
Genetic Programming Based Symbolic Regression for Analytical Solutions to
Differential Equations

Hongsup Oha, Roman Amicib,c, Geoffrey Bomaritod, Shandian Zhec, Robert M. Kirbyb,c, Jacob Hochhaltera

aDepartment of Mechanical Engineering, University of Utah
bScientific Computing and Imaging Institute, University of Utah

cSchool of Computing, University of Utah
dNASA Langley Research Center

Abstract

In this paper, we present a machine learning method for the discovery of analytic solutions to differential equations.
The method utilizes an inherently interpretable algorithm, genetic programming based symbolic regression. Unlike
conventional accuracy measures in machine learning we demonstrate the ability to recover true analytic solutions,
as opposed to a numerical approximation. The method is verified by assessing its ability to recover known analytic
solutions for two separate differential equations. The developed method is compared to a conventional, purely data-
driven genetic programming based symbolic regression algorithm. The reliability of successful evolution of the true
solution, or an algebraic equivalent, is demonstrated.

Keywords: Physics-informed machine learning, Symbolic regression, Genetic programming, Boundary-value
problems

1. Introduction

The governing physics in engineering mechanics prob-
lems is often formalized mathematically via ordinary or
partial differential equations (ODEs or PDEs, respec-
tively). However, direct analytical solutions of these
equations are generally not attainable in practice other
than in idealized cases. For practical engineering prob-
lems involving challenges such as complex geometries,
discretization-based methods, e.g., finite element (FE)
analysis, are utilized to provide numerical approxima-
tions of the solution. In recent years, data-driven machine
learning (ML) alternatives have become widespread, and
methods have been developed to incorporate knowledge

Email addresses: hongsup.oh@utah.edu (Hongsup Oh),
amicir@gmail.com (Roman Amici),
geoffrey.f.bomarito@nasa.gov (Geoffrey Bomarito),
zhe@cs.utah.edu (Shandian Zhe), kirby@cs.utah.edu (Robert M.
Kirby), jacob.hochhalter@utah.edu (Jacob Hochhalter)

of domain physics: often dubbed theory-guided, physics-
informed, or physics-regularized ML Karniadakis et al.
(2021); Raissi et al. (2019); Karpatne et al. (2017). In-
spired by the work of Raissi et al. (2017), wherein
physics-informed neural networks (PINNs) were demon-
strated for finding approximate solutions of PDEs, we
demonstrate physics-regularization within an inherently
interpretable ML method for determination of symbolic
solutions to ODEs and PDEs. While the developed
method seeks minimization of a residual for approximate
symbolic solutions it is demonstrated that true analytical
solutions can be reliably discovered.

In practice, data in engineering programs are typically
expensive to acquire, especially at a scale sufficient to
train most conventional ML models. This often forces
decisions based on relatively small datasets. However, re-
cent advances in high-throughput data acquisition meth-
ods to support ML are promising Heckman et al. (2020).
Complementing data acquisition in the ML process are

ar
X

iv
:2

30
2.

03
17

5v
1

 [
cs

.L
G

]
 7

 F
eb

 2
02

3

physics-regularized approaches which can promote gen-
eralizable models that are consistent with a priori knowl-
edge Raissi et al. (2017, 2019); Warner et al. (2020). Al-
though the area of PINNs is especially promising, black-
box ML methods applied to scientific and engineering ap-
plications face challenges related to the interpretability
and explainability of the models. Unfortunately, opening
the metaphorical ML black box does not provide imme-
diate insight into how or why a model works: a necessary
step in engineering and science scenarios. To remedy this
opacity, the current trend is to utilize additional tools (e.g.,
visualization, weight-matrix analysis, or decision trees)
to aid interpretation of the resulting complex solutions
Adadi and Berrada (2018); Došilović et al. (2018). The
knowledge-extraction process is then analogous to cur-
rent discretization-based paradigms (e.g., FE): evaluate
the approximate solution at a set of points and generate
a contour plot or data table. In the context of engineer-
ing mechanics, lacking interpretability and explainability
can perpetuate an inherent lack of understanding about the
generated model and its prediction capabilities and limi-
tations. Furthermore, in many cases, there is litte or no
added accuracy benefit to using such black-box models
compared to interpretable alternatives Rudin and Radin
(2019).

Herein, genetic programming based symbolic regres-
sion (GPSR) is used due to its inherent interpretability
and recent successful application to physics and mechan-
ics problems Versino et al. (2017); Bomarito et al. (2021);
Hernandez et al. (2019). The standard form of GPSR
has been shown to be capable of developing true, ver-
ifiable models in the area of solid mechanics Bomarito
et al. (2021) and of discovering underlying physics from
data Schmidt and Lipson (2009). Extending beyond pre-
vious works, we augment standard GPSR with a physics-
regularized fitness function, PR-GPSR, to evolve solu-
tions to known differential equations i.e., where the gov-
erning mechanics are known and a solution is sought.
GPSR produces models in the form of analytic equations
Koza and Koza (1992); thus, when regularized by the
residual of the known ODE or PDE, it aims to produce
analytic solutions thereof. As will be demonstrated herein
for symbolic models, as is also true of PINNs, physics-
regularized ML requires only (at a minimum) a complete
statement of the differential equation and boundary or ini-
tial conditions necessary for a well-posed problem.

Due to the free-form symbolic regression nature of
GPSR, the application of physics-regularization becomes
analogous to the determination of closed-form solutions
to differential equations and as such distinguished from
more conventional numerical approximations. For exam-
ple, in a conventional mathematical approach the prac-
titioner proposes an ansatz space from which possible
analytic solutions can be built, as well as the allowable
ways in which expressions can be assembled (e.g., addi-
tion, multiplication, composition, etc.). In the language
of ML, the building blocks or dictionaries of mathemati-
cal functions are assembled and evolved to evaluate possi-
ble analytical solutions. GPSR with a physics-regularized
fitness function essentially automates this process of prac-
titioner proposition of analytic solutions. In the context
of engineering mechanics, a beneficial output of this ap-
proach is that symbolic models fit naturally within exist-
ing workflows. When coupled with user interpretation,
and explainability via satisfaction of known differential
equations, this promotes increased trust, accessibility, and
transfer of generated ML models into practice. Further,
more insights readily gained from symbolic equations can
suggest future data acquisition or new theories by identi-
fying model characteristics e.g., asymptotes. Lastly, sym-
bolic equations allow for a broader mathematical treat-
ment of produced models e.g., formulation of analytic ad-
joints.

The paper is organized as follows. In Section 2, we
present a brief overview of GPSR and provide details on
how we apply GPSR for learning the solutions to differ-
ential equations. In Section 3 we define two numerical
experiments based on boundary-value problems. In Sec-
tion 4, we demonstrate the performance of the developed
method. In Section 5, we present a discussion of results
with a summary of the successes and challenges of the
developed methodology. We conclude in Section 6 with a
summary and a vision for next steps.

2. Methods

2.1. Genetic Programming for Symbolic Regression
(GPSR)

Symbolic regression is a method that aims to model an
input data set without assuming its form. Instead, candi-
date models are proposed and evaluated by the algorithm,

2

with the only assumption being that the data can be mod-
eled by some algebraic expression. This approach is in
contrast to traditional regression methods in which model
form selection is made first, and the regression method
then estimates the model parameters. SR reformulates the
traditional regression problem into that of searching for an
optimal model form and its associated parameters. Note
that this is similar to what is done in deep neural networks
(DNNs), in which through a non-linear composition of
layers a regressor learns both coefficients and basis func-
tions (model form) from data. However, in the case of
SR, the fundamental mathematical building blocks from
which the model form is constructed are defined by the
user.

From a general perspective, SR is an optimization prob-
lem that occurs over a non-numeric domain of mathemat-
ical operators. There are binary operators which utilize
two operands (e.g., +, −, ×, ÷) and functions (unary op-
erators) which utilize one operand (e.g., sin, cos, exp,
ln). An SR model is then characterized by a variable-
length combination of these operators and coefficients
and, therefore, poses an infinite space of possible model
forms to search. In practice, the mathematical operator
domain is limited by a finite set of operations and maxi-
mum model complexity threshold. While these practical
constraints help constrain the vast search space an effi-
cient search method is required to discover accurate mod-
els.

To search the space, genetic programming (GP) is the
most commonly used approach to SR, together termed
GPSR. Within GPSR, genetic algorithms are used to
evolve models based on their fitness relative to a specified
fitness function(s), which are discussed in the next sec-
tion. This fitness function is used to select models most
likely to perform better, after which model evolution oc-
curs through random recombination (i.e., crossover) and
permutation (i.e., mutation) to generate new candidate
models. At the same time, the candidates with poorest
fitness are dropped out of the population (e.g., natural se-
lection). The iterative exploration of the solution space
is subject to both randomization and guidance from the
particular fitness and crossover and mutation procedures
implemented.

Potential GPSR fitness functions include standard ex-
plicit error metrics (e.g., mean squared error), custom
reward-cost functions, or derivative-based fitness func-

tions for implicit equations Schmidt and Lipson (2010);
Bomarito et al. (2021). Combining these with alterna-
tives for solution representation/structure (acyclic graphs)
and evolution strategies make GPSR suitable to a variety
of applications. However, the expense for this flexibility
and benefits includes increased computational resources,
potential non-determinacy, and susceptibility to selecting
high-variance solutions Wang et al. (2019).

Here, we use the open-source NASA GPSR code Bingo
NASA (2013); Randall et al. (2022) because of its mod-
ular nature, allowing for implementation of custom fit-
ness functions, and its ability to scale to high performance
computing (HPC) resources. To improve the performance
and robustness within Bingo, several efforts are made,
such as deterministic crowding Mahfoud (1995) and par-
allel island evolution Fernandezi et al. (2005); Whitley
et al. (1999). Deterministic crowding is a common nich-
ing algorithm to avoid converging to local optima wherein
pairs of models are generated based on their similari-
ties, and best fit individuals survive to the next genera-
tion. Further, we implement a parallel island evolution
strategy whereby multiple islands (archipelago) are dis-
tributed across available computer cores. Individual is-
lands then independently evolve with periodic communi-
cation of models among the islands to help maintain di-
versity.

2.2. Physics-regularized fitness function

Setup begins with a set of training data (Xi, yi) where
i ∈ 1, 2, . . . , n and Xi is a p-dimensional vector-valued in-
put of features, Xi = x(1)

i , x(2)
i , . . . , x(p)

i , and yi are the cor-
responding labels. Hereafter, the index on X is dropped
for brevity as a feature vector is always implied. A model,
f : Rp → R, is then sought for these training data. For
each model proposed by GPSR, f̃ (X), a defined fitness
function quantifies its accuracy and is sought to be mini-
mized. Conventionally, a purely data-driven fitness, Fdd,
would be defined as a vector:

Fdd
i = f̃ (X) − yi (1)

or homogenized as, for example, a mean-squared error:

Fdd =
1
n

n∑
i=1

(Fdd
i)2. (2)

3

To impose physics regularization, the fitness is aug-
mented with a measure of how well f̃ satisfies the pre-
scribed differential equations, L(k)(f̃ (X(k))), where L is an
arbitrary differential operator. Here, k ∈ 1, 2, . . . , l, repre-
sents l differential equations e.g., various boundary con-
ditions or multiple governing physics. Further, the X(k) at
which these differential equations are evaluated need not
be coincident with the purely data-driven inputs, X, nor
consistent across the L(k). A purely physics-regularized
fitness, F pr, can then be defined as:

F pr
j = [λ(1)L(1)(f̃ (X(1))); λ(2)L(2)(f̃ (X(2))); . . . λ(l)L(l)(f̃ (X(l)))],

(3)
where the semi-colon indicates concatenation into a one
dimensional vector and j ∈ 1, 2, . . . ,m, where m is the
total number of X(k) data points. Similar to Equation 2,
this vector-valued fitness can then be homogenized as, for
example, a mean-squared error. This second, physics-
regularized, fitness term includes optional hyperparame-
ters, λ(k), which control a relative weighting among the
conventional training data and the k differential equations.
It is often sufficient to set all λ(k) = 1, as is done herein,
and results in a complete, concatenated, vector-valued fit-
ness:

Fn+m = [Fdd
i ; F pr

j], (4)

or, can also be homogenized as, for example, a mean-
squared error which is referred to hereafter as F.

To evaluate the physics-regularized fitness term, F pr,
L(k)(f̃ (X j)) must be computed. As described in the pre-
vious section, Bingo produces a set of mathematical op-
erators that compose each function. To enable the com-
putation of the requisite derivatives, we simply translate
these mathematical operators into primitives provided by
PyTorch1 Paszke et al. (2019) and employ the automatic
differentiation method, autograd Kokhlikyan et al. (2019).
Automatic differentiation is a mature technology that has
gained further prominence in recent years due to its use in
training neural networks (NN). However, the NN use-case

1Specific vendor and manufacturer names are explicitly mentioned
only to accurately describe the test hardware. The use of vendor and
manufacturer names does not imply an endorsement by the U.S. Gov-
ernment nor does it imply that the specified equipment is the best avail-
able.

and our own differ in an important way. NNs construct a
single, highly-parameterized trial function. The resulting
gradients are then correspondingly high dimensional, re-
sulting in a higher computational demand.

Automatic differentiation frameworks tend to be de-
signed for NNs and, therefore, favor spending greater time
when the function is first constructed to make repeated
computation of the gradient more efficient. In our case,
however, we construct a population of analytic functions
for which the derivative will be computed. The dimen-
sionality of the necessary derivatives are also much lower
(e.g., 3-4 dimensions for PDEs), and the derivatives will
only need to be evaluated once per function construction.
Thus, techniques such as extensive graph-optimization
and JIT (just in time) compilation tend to harm rather than
help performance in our case. PyTorch was the fastest
framework which we tried; however, it is still slower than
conventional function evaluation by an order of magni-
tude. It is possible that algorithmic differentiation can
be sped up significantly via using a framework tailored
specifically for this use-case.

2.3. Local optimization of coefficients
Once a model has been formed via GPSR as in Sec-

tion 2.1, commonly there are undetermined constant co-
efficients. The physics-regularized fitness defined in the
previous section is then sought to be minimized by sub-
jecting these constant coefficients to a local optimization
step. The performance of physics-regularized GPSR is
found to be highly sensitive to this local optimization step.
As part of this work, many of the optimization algorithms
made available through the scipy.optimize.minimize and
scipy.optimize.root modules in Python were tested Vir-
tanen et al. (2001). For vector-valued fitness functions,
Equation 4, root-finding methods are utilized while for
scalar-valued (homogenized) fitness functions the mini-
mization methods are utilized. Because this local opti-
mization is automated for every GPSR model there is no
model-specific customization of the initial guesses. In-
stead, initial guesses for the constant coefficients were se-
lected randomly from a uniform distribution from -1 to 1.
However, optimized parameters were unconstrained and,
as such, could venture outside those initial guess bounds.

Because GPSR evolves arbitrary functions this assess-
ment of available methods tests which optimization meth-
ods perform best in general. Of the available meth-

4

ods in scipy 1.8.1, the Levenberg–Marquardt (LM) algo-
rithm performed best for vector-valued fitness functions
while the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm performed best for scalar-valued fitness func-
tions Virtanen et al. (2001). LM is a common optimiza-
tion method used for non-linear least squares problems.
BFGS is an iterative method used for unconstrained, non-
linear optimization problems. As with many gradient-
based optimization methods, both LM and BFGS can con-
verge on local minima. Beyond simply performing best,
it was found that LM and BFGS algorithms were the
only two algorithms that frequently found the global op-
tima and ran approximately 10× faster than other meth-
ods. This observation is consistent with previous find-
ings De Melo et al. (2015). Ultimately, LM had approxi-
mately the same runtime as BFGS but more frequently de-
termined the global optimum so it was selected for all of
the numerical experiments presented next. The improved
performance of LM is likely related to preservation of the
vector-valued fitness function, where homogenization of
fitness to a scalar value is not required.

3. Experiments

Two numerical experiments based on boundary-value
problems were selected to verify that physics-regularized
GPSR can evolve known solutions to differential equa-
tions. The first experiment verifies the solution to a linear,
fourth-order ODE. The second experiment then verifies a
linear, second-order PDE. Of particular importance with
these experiments is that success occurs specifically when
the known analytic solution to these differential equations
evolves i.e., an algebraic equivalence that is more rigorous
than a conventional numerical threshold.

3.1. Euler-Bernoulli Differential Equation

The first numerical experiment is a fourth-order ODE
boundary value problem, which is derived from force and
moment equilibrium, and known as the Euler-Bernoulli
equation. The objective of this experiment is to verify that
physics-regularized GPSR can reliably evolve the known
analytical solution, u(x), to the known ODE:

L(1)(u(x)) =
∂4u(x)
∂x4 −

w(x)
EI

= 0, (5)

where u is the deflection of the beam under applied load,
w, along its length, x, E is the Young’s modulus, and I is
the moment of inertia. The boundary conditions are such
that the u(x = 0) = 0 and u(x = l) = 0. Similarly, the
curvature, L(2) = d2u

dx2 − κ=0, is such that κ(x = 0) = 0 and
κ(x = l) = 0. For this experiment, w(x) is taken to be a
uniform load, Figure 1, and we rewrite the constant term
of Equation 5 as w(x)

EI = c.

Figure 1: Simply-supported beam with uniform load.

The solution to Equation 5 can be readily obtained by
integration and application of boundary conditions, upon
which Equation 6 is obtained:

u(x) =
c

24
(x4 − 2lx3 + l3x). (6)

Representing practical values, we define c = 5 × 10−5

and l = 10, which results in the expanded form given in
Equation 7. This equation consequently serves as a model
form with specific coefficients that will be used to verify
the produced GPSR models. Because of the symbolic na-
ture of GPSR, we not only verify numerical accuracy, but
also algebraic equivalence between the known solution
and GPSR models. Note, this ability to verify model form
and coefficients represents the fundamental difference be-
tween physics-regularized GPSR and its black-box meth-
ods counterparts, e.g., PINNs, and is a necessary step for
engineering use cases.

u(x) = 2.0833×10−6x4−4.166×10−5x3 +2.0833×10−3x.
(7)

This Euler-Bernoulli problem was run with n =

(2, 3, 11) input training data pairs (xi, yi) to assess the
relative importance of physics-regularization to provided
training data quantity. In the case of n = 2 training points,
this represents specification of only the boundary condi-
tions stated for u(x). This numerical experiment is ex-
tended to a single training point at the center of the beam
for n = 3 training points and ultimately to a training
point at each unit distance along the beam with n = 11

5

training points. For each of the physics-regularized trials,
x(1) ∈ (0, l) and x(2) ∈ (1, 2, . . . , 9): a total of m = 11
physics-regularization points.

As a baseline performance comparison for physics-
regularized GPSR, conventional GPSR was also com-
pleted. For the conventional GPSR trials, training data
sizes of n = (3, 5, 11) were tested. Because the case of
n = 2 training points could not be carried out with conven-
tional GPSR (as the solution would be trivial, f (x) = 0) a
case of n = 5 training points was added to illustrate data
quantity-dependent performance behavior.

Table 1: GPSR hyperparameters for solving the Euler-Bernoulli equa-
tion.

Hyperparameters Value(s)

Operator Test 1 +, −, ×
Test 2 +, −, ×, pow, sin, ÷

Number of islands 10
Population size 150

Maximum complexity 10
Crossover rate 0.5
Mutation rate 0.5

Differential weight, λ 1
Evolutionary algorithm Deterministic crowding

Because of the stochastic evolutionary process inher-
ent in GP, each of these cases was repeated 30 times to
determine average behavior. For each of these numerical
experiments the hyperparameters listed in Table 1 were
used. These hyperparameters were not chosen to optimize
the performance of GPSR for this case. Instead, generic
defaults were used e.g., 50% crossover vs. mutation, to
demonstrate functionality in a generic sense, i.e., without
a bias toward calibrated hyperparameters. Further, we test
dependence of successful solution evolution on the user-
defined mathematical building blocks (operators). In Test
1, operators are limited to the minimal requisite set from
which the solution can be evolved. In contrast, Test 2
permits an equal number of unnecessary operators, which
expands the models search space for GPSR.

3.2. Poisson’s Equation

The next test problem is an elliptic PDE boundary value
problem known as Poisson’s equation, which has a vari-
ety of applications in theoretical physics Evans (2010);

Han and Lin (2011). The objective of this experiment is
to evolve the known closed-form solution using physics-
regularized GPSR. Additionally, we investigate the influ-
ence of domain dimensionality, i.e., one, two, or three
dimensional (1D, 2D, 3D, respectively) and permitted
operators (similar to the Euler-Bernoulli experiment) on
the performance of physics-regularized GPSR. Poisson’s
equation with Dirichlet boundary conditions is defined as:

L(1)(u(x)) = ∇2u(x) = f (x) in Ω (8a)
u(x) = 0 on ∂Ω, (8b)

where u(x) is the solution on x ∈ (0, 1)d, f (x) is a source
term defined by −d π2∏d

i=1 sin(πxi) where d ∈ (1, 2, 3),
Ω is the problem domain, and ∂Ω is the boundary of the
problem. Figure 2 is an example of the sampled coordi-
nates in the 2D domain, where Equation 8a is evaluated at
circles and Equation 8b is evaluated at triangles.

Figure 2: Example of the sampled data in the 2D domain

The solution to Equation 8 can be obtained through in-
tegration and application of boundary conditions, which
leads to:

u(x) =

d∏
i=1

sin(πxi) (9)

The analytical solutions for 1D, 2D and 3D then be-
come Equation 10a, 10b and 10c, respectively. The re-
sulting physics-regularized GPSR models were evaluated
numerically and symbolically to confirm if the target so-
lution was evolved:

u(x1) = sin(πx1) (10a)
u(x1, x2) = sin(πx1) · sin(πx2) (10b)

u(x1, x2, x3) = sin(πx1) · sin(πx2) · sin(πx3). (10c)

6

A numerical experiment was run with randomly sam-
pled coordinates along the boundary, n = 2 for 1D, n = 16
for 2D, n = 20 for 3D, for evaluation of Equation 8b, and
along the domain, m = 2 for 1D, m = 32 for 2D, m = 64
for 3D, for evaluation of Equation 8a, see Figure 2. This
tests the minimal amount of input information for a well-
posed problem.

Table 2: GPSR hyperparameters for solving the Poisson’s equation.

Hyperparameters Value(s)

Operator Test 1 ×, sin
Test 2 +, −, ×, ÷, sin, cos

Number of islands 10
Population size 150

Maximum complexity 20
Crossover rate 0.5
Mutation rate 0.5

Differential weight, λ 1
Evolutionary algorithm Deterministic crowding

For each of these numerical experiments the hyperpa-
rameters listed in Table 2 were used to compare perfor-
mance. As with the Euler-Bernoulli experiment, the num-
ber of islands, population size, crossover rate, mutation
rate, differential weight, and evolutionary algorithm were
not tuned in an attempt to demonstrate a generic, default
performance. Also, tested in this experiment is the de-
pendence of performance on user-defined mathematical
building blocks (operators). In Test 1, operators are lim-
ited to the minimal requisite set from which the solution
can be evolved. Additionally, Test 2 permits a 3× number
of unnecessary operators.

4. Results

Each of the numerical experiments presented in this
section were run 30 times to gather variation in results due
to the inherent stochasticity of the genetic programming
algorithm. Each GPSR trial was terminated upon evolv-
ing a model for which F ≤ 1 × 10−15, see Equation 4. Of
particular interest here is the ability of GPSR to evolve the
known (correct) equation, not just a numerically-accurate
approximation to that equation. Here, a correct equation
is defined as being an algebraic equivalent to the known

solution and a trial was only considered to be success-
ful if such an equation evolved. Consequently, success
rates pertain to the frequency at which the correct analyti-
cal solution is determined, and not by simply reaching the
prescribed fitness threshold.

4.1. Euler-Bernoulli equation

0 25 50 75 100
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
ati

ve
su

cc
es

s n=3, GPSR
n=5, GPSR
n=11, GPSR
n=2, PR-GPSR
n=3, PR-GPSR
n=11, PR-GPSR

Figure 3: Cumulative distribution of successful (i.e., produced known
model) GPSR model evolution.

To compare the performance of physics-regularized
GPSR to conventional GPSR the cumulative distribution
of required generational counts to achieve the correct
equation is illustrated in Figure 3. In this experiment, the
number of points, n, used to evaluate the fitness contri-
bution from Equation 1 is varied to quantify the effect
of available training data on successful evolution of the
known solution. For the physics-regularized trials, the
number of points, m, used to evaluate the fitness contribu-
tion from Equation 3 is held fixed at 11, unless otherwise
specified.

The inclusion of physics-regularization reliably
evolved the known solution is shown in Figure 3, and
the corresponding performance (number of generations
to success) was significantly improved. With the con-
ventional fitness function GPSR was able to reliably
determine the known solution if n = 11 training points
were provided, while with n = 5 the known solutions was
found about 75% of the time and with n = 3 the known
solution was never evolved. In the cases of conventional
fitness with n = 3 or n = 5 training points, GPSR
produced models with low fitness but with equations that
only fit those few data points but elsewhere were poor.

To test and illustrate a general measure of accuracy,
Figure 4 contains the average (of the 30 repeats) fitness

7

10−20

10−14

10−8

10−2

F
dd

∞

n=3, GPSR
n=5, GPSR
n=11, GPSR
n=2, PR-GPSR
n=3, PR-GPSR
n=11, PR-GPSR

0 2 4 6 8 10
Position, x

10−21

10−9

F
pr

Figure 4: Test fitness evaluations at 201 points in x decomposed into
(top) Fdd and (bottom) F pr .

terms along the beam, x, for each studied case. First, the
error from provided displacement training data, Fdd, are
plotted at 201 points (steps of 0.05) along the beam in
Figure 4 (top). As can be seen for the n = 3 and n = 5
training points cases with conventional GPSR, the pro-
duced models are only accurate specifically at the training
points. Elsewhere, those two cases produce models that
are especially inaccurate. All other tested cases, however,
produce numerically-accurate models: producing highly
accurate models at points that were not specifically pro-
vided as training data.

Next, a test for general model accuracy for the physics-
regularized term, F pr, is presented in Figure 4 (bottom).
For models that resulted in undefined F pr evaluation e.g.,
were not fourth-order differentiable, the fitness was set
to ∞. These results are consistent with results of Figure
3, where the combination of conventional fitness and low
data quantity (i.e., n = 3 or n = 5 data points) did not reli-
ably produce the known solution. All other cases resulted
in negligible test errors for both Fdd and F pr. For these
cases, an algebraically-equivalent form of the known so-
lution was evolved and the non-zero error is a direct con-
sequence of the finite error threshold that results from the
local optimization step, Section 2.3, and round-off error
during model evaluation.

In both tests for general model accuracy, Fdd and F pr,
the physics-regularized cases worked well and perfor-
mance was relatively insensitive to the quantity of training
data provided. In other words, even in the case that only
the boundary conditions (i.e., n = 2 training points) are
provided, physics-regularized GPSR produces the known
solution. By contrast, with the conventional fitness, GPSR

only reliably produced the known solutions with n = 11
training points. Further, from these results it is observed
that the incorporation of physics-regularized fitness is
even more beneficial than added training data. Finally,
beyond these numerical evaluations, symbolic regression
affords the unique opportunity to evaluate the model form,
algebraically. These evaluations are provided in Section 5
along with the implications that these results suggest for
engineering use of physics-regularized, interpretable ML
methods.

As provided in Table 1, the preceding tests were run
with +, −, and × as the permitted operators for GPSR.
And, while that represents the minimal set of operators
for this experiment it is important to understand how un-
needed operators might affect GPSR performance. Con-
sequently, the same numerical experiment was repeated
(again 30 times), but with more operators (annotated as
MO): pow, sin, and ÷.

0 500 1000 1500
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
ati

ve
su

cc
es

s n=3, GPSR-MO
n=5, GPSR-MO
n=11, GPSR-MO
n=2, PR-GPSR-MO
n=3, PR-GPSR-MO
n=11, PR-GPSR-MO
n=2, 101, PR-GPSR-MO

Figure 5: Cumulative distribution of successful GPSR model evolution
with unneeded operators permitted.

For these tests with unneeded operators a correspond-
ing shift in behavior is presented in Figure 5. First, it
is seen that the cases of conventional fitness with n = 3
or n = 5 training points were never observed to pro-
duce the known solutions while with 11 training points
the correct solution was evolved only approximately 85%
of the time and required approximately 20× the number of
generations as compared Figure 3. Next, unlike with the
previous case with a minimum operator set, the physics-
regularized cases now demonstrate a clear dependence of
success on training data quantity. Here, the case of two
training data points (BCs only) now produces the known
solution just over half the time and approximately 95%
with three points. Extending to n = 11 training points re-

8

liably produces the known solution, but requires approxi-
mately 100x the generations. An additional case was as-
sessed here, with n = 101 training points, which demon-
strates continued performance improvement in the requi-
site generation count for determination of the known solu-
tion, but still requires an order of magnitude more gener-
ations than illustrated in Figure 3. This qualitative shift of
performance in reproducing the known solution was de-
termined to mainly be a result of including the sin opera-
tor. For evolved models that included sin, F pr was defined
(i.e., always fourth-order differentiable) and the local op-
timization was consistently successful in finding model
parameters that produced a low-fitness model. However,
while these models were numerically accurate, they were
not algebraically equivalent to the known solution and
therefore did not constitute success in these tests. Clearly,
the included operators play a significant role in GPSR per-
formance even with the inclusion of a physics-regularized
fitness function.

4.2. The Poisson’s Equation

A plot of 30 GPSR trials is shown in Figure 6 to visual-
ize the influence of domain dimensionality and permitted
operators on the performance of the physics-regularized
GPSR implementation. For consistency, each result is
represented as the same color in all sub plots. The solid
lines correspond to median values and the darker and
lighter colored section correspond to the quartile range
and outliers, respectively. From Figure 6, it is observed
that all cases achieved a fitness below the specified thresh-
old, F ≤ 1 × 10−15. Further, in each of the trials, the
known solution was successfully evolved. And generally,
as would be expected, the requisite number of generations
increased significantly with problem dimensionality.

The effect of domain dimensionality on the perfor-
mance with only two operators (sin and ×) is presented
in Figure 6a. It can be seen that 1 generation was required
for 1D (not illustrated and not surprising due to the low
complexity of the solution), 2 generations for 2D, and
28 generations for 3D. The effect of the unneeded oper-
ators, +, −, ÷ and cos, is illustrated in Figure 6b. Overall,
the trend is similar to Figure 6a, but requires significantly
more generations for success. This comparison is made
more clear by Figures 6c and 6d. In each of these tests,
lower dimensions tended to result in lower fitness. This

(a) 2D, Test 1 & 3D, Test 1 (b) 2D, Test 2 & 3D, Test 2

(c) 2D, Test 1 & 2D, Test 2 (d) 3D, Test 1 & 3D, Test 2

Figure 6: Fitness results of 30 SR runs for all trials. The solid line is the
median fitness at each generation. The two filled regions of each color
represents the quartile range (darker) and outliers (lighter), respectively.

result was found to be due to fewer parameters to be de-
termined during local optimization and round-off error.

Figure 7: Successful evolution of known solution over generations in the
2D, Test 1 trial. (a) fitness evolution as box plot of most fit individuals
in each population across the 30 runs. The median is illustrated by the
purple line, and outliers by circles. The numerical convergence threshold
is shown as the green dashed line. (b) cumulative distribution of success.

The statistical effect of dimensionality and included op-
erators on success rates is illustrated in Figures 7-10. In
each, the box plot illustrates the distribution of best fit in-
dividuals in the population across all 30 runs of each trial
(combined 2D or 3D, and operator set). The boxes extend
from the lower to upper quartile with whiskers extend-
ing to show the distribution range, and outliers shown as
open circles. For the 2D trial with only necessary opera-
tors included (Test 1), Figure 7, it is seen that convergence

9

Figure 8: Successful evolution of known solution over generations in the
3D, Test 1 trial. (a) fitness evolution as box plot of most fit individuals
in each population across the 30 runs. The median is illustrated by the
purple line, and outliers by circles. The numerical convergence threshold
is shown as the green dashed line. (b) cumulative distribution of success.

Figure 9: Successful evolution of known solution over generations in the
2D, Test 2 trial. (a) fitness evolution as box plot of most fit individuals
in each population across the 30 runs. The median is illustrated by the
purple line, and outliers by circles. The numerical convergence threshold
is shown as the green dashed line. (b) cumulative distribution of success.

Figure 10: Successful evolution of known solution over generations in
the 3D, Test 2 trial. (a) fitness evolution as box plot of most fit indi-
viduals in each population across the 30 runs. The median is illustrated
by the purple line, and outliers by circles. The numerical convergence
threshold is shown as the green dashed line. (b) cumulative distribution
of success.

occurs quickly with all 30 runs producing the known so-
lution by the sixth generation. With the same set of per-
mitted operators (Test 1), but extended to 3D, a significant
(∼ 10×) increase in the number of required generations to
reliably evolve the known solution is illustrated in Figure
8. Next, the effect of an increased set of permitted opera-
tors (Test 2) is presented in Figures 9 and 10. For the 2D
case with increased operators, approximately 100 genera-
tions were required for successful evolution of all 30 runs
as presented in Figure 9. Lastly, the most complex case of
3D with increased operators, Figure 10, required approxi-
mately 20k generations. It should be noted that these gen-
eration counts represent the requirement to achieve suc-
cess across all 30 runs. However, in each tested case, 1-
2 outliers caused a significant increase in the number of
generations required for 100% success.

It was anticipated that higher dimensionality would in-
crease requisite generations for success, as illustrated.
However, data illustrated in Figures 7-10 highlights that
the overall performance was more sensitive to the inclu-
sion of additional, unneeded operators in GPSR than the
increase in problem dimensionality. To assess the reason
underpinning this observation consider that each GPSR
model consists of d, m, and n, where d is the dimension,
m is the number of operators, and n is the maximum com-
plexity, respectively. An estimate of the total number of
potential models in a search space is given byH :

H = (2d + m)n−2d
2d∏
i=1

(n − i + 1) (2d − i + 1)

≈ O((2d + m)n−2d (2nd)2d).

(11)

Consequently, the size of hypothesis space can be esti-
mated for the 2D cases asO(1.2×1020) with minimal oper-
ators and O(4.1×1023) for additional operators. Similarly,
for the 3D cases, the space is estimated as O(1.3 × 1025)
for minimal operators, and O(3.8 × 1027) for added oper-
ators. Overall, this estimates the relative influence of the
increased dimensionality and operator set on the GPSR
search space and, as a consequence, ability to find the cor-
rect solution.

5. Discussion

As was the goal of including the physics-regularized fit-
ness function in GPSR, the preceding results demonstrate

10

meeting the more stringent ability for mathematical ver-
ification i.e., determination of known analytical models.
This demonstration is especially important in the engi-
neering and science contexts due to the resulting explain-
ability of produced models and the trust that can be built.
In this final section, we discuss various aspects of the re-
sults specifically related to observation of evolved equa-
tion forms for the GPSR experiments.

5.1. Euler-Bernoulli equation
As can be inferred from Equation 7 the simplest, cor-

rect GPSR model would be of the form:

α · x4 + β · x3 + γ · x, (12)

where the following represent the global minimum to be
determined during local calibration: α = 2.083̄ × 10−6,
β = −4.16̄ × 10−5, and γ = 2.083̄ × 10−3.

However, there are an infinite number of possibilities in
which equivalent model forms evolve within GPSR. As-
sessment of equivalency with the correct model then re-
quires additional efforts in automating GPSR model sim-
plification. For this, the python sympy module was uti-
lized Meurer et al. (2017). In all of the Euler-Bernoulli
trials we observed that an algebraically-equivalent model
form, to Equation 12, evolved in cases where the general
fitness test, see Figure 4, was < 1 × 10−15 across the 201
test points. Note that this threshold was found to be con-
servative but ensured no false positives in the verification
tests. Additionally, in the case of the minimal set of op-
erators, physics-regularized GPSR produced the correct
model form and coefficients reliably while conventional
GPSR produced the correct model only if sufficient train-
ing data were provided for determination of the necessary
4th-order polynomial. One such observed example is:

(b · d · f) · x4 + (b · d · e) · x3 + (b · c) · x + a. (13)

In which case, local optimization can successfully return:

b · d · f = α = 2.083̄ × 10−6,

b · d · e = β = −4.16̄ × 10−5, (14)

b · c = γ = 2.083̄ × 10−3, and
a = 0.

Upon analyzing the evolved models that had not yet
achieved the specified fitness threshold, it was commonly
observed that the correct model form had evolved but with
more complex interrelationships among the coefficients.
In these cases, successful local optimization as given in
Equations 14 was precluded. For example, the GPSR-
produced model:

(b2 · d) · x4 + (2 · a · b · d) · x3 + (a2 · d) · x2 + (a · c) · x (15)

would have the correct model form if the x2 coefficient,
a2 · d, evaluates to zero. However, for this to be the case
either a or d must be zero, which would mean that the co-
efficient of x3 must also become zero, ultimately leading
to an incorrect model. For improved use in engineering
and science applications, an evolutionary mechanism that
algebraically simplifies the model and aggregates these
redundant coefficient relationships could improve perfor-
mance and improve interpretability, by reducing unneces-
sary complexity of the evolved models. However, such
simplifications would also alter evolutionary paths.

For the physics-regularized GPSR tests with two train-
ing points and unneeded operators included, incorrect
model forms like the following were often observed:

a + b · sin(c + sin(x/c − d + e/c)). (16)

In these specific cases, sinusoidal models commonly re-
sulted in low fitness due to the even spacing of the train-
ing points, Xi, and differential equation evaluation points,
X j. It was observed that increases in either Xi or X j,
along with selecting points randomly within the problem
domain precluded these misleading models during evolu-
tion. Consequently, a convergence test is useful in deter-
mining a true model form, i.e., assessment of the sensitiv-
ity of model form to added Xi or X j points. Upon conver-
gence in this context, model forms among repeated GPSR
trials should reliably contain consistent operators.

5.2. Poisson’s Equation

The efficacy of physics-regularized GPSR for evolv-
ing analytic solutions of PDEs is investigated using the
Poisson’s equation. In this experiment, focus is on the
influence of domain dimensionality and permitted opera-
tors on successful model evolution. First, it is found that

11

the physics-regularized GPSR implementation success-
fully obtained the correct symbolic equation for all prob-
lem dimensions tested, such as Equation 10a, 10b, and
10c. However, as is also observed in the Euler-Bernoulli
experiment, a variety of equivalent model forms evolved,
which are commonly of higher complexity than the sim-
ple form:

ũ(x) =

d∏
i=1

ai · sin (bixi) , (17)

ai = 1 , bi = π.

Further, as the dimensionality increased, higher com-
plexity versions of the true model became more com-
monly observed. Of these cases, forms that can be equiv-
alent to the known solution, upon successful local opti-
mization, were commonly observed:

ũ(x) =

d∏
i=1

ai · sin (bixi + ci) , where (18)

ai = 1, bi = π, ci ≈ 0 or

ũ(x) =

d∏
i=1

ai · cos (bixi + ci) , where (19)

ai = 1, bi = π , ci = −π/2.

Unlike the Euler-Bernoulli experiment, however, this
experiment always resulted in model forms e.g., Equa-
tions 18 and 19, for which the parameters could be cor-
rectly determined upon local optimization. Generally,
upon assessment of the various model forms in both ex-
periments, it is evident that model bloat was increased in
the polynomial solutions of the Euler-Bernoulli experi-
ment.

6. Conclusions

The developed combination of an interpretable ML
method, GPSR, with fitness regularized by known gov-
erning differential equations, is demonstrated to discover
their analytical solutions. This method is demonstrated on
two governing differential equations, a fourth-order ODE

and second-order PDE, where the known analytical so-
lution is successfully discovered in both cases. Because
of the inherent interpretabilty, determination of success
is defined as learning the true algebraic solution, and not
limited to a numerical approximation, as is more conven-
tional ML methods.

The physics-regularized GPSR method requires only a
statement of the (known) governing differential equation
and boundary conditions sufficient for a well-posed prob-
lem, without need for additional training data to success-
fully determine the solutions. However, the success of
the physics-regularized GPSR method is demonstrated to
be dependent on several factors. In the Euler-Bernoulli
problem (fourth-order ODE), the analytical solution was
determined in each of the 30 repeated trials when only the
requisite mathematical operators were permitted. How-
ever, upon expanding to twice the number of operators to
include unnecessary operators, it is found that a minimal
amount of training data points were required to guide the
physics-regularized GPSR to the correct model form. In
other words, in the practical case where the operators in
the solution to the differential equation are unknown it is
still likely that some amount of (albeit a significantly re-
duced quantity) training data will be needed to identify
the true model form. In the Poisson problem (second-
order PDE), the effect of dimensionality was tested. As
expected for this case, the required number of generations
to discover the true solution was significantly increased
with dimension. Nevertheless, the analytical solution was
recovered in every trial.

The ability to use interpretable ML to discover analyti-
cal solutions to known differential equations has broad ap-
plication within computational mechanics. Determination
of an analytical expression, as opposed to numerically-
approximated data, enables broader mathematical treat-
ments e.g., sensitivity studies, optimization, and deeper
insights into the solution characteristics, to name a few.
While the method presented here provides the first nec-
essary step in applied mechanics and engineering, verifi-
cation, the next step is to employ this method for cases
with known differential equations but unknown solutions.
A key to building trust within the engineering community
for using ML in practice will then be the demonstration of
how one can validate those solutions.

12

Acknowledgements

The support and resources from the Center for High
Performance Computing at the University of Utah are
gratefully acknowledged. This research was sponsored
in part by the Army Research Laboratory (ARL) un-
der Cooperative Agreement Number W911NF-12-2-0023
and by Sandia National Laboratories under Agreement
2262518. The second and fourth authors were partially
supported by the Defense Advanced Research Projects
Agency (DARPA) through the Transformative Design
(TRADES) program under the award HR0011-17-2-0016.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of ARL or the US Government. The US Government is
authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation
herein.

Bibliography

References

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris,
S. Wang, L. Yang, Physics-informed machine learning,
Nature Reviews Physics 3 (2021) 422–440. doi:https:
//doi.org/10.1038/s42254-021-00314-5.

M. Raissi, P. Perdikaris, G. Karniadakis, Physics-
informed neural networks: A deep learning frame-
work for solving forward and inverse problems in-
volving nonlinear partial differential equations, Jour-
nal of Computational Physics 378 (2019) 686–
707. doi:https://doi.org/10.1016/j.jcp.2018.
10.045.

A. Karpatne, G. Atluri, J. H. Faghmous, M. Stein-
bach, A. Banerjee, A. Ganguly, S. Shekhar, N. Sam-
atova, V. Kumar, Theory-guided data science: A
new paradigm for scientific discovery from data,
IEEE Transactions on knowledge and data engineer-
ing 29 (2017) 2318–2331. doi:https://doi.org/
10.1109/TKDE.2017.2720168.

M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics
informed deep learning (part i): Data-driven solu-
tions of nonlinear partial differential equations, arXiv

preprint arXiv:1711.10561 (2017). doi:https://doi.
org/10.48550/arXiv.1711.10561.

N. M. Heckman, T. A. Ivanoff, A. M. Roach, B. H.
Jared, D. J. Tung, H. J. Brown-Shaklee, T. Huber,
D. J. Saiz, J. R. Koepke, J. M. Rodelas, J. D. Madi-
son, B. C. Salzbrenner, L. P. Swiler, R. E. Jones,
B. L. Boyce, Automated high-throughput tensile
testing reveals stochastic process parameter sensitiv-
ity, Materials Science and Engineering: A 772
(2020) 138632. doi:https://doi.org/10.1016/j.
msea.2019.138632.

J. E. Warner, J. Cuevas, G. F. Bomarito, P. E. Leser,
W. P. Leser, Inverse estimation of elastic modulus us-
ing physics-informed generative adversarial networks,
arXiv preprint arXiv:2006.05791 (2020). doi:https:
//doi.org/10.48550/arXiv.2006.05791.

A. Adadi, M. Berrada, Peeking inside the black-box:
a survey on explainable artificial intelligence (xai),
IEEE access 6 (2018) 52138–52160. doi:https://
doi.org/10.1109/ACCESS.2018.2870052.

F. K. Došilović, M. Brčić, N. Hlupić, Explainable arti-
ficial intelligence: A survey, in: 2018 41st Interna-
tional convention on information and communication
technology, electronics and microelectronics (MIPRO),
IEEE, 2018, pp. 0210–0215. doi:https://doi.org/
10.23919/MIPRO.2018.8400040.

C. Rudin, J. Radin, Why are we using black box mod-
els in ai when we don’t need to? a lesson from an
explainable ai competition, Harvard Data Science
Review 1 (2019). doi:https://doi.org/10.1162/
99608f92.5a8a3a3d.

D. Versino, A. Tonda, C. A. Bronkhorst, Data driven
modeling of plastic deformation, Computer Meth-
ods in Applied Mechanics and Engineering 318 (2017)
981–1004. doi:https://doi.org/10.1016/j.cma.
2017.02.016.

G. Bomarito, T. Townsend, K. Stewart, K. Esham,
J. Emery, J. Hochhalter, Development of inter-
pretable, data-driven plasticity models with sym-
bolic regression, Computers & Structures 252
(2021) 106557. doi:https://doi.org/10.1016/j.
compstruc.2021.106557.

13

http://dx.doi.org/https://doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/https://doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/https://doi.org/10.1109/TKDE.2017.2720168
http://dx.doi.org/https://doi.org/10.1109/TKDE.2017.2720168
http://dx.doi.org/https://doi.org/10.48550/arXiv.1711.10561
http://dx.doi.org/https://doi.org/10.48550/arXiv.1711.10561
http://dx.doi.org/https://doi.org/10.1016/j.msea.2019.138632
http://dx.doi.org/https://doi.org/10.1016/j.msea.2019.138632
http://dx.doi.org/https://doi.org/10.48550/arXiv.2006.05791
http://dx.doi.org/https://doi.org/10.48550/arXiv.2006.05791
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2018.2870052
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2018.2870052
http://dx.doi.org/https://doi.org/10.23919/MIPRO.2018.8400040
http://dx.doi.org/https://doi.org/10.23919/MIPRO.2018.8400040
http://dx.doi.org/https://doi.org/10.1162/99608f92.5a8a3a3d
http://dx.doi.org/https://doi.org/10.1162/99608f92.5a8a3a3d
http://dx.doi.org/https://doi.org/10.1016/j.cma.2017.02.016
http://dx.doi.org/https://doi.org/10.1016/j.cma.2017.02.016
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2021.106557
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2021.106557

A. Hernandez, A. Balasubramanian, F. Yuan, S. A. Ma-
son, T. Mueller, Fast, accurate, and transferable many-
body interatomic potentials by symbolic regression, npj
Computational Materials 5 (2019) 1–11. doi:https:
//doi.org/10.1038/s41524-019-0249-1.

M. Schmidt, H. Lipson, Distilling free-form natural
laws from experimental data, science 324 (2009)
81–85. doi:https://doi.org/10.1126/science.
1165893.

J. R. Koza, J. R. Koza, Genetic programming: on the pro-
gramming of computers by means of natural selection,
volume 1, MIT press, 1992.

M. Schmidt, H. Lipson, Symbolic regression of im-
plicit equations, in: Genetic Programming Theory and
Practice VII, Springer, 2010, pp. 73–85. doi:https:
//doi.org/10.1007/978-1-4419-1626-6_5.

Y. Wang, N. Wagner, J. M. Rondinelli, Symbolic re-
gression in materials science, MRS Communications
9 (2019) 793–805. doi:https://doi.org/10.1557/
mrc.2019.85.

NASA, Bingo, https://github.com/nasa/bingo,
2013.

D. L. Randall, T. S. Townsend, J. D. Hochhalter, G. F.
Bomarito, Bingo: A customizable framework for sym-
bolic regression with genetic programming, in: Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, GECCO ’22 Compan-
ion, ACM, Boston, MA, USA, 2022. doi:10.1145/
3520304.3534031.

S. W. Mahfoud, Niching methods for genetic algo-
rithms, Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1995.

F. Fernandezi, G. SPEZZAN02, M. Tomassini, L. Van-
neschi, 6 parallel genetic programming, Parallel meta-
heuristics: a new class of algorithms (2005) 127.

D. Whitley, S. Rana, R. B. Heckendorn, The island model
genetic algorithm: On separability, population size and
convergence, Journal of computing and information
technology 7 (1999) 33–47.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala, Pytorch: An imperative
style, high-performance deep learning library, arXiv
preprint arXiv:1912.01703 (2019). doi:https://doi.
org/10.48550/arXiv.1912.01703.

N. Kokhlikyan, V. Miglani, M. Martin, E. Wang,
J. Reynolds, A. Melnikov, N. Lunova, O. Reblitz-
Richardson, Pytorch captum, https://github.com/
pytorch/captum, 2019.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nel-
son, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Po-
lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quin-
tero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contribu-
tors, SciPy: Open source scientific tools for Python,
http://www.scipy.org/, 2001.

V. V. De Melo, B. Fowler, W. Banzhaf, Evaluating meth-
ods for constant optimization of symbolic regression
benchmark problems, in: 2015 Brazilian conference on
intelligent systems (BRACIS), IEEE, 2015, pp. 25–30.
doi:https://doi.org/10.1109/BRACIS.2015.55.

L. C. Evans, Partial differential equations, volume 19,
American Mathematical Soc., 2010. doi:http://dx.
doi.org/10.1090/gsm/019.

Q. Han, F. Lin, Elliptic partial differential equa-
tions, volume 1, American Mathematical Soc., 2011.
doi:https://doi.org/10.1090/cln/001.

A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kir-
pichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore,
S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P.
Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson,
F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka,
A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. Sco-
patz, Sympy: symbolic computing in python, https:
//docs.sympy.org/, 2017.

14

http://dx.doi.org/https://doi.org/10.1038/s41524-019-0249-1
http://dx.doi.org/https://doi.org/10.1038/s41524-019-0249-1
http://dx.doi.org/https://doi.org/10.1126/science.1165893
http://dx.doi.org/https://doi.org/10.1126/science.1165893
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-1626-6_5
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-1626-6_5
http://dx.doi.org/https://doi.org/10.1557/mrc.2019.85
http://dx.doi.org/https://doi.org/10.1557/mrc.2019.85
https://github.com/nasa/bingo
http://dx.doi.org/10.1145/3520304.3534031
http://dx.doi.org/10.1145/3520304.3534031
http://dx.doi.org/https://doi.org/10.48550/arXiv.1912.01703
http://dx.doi.org/https://doi.org/10.48550/arXiv.1912.01703
https://github.com/pytorch/captum
https://github.com/pytorch/captum
http://www.scipy.org/
http://dx.doi.org/https://doi.org/10.1109/BRACIS.2015.55
http://dx.doi.org/http://dx.doi.org/10.1090/gsm/019
http://dx.doi.org/http://dx.doi.org/10.1090/gsm/019
http://dx.doi.org/https://doi.org/10.1090/cln/001
https://docs.sympy.org/
https://docs.sympy.org/

	1 Introduction
	2 Methods
	2.1 Genetic Programming for Symbolic Regression (GPSR)
	2.2 Physics-regularized fitness function
	2.3 Local optimization of coefficients

	3 Experiments
	3.1 Euler-Bernoulli Differential Equation
	3.2 Poisson's Equation

	4 Results
	4.1 Euler-Bernoulli equation
	4.2 The Poisson's Equation

	5 Discussion
	5.1 Euler-Bernoulli equation
	5.2 Poisson's Equation

	6 Conclusions

