors are inferred to represent re-

sponses to the HP- vs. MD-induced oxidative stress: The eighth
subtensor represents time-averaged underexpression. The ninth
and tenth subtensors represent overexpression, starting at �25
and 35 min and peaking at �40 and 55 min, when the control
culture is at S/G2 and G2/M, respectively (Fig. 3a). Taken
together, oxidative stress-induced and G1 genes are over- and
G2/M genes are underexpressed in the HP- vs. the MD-treated
time course. These results are in agreement with the current
understanding of the differences in the response to HP vs. the
response to MD: The HP-treated culture arrests in G2/M after
extended G1 and S stages in a manner that depends on inacti-
vation of the Mcm1-Fkh2-Ndd1 transcription regulatory com-
plex (1) and the DNA damage-induced RAD9 checkpoint,
whereas the MD-treated culture continues through G2/M and
M/G1 and arrests in G1 because of underexpression of the G1
cyclin-encoding CLN1 and CLN2 (19).

The eighth, ninth, and tenth subtensors classify the yeast genes
according to the time dependence of their differential expression
and identify the subsets of genes with largest and smallest
expression in each subtensor as significant in the HP- vs.
MD-induced responses in terms of the fraction of the informa-
tion in either subtensor that they capture. The genome-scale
picture that emerges from this data-driven analysis suggests that
the evolutionarily highly conserved genes YKU70, MRE11, AIF1,
and ZWF1, and the processes of retrotransposition, apoptosis,
and the oxidative pentose phosphate pathway, that they are
involved in, may play significant, yet previously unrecognized,
roles in the difference between the effects of HP and MD on cell
cycle progression in yeast.
Retrotransposition. Overexpression in the eighth subtensor and
underexpression in the ninth and tenth subtensors define genes
of which time-averaged expression is greater in the MD- than the
HP-treated culture and is modulated by a peak in the MD- and
a trough in the HP-treated culture at �50 min, when the control
culture is at G2/M. The most significant of these genes in terms
of the fraction of the information in the eighth, ninth, and tenth
subtensors that it captures is the yeast Ku protein-encoding
YKU70 (Fig. 3b). Yku70 is a telomere maintenance protein,
which is necessary for escape from the RAD9 checkpoint arrest
in G2/M. In this process, Yku70 and the meiotic recombination
protein Mre11 play antagonistic roles, even though deletion of
YKU70 is similar to that of MRE11 in its effect on nonhomolo-
gous end joining of DNA double-strand breaks (20). Yku70 was
shown to potentiate retrotransposition (21), whereas disruption
of MRE11 was shown to increases retrotransposition levels (22).
We find MRE11 the 40th most significant gene with underex-
pression in the eighth and tenth subtensors and overexpression
in the ninth subtensor. Consistently, the subset of the 200 most
significant genes, which are anticorrelated with MRE11 in these
subtensors, includes 16 of the 20 retrotransposon nucleocapsid
genes in this data tensor, such as YIL080W, an enrichment that
corresponds to a P value of �10	18.
Apoptosis. Among genes anticorrelated with YKU70 in the eighth,
ninth, and tenth subtensors, the second most significant gene is
FLR1, a multidrug transporter. This differential expression of
FLR1 is consistent with the observation that its transcription is
regulated by the oxidative stress factor YAP1 and is induced by
HP but not by MD (23). The 19th most significant gene is AIF1,
which encodes the yeast apoptosis-inducing factor. Overexpres-
sion of AIF1, which with SKN7, SNQ2, and YAP1, constitutes the
gene ontology ‘‘response to singlet oxygen’’ core (24), stimulates
HP-induced apoptopic cell death (25). This differential expres-
sion of AIF1 is consistent with the inactivation of the frog
Xenopus laevis Ku70 during apoptosis (26).
Oxidative pentose phosphate pathway. Among genes correlated with
AIF1 and anticorrelated with YKU70, the 18th most significant
is ZWF1, which encodes the yeast glucose-6-phosphate dehy-
drogenase. Glucose-6-phosphate dehydrogenase catalyzes the

Fig. 3. Eigengenes and genes that are significant in the HP vs. MD-induced
responses. (a) Raster display of the outer products of the fourth and second x-
eigengenes with the third y-eigengene, Vx,4:

T
R Vy,3:

T and Vx,2:
T

R Vy,3:
T , which

define the expression variations across time and oxidative stress conditions in
the ninth and tenth subtensors, S(8
2, 4, 3) and S(3
7, 2, 3), respectively.
(b) Raster display of the expression of significant genes centered at the time-
and condition-invariant expression levels of each gene.
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first step of the pentose phosphate pathway, that is, the oxidative
utilization of glucose, and is involved in response to HP. ZWF1
is among the 200 genes with the smallest expression in the ninth
subtensor, together with GND1 and SOL3, the two other genes
in the gene ontology ‘‘oxidative brunch of the pentose-phosphate
shunt’’ core in this data tensor, and STB5, an S/G2 gene that
encodes a transcription factor required for the regulation of the
pentose phosphate pathway (27). Consistently, the ninth sub-
tensor is parallel-associated with expression of Stb5-bound genes
(Fig. 2).

Oxidative Stress Response Is Correlated with Overexpression of
Binding Targets of Replication Initiation Proteins. Recently, we
discovered a genome-scale correlation between the DNA bind-
ing of the replication initiation proteins Mcm3, Mcm4, and
Mcm7 and underexpression of adjacent genes during G1 (16).
Replication initiation requires G1 binding of these proteins,
which are involved in transcriptional silencing (28), at replication
origins (29). Therefore, we suggested that this correlation might
be explained by a previously unknown mechanism of regulation.

Now we uncover independently an equivalent genome-scale
correlation: In all ten most significant subtensors and the
corresponding seven eigenarrays and superpositions of eigenar-
rays, overexpression of binding targets of Mcm3, Mcm4, and
Mcm7 correlates with expression in response to environmental
stress and with overexpression of oxidative stress activator-
bound genes. DNA damage as caused by oxidative stress is
known to inhibit binding of origins by targeted degradation of
the essential prereplicative complex protein Cdc6 (30, 31). Taken
together, we find that overexpression of binding targets of
replication initiation proteins correlates with reduced, or even
inhibited, binding of the origins. This correlation is in agreement
with the recent observation that reduced efficiency of activation
of origins correlates with local transcription (32, 33).

As with the correlation between the DNA binding of Mcm3,
Mcm4, and Mcm7 and underexpression of adjacent genes during
G1, this equivalent correlation between overexpression of bind-
ing targets of Mcm3, Mcm4, and Mcm7 and expression in

response to stress may be due to either one of at least two
mechanisms of regulation: Stress-induced transcription of genes
that are located near origins (34, 35) may reduce the binding
efficiency of the adjacent origins. Or, reduced or even inhibited
binding of origins by replication initiation proteins caused by
degradation of Cdc6 may release genes that are located near
origins for transcription. For example, the promoter region of
the stress-induced FLR1, which includes Cin5 and Yap7 binding
sites, overlaps with the yeast autonomously replicating sequence
ARS209, and the stress-induced ZWF1 is transcribed in the
direction of ARS1412 (36).

Conclusions
We have shown that this multilinear HOSVD, reformulated to
decompose a data tensor into a linear superposition of rank-1
subtensors, provides an integrative framework for analysis of
DNA microarray data from different studies, where significant
subtensors represent independent biological programs or exper-
imental phenomena. By using this HOSVD in an integration of
genome-scale mRNA expression data from three yeast cell cycle
time courses, two of which are exposed to either HP or MD, we
were able to find that the conserved genes YKU70, MRE11, AIF1,
and ZWF1, and the processes of retrotransposition, apoptosis,
and the oxidative pentose phosphate pathway that these genes
are involved in, may play significant, yet previously unrecog-
nized, roles in the differential effects of HP and MD on cell cycle
progression. A genome-scale correlation between DNA repli-
cation initiation and RNA transcription, which is equivalent to
a recently discovered correlation and might be due to a previ-
ously unknown mechanism of regulation, has been indepen-
dently uncovered.
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