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Preface
I

This document contains the findings and recommendations of the NSF — Advisory Committee
for Cyberinfrastructure Task Force on Grand Challenges addressed by advances in Cyber Science
and Engineering. The term Cyber Science and Engineering (CS&E) is introduced to describe the
intellectual discipline that brings together core areas of science and engineering, computer science,
and computational and applied mathematics in a concerted effort to use the cyberinfrastructure (CI)
for scientific discovery and engineering innovations; CS&E is computational and data-based
science and engineering enabled by CI. The report examines a host of broad issues faced in
addressing the Grand Challenges of science and technology and explores how those can be met by
advances in CI. Included in the report are recommendations for new programs and initiatives that
will expand the portfolio of the Office of Cyberinfrastructure (OCI) and that will be critical to
advances in all areas of science and engineering that rely on the CI.

The Task Force, one of six created by the ACCI during the summer of 2009, met many times
since its inception, and held two workshops, one in August 2009, and another in April 2010. Over
100 scientists from the CS&E community participated in these meetings and contributed to the
ideas that led to eight working drafts of this document before the present version was completed. A
partial list of the Workshop attendees is given in Appendix A.

The Task Force consisted of six working groups, dedicated to six key components of the study:
Computational Methods and Algorithms, led by Donald Estep and Omar Ghattas;, High
Performance Computing, led by Abani Patra; Software, led by Thom Dunning and Katherine
Yelick; Data and Visualization, led by Cathy Wu and Christopher Johnson; Education, Training,
and Workforce Development, led by Sharon Glotzer and Linda Petzold; and Grand Challenge
Communities, led by John King and Victoria Stodden. Tinsley Oden chaired the Task Force, Omar
Ghattas and John King acted as co-chairs, and Barry 1. Schneider of NSF was the NSF liaison
between OCI and the Task Force. Jon Bass served as the Task Force Administrative Coordinator.

Many others contributed to the writing of various sections, and the work of the following
should be mentioned: Guy Almes (TAMU), Luc Anselin (Arizona State) George Biros (Georgia
Tech), Robert Bonneau (AFOSR), James Brasseur (Penn State), Richard Brower (Boston U.), Peter
Cummings (Vanderbilt/ORNL), Frederica Darema (AFOSR), Thomas Dietterich (Oregon State),
Ron Elber (UT-Austin), Tom Evans (Indiana), Geoffrey Fox (Indiana), Gary King (Harvard), Alan
Laub (UCLA), David Lazer (Northeastern), J. Scott Long (Indiana), Liz Lyon (U Bath), Dimitri
Mavriplis (U. Wyoming), Thomas Maier (ORNL), Stephen McCormick (CU Boulder), Richard
Moore (SDSC), Bernice Pescosolido (Indiana), Alex Pothen (Purdue), Mark Shephard (RPI),
Renata Wentzcovitch (U. Minnesota), and John Ziebarth (Krell Inst.).

Although this report was prepared by a task force commissioned by the National Science
Foundation, all opinions, findings, and recommendations expressed within it are those of the task
force and do not necessarily reflect the views of the National Science Foundation.
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xecufive
Summa

This document describes the major findings and recommendations of the NSF Task Force on
Grand Challenges. It is one of six Task Forces created by the Advisory Committee for
Cyberinfrastructure (ACCI) at NSF charged with the study of possible new programs and an
expanded scope of CS&E within the foundation. The specific charges of this Task Force were:

1) Develop a thorough understanding of the requirements of science and engineering
applications on the cyberinfrastructure that must be developed to make significant progress
toward resolving Grand Challenge (GC) Problems.

2) Identify methods for enabling different communities to work together to solve complex
problems. This will involve the study of virtual organizations and tools to support them.

3) Interact with other task forces to come forth with a set of well conceived recommendations
on ideas for new programs that might be developed within OCI that will more tightly
couple advanced problem solving in science and engineering with continuing investments.

4) Explore the role of Computational Science and Engineering enabled by Cyberinfrastructure
in scientific discovery and engineering innovation and its place in the organizational
structure and mission of NSF.

We provide definitions of a few key terms to make more precise the targets of this study and
how we approach these goals.

1) Cyberinfrastructure (CI): the broad collection of computing systems, software, data acquisition
and storage systems, and visualization environments, all generally linked by high-speed networks,
often supported by expert professionals.

2) Cyber Science and Engineering (CS&E): computational science and engineering enabled by the
cyberinfrastructure. Science is the enterprise dedicated to the acquisition of knowledge, and
engineering is the innovative application of science for human needs. The classical pillars of
science — the methods for acquiring knowledge — are theory (hypotheses put forth to explain
physical realities) and experiments (knowledge gained through observation using human senses or
instruments). In this document, computational science and engineering refers to science and
engineering achieved through the use of computational methods and systems (generally, hardware,
software, networks, etc.). Thus, computational science enables extensions of theory through
computer modeling and simulation (but not exclusively), and enables extensions of experimental
science through data-intensive computing (but not exclusively). CS&E is thus the intellectual and
technological discipline lying at the intersection of applied mathematics, computer science, and all
core science and engineering areas including data-based observational science and engineering and
statistics, dedicated to the development and use of computational methods and systems in scientific
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discovery and engineering innovation.

3) Grand Challenges (GC’s): the “Grand Challenges” were U.S. policy terms set in the 1980’s as
goals for funding high-performance computing and communications research in response to foreign
competition. They were described as “fundamental problems of science and engineering, with
broad applications, whose solution would be enabled by high-performance computing resources...”
(cf. http:/lwww.nae.edu). Today, the Grand Challenges are interpreted in a much broader sense with
the realization that they cannot be solved by advances in HPC alone: they also require extraordinary
breakthroughs in computational models, algorithms, data and visualization technologies, software,
and collaborative organizations uniting diverse disciplines.

Among the many Grand Challenges that can be listed are:

e Advanced New Materials* e Understanding Biological

e Prediction of Climate Change* Systems*

e  Quantum Chromodynamics and e New Combustion Systems
Condensed Matter Theory e Astronomy and Cosmology*

e Semiconductor Design and e Hazard Analysis and
Manufacturing Management*

e Assembling the Tree of Life* e Human Sciences and Policy*

e Drug Design and Development e Virtual Product Design*

e Energy through Fusion e Cancer Detection and Therapy

e  Water Sustainability e CO; Sequestration*

As representative examples, those marked with an asterisk are discussed in more detail in the body
of this report. Common themes of all Grand Challenges include:

e All Grand Challenges face barriers due to challenges in software, in data management and
visualization, and in coordinating the work of diverse communities that must work together to
develop new models and algorithms and to evaluate outputs as a basis for critical decisions.

e Transformative discovery and innovation needed to address the Grand Challenges will often
require capabilities approaching or exceeding exascale computing, and this will require
dramatic changes in processor architecture and in power management.

e More faithful computational models and more stable and robust algorithms needed for large-
scale Grand Challenge problems will have to adapt to emerging manycore and hybrid
architectures, which appear to be a very promising path to energy-efficient increased
computational power in the near future. Of critical importance are methods that are informed by
observational data in a way that can cope with uncertainty in data and quantify uncertainties in
predictions. New methods need to be developed to facilitate multiscale modeling, scalable
solvers for multiphysics and stochastic problems, and large-scale data-intensive simulations.

e Of special significance is the need for acquiring relevant data for calibration and validation of
large-scale computational models and the characterization and quantification of uncertainties.
This will require the development of statistical representations of data on parameters and
observations, statistical inverse methods and software that implement them, and methods to
resolve the large stochastic systems that result from model and data uncertainties. The transition
of conventional deterministic methods and models of complex physical events to those
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accounting for uncertainties and stochasticity will increase by several orders of magnitude the
size, complexity, and computational work needed for predictive simulations. Another challenge
presented by data-intensive simulation is ensuring the ability of others to verify and reproduce
the scientific results. This involves issues spanning software design, code building, and code
and data dissemination.

e The combination of the development of computational models based on scientific and
engineering principles, on principles and methods of computer science and computing
technology, and on the use of core computational and applied mathematics that come into play
to address effectively all Grand Challenge problems, represents the discipline referred to here as
Cyber Science and Engineering. While NSF has supported many cross-directorate initiatives in
basic CS&E over the years, there is no home for it within the NSF organizational structure. The
result has generally been scattered, underfunded programs with low proposal success rates, and
no sustainability for efforts requiring long-term investments in software and algorithm
development and infrastructure. Effectively attacking pressing Grand Challenge problems under
these conditions is extremely difficult.

4) Grand Challenge Communities and Virtual Organizations: these are organizational structures
enabled by the effective use of modern CI to facilitate collaboration among geographically
distributed and intellectually diverse multidisciplinary groups, necessary for addressing large-scale
and critical Grand Challenges affecting many areas of society and areas of science and engineering.
Grand Challenge Communities often include participants from intellectual disciplines that have
different and conflicting conventions of collaboration, are not used to working with each other, and
reside in distinct geographic locations. The organization of effective GC Communities and VO’s is
itself a formidable challenge requiring independent study in its own right. An introduction to the
concepts and issues is given in Chapter 8 of this report, and a more complete study is to be the
subject of a later report to the Advisory Committee on Cyberinfrastructure.

Findings and Recommendations

Overarching Recommendation

Throughout this study, the fundamental role of CS&E in scientific advancement and in
addressing the Grand Challenges is repeatedly noted. This is a subject that has emerged since the
advent of scientific computation and has grown to be of historic importance, affecting virtually
every area of science and technology and revolutionizing the way science and engineering are done.
It is now widely recognized as a third pillar of science and has become a subject indispensible to the
nation’s welfare, competitiveness, and standing in the international scientific community. Its
importance has been noted in numerous studies sponsored by federal agencies including, in
particular, the National Science Foundation. There is a wide consensus that it is truly a discipline, in
the same spirit as applied mathematics or computer engineering or biochemistry, but its
extraordinary value stems from its unique reliance on interdisciplinary collaborations, drawing
adaptively from a core body of knowledge in mathematics, computer science, engineering and
technology, and all scientific disciplines to address specific research challenges that invariably cross
traditional boundaries.

CS&E differs from core computer science and applied math research in that it is more closely
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intertwined with applications: it seeks to exploit the structure of particular scientific and
engineering problems to design effective methods to overcome the challenges inherent in driving
science and engineering problems. CS&E research seeks to advance mathematical methods to a
greater extent than is done in core computer science research; also the methods it employs are more
hardware-aware and software-oriented than is typical in applied math research. Finally, CS&E
differs from core science and engineering disciplines in its greater focus on advanced computer
science and applied math and its inherent reliance on interdisciplinary collaborations.

The fundamental importance of CS&E has frequently been recognized within the Foundation,
which has attempted to fund cross-directorate programs in CS&E over the last two decades.
Typically, these cross-cutting initiatives have been “ad-hoc”, temporary programs with very low
proposal success rates that are inadequate for creating the critical mass of knowledge and
communities for systematically advancing research on the abiding and pervasive challenges in
CS&E. Over the years NSF has supported a number of cross-cutting CS&E programs starting with
the Grand, National, and CS Challenges Programs in the early-to-mid 90s, components of
Knowledge and Distributed Intelligence (KDI) in the late 90s, ITR in the early-mid 00s, Dynamic
Data Driven Application Systems (DDDAS) in 2005, the Collaborations in Mathematical
Geosciences (CMG), Collaborative Research in Computational Neuroscience (CRCNS), Advances
in Biological Informatics, and PetaApps in the late 00s, and Cyber-enabled Discovery and
Innovation (CDI) today, but these programs are too few and far between to support research in an
area so vital to the nation’s competitiveness and future. Science agencies of foreign competitors
have embraced CS&E and are investing heavily in this area, as is clearly spelled out in the NSF-
supported Simulation-Based Engineering and Science (SBES) study [58]. All of these
considerations lead to the following recommendations.

RECOMMENDATION:

It is recommended that permanent programmatic activities in CS&E be established
within NSF. These activities should range from division- and directorate-level
programs for discipline-specific aspects of CS&E, to permanent NSF-wide cross-
cutting CS&E programs possibly managed by OCI. Interdisciplinary projects could
be co-funded between cross-cutting and relevant disciplinary programs. The
permanent NSF programmatic activities in CS&E would play a significant role in
incentivizing universities to expedite the creation of CS&E research and
educational programs, which in turn would go a long way in addressing the
immense shortage of well-trained computational scientists and engineers in the
workforce.”

' A resolution to create a new program in Computational and Data-Enabled Science and Engineering,
coordinated by OCI, was unanimously endorsed by the Advisory Committee on Cyberinfrastructure and
approved by the NSF Director on May 27, 2010. A copy of the letter to NSF Director Arden L. Bement
recommending the creation of this program is included in Appendix B.
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Owing to the breadth of research in CS&E across many federal agencies, a companion
recommendation is provided as follows:

RECOMMENDATION:

NSF should work with the Department of Energy and other agencies in the
creation of an Interagency Working Group on CS&E or generally on Computational
Science and Engineering, including Data-Intensive Computing, in the spirit of other
NSF-wide working groups. This broad-based Working Group could provide input
leading to important interagency collaborations on new programs, particularly in
HPC, and could lead to more focused and efficient use of resources to address the
Grand Challenges facing our nation.

Findings and Recommendations Concerning Advances in Cl Needed fo Confront

Grand Challenge Problems:

1) Computational Models, Methods, and Algorithms

Computational methods and algorithms have played a crucial role in the solution of complex
scientific and engineering problems since the earliest days of computing. They form the key link
between mathematical models of physical phenomena of interest and high performance software
that can be used to carry out analysis and prediction of the behavior of complex physical systems.
Synergistic advances in computing and computational methods have stimulated scientific and
engineering breakthroughs, which have in turn motivated further advances in enabling
technologies. Over the past half-century, advances in computational methods have led to speedups
in the solution of important scientific problems that are as significant as those resulting from
advances in the hardware alone. For example, Figures 7-10 in Chapter 3 illustrate breakthroughs on
scientific problems that have been enabled by advances in algorithms. Computational methods,
however, are often taken for granted, due to past successes and their largely hidden role in
powering CS&E software. But while recent isolated successes have occurred, computational
methods that can scale to petascale systems are in their infancy for difficult problems, such as those
with strong heterogeneities and anisotropies, multiphysics couplings, multiscale/multirate behavior,
stochastic forcing, uncertain parameters, dynamically evolving geometries, continuum-atomistic
couplings, large-scale combinatorial structure, and so on. But it is precisely these features that
characterize next-generation Grand Challenge problems. Absent a systematic research effort,
continued progress on frontier CS&E problems is not assured, and Federal investments in
hardware, networking, and software will be jeopardized. There is no question that building an
exascale machine will be hard; but using it effectively to solve CS&E Grand Challenge problems
will be even harder.

To address the difficulties in developing computational methods for scientific Grand
Challenges such as those described in Chapter 2, a broad-based, comprehensive, long-term, and
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vigorous research program in advanced computational methods must be established to overcome
the challenges faced in devising, analyzing, replicating, scaling up, and applying new methods for
critical CS&E problems on advanced computing systems. This program should support
multidisciplinary and interdisciplinary teams that bring together applied mathematicians,
computer scientists, and computational scientists and engineers. In turn, an additional CI
challenge is to ensure that advances in computational methods and algorithms developed in one
discipline are disseminated across all disciplines that face computational problems with similar
structure.

Computational methods and algorithms play a key role at all stages of CS&E, including
solution techniques for complex multiscale/multiphysics problems, advanced spatial and temporal
discretization schemes for high fidelity simulations, scalable algorithms for solution of large
linear and nonlinear algebraic systems and eigenvalue problems, methods for quantifying
uncertainties in large-scale simulations, and algorithms for solution of large-scale optimization
problems arising in design, control, and inversion.

RECOMMENDATION:

A broad-based, comprehensive, long-term, and vigorous research program in
advanced computational methods should be established to overcome the
challenges faced in devising, analyzing, replicating, and scaling up new
computational methods for a new generation of critical CS&E problems on
advanced computing systems. These should include advances in discretization
methods, solvers, optimization, statistical methods for large datasets, and
validation and uncertainty quantification methods including those in reproducible
research, all targeted at enabling new frontiers in large-scale multiphysics,
multiscale simulations on emerging architectures. This program should support
multidisciplinary and interdisciplinary teams that bring together applied
mathematicians, computer scientists, and computational scientists and engineers.

2) High Performance Computing

Transformative discovery and innovation in most disciplines important to addressing the Grand
Challenges, such as climate, energy, environment, national security, disaster preparedness, and
medicine, depend on the pervasive and seamless availability of computing at scale. According to
many projections, general purpose exascale computing equipment is likely to be available in the
next 10-15 years. However, this will likely be made possible only by dramatic changes in processor
architectures, including very large scale of multi-core processing, power management, and
packaging. New methodologies for power management at circuit, device, and system level, locality
and concurrency of data and the computations that use/generate it, and resilience to system faults,
are going to be crucial to the development of these systems.

NSF has taken on the challenge of providing and maintaining the computational infrastructure
for advanced computing for over two decades. Providing the new infrastructure needed to address
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the Grand Challenges in the future will be an especially daunting objective as the complexity and
heterogeneity of the new systems and urgency of the research challenges require that a variety of
innovative and “bleeding edge” systems be supported. HPC is an area where U.S. and NSF
leadership has yielded great competitive advantage and sustained national security, but it is also an
area in which that leadership is constantly challenged. Reliability and usability of modern HPC
hardware is likely to be a Grand Challenge in research on par with the others listed above and will
need a deliberate and long-term strategy.

RECOMMENDATION:

It is recommended that NSF, through OCI, continue to give high priority to funding
a sustained and diverse set of HPC and innovative equipment resources to
support the wide range of needs within the research community. These needs
include support for the development of technologies to meet the foremost
challenges in HPC, such as power-aware and application-sensitive architectures,
new numerical algorithms to efficiently use petascale and exascale? architectures,
and data flow and data analysis at the extreme scale.

3) Software

With the arrival of petascale computers and the expected progression toward multi-petascale
and exascale computers in the next decade as well as the rapidly growing capabilities in data-driven
discovery, opportunities for advancing science and engineering have never been higher. Also, with
the expanding role of data-driven discovery and computational modeling and simulation in decision
support as well as scientific discovery, the reproducibility of results places new demands on the
robustness and documentation of software. As a result, the demands on innovative and sustainable
software have never been higher. These considerations lead to the following recommendations.

RECOMMENDATIONS:
It is recommended that NSF:

1) Support the creation of reliable, robust science and engineering applications
and data analysis and visualization applications for Grand Challenges as well as
the software development environment needed to create these applications.

2) Provide support for the professional staff needed to create, maintain, evolve
and disseminate the above applications as part of its grant funding.

? Petascale computing is the state-of-the-art in high performance computing. A one petaflop supercomputer
performs 10" floating point operations per second (FLOPS). A one exaflop supercomputer would perform
10" FLOPS. (A typical PC performs on the order of 10° FLOPS.)
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3) Establish best practices for the release of science and engineering
applications and data as well as the workflows involved in their creation to ensure
the reproducibility of computational results.

4) Data and Visualization

Many areas of science and engineering are now becoming data-driven sciences, a shift that has
led to a new era in computing identified by Jim Gray as the “fourth paradigm” of science. In this
new paradigm, representing one of science’s grand challenges, science follows a data-centric
approach in which massive amounts of digital scientific data must be collected, integrated, and
interpreted via visualization, mining, and modeling to generate new hypotheses and to accelerate
discovery and innovation. Data-intensive science is characterized by the massive scale and
complexity of data it relies on and by the interdisciplinary and multidisciplinary methods it requires
for data generation, management, analysis, visualization, and re-using and re-purposing, including
the reproducibility of results. Because data used in the data-centric approach to science are often
heterogeneous, spanning multiple spatial and temporal scales, in distributed locations, and of
varying levels of performance, reliability, security, and accessibility, the challenges to scientists are
not only to find ways to physically manage and move the data, but also to develop new software
tools for managing, migrating, and efficiently analyzing the data. These tools must employ an end-
to-end approach that encompasses the entire data life cycle, from the initial data acquisition through
data management and storage to data integration, analysis, visualization, and knowledge discovery.

However, we currently lack the robust data infrastructure, innovative research in data
visualization and analysis, and interdisciplinary data scientists and data professionals needed to
address the requirements of the new scientific paradigm. We must now embark on critical research
and the development of cyberinfrastructure to address our shortcomings in data analysis and
visualization, data integration and interoperability, data provenance and stewardship, scientific
workflow and meta-tools, exascale computing, active storage and online analysis, data storage and
management, and high-speed computer networks. As data-driven science continues to increase in its
scope and impact, we need to better communicate the value digital scientific data and visualization
bring to the broad scientific community, policy makers, and the public. To this end, the NSF must
support research infrastructure, robust and persistent cyberinfrastructure, and the training of next-
generation data scientists and professionals to empower data-driven science and data-intensive
computing for discovery, innovation, and solution of society’s pressing problems in health, energy,
environment, and food.

RECOMMENDATIONS:

NSF, largely through and coordinated by OCI, should support research
infrastructure and robust persistent cyberinfrastructure to empower data-driven
science and data-intensive computing for discovery, innovation, and solution of
society’s pressing problems in health, energy, environment, and food.

1) Research: Funding for research on data management, network infrastructure,
data analysis, and data visualization (i) to manage the pipeline from field
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instruments to large-scale data analysis to end-user visualization and to public and
policy makers, and (ii) to support data-intensive computing.

2) Data Infrastructure: Support for robust, persistent cyberinfrastructure to
support the coordinated flow, storage, and management of data from instrument to
(remote and local) computing resources to archiving and visualization.

3) Education: Support for building (i) the next-generation of data scientists who
can work in a multi-disciplinary team of researchers in high performance
computing, mathematics, statistics, domain-specific sciences, etc., (ii) data
curation professionals who can support meta-data collection, indexing, and access,
collaborating with scientists who collect and consume data.

5) Education, Training and Workforce Development

Universities are not adequately preparing today’s students with the right background, skills,
breadth and depth to become tomorrow’s computational scientists and engineers, able to harness
powerful new supercomputers for scientific discovery and engineering innovation. Our nation is
losing its leadership position in CS&E among our principal competitors in the industrialized world,
as other nations have embraced this challenge. New courses and curricula are urgently needed.
Training in core CS&E skills needs to be widely available and easily accessible, to facilitate
workforce development and accelerate research progress across the sciences and engineering. Much
of the traditional compartmentalization of knowledge, both within our major universities, and to an
extent within NSF itself, is not well suited for interdisciplinary research and education vital to
CS&E. It is critical that actions be taken by NSF to address these issues.

RECOMMENDATIONS:

NSF should support education, training, and workforce development through the
following grants and new programs:

1) Educational excellence grants at the undergraduate and graduate levels,
which include funding for the development of new courses, curricula, and
academic programs in CS&E that address the computational and analytical skills
required in virtually all STEM disciplines.

2) Support for the formation of virtual communities engaged in CS&E education,
including virtual entities leveraging expertise across colleges, universities, national
and government laboratories, and supercomputing centers. Training, in the form of
short courses, in core skills at all levels should be available online and supported
24/7, making the training broadly accessible.

3) Institution-based traineeship grants that train graduate students and
postdoctoral fellows in the multidisciplinary, team-oriented iteration among
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experiment, theory, and computation that is rapidly becoming a paradigm in critical
STEM research areas and that has long been a standard in government
laboratories and industry.

4) The creation of a pan-agency facility or program to coordinate training in
CS&E education.

5) Grants that facilitate the transition of exceptionally talented graduate and
postdoctoral students in computational science and engineering to permanent
positions in academia as well as industry and government/national labs.

6) Sustainable, permanent programs in CS&E research and education at all
funding agencies to demonstrate a long-term commitment to supporting CS&E as
a discipline, thereby creating reliable partners for universities seeking institutional
transformational change and for trained workers seeking careers in CS&E.

6) Grand Challenge Communities and Virtual Organizations

Collaboration is essential to meeting the Grand Challenges, and Cl-enabled virtual
organizations offer considerable promise for improving scientific and engineering productivity.
However, there are many remaining obstacles to full exploitation of CI for collaboration. The scope
of these obstacles goes beyond the purview of this report, and is addressed in a separate report to
the ACCI. However, for the purposes of this report the following recommendations can be made.

RECOMMENDATIONS:

The NSF should initiate a thorough study outlining best practices, barriers, success
stories, and failures, on how collaborative interdisciplinary research is done among
diverse groups involved in Grand Challenge projects.

The NSF should invest in research on virtual organizations that includes:

1) Studying collaboration, including virtual organizations, as a science in its own
right;

2) Connecting smaller virtual organizations to large-scale infrastructure by
providing supplementary funds to such projects, supporting development of tools,
applications, services, etc. with a mandate to disseminate those elements to other
communities and users;

3) Investing in systematic, rigorous, project-level and program-level evaluations to
determine the benefits from virtual organizations for scientific and engineering
productivity and innovation;

4) Encouraging NSF program officers to share information and ideas related to
virtual organizations with training and online management tools.
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No period in human history has witnessed
the development of more technologies that
affect scientific discovery than the years
bridging the turn of the last century. These
include major advances in high-performance
computing (HPC), in broad areas of
information technology, grid computing,
advanced networking, the internet, data
repositories, scientific visualization, and
many more, all collectively called the cyber-
infrastructure (CI). In recognition of the
enormous importance of these developments
to all areas of scientific and engineering
research, the National Science Foundation
created the Office of Cyberinfrastructure
(OCI) in July 2005, to manage advances in CI
across the Foundation.

The OCI is, by design, an overarching
unit within the Foundation in that it provides
support to all other NSF Directorates. While
support of research in discipline-specific
components of computational science and
some of the development of related
infrastructure is still the responsibility of
individual directorates, OCI functions as both
an agent enabling collaborations across
disciplines and as a steward of research and
new developments in CI itself that are critical
to the success of interdisciplinary research.

The remarkable success of NSF-
supported developments in CI during the
short time period since OCI was created is an
indication of the rising importance of
interdisciplinary research and the critical role
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the CI plays in facilitating collaboration of
diverse and widely separated communities of
researchers. The success may also be an
indication of the expanding role of
computational science and engineering in all
areas of scientific inquiry and technology, and
of the advances in computational science and
engineering made possible by CI. Underlying
these advances are investments in the
TeraGrid and the Open Science Grid, the Path
to Petascale Computing, and in numerous
services provided by CI in support of data
intensive  computing, software, HPC,
networking, data storage, and education.

Looking forward, critical scientific and
technological challenges loom ahead that will
require major advances in science and
engineering that cross the boundaries of many
traditional disciplines. These are the Grand
Challenges of science and technology that our
country faces in the immediate future; at stake
are our competitiveness, economy, security,
general welfare, and leadership in scientific
discovery. The challenges are daunting and
they range from issues related to climate,
energy, natural hazards, and defense to
medicine, manufacturing, drug design,
biology, and cosmology. To meet challenges
of such importance and scale will require
unusual coordination of and collaboration
between the diverse communities of
researchers referred to earlier, as well as
corresponding advances in CI to facilitate
these collaborations. These groups are the
Grand Challenge Communities.




1.1 Cyber Science and Engineering
(CS&E)

The expanding role of CI in providing the
infrastructure for interdisciplinary research
calls for the expansion of OCI’s portfolio and
the inclusion of new directions in Cl-related
research. It also calls for an expanded view of
CI itself, now including many of the basic
computational science activities — modeling,
simulation, data-driven science — that should
be developed in step with advances in the
infrastructure itself. To develop a plan for
executing these expanded programs, ACCI
created several task forces, including the
present Task Force, that has as its mission the
study of the following broad issues: 1) what
new developments in CI will be needed to
impact new scientific research; 2) how can
the work of Grand Challenge Communities
and Virtual Organizations be facilitated by
OCI; 3) what new programs within OCI are
needed to carry out its expanded mission; and
4) explore the role of computational science
and engineering enabled by
cyberinfrastructure in scientific discovery and
engineering innovation and its place in the
organizational structure and mission of NSF.
The key scientific target of this study will be
referred to as Cyber Science and Engineering
(CS&E). This includes the traditional realm
of computational science and engineering, a
discipline at the intersection of applied and
computational mathematics, computer
science, and core science and engineering
disciplines, but now dramatically enhanced
by access to the full spectrum of Cl-enabling-
technologies: HPC, software, modern
computational models and algorithms, data
intensive computing, networking and storage,
and visualization, as well as issues of
education. But overlaid on such scientific
goals are issues of new communities of
domain science and computer science

specialists that can employ CI to tackle Grand
Challenges of great complexity and
importance: the Grand Challenge
Communities and Virtual Organizations.

1.2 Collaboration and the
Cyberinfrastructure

It has been recognized since the 17"
Century that much scientific research takes
place in distributed communities involving
multiple institutional venues, often separated
by  geographic  distance. Successful
communities organize production — their
ways of doing things — to establish objectives,
facilitate teamwork, and resolve disputes that
might otherwise prevent them from meeting
those  objectives. = Communities  have
developed various mechanisms to facilitate
collaboration, including scientific societies,
conferences, = workshops, peer-reviewed
publications, academic departments,
institutes, and sabbaticals. Yet collaboration
within and across communities remains
difficult. Grand Challenge Communities often
include  participants  from intellectual
disciplines that have different and conflicting
conventions of collaboration, are not used to
working with each other, and are in various
geographic locations. At the same time,
Grand Challenge Communities have the
potential to use modern cyberinfrastructure to
enable more effective collaboration. CI offers
a promising pathway to that high level of
collaboration. Within the modern computing
environment, multiple groups are able to form
dynamic cooperative interrelationships —
virtual organizations — that consolidate and
share the computing, the data, and human
resources as required to attack problems in
advanced science and technology. OCI has
taken an important lead on this, but
collaboration in the large is a topic of such



broad importance that NSF as an organization
should engage the matter. A separate report to
the ACCI focuses on this.

1.3 Organization of this Report

This document describes the findings of
the Task Force on Grand Challenges. Within
this task force, two study areas and several
working groups were created:

Area 1: CI Requirements for Next-Generation
CS&E. Within this area are five working
groups:

1) High Performance Computing (HPC)

Focuses on the new opportunities for
scientific discovery that could be
achieved through advances in HPC.

2) Software

Focuses on the critical software
developments needed to address the
Grand Challenges amid a changing
landscape of computer architectures;
also focuses on approaches to the
maintenance and support of relevant
software.

3) Data and Visualization

Addresses how the OCI can prepare
for and capitalize on the enormous
increases in data relevant to scientific
discovery, as well as methods of data
acquisition, storage, and analysis.

4) Advanced Computational
Methodologies

Addresses a central area of CS&E,
namely, the development of new and
effective algorithms and
computational methods that optimize
the use of CI, so that computational
science does indeed become the third
pillar of the scientific method.

5) Education and Workforce Preparation
Educates future generations of

scientists and engineers in the
foundations of CS&E and prepares
them for using CI and contributing to
its development.

Area 2: Collaboration, Including Grand
Challenge  Communities  and  Virtual
Organizations. The goal of this area is to
develop technologies, and organizational
strategies that enable CI to facilitate effective
collaboration of distributed multidisciplinary
groups. Such collaboration is essential if
science and engineering are to be effective in
overcoming the overarching societal Grand
Challenges.

In what follows, examples of several
Grand Challenge problems are described, the
solutions of which will require extraordinary
advances in each of the components of CS&E
and, correspondingly, significant advances in
Cl. To address these challenges, one must
create advanced computational models to
provide a basis for representing our
knowledge of the physical realities involved
in each Grand Challenge, and extensive data
to inform the models or to represent
information from which new knowledge can
be obtained. Ultimately, to resolve these
models or process these data, advances in
High Performance Computing and
computational methods and algorithms and,
correspondingly, scientific software are
needed. A great challenge is also the
organization of the work itself in a way that
the GC Communities and VO’s can function
effectively and efficiently to meet the
challenges. Finally, the advances toward
resolving the Grand Challenges will have no
lasting value if they are lost to our own
generation: we must find ways to equip the
next generation of scientists and engineers
with the tools, concepts, and principles of
CS&E. These component issues are dealt
with in the chapters following this
introduction.






This chapter contains brief expositions
on several examples selected as
representative of principal technological and
scientific problems requiring new
developments in CI to enable advances in
scientific discovery. They embody critical
issues in the ever-expanding vistas of high
performance computing; in the ubiquitous
area of software; in data and visualization; in
the fundamentally important area of
advanced computational methods; and on the
critical area of education in CS&E and CI.

2.1 Addressing the Grand
Challenges

The Grand Challenges were U.S. policy
terms set in the 1980°s as goals for funding
high-performance computing and
communications research in response to
foreign competition. They were described as
“fundamental problems of science and
engineering, with broad applications, whose
solution would be enabled by high-
performance computing resources...” (cf.
hitp://www.nae.edu)  Today, the Grand
Challenges are interpreted in a much broader
sense with the realization that they cannot be
solved by advances in HPC alone: they also
require, as noted earlier, extraordinary
breakthroughs in computational models,
algorithms, data and visualization
technologies, software, and collaborative
organizations uniting diverse disciplines.

Grand Challenges in CS&E

Many communities have come forth over the
past two decades with reports that indentify
specific Grand Challenges in their respective
fields. These GC’s virtually all require
breakthroughs in CS&E enabled by advances
in CI. An incomplete list of examples is:

e Advanced New Materials (electronic
structure properties, chemical
catalysts, ...)

e Prediction of Climate Change

¢ Quantum Chromodynamics and
Condensed Matter Theory

e Semiconductor Design and

Manufacturing

Drug Design

Energy through Fusion

New Combustion Systems

Astronomy and Cosmology

Cardiovascular Engineering

Water Sustainability

Cancer Detection and Therapy

CO; Sequestration

In the subsections below, we give brief
accounts of several representative problems
that attempt to not only identify the open
problems that complicate the challenges
themselves, but also the advances in CS&E
and CI needed to confront them. We
emphasize that these are merely examples of
Grand Challenges, and many other problems
could have been chosen.




2.2 Climate Change Prediction to
Advise Regional Adaptation
Strategies and Global Mitigation
Policies

Decades of careful evaluation of weather
and climate measurements, paleoclimate
proxy records, and the output of global
climate models have produced convincing
evidence that the earth’s climate is
undergoing change at a rate more rapid than
that of any previous period in human history.
More over, human activities may be at least
partially responsible for that change. To
address the threat posed by such change, the
global society rightly demands accurate
projections of climate change, with ever-
decreasing levels of uncertainty. A

complementary demand exists for means to
anticipate climate changes with greater
spatial discrimination over the next 30 years,
especially as those changes may affect
extreme weather and climate events.

The history of capability computing is
coincident with the history of the
development and standard use of weather and
climate models, ensembles, and earth system
models. Since the early experiments with
numerical weather prediction on the first
general-purpose computer, ENIAC, the scope
of the modeling system has expanded along
with  computer  capability. Phillips'
development of a global circulation model of
the atmosphere in 1956 introduced the
modern age of numerical weather prediction.
In 1967, Manabe and Weatherald projected
climate change based on doubling of
atmospheric CO, concentrations, which

Figure 1: A simulation of a self-generated Category 4 tropical cyclone at Day 0 (A), Day 2 (B), Day 4 (C), and Day 6 (D) from the modeling
experiment described in McClean, et.al. (2010). The model uses 0.25-degree grid spacing for the atmosphere and 0.1-degree spacing for the
ocean. The colors show sea-surface temperatures and the contour lines display surface pressure. At this resolution, the phenomenon of cold
water upwelling produced by the storms winds can be realistically simulated, and it appears as a cold water “wake” behind the storm track.
(Source: Charles Doutriaux, LLNL, 2008. This work was performed under the Contract DE-AC52-07NA27344.)



required radiation balance calculations with
long wave absorption in the atmosphere. In
1976, NCAR became the first recipient of a
Cray 1

supercomputer performing at a rate of 4
Mflops. By 1981, Hansen projected a cooling
effect of aerosols in the atmosphere. The
Cray X-MP, introduced in 1982,
benchmarked at 21 MFlops. In 1991, the
global cooling effects of the Mt. Pinatubo
eruption were predicted correctly. The largest

The climate models used in the
most recent IPCC assessment
showed unequivocally that human
activities are responsible for the
change in the global mean climate,
but they are unable to provide
regional information suitable for
adaptation to climate change.

computer in the world, as described in the
Top500 list, crossed the 100 gigaflop line in
1993, and by 1997 the first teraflop machines
had arrived. This additional power allowed
coupled three-dimensional ocean and
atmosphere models to be explored, and in
2001 the observed warming of the ocean
basins was explained using simulation. In
2002, the fastest computer in the world was
the Japanese Earth Simulator with a peak
speed of 40 Tflops. The Kyoto treaty went
into effect in the same year (2005) that
Hurricane Katrina raised new questions about
regional effects of global warming. The
Intergovernmental Panel on Climate Change
(IPCC) Fourth Assessment Report of 2007
utilized massive computing resources in an
international effort to bound the possible
future consequences of climate change, but
the questions about implications for the
environment only intensified. In 2009, the

first Petaflop computer became available
and, in 2010, the first generation Earth
System Model (CCSM4) was released,
coupling ocean, atmosphere, land, ice and the
carbon cycle with terrestrial and oceanic
ecosystems. The research focus of the NSF
expanded to include shorter-term decadal
climate predictions.

Despite  progress in observing,
understanding, and modeling the climate, the
current generation of climate models have
reached a plateau in their ability to simulate
salient features of Earth's climate. The
models cannot discriminate climate change
signals observed in different parts of
continents, nor can they provide the detailed
regional information that is critically needed
for developing regional adaptation strategies.
Worse, the current models have large
systematic errors in critical parts of their
framework for the global climate system, and
they severely underestimate the variability of
weather and climate. As a result, the models
may fail to predict the extremes that have the
largest impact on human society and natural
ecosystems.

In 2008, the international weather and
climate modeling community came together
at the World Modeling Summit (WMS) and
reached a consensus: the time is ripe to
revolutionize the application of numerical
models to the prediction of climate through
the development of seamless prediction
methodologies, that unify the weather and

The challenge for high-performance
computing is formidable and feeds
into challenges in software, data
management, analysis, and
visualization, as well as the
necessarily virtual global
organization that must work across
national boundaries to develop the
models and evaluate their output.




climate forecast problems [68]. At the heart
of the WMS findings was the hypothesis that
the ability to resolve important processes in
the atmosphere and ocean and at the land
surface, as well as the interactions among
them (already the case in weather prediction
models), can dramatically improve the
fidelity of the climate models.

A report from the WMS called for a
revolution in climate modeling that would
begin by establishing multiple international
high performance computing facilities, for
example, one each in the Americas, Asia, and
Europe. These facilities would be virtually
interconnected and dedicated to the
development and application of high-
resolution climate models. The global
climate models would be capable of
resolving clouds, ocean eddies, the variations
of the landscape, and the cracks and seams in
sea and land ice. Such models would require
a spatial resolution of a kilometer or less and
be able to run for simulated centuries or
longer within a few days of wall-clock time.
The challenge for high performance
computing would be formidable, and it
would also feed into modeling challenges
related to software and data management,
analysis, and visualization. Equally important
is the challenge of creating a global virtual
organization in which institutions can work
together to develop models and evaluate their
output.

As will be explained in Chapter 3,
predictive models of climate require
extensive amounts of accurate data. The data
are necessary to quantify uncertainty and to
enable meaningful validation and verification
of processes. Not only do the data provide a
detailed record of relevant physics and
chemistry of the environment, but they must
also adequately inform the complex
computational models.

In summary, the Grand Challenge here is

to improve our understanding of weather and
climate by building the next generation of
models. Those models must accurately reflect
and predict climate conditions at the regional
decision-making scale, and they must include
the full distribution of weather events that
compose the delivery system of climate. In
addition, we must organize our efforts, via
Cl, at regional, national, and global levels to
address the pressing problem of global
climate change.

2.3 Human Sciences and Policy

New sources of data and new means for
analysis are transforming the human sciences
in ways that advance knowledge, solve grand
challenges, and inform policy. Archives of
text -- historical and contemporary — can be
examined using automated information
extraction from digitized libraries, blogs,
email messages, speeches, government
reports, and other web sources. Data from

New sources of data and new

the human sciences in ways that
advance knowledge, solve grand
challenges, and inform policy.

means for analysis are transforming

individual-level registration, primary
participation, campaign contributions, ballot
images and automated precinct-level result
reporting can inform electoral studies. Credit
card and real estate transactions, RFID
product tracking and geographic location
information from cell phones or toll booths
using transponders (e.g., Fastlane or EZPass)
can be used to study commercial behavior.
Digital medical records, hospital admittance
data, and location-based data might transform
our understanding of health care.



Developments in genomics, proteomics,
metabolomics, and brain imaging allow study
of person-level variables never before
possible.  Increasingly powerful models
allow the study of phenomena from person to
globe, and in reverse, pushing beneath the
person to the organ, cell, or something even
smaller. Cyberinfrastructure can bring to
researchers data on single individuals as well
as networks of individuals. Satellite pictures
of human-generated light at night and
networks of roads and other infrastructure by
day can provide opportunities to study
phenomena not previously observable. New
techniques allow the exploitation of such
resources without infringing on personal
privacy or causing similar social problems.

These changes bring both opportunities
and challenges. As more powerful and more
widely applicable knowledge arises, new
scientific challenges appear that require
advances in cyber science and engineering to
resolve them. The human sciences are part of
this remarkable change, as illustrated by
three examples: societally-informed climate
models, global-scale epidemiological models,
and understanding human networks.

231 Societally-Informed Climate

Models: A new  generation  of

computationally intensive models is needed
to represent processes such as cloud
formation at finer scales, “well enough to
provide the sorts of prediction that policy-
makers and other stakeholders need” [62].
Human activities such as land clearing, urban
expansion, and agriculture create complex
mosaics of highly fragmented land cover that
become increasingly important as modeling
is refined. Equally important, such
refinement makes it possible to study how
human activity is altered by climate change.
Global warming might affect zones of
agriculture, sea level rise might alter affect

coastal urbanization, and reductions in
rainfall might make some  areas
uninhabitable. Human-climate feedback is
essential to climate dynamics, but current
models cannot meet the need Meso-scale
climate models often rely on ‘scenarios’ of
land cover based on assumed conditions
rather than actual data, and produce

A new generation of computationally
intensive models is needed to
represent processes such as cloud
formation at finer scales, “well
enough to provide the sorts of
prediction that policy-makers and
other stakeholders need”.

compromised  short- and  long-term
predictions of climate change. A new
generation of models must explicitly
incorporate social processes and critical
feedback between human activity and the
climate system. This requires:

e Coherent databases of social activities
(e.g., demography, transportation, and
other factors) for use in climate-change
modeling to provide guidance for land
managers, policy makers, commuters,
agriculturalists and others who make
decisions based on environmental
conditions. This  requires  the
development of ontologies to facilitate
data integration and exchange.

e High performance computing capable of
handling state-of-the-art climate models
and dynamic models of land cover
change, emissions, urban growth and
other effects of human activity.



e C(Calibration and validation of packaged
modeling products for decision-makers
to address uncertainties in model results.
Land use modeling must be incorporated
effectively into the climate models now
serving as benchmarks.

e Data visualization for understanding and
explaining complex human and climate
dynamics arising from this new
generation of models to provide tangible,
accessible and comprehensible
explanations of model results. Abstract
representations do not provide policy
makers and stakeholders with realistic
understanding of their own geographic
‘backyards.’

e Reconciliation of the three-dimensional
structure of climate models with the two-
dimensional structure of land use models.

2.3.2 Global Scale Epidemiological
Models: A global pandemic could Kkill
millions, enabled by rapid spread of

pathogens in the jet age. Computational
power linked to data streams about human
movement has spawned the field of
computational epidemiology, but it lags
behind weather and climate modeling. The
granularity of data necessary to predict
disease spread is not yet known, nor are the
means to model the micro-movements of
individuals and macro flows of groups.

Effective modeling of global disease
spread would probably surpass
current cyberinfrastructure capability,
and work must be done to enable
global-scale epidemiological models
that allow researchers, medical
practitioners, and public officials to
implement mitigation strategies.
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Effective modeling of global disease spread
would probably surpass current
cyberinfrastructure capability, and work must
be done to enable global-scale
epidemiological ~ models  that  allow
researchers, medical practitioners, and public
officials to implement mitigation strategies.
Human movement and how human behavior
might change given exposure to particular
pathogens under differential social and
behavioral conditions must be incorporated
into models, using a biological framework of
transmission probabilities for particular
pathogens. Such models would require
integration of heterogeneous data regarding
human movement and behavior of
individuals within communities, ranging
from commuting patterns in India to school
attendance in the US. Computational power
and effective algorithms for modeling the
movements of billions of human and
nonhuman actors (e.g., animal disease
vectors) must be developed. All of this must
be done with -careful attention to the
sensitivity of individual location and
movement in order to prevent infringement
of privacy, including measures to keep
individual identities hidden during data
collection and analysis.

2.3.3 Understanding Human Networks:

Much human behavior involves networks of
individuals, groups, communities, and
societies. The challenges discussed above
involve human network behavior, and other
challenges depend on this as well. Recent
research has demonstrated the ability to
analyze small to moderate-sized networks
and understand why people gain weight,
express political views or communicate as
they do with colleagues or friends. Network
research offers the opportunity to understand
collective  intelligence in  knowledge
accumulation (e.g., Wikipedia), prediction of
event outcomes (e.g., the Iowa Electronic



Markets), or the sourcing of engineering
solutions (e.g., InnoCentive).
Cyberinfrastructure enables the phenomena
and the means to study them, but creates
challenges as well. One challenge is the
analysis of very large social networks
involving network ties of variable strength
and duration, as well as greater information
about individuals who are connected in such
ways.

Improved understanding of human
networks is key to increasing the value of
investments in science, along the path
leading from knowledge to innovation to
economic welfare. Current scientometric
analyses focus on authors, institutional
affiliation, topic, publications and patents or

increasing the value of investments
in science, along the path leading
from knowledge to innovation to

Improved understanding of
human networks is key to

economic welfare.

other simple variables. Future analyses will
include complete individual biographies with
educational and employment history,
histories of scientific  activity, and
connections between scientists and those
within and outside their professional worlds.
Human connections are sometimes contained
within boundaries that can be drawn easily
(e.g., organizational networks), but human
connections are often complex, starting from
an individual and moving outward to ties that
increasingly exist in “virtual” worlds such as
cyberspace. Cyberinfrastructure provides the
potential to link existing information sources
(databases, published literature) with data
from social networks, distributed sensor
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webs, and other sources in ways that could
revolutionize the human sciences. This
development would also place huge demands
on  cyberinfrastructure = and  present
fundamentally new challenges such as
reworking the science of sampling (e.g,
studying part of a population with confidence
that the sample represents the whole) and
understanding the multi-faceted nature of
social network ties and their effects on
human behavior.  These challenges are
welcomed by the human sciences.

2.4 Macromolecular Structure and
Complexes

Biology can anticipate unprecedented
opportunities in the 21st century, because it
stands to benefit enormously from the
confluence of three trends in scientific

methodologies: advances in experimental
techniques in  biomolecular  structure
determination, progress in theoretical

modeling and simulation for large biological
systems, and breakthroughs in computer

successfully and reliably, new
methods and models need to be
systematically developed: force
fields, hybrid quantum/molecular

mechanics models, enhanced

graining of multiscale models and

“telescoping” from one level of
resolution to another.

To study such biomolecular systems

sampling techniques, rigorous coarse

integration of all these tools to allow

technology. Experimental data can now be
analyzed and interpreted further by modeling,



and predictions for different approaches can
be tested and advanced  through

computational methodologies and
technologies.
Markedly = enhanced  computational

resources will allow systematic solutions of
various important biomolecular problems. In
the increasing complexity of temporal and
spatial dimensions, such problems include

macromolecular folding, biochemical
binding and  reaction  mechanisms,
macromolecular pathways, and

supramolecular cellular processes. Prominent
examples of macromolecular folding are
protein folding and RNA folding. Examples
of reaction mechanisms include enzyme
catalysis and protein/ligand interactions.
Macromolecular pathways include DNA
replication and repair fidelity, protein
synthesis, chromatin organization, and RNA
editing. Supramolecular cellular processes
include protein signaling networks, plant cell
wall formation, and
endocytosis.

If the study of such systems
is to be successful and reliable,
new methods and models need
to be systematically developed,
including the use of: force
fields, hybrid quantum/
molecular mechanics models,
enhanced sampling techniques,
and rigorous coarse graining of
multiscale models. All of these
tools must be integrated to
allow “telescoping” from one
level of resolution to another to
focus on specific details. In
concert with these
developments, infrastructural
support for generating and
analyzing
molecular data requires

management tools for clustering, archiving,
comparisons,  debugging,  visualization,
communication, and replication. Such new
capabilities must be developed in a focused
manner to avoid computational bottlenecks
(e.g., the microsecond timescale for protein
folding due to long-range intermolecular
interaction computations, or the lack of
rigorous coarse-graining models to allow
scaling up to macromolecular pathways and
supramolecular cellular processes).

2.5 Hazard Analysis and
Management

Hurricanes,  earthquakes, tornadoes,
contaminant releases, wildfires, or
incendiaries — all of these catastrophic events
have disruptive implications for society and
must be properly managed. Keys to hazard
management are, first, the ability to predict a

s

voluminous  Figure 2: Peak ground velocities for a southeast-to-northwest Mw8.0 scenario on the San
Andreas fault from the Salton Sea to Parkfield ('Wall-to-Wall'). The simulation computed 350 s of
wave propagation in a 800 km x 400 km x 100 km subset of the SCEC Community Velocity Model

development  of  simulation (cvm)v4 (32 billion grid points with a spacing of 100 m everywhere) and a minimum shear-wave
velocity of 500 m/s up to a maximum frequency of 1 Hz. The source description was generated by
combining several Mw7.8 dynamic source descriptions. 'ShakeOut-D'The simulation used 96,000
NICS Kraken cores, took 2.6 hours wall clock time. (Source: SCEC, Nov 2009)



wide range of possibilities for a priori
planning and, second, the means to perform
simulation and near-term prediction to
support  decision-making  strategies to
manage specific issues. High resolution
models of the physics that are calibrated by
sparse observation data and laboratory scale
experiments need to integrate methods of
uncertainty quantification to predict the
effects of the extreme scale. Multiscale and
multiphysics methodologies are essential to
our ability to represent the complex physics
inherent in most of these phenomena. Such
models of physics must be systematically
coupled to social and behavioral models of
public actions that affect populations.

In many of these hazard applications
(e.g., storm surge computations using the
ADCIRC code) the basic physics model
evaluations for a single computation often
consumes O(1) hour on a petaflop class
computer, i.e., simulations require 10"
FLOPS and commensurate = memory.
Predictive simulations will require ensembles
of hundreds if not more of these in hours
with appropriate analytics on the outcomes of
these computations. Among the
computational needs here are thus the ability
to do vast ensembles of simulations in a
timely fashion and the ability to integrate the
high data volume outputs of these
simulations into usable predictions using
appropriate analytics. A second major issue
of hazard analysis is the lack of observational
data at extreme scale (e.g., data on Category
5 hurricanes, 9.0-magnitude earthquakes, or
10° m® volcanic eruptions are not readily
available). Consequently, predictions have to
rely on very large ensembles of models and
high resolution simulations with quantified
error and uncertainty.
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2.6 Managing Greenhouse Gases

There is consensus in the scientific
community that increased levels of
greenhouse gases — particularly  carbon

dioxide — can adversely affect the global
climate. A main contributor to the increasing
atmospheric concentration of CO, is fossil
fuel combustion for power generation. The
demand for energy is expected to grow in
developed and, in particular, developing
countries. Alternative fuels are unlikely to
replace fossil fuels in the short term, and
fossil fuels will be in demand for the
foreseeable future.

One of the most promising approaches
for reducing atmospheric CO, is geological
sequestration, that is the injection of CO, into
deep brine aquifers and oil and gas
reservoirs. In geological sequestration, CO,
from power plant emissions, natural gas
fields, and other sources 1is captured,
compressed, and injected as a supercritical
fluid into deep brine aquifers and depleted oil
reservoirs.

Predictive computational
simulation may be the only
means to account for the lack of
complete characterization of the
subsurface environment.

While geological sequestration is a
proven means of permanent CO, storage, it is
difficult to design and manage such efforts.
Predictive computational simulation may be
the only means to overcome problems from
the lack of complete characterization of the
subsurface environment, the multiple scales
of the various interacting processes, the large
areal extent of saline aquifers, and the need
for long-term predictions. Key issues for
modeling CO, injection in saline formations



are the large uncertainty in predicting
subsurface CO, flow rates which is the direct
result of wuncertainty in characterizing
formation permeability and porosity and
multiphase fluid behavior as a function of
pressure and temperature. The flow of CO, is
dominated by gravity and viscous forces
during the injection period, whereas gravity
and capillary forces dominate any movement
of CO, after the injection has ceased.
Computational capabilities at the peta- and
exascale will be necessary for the type of
predictive simulations needed.

2.7 Assembling the Tree of Life

Knowledge of evolutionary relationships
is  fundamental to  biology. Those
relationships are captured in the form of
phylogenetic trees. A grand challenge for
biology is to reconstruct the detailed shape of
the “tree of life” — the phylogeny of all known
organisms. Such phylogenetic trees help us
understand and predict

e Functions of and interactions between
genes,

e Relationships between genotype and

phenotype,

The co-evolution of hosts and parasites,

The origins and spread of disease,

Drug and vaccine development, and

The origin and migrations of human

populations [36].

Figure 3 shows small fragments of the
tree of life, those concerning (a) the
relationships among herpes viruses that affect
humans, (b) the evolution of the West Nile
Virus, and (c) the relationships among
antivenins for various poisonous snakes [36].

The process of reconstruction begins with
descriptions of species (behavior,
morphology, metabolism, and DNA) and
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Figure 3: Phylogenetic trees for (a) Herpes viruses (b) West Nile Virus, and (c)
snake antivenins [36]. Images courtesy of Bernard Moret and Joel Cracraft.



models of evolutionary processes (speciation,
population evolution, molecular character
evolution, etc.) and then proceeds to search
the space of all possible trees to find the tree
that conforms best to various criteria such as
maximum parsimony, maximum likelihood,
and minimal evolution (including distance-
based methods). Because of the vast number
of possible trees, most algorithmic
formulations of this problem are NP-
Complete, and immense computing resources
are required to construct even relatively small
trees (e.g., involving 100-500 taxa)
[3]. Furthermore, many algorithms
construct an unrooted tree that
provides only a partial constraint on
the evolutionary processes that
produced the observed variations
across taxa. Moving from our current
capability to handle 10s-100s of taxa
to the ultimate requirement to handle
the estimated 10-200 million species
on the Earth will require major
advances in both HPC and algorithm
development. In addition, assembling
the data to describe these species is a
major undertaking that will involve
the development of methodologies
and strategies for prioritizing which
species should be included and in
what order. Tools and methodologies
(simulation, visualization, etc.) are
also needed to validate the algorithms
and the resulting phylogenetic trees.

To achieve those goals, we must build a
Grand Challenge Community that includes
scientists in phylogenetic biology and
computer science and engineering. Initial
efforts in this direction include the iPlant
community [26] and CIPRES
(Cyberinfrastructure for Phylogenetic
Research) [10].
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2.8 Gamma Ray Bursts

Ninety years after Einstein first proposed
his General Theory of Relativity (the GR),
astrophysicists are probing deeper into
regions of the universe where gravity is very
strong and where, according to GR’s
geometric description, the curvature of
spacetime is large.

curvature  are
investigate with

Regions of strong
notoriously difficult to

Figure 4. A rapidly spinning deformed newborn neutron star at the center of a dying
massive star that may produce a Gamma-Ray Burst. Simulation by C. D. Ott (Caltech),
rendering by R. Kaehler (ZIB/KIPAC).

conventional observational astronomy, and
some phenomena might bear no observable
electromagnetic signature at all and may only
be visible by neutrinos (if sufficiently close to
Earth) or by gravitational waves - ripples of
spacetime itself that are predicted by
Einstein’s GR. To date, gravitational waves
have not been observed directly, but
gravitational-wave detectors (e.g., LIGO [30],
GEO [19], and VIRGO [64]) are in the
process of reaching sensitivities sufficiently



high to observe interesting astrophysical
phenomena.

Until  gravitational-wave  astronomy
becomes a reality, astrophysicists must rely
on computationally and  conceptually
challenging large-scale numerical
simulations. Simulations allow us to grasp the
details of energetic processes occurring in
regions of strong spacetime curvature that are
shrouded from direct observation in the
electromagnetic spectrum by intervening
matter or that have little or no
electromagnetic signature at all. Such
astrophysical systems and phenomena include
the birth of neutron stars (NSs) or the
collapse of evolved massive stars into black
holes (BHs), the coalescence of compact’
binary systems, gamma-ray bursts (GRBs,
[41]), active galactic nuclei harboring
supermassive black holes, pulsars, and quasi-
periodically oscillating NSs (QPOs).

Of those phenomena, GRBs, intense
narrowly-beamed flashes of gamma rays of
cosmological origin, are among the most
scientifically interesting, and the riddle
concerning their central engines and emission
mechanisms is one of the most complex and
challenging problems of astrophysics today.
GRBs last between 0.5 to 1000 s, with a
bimodal distribution of durations [34],
indicating two distinct classes of mechanisms
and central engines, one known as short-hard
(duration less than 2 s) and the other known
as long-soft (duration 2 to 1000 s).

Hypotheses regarding these classes exist,
and while observations are aiding our
theoretical understanding, much that is said
about the GRB central engine will remain
speculation until it is possible to generate

> The term “compact” refers to the compact-
stellar nature of the binary members in such
systems: white dwarfs, neutron stars, black holes.
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self-consistent models of the following: (a)
the processes that lead to the formation of the
GRB central engine and (b) the way the
central  engine  utilizes  gravitational
(accretion) and rotational energy to launch
the GRB jet via magnetic stresses and/or
polar neutrino pair-annihilation processes.
The physics necessary in such a model
includes general relativity, relativistic

It is necessary to adequately
resolve physical processes with
characteristic scales from about

100 meters near the central engine
to about 5 to 10 million kilometers,
the approximate radius of the
collapsar progenitor star.

magneto-hydrodynamics, nuclear physics
(describing nuclear reactions and the equation
of state for dense matter), neutrino physics
(weak interactions), and neutrino and photon
radiation transport. In addition, it is necessary
to adequately resolve physical processes with
characteristic scales from about 100 meters
near the central engine to about 5 to 10
million kilometers, the approximate radius of
the collapsar progenitor star.

Any comprehensive approach to GRBs
must naturally draw upon techniques and
tools both from numerical relativity and from
the theory of core-collapse supernovae and
neutron stars. Furthermore, both areas have
had dramatic progress in the past decade. In
numerical relativity, immense improvements
in the long-term stability of 3D GR vacuum
and hydrodynamic evolutions (e.g., [1, 38])
allow, for the first time, calculations for long-
term stable binary black hole merger, binary
neutron star merger, and neutron star and
evolved massive star collapse. For its part,
Supernova theory has made giant leaps from



spherically symmetric (1D) models with
approximate neutrino radiation transport of
the early 1990s to Newtonian or approximate-
GR to 2D and the first 3D [18] calculations.
Those calculations address detailed neutrino
and nuclear physics and energy-dependent
multi-species Boltzmann neutrino transport
[6], neutrino flux-limited diffusion [7], and
magneto-hydrodynamics [8].

This modeling cannot be fully realized on
present-day computers. By computing at
multiple sustained petaflops of performance,
however, we would be able to tackle the full
GRB problem and build complete numerical

computers. Computing at multiple

This modeling cannot yet be
fully realized on present-day

sustained petaflops of
performance will allow us to
tackle the full GBR problem and
provide complete numerical
models whose output can be
compared with observations.

models whose output could be compared with
observations. Current terascale codes, such as
the spacetime evolution code Ccatie and the
GR hydrodynamics code Whisky, can be and
have been applied to the realistic modeling of
the inspiral and merger phase of NS-NS and
NS-BH binaries, the collapse of polytropic
(cold) supermassive NSs, and the collapse
and early post-bounce phase of a core-
collapse supernova or a collapsar. As the
codes are upgraded and readied for petascale
applications, the remaining physics modules
will be developed and integrated. At that
time, energy-dependent neutrino transport
and magneto-hydrodynamics, both likely to
be crucial to the GRB central engine, will be
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given high priority.

To estimate roughly the requirements for
a full collapsar-type GRB calculation, we
assume a Berger-Oliger-type [4] adaptive-
mesh refinement setup with 16 refinement
levels, resolving features with a resolution
from 10,000 km down to 100 m across a
domain of 5 million cubic km. To simplify,
we assume that each level of refinement has
twice the resolution as the previous level and
covers approximately half the domain. Taking
a base grid size of 1024 and 512 3D grid
functions, and storing the curvature and
radiation-hydrodynamics data on each level,
we estimate a total memory consumption of
about 0.0625 PB (64 TB). We compute the
number of time steps that are necessary to
evolve for 100 s in physical time by assuming
a time step that is half the light-crossing time
of each grid cell on each individual level.
Therefore, the base grid has to be evolved for
about 6000 time steps, while the finest grid
will have to be evolved for 2'° steps, which is
a total of (2'°-1) x 6000 updates of the 1024’
points. Current best practice codes require
approximately 10K FLOPs per grid point per
time step. When we assume that additional
physics (neutrino and photon radiation
transport and magnetic fields, some of which
may be evolved with different and varying
time-step sizes) requires, on average, an
additional 22K FLOPs, one time step of one
refinement level requires 50 TFLOPs.

Summing up over all levels and time
steps, we arrive at a total of about 18 million

Summing up over all levels and
time steps, we arrive at a total of
about 18 million PFLOPs needed
to run a single simulation. On a
machine with 2 PFLOPS
sustained, this will take about 100
days, using the full machine.




PFLOPs needed to run a single simulation.
On a machine with 2 PFLOPS sustained, this
will take about 100 days, using the full
machine, and assuming that no faults occur
and no other jobs need to use the system. For
this reason, GRBs pose a true petascale
problem.

2.9 Virtual Product Design for
Manufacturing Industries

Engineering innovation in almost every
discipline has been revolutionized through
the use of virtual models to replace the
construction and testing of expensive
prototypes, leading to dramatic cost
reductions and reduced design cycle times,
and resulting in more competitive designs.
Historically, engineering product
development in areas as diverse as aircraft
aerodynamics, automotive crash simulation,
nuclear reactor core analysis, and
semiconductor design has been an important
driver of CS&E, as well as HPC technology.
However, recent studies have revealed that,
apart from a select group of industries and/or
organizations, the adoption of advanced
CS&E technology has essentially stagnated
in most engineering disciplines [24, 66]. For
example, in  aerospace  engineering,
computational fluid dynamics has progressed
over the last 30 years from simple panel
methods in the 1970’s to Reynolds averaged
Navier-Stokes models in the 1990’s, but it
has not embraced more complex and
expensive large-eddy simulations or other
multi-physics  simulations. Instead, the
discipline has chosen to reduce the cost of a
fixed-simulation capability rather than to
explore the potential of higher fidelity
simulations on leading-edge hardware [33].
In most cases across diverse application
areas, component-level analysis involving
single-physics simulations on commodity
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hardware represents the state of the practice.
Since foreign industrial competitors are
investing aggressively in advanced CS&E
methodologies,  these  findings  carry
important  implications  for  national
competitiveness [66].

An aggressive insertion/adoption of
CS&E methods into the product development
cycle, including approaches such as
comprehensive high-fidelity ~multiphysics
simulations, numerical optimization for non-
intuitive and better designs, and uncertainty

An aggressive insertion/adoption
of CS&E methods into the product
development cycle, including
approaches such as
comprehensive high-fidelity
multiphysics simulations,
numerical optimization for non-
intuitive and better designs, and
uncertainty quantification for
reliable and certifiable product
design, constitutes a Grand
Challenge that offers the potential
for revolutionary gains in
efficiency, cost reduction, and
overall competitiveness.

quantification for reliable and certifiable
product design, constitutes a Grand
Challenge that offers the potential for large
gains in efficiency, cost reduction, and
overall competitiveness. Common barriers to
increased industrial adoption of high
performance CS&E include the lack of
effective  simulation software, overall
software and hardware costs, lack of suitable
manpower and demonstration of provably



beneficial return on investment in the short
term. A Grand Challenge in virtual physics-
based product development can serve to
illustrate the potential of leading-edge CS&E
in the product development cycle, while at
the same time serving to advance the
development of new enabling techniques and
software targeted at emerging exascale
hardware.

2.9.1 Turbomachinery Engine Design:

As an example, in the aerospace industry,
current aircraft turbofan engine design relies
heavily on zero dimensional cycle models
with maps that represent the different engine
components, such as compressor, turbine or
combustor. These components themselves
are traditionally designed with low
dimensional models, although more recently
three-dimensional steady-state Reynolds-
averaged Navier-Stokes computational fluid
dynamics simulations have been used at the

i NaNug Sy

Figure 5: High fidelity simulation of helicopter rotor dynamics. Simulation
includes a rotating unstructured mesh fixed to the blades and hub and a fixed
Cartesian mesh in the off-body region where a high (6%) order accurate
discretization adaptive mesh refinement strategy is used for accurately
capturing the wake vortices. The overlap and interpolation patterns between
fixed and rotating meshes are recomputed in parallel at each time step.
Reproduced from [67].
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component level. High fidelity unsteady
component simulations are currently pushing
the state of the art largely due to the
geometrical and physical complexity present
even at the component level. For example, a
full compressor or turbine simulation may
contain 10 to 30 rows of fixed and rotating

The combination of multiphysics
turbine simulations with a full
unsteady compressor simulation
and a large turbulence eddy
resolving simulation of the
combustor, including fuel spray
and complex combustion
chemistry, will clearly require
exaflop level resources.

blades with up to 100 blades or more per
row. Current day simulations of these types
of configurations using on the order of 100
million grid points, with sliding grid
interfaces, and fully implicit time-stepping
strategies, can be run on several thousand
processors requiring on the order of 10"
flops and 10'* bytes of memory. However,
the incorporation of higher resolution and
additional physics, made possible with the
advent of petaflops and exaflops capabilities,
will result in dramatic advances in simulation
predictive capability. For example, because
turbine blade operating temperatures are
directly linked to failure rates (i.e., a 20°C
rise in blade temperature corresponds to a
50% reduction in blade life), the simulation
of cooling flows and associated conjugate
heat transfer from first principles will have a
dramatic effect on engine component
performance predictions.

A typical high pressure turbine blade can
contain up to 400 cooling holes and it has
been estimated that 1 million grid points are



required to simulate a single cooling hole
flow to sufficient accuracy for conjugate heat
transfer predictions. Simply based on the
number of rows and blades per row, this
would translate into over 10'* grid points or
more than a factor of 1000 increase in
required resolution, putting such a simulation
clearly in the petaflops range, requiring a
total of 10'® flops and 10" bytes of memory.
The combination of multiphysics turbine
simulations with a full unsteady compressor
simulation and a large turbulence eddy
resolving simulation of the combustor,
including fuel spray and complex combustion
chemistry, will clearly require exaflop level
resources. However, new frontiers in product
design and reliability will be enabled through
the availability of such simulations especially
when used in design optimization loops, and
for managing manufacturing uncertainties to
provide reliable estimates of fleet engine
performance or life cycle wear and predictive
performance degradation.

2.9.2 Wind Engineering: Wind energy

represents an area that has seen aggressive
use of CS&E since its inception. Current
leading-edge high-fidelity wind turbine
aerodynamics simulations can be achieved
using on the order of 100 million grid points,
with overlapping or sliding mesh interfaces,
and implicit time-stepping procedures,
usually limited to time steps corresponding to
less than 1 degree of revolution, due to
temporal  accuracy limitations.  Total
computational  requirements for  such
simulations, assuming the simulation of ten
complete revolutions, can be estimated to be
of the order of 10" flops and 10" bytes of
memory. However, large eddy turbulence
resolving  simulations including blade
transition effects, geographic terrain effects
and atmospheric turbulent boundary layer
interactions can be expected to require at
least one to two orders of magnitude more
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resolution in space and time, putting such
simulations clearly in the petaflops range.
Simulating interference effects between
turbines will require the inclusion of adaptive
mesh refinement techniques and/or higher-
order methods to capture and preserve wake
and vortex effects over long distances. The
simulation of arrays of turbines (for example
a dozen closely spaced turbines) with terrain
and atmospheric turbulence effects can thus
be expected to require of the order of 10*'
flops and 10" bytes of memory.
Furthermore, design optimization using these
types of simulations and uncertainty
quantification, due both to extreme
atmospheric events and manufacturing
variability, can be expected to add another

one to two orders of magnitude in
computational requirements.
2.9.3 Virtual Flight Testing: In

aerospace engineering, complete aircraft
steady-state aerodynamic analyses are now
commonplace, as well as linear structural
analysis of complex structures. The next
logical step involves the adoption of time-
dependent large-eddy  simulations for
aerodynamics, time-dependent non-linear
structural analysis, and the coupling of these
two disciplines for dynamic aeroelasticity.
Furthermore, aeroacoustics and propulsion
disciplines (and aerothermal in the case of
hypersonic vehicles) need to be integrated
into the simulation process, as well as
simulation of the flight control system, in
order to enable controlled virtual flight
simulations. Numerical optimization
techniques can then be devised to explore
optimal configurations and to design flight
system control laws with specified handling
characteristics. Finally, the design process
will require the simulation of the complete
flight envelope, including cruise conditions,
extreme conditions, and unanticipated
emergency conditions. Building the complete



flight-envelope data-base involves hundreds
of thousands of individual conditions and is
currently achieved through a combination of
expensive wind-tunnel testing and flight
testing. The ultimate long term goal should
be digital airworthiness certification.

All of these virtual product design Grand
Challenges share many of the same
requirements and obstacles as the other

Because product design is a
time critical exercise, there is a
limit on acceptable simulation

turnaround time, making the
development of enabling analysis
and optimization algorithms that
scale effectively to the exascale
particularly challenging. These
problems are so complex that
exascale resources will be
required in order to realize the full
potential of CS&E in the product
design cycle.

Grand Challenges described in this report.
However, there are some particular issues
that are specific to product design Grand
Challenges. For example, the use of ever
increasing spatial resolution is often not the
best path forward for increased simulation
outcomes in many virtual design problems.
Often, the extension of steady-state
simulations to time-dependent problems,
and/or the incorporation of additional tightly
coupled physics represent the critical
elements required for increased simulation
effectiveness.  Additionally, the natural
progression from conceptual to detail design
must rely on a hierarchy of low-to-high
fidelity models, all of which must work
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together to provide the most optimal and
reliable final design. Finally, because product
design is a time critical exercise, there is a
limit on acceptable simulation turnaround
time (often taken as 24 hours) to be useful in
the design cycle. These aspects make the
development of enabling analysis and
optimization algorithms that scale effectively
to the exascale particularly challenging.
However, these problems are so complex that
exascale resources will be required in order
to realize the full potential of CS&E in the
product design cycle.

A physics-based virtual product Grand
Challenge will provide a catalyst for focusing
resources on the development of
computational methods, implementations,
and software that enable higher fidelity
simulations, tight coupling of disparate
physics, effective optimization strategies, and
novel uncertainty quantification methods
targeting risk reduction, reliability, virtual
certification, and complete life-cycle
assessment. In addition, the Grand Challenge
will  demonstrate the potential  for
accelerating engineering innovation and will
provide the basis for reliable software that
can be deployed cost-effectively across a
range of hardware scales.

2.10 High-Temperature
Superconductor Material Design

Superconductivity—the ability of some
materials to conduct electricity without
resistance—was discovered nearly a century
ago in materials such as mercury and
niobium-titanium alloys. The potential
applications of  superconductivity are
innumerable—with revolutionary advances
possible in such areas as power generation
and transmission, grid technology, and high-
speed levitating trains. = However, these
materials must be cooled to well below 20 K



(or -400°F) before they make the transition to
the superconducting state; for this reason,
they are known as low-temperature
superconductors (LTSCs). So-called high-
temperature  superconductors  (HTSCs),
discovered a little more than two decades
ago, require far less cooling; some copper-
oxide materials, known as cuprates (an
example is shown in Figure 6), are
superconducting at temperatures above 77 K
(or -320°F) — which is very significant, since
77K is the boiling point of the relatively
cheap coolant, nitrogen. HTSCs are much
more complex than LTSCs: examples of
cuprate and the recently discovered (2008)
iron-based HTSCs are YBa,Cu;0,; and

CeFeAsO respectively.

model, in common with the simulation of
correlated electron systems in general, is
computationally intensive. For example, the
landmark simulations of the Hubbard model
by a group of Oak Ridge National Laboratory
researchers that showed that the model could
predict HTSC successfully and delineate its
fundamental mechanisms won the 2008
Gordon Bell prize for highest-performing
sustained scientific computation (1.352
petaflops). However, by virtue of its coarse-
grained nature, the Hubbard model does not
reflect atomic composition or structure, and
thus cannot predict the superconducting
transition temperature of a specific material.
In order to do this — i.e., material-specific
modeling of HTSC candidates — the single-
orbital Hubbard model needs to be turned
into a multi-orbital model, significantly
increasing the computational complexity,
since for these calculations problem size
grows exponentially with the size of the
system. In addition, the robust extraction of
parameter-free  materials-specific ~ multi-
orbital models from first principles electronic
structure calculations — a process called
down-folding -  requires  peta-scale
simulations in itself. The merger of these two
programs and its embedding into an overall
design methodology will result in simulations
in need of exascale infrastructure.

Hence, materials-specific HTSC

Figure 6: The high-Tc superconductor YBa2Cu307. Atoms are
rendered as follows: O — red; Cu - copper; Ba - green; Y - pruple.
Image courtesy of Jeremy Meredith, Oak Ridge National Laboratory.

simulations are exascale-level computational
grand challenges, which must be addressed if
we are to reach the point of designing new

Understanding the fundamental origins
of HTSC behavior has been a theoretical
challenge since the discovery of HTSCs.
Recently, a relatively simple model that
provides a coarse-grained description of the
electrons in a cuprate’s copper-oxide layers —
the Hubbard model — has provided new
insights into HTSCs. Despite its coarse-
grained nature, the simulation of the Hubbard
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HTSC materials. Imagine the impact on
society of new HTSCs incorporated into
HTSC cables that would enable resistance-
less transmission of electricity around the
U.S. and around the world: areas of the U.S.
(or the world) that are rich in sunlight (e.g.,
deserts) could be home to massive solar
energy conversion farms that powered the
rest of the U.S. (or other parts of the world).
HTSCs would make possible the widespread



and cost-effective use of magnetically
levitated (maglev) personal vehicles.

2.11 Common Themes to the

Grand Challenges

A review of the problems typifying the
Grand Challenges reveals a number of
common themes. The following identifies
those with clear impact on computational
science and engineering.

e All Grand Challenges face barriers in the
areas of software, data management, and
visualization, and the coordination of the
work of diverse communities that
combine efforts and resources to develop
models and algorithms and to evaluate the
outputs.

o Al Grand Challenges require
transformative discovery and innovation,
which in turn demand capabilities
approaching or exceeding exascale
computing. Computing at this scale
requires dramatic changes in processor
architecture and power management.

e All Grand Challenges need advanced
computational models and algorithms,
including methods that are informed by
observational data in a way that can cope
with uncertainty in the data and that can
quantify uncertainties in predictions. New
methods are necessary to facilitate

The transition of conventional
deterministic methods and models of
complex physical events to those
accounting for uncertainties and
stochasticity will increase by several
orders of magnitude the size,
complexity, and computational work
needed for predictive simulations.
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multiscale modeling, enhanced sampling,
and vast simulations while integrating
high data volume outputs of the
simulations along with new methods to
encourage the publication of code and
data to facilitate verification of
computational results.

e Significantly, all Grand Challenges must
have the ability to acquire relevant data
for calibration and validation of large-
scale computational models and to
characterize and quantify uncertainties.
This ability depends on the development
of statistical representations of data on
parameters and observations, statistical
inverse methods, and software that
implements them. It depends also on
methods to resolve the large stochastic
systems that result from model and data
uncertainties. The transition of
conventional deterministic methods and
models of complex physical events to
those accounting for uncertainties and
stochasticity will increase by several
orders of magnitude the size, complexity,
and computational work needed for
predictive simulations.

e All Grand Challenge problems call for the
development — in some combination - of
computational models based on scientific
and engineering principles, on the
principles and methods of computer
science, and on computing technology
and the use of core computational and
applied mathematics. The advance of that
combination of disciplines defines the
purpose of Cyber Science and
Engineering (CS&E): the discipline
bringing together computational science
and engineering as they can be exploited
via the cyberinfrastructure.

Although NSF has supported many cross-
directorate initiatives in basic CS&E over the



years, there has been no home for it within
the NSF organizational structure. As a result,
efforts in CS&E have been fitful:
underfunded programs, low-proposal success
rates, and no sustainability for efforts
requiring long-term investments in software
and algorithm development and
infrastructure. Under those conditions, an
effective attack on Grand Challenges is
extremely difficult.

It is clear that important discipline-
specific programs in computational science
and engineering are vital to advancements in
every discipline, and such problems must be
encouraged and supported at NSF. But
mechanisms should also be created for
sustained support of CS&E across multiple
disciplines (and directorates), for
interdisciplinary work is an essential attribute
of all Grand Challenge efforts. Also, the best
work in CS&E will be built on a foundation
of solid applied mathematics and computer
science not always in the scope of discipline-
specific approaches, while, conversely, core
mathematical and computer science, by
themselves, do not generally fit the needs of
Grand Challenge projects. The distinction is
often that new mathematics and computer
science must be developed to resolve specific
barriers to progress on Grand Challenge
problems, and these developments are rarely
anticipated as  relevant  topics  for
mathematical or computer research.
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These considerations suggest that the
Foundation would be best served in the broad
area of CS&E if it developed policy and
structures that support directorate-specific

activities in CS&E, on the one hand, and, on

These considerations suggest that
the Foundation would be best served
in the broad area of CS& E if it
developed policy and structures that
support directorate-specific activities
in CS&E, on the one hand, and, on the
other hand, that support Foundation-
wide initiatives that involve multiple
disciplines. These latter initiatives will
always be needed for addressing
legitimate Grand Challenge problems.

the other hand, that support Foundation-wide
initiatives that involve multiple disciplines.
Those latter initiatives will always be needed
for addressing legitimate Grand Challenge
problems.



Advanced Computational

Methods & Algorithms

3.1 Introduction

Computational methods and algorithms
have played a crucial role in the solution of
complex scientific and engineering problems
since the earliest days of computing. They
form the key link between mathematical

There is no question that
building an exascale machine
is hard; but using it effectively

to solve CS&E Grand
Challenge problems is an even
harder goal.

models of physical phenomena of interest
and high performance software that can be
used to carry out analysis and prediction of
the behavior of complex physical systems.
Synergistic advances in computing and
computational methods have stimulated
scientific and engineering breakthroughs,
which have in turn motivated further
advances in enabling technologies. Over the
past half-century, advances in computational
methods have led to speedups in the solution
of important scientific problems that are as
significant as those resulting from advances
in the hardware alone. For example, Figures
7-10 illustrate breakthroughs on scientific
problems that have been enabled by advances
in algorithms.

Computational methods, however, are
often taken for granted due to past successes
and their largely hidden role in powering
CS&E software. But while recent isolated
successes have occurred, computational
methods that can scale to petascale systems
are still in their infancy for difficult
problems, such as those with strong
heterogeneities and anisotropies,
multiphysics couplings, multiscale/multirate
behaviors, stochastic forcing, uncertain
parameters, dynamically evolving

Figure 7: Direct numerical simulation of blood flow, using a complex fluid
model that resolves dynamical interactions between deformable cells and
surrounding fluid plasma are instrumental to gaining a better understanding of
hemodynamic phenomena. The computational challenges associated with
such microstructural simulations of blood flow are immense: modeling just one
microliter of blood, with over four million cells, results in more than a trillion
space-time variables. Work at Georgia Tech and New York University (led by
George Biros and Denis Zorin and supported by an NSF PetaApps project)
aims to overcome these challenges using new parallel kernel-independent
fast multipole methods. The project has developed new parallel algorithms
and hybrid OpenMP/MPI implementations that have enabled scalability to
200,000 cores on a Cray XT5 while achieving 0.7 PFlops/s of sustained
performance.
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Pulsatile inflow

Challenges such as those described in

:\-@ Chapter 2, a broad-based, comprehensive,
long-term, and vigorous research program in
Mesenteric

advanced computational methods must be
established to overcome the challenges faced

‘Zf;‘;fgﬁ) in d@vising, analyzing, scalir.lg. up, and

pem 1000 applying new methods for critical CS&E
80.0 :

50,0 problems on.advapced computing systems.

. 40.0 As noted earlier, this program should support

28:8 multidisciplinary and interdisciplinary teams

that bring together applied mathematicians,

computer scientists, and computational
scientists and engineers. In turn, an
additional CI challenge is to ensure that
advances in computational methods and
algorithms developed in one discipline are
disseminated across all disciplines that face
computational  problems  with  similar
structure.

e
Leftiliac] ™

Figure 8: Simulation of blood flow in a patient-specific abdominal aortic . .
aneurysm (AAA) model. The complexity of the geometry and physics dictates 1 Comllzutatlorllal metllllods and aig()éggnés
the use of adapted anisotropic unstructured AAA meshes. This presents the play a key role at all stages o 4
challenge of developing implicit methods for solving the Navier Stokes TayisiL

equations that scale to petascale systems. Research at RPI led by Kenneth £ ' : ' ‘ ' I
Jansen and Mark Shephard and supported by an NSF PetaApps project has r | il ]
resulted in strong scaling of the PHASTA finite element flow code on a 5 - : — .+ Setup cost 1
billion element mesh to nearly 300,000 IBM Blue Gene/P cores with 95% 1 =+ Me{setup) 1
efficiency. Such simulations have the potential to revolutionize planning of £ 1,14 I il
surgical procedures. 'E& 3
geometries, continuum-atomistic couplings, g 1
large-scale combinatorial structure, and so 2 I
on. But it is precisely these features that = i : E
characterize next-generation Grand - T 1
Challenge problems. I : ]
. |
Absent a systematic research effort, L , gl i ! , ! ‘
. . 043 042 041 04 039
continued progress on frontier CS&E . mass . .
problems is not assured, and federal Figure 9:‘ IIn another NSFI PetaAppg IDFOJECL a team of applied
investments in hardware. networking. and mathematicians and computational physicists led by Thomas Manteuffel
; . L g and Stephen McCormick (CU Boulder), James Brannick (Penn State), and
software will be jeopardized. Let there be not Richard Brower and Claudio Rebbi (Boston University) is developing
doubt: building an exascale machine will be advanced multigrid algorithms for the Dirac inversion problem of lattice
hard; but using it effectively to solve CS&E quantum chromodynamics (QCD). The log plot above compares a new

adaptive multigrid preconditioned Generalized Conjugate Residual
algorithm with a conventional QCD solver (red/black preconditioned CG) in
terms of the floating point operations needed to solve the Wilson-Dirac
To address the difficulties in developing s};ystem'on a 32X 32 X 32 X 96 lattice for. various quark masses.

. L roduction parallel multigrid codes are now showing an order of magnitude
computational methods for scientific Grand speed up, nearly eliminating the problem of critical slowing down at small

quark mass, which plagued all previous solvers in lattice QCD.

Grand Challenge problems will be even
harder.
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Figure 10: Portion of an adaptively refined mesh from a global mantle convection simulation
with refinement both around plate boundaries and dynamically in response to the nonlinear
viscosity, with plastic failure in the region from the New Hebrides to Tonga in the SW Pacific.
The mesh contains elements on 7 different refinement levels globally with a finest resolution of
about 1 km. The key algorithmic challenge is to overcome the difficulty of adapting meshes in
parallel on the petascale supercomputers necessary for these simulations. A team led by
Omar Ghattas (UT-Austin) and Michael Gurnis (Caltech) has developed parallel AMR
algorithms that scale to over 200,000 cores, adapt to complex geometries, and deliver high
order accuracy. These new algorithms have resulted in a factor of 5000 reduction in problem
size, making tractable the global mantle convection simulations on TACC’s Ranger illustrated
above, and leading to new insights into the dynamics of plate boundaries.
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including solution techniques for complex
multiscale/multiphysics problems, advanced
spatial and temporal discretization schemes
for high fidelity simulations, scalable
algorithms for solution of large linear and
nonlinear algebraic systems and eigenvalue
problems,  methods  for  quantifying
uncertainties in large-scale simulations, and
algorithms for solution of large-scale
optimization problems arising in design,
control, and inversion. In this section, we
summarize research issues in advanced
computational methods that must be
addressed to enable solution of frontier
science and engineering Grand Challenge
problems using next generation computing
systems.

3.2 Simulation of Complex
Multiscale, Multiphysics, Multi-
model Systems

Science and engineering are increasingly
concerned with the study of multiscale,
multiphysics systems that intimately couple
different phenomena occurring at different
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spatial and temporal scales and
governed by different physical
laws. Such systems can arise in
a variety of ways. For example,
systems may involve a single
physical process that must be
modeled using a multiscale
approach. The approach couples
several descriptions of the
process valid at different scales,
for example, deterministic and
stochastic. ~ Other  systems
involve the coupling of multiple
physical processes described by
different models. Examples
include: modeling the transport
of pollutants in ground water,
which couples the simulation of
multiple fluid phases, geomechanics, and a
complex set of biogeochemical reactions;
simulating a fusion reactor, which involves

Science and engineering are
increasingly concerned with
the study of multiscale,
multiphysics systems that
intimately couple different
events occurring at different
scales and governed by
different physical laws.

fluid dynamics, deformation of solid
materials, thermal effects, ablation, fracture,
corrosion and aging of materials, and
radiation; and simulation of climate systems,
which couples atmosphere, ocean, land
surface, and sea/land ice models. Complex
engineered systems constitute yet another
class of examples. For instance, models of a
regional power grid involve a mixture of a
large number of continuous and integer



variables encompassing a wide range of
scales coupled through descriptions that
include various nonlinear dependencies and
constraints.

Generically, multiscale, multiphysics
systems present significant challenges for
numerical simulation. It is rarely possible to
simulate a complex system to such a degree
that behavior is resolved uniformly at the
finest scale; such systems exhibit complex
stability properties resulting from a fusion of
the stability properties of component physics,
and the linkage between physical components
has a strong impact on the model behavior. At
the same time, accurate simulation of
multiscale, multiphysics systems presents a
challenge for high performance computing
because existing paradigms for efficient use
of high performance platforms for single
physics models are inadequate for treating
multiphysics systems. Thus, the challenge of
faithfully  simulating a system that
encompasses a wide range of scales and
physical processes requires the development
of new computational algorithms that provide
robust accuracy in a multiphysics, multiscale
context yet scale to the millions of processor
cores that characterize future multi-petaflop
and exaflop systems.

3.3 Advanced Discretization
Methods for Partial Differential
Equations

In many areas of computational science
and engineering, increasing attention is being

A central challenge in the
development of these advanced
discretization methods is to
ensure that they map well onto
forthcoming multi-petaflops and
exaflops systems.
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devoted to advanced or special discretization
methods. These methods yield much higher
fidelity to the detailed physical description
than is possible with traditional discretization
methods. In these applications, standard
discretization methods either miss important
physical properties or achieve them at great
inefficiency, even at the highest possible
resolutions.

Examples of applications requiring
advanced discretization methods abound.
Discontinuous Galerkin (dG) finite element
methods, smoothed particle hydrodynamics
(SPH) methods, and hp-adaptive finite
element methods that allow for locally high
order discretization yet provide great
flexibility in local element and discretization

Increasing attention is
devoted to advanced or
special discretization
methods that yield much
higher fidelity to the detailed
physical description than is
possible with traditional
discretization methods.

geometry are increasingly used for
applications where the geometry of the
physical domain is complicated or multiscale.
Likewise, specialized methods for treating
problems with dynamic interfaces and free
boundaries are undergoing rapid
development. Integral equation-based
discretizations are increasingly deployed,
motivated by advances in fast multipole
methods for rapid evaluation of the relevant
kernels. Many problems in science and
engineering, for example, ranging from the
modeling of black holes to the modeling of
DNA and protein molecules to the study of



the propagation of nerve impulses, involve
the evolution of physical phenomena on
complex domains and manifolds. In these
situations, the geometry of the domain is a
critical consideration in the construction of
good numerical methods.  Motivated
originally by the solution of Maxwell's
equations, interest has intensified recently in
the systematic study and use of compatible
spatial discretization methods that inherit or
mimic fundamental properties of the model,
such as topology, conservation, symmetries,
and positivity structures and maximum
principles. These issues are also important in
time discretization for evolution problems.
So-called multirate integration methods that
allow for different time steps for different
components or over different regions of space
are very important, for example, in reacting
flow simulations, solid state circuit
simulation, and biochemical network
simulation. Geometric integrators that
preserve properties such as a Hamiltonian
structure are extremely important for
simulations involving long times, such as the
construction of trajectories for space vehicles.

In addition to discretization of the
governing continuous equations,
discretization of the geometry is a critical
issue. In cases where the domain is simple, it
is easy to generate uniform meshes of well-
shaped elements. The generation of such
meshes for geometrically complex 3-D
domains, combined with anisotropic physics,
can ultimately dominate the overall run time
of the simulation. In addition, such meshes
may yield much larger systems of algebraic
equations than more optimal mesh
configurations. ~ An alternative is fully
automatic unstructured mesh generation that
can interact with CAD (solid model)
representations to generate and adapt the
more optimally configured meshes over
general domains. However, these meshes
require more complex data representations
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and can yield more poorly conditioned

algebraic systems when not carefully
controlled and/or combined with appropriate
equation  discretization methods (e.g.,

stabilized methods). The application of high
order equation discretization techniques
requires the use of curved meshes for
problems with curved boundaries, adding
substantial additional complexity to the mesh
generation process.

Although substantial progress has been
made in the areas of structured and
unstructured mesh generation, there are a
number of critical areas requiring further
development for parallel simulations. These
include: generation and adaptive control of
meshes that are matched to the equation
discretization  methods used, parallel
generation of meshes of many billions of
elements on massively parallel computers,
effective dynamic partitioning of adaptively

Linear solvers constitute a
critical component of modern
implicit scientific simulation
codes and are often the barrier
to scalability on massively
parallel systems.

defined unstructured meshes, and methods
for the representation and generation of
properly controlled curved meshes for use
with higher order methods, including
consideration of the interactions of the mesh
generator with the geometric model
representation.

It is essential, however, as the Grand
Challenge problems become increasingly
complex, that the continued development of
advanced discretization methods honors the
underlying physics. Simultaneously, we must



ensure that they map well onto forthcoming
multi-petaflop and exaflop systems.

3.4 Scalable Solvers

Solvers constitute a critical component of
modern implicit scientific simulation codes
and are often the barrier to scalability on
massively parallel systems. Large, structured,
linear and nonlinear algebraic systems and
algebraic eigenvalue problems arise after
discretization of complex engineering and
scientific models. Overall scalability of a
solver is the product of algorithmic scalability
(work required as a function of problem size)
and implementation scalability (which
depends on having a large computation-to-
communication ratio). It is often the case that
large-scale scientific simulation codes spend
the majority of their time in the linear solver
phase, because other components usually
scale linearly with problem size and require
nearest-neighbor communication, while the
solver typically scales superlinearly and
involves global communication. Naive
solvers can scale quadratically (or worse),
rendering them unsuitable for the weak
scaling required to capitalize on increasing
numbers of processors.

In principle, linear solvers are capable of
scaling well on parallel systems: for elliptic-
dominated problems (and for parabolic,
which  resemble elliptic after time
discretization), the Green's functions decay
exponentially and hence effective
preconditioners that coarse-grain the global
communication can be designed. For
hyperbolic-dominated problems, the
dependencies are local. Unfortunately, a
number of  features of  emerging
computational science problems provide
serious impediments to the scalability of
modern solvers. These include the presence of
severe anisotropies and heterogeneities,
multiphysics couplings, strong nonlinearities,
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dynamic mesh adaptivity, interface dynamics,
mixed-order discretizations, and multiscale
models. For such problems, algorithmic
scalability is not at all ensured, and
implementation scalability is questionable
due to the dynamic load balancing and
significant communication required. It is
absolutely critical that these challenges be
overcome in order to ensure continued
progress on the next-generation Grand
Challenge problems as exemplified by those
described in Chapter 2.

3.5 Algorithms for First Principles
Models

Models that represent First Principles
descriptions of physical phenomena also
present numerous computational challenges.
Such models generally do not involve partial
differential equations. A primary example is
provided by molecular dynamics (MD). MD
models involve solving equations of motion
of particles in order to compute statistical
information such as temporal and spatial
ensemble averages. This general simulation
technique allows for a statistical mechanics
description of matter at finite temperatures
and of open systems. For example, MD
simulations have proven to be a useful bridge
between  microscopic ~ modeling  of
(bio)molecules and properties at larger scales
such as elasticity, conduction, and
mechanical  properties of  biological
assemblies. Significant ~ computational
challenges include:

e Current computational capabilities limit
the sampling to insufficient resolutions.
The complexity and ruggedness of the
energy landscape of molecular systems,
with thousands to millions degrees of
freedom, suggest that achieving complete
sampling will remain difficult for the
foreseeable  future.  Besides  new



approaches to computing important
statistics, rigorous tests of convergence of
computed statistics and assessment of
phase space coverage are desired for
further progress in the field.

o Current descriptions of force fields are not
sufficiently accurate. As the scope of MD
simulations increases to longer times and
larger systems, we observe significant
flaws in the current energy function
descriptions, which are largely empirical.
Even qualitative features are wrong, e.g.,
some proteins, that are accessible to
straightforward simulations do not fold
while others fold too quickly, RNA
molecules are computed to be unstable,
and quantitative experimental data is hard
to reproduce.

e Hierarchical temporal and spatial coarse
graining are necessary to overcome the
gap between molecules and biological
cells. We need algorithms that will help us
choose the next set of variables in the
(coarser)  hierarchy, compute their
effective interactions and assess the
reliability of these models.

In the biophysics field, these advances
are necessary to expand our knowledge of

large protein assembly and their cell
functionalities. For example, studying
microtubules—the most functional

cytoskeletal filaments of the cell, requires
modeling of the basic building block, the
protein tubulin. Rigorous coarsening based
on atomistic models is a promising direction
to consistent computational models for
cellular behavior with limited external
parameters.

3.6 Combinatorial and Discrete
Problems

Combinatorial scientific computing (CSC)
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is the field in which researchers design graph
and  hypergraph  solutions to  solve
combinatorial problems that arise for example
in computational science and engineering

information science, social networks, and
bioinformatics, as well as create high
performance software implementing these

algorithms. CSC plays a critical enabling role
in applications requiring parallelization,
differential equations, optimization, eigenvalue
computations, analysis of massive data sets,
and so on. When large-scale problems demand
increasing accuracy and fidelity, effective
algorithms for solving combinatorial problems
on emerging computing systems are needed.

Combinatorial problems have a number of
features that present challenges in designing
scalable parallel algorithms for their solution.
The runtime of graph algorithms is dominated
by communication costs and memory latency
rather than processor speed. There is little
work to do when processing the data at a
vertex or an edge, and so computation cannot
hide memory access costs. Since access
patterns are determined by the structure of the
input graph, prefetching techniques cannot be
applied. Graph algorithms possess poor data
locality, making it difficult to obtain good
memory  system  performance.  While
concurrency is abundant, dependencies
between computations at nodes or edges have
to be satisfied, and these costs can limit the
performance.

Several innovative ideas have been used to
design scalable combinatorial algorithms.
These include: approximation, when
algorithms with higher concurrency are
available if the problem can be solved
approximately  rather  than  optimally;
speculation, when dependent computations are
performed concurrently on multiple
processors, with roll-backs if conflicts are
detected; randomization to reduce the
necessity of synchronization of tasks; and



partitioning, mapping, and scheduling tasks to
reduce communications and synchronization
costs. However, a broad long-term research
effort in the design of innovative algorithms in
cooperation with research in exascale
architectures and applications is vital for the
solution of these exascale problems.

An  example of a  challenging
combinatorial problem in exascale computing
is dynamic load balancing for multi-scale,
multi-physics problems. Here computations at
multiple phases of the computation need to be
mapped to processors in a way that balances
the sum of the computations in the phases
while reducing communication and
synchronization costs. In adaptive
computations, the collection of computational
tasks changes from iteration to iteration, and
the costs of data migration have to be included
among the multiple objectives of balancing the
load. At the exascale, the imbalances in each
phase of the computation that could be
tolerated at the tera-scale would impact
performance adversely, and hence dynamic
load balancing would be vital for good
performance. Combinatorial problems also
arise in enabling solvers for linear and
nonlinear systems of equations. Domain
decomposition requires graph partitioning,
Algebraic Multigrid solvers use combinatorial
methods in  coarsening  grids, and
preconditioners  based on  incomplete
factorizations rely on graph models of the
factorization. Another key kernel here is an
algorithm for computing sparse matrix-vector
multiplications, and combinatorial analysis is
needed to make the computation efficient for
the memory system. Automatic Differentiation
(AD) is a software methodology that can
compute analytic derivatives of functions,
represented by programs, both accurately and
efficiently. AD relies on a computational graph
representation to apply the chain rule to
compute the needed derivatives, and this graph
is transformed to reduce the operations and
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storage  needed for the  derivative
computations. The computation of Jacobians
and Hessians is feasible for large-scale
problems only when the scarcity and
symmetry available in the computations is
exploited by graph coloring models to reduce
the number of passes by computing several
columns or rows of the matrix simultaneously.
AD has applications in nonlinear differential
equations when sensitivities of the solutions
are required and in Uncertainty Quantification.

3.7 Uncertainty Quantification

Because complex systems are often
inaccessible to experiment and direct
observation, and building and testing
prototypes are extremely expensive, there is
often only a small set of observational data
available for analysis and predictions of
behavior. Hence, a fusion of observational
and experimental data with computational
modeling provides the only means to gain the
required understanding of complex systems.
Error and uncertainty in such cases arise in
many ways, for example, in data and
parameters measured by experiment and
observation, from discretization, and from a
lack of knowledge about the physical
processes in the system. Moreover, they are
represented in different ways, for example,
statistically, probabilistically, and
deterministically. As computational modeling
has become a fundamental tool in the analysis
and prediction of the behavior of complex
systems in science and engineering, the need
to quantify the effects of error and uncertainty
has become critical. This is true on scientific
grounds, but in addition, computational
science is increasingly used to inform policy-
making or mitigation solutions where
significant resources are at stake. For
example, an understanding of predictive
uncertainty plays an essential role in the
political acceptance of the need to design



policies to address global warming when the
cost of different policies varies by trillions of
dollars. Policy and decision makers need
analyses of complex systems that are
supported by quantitative characterizations of
error and uncertainty.

In terms of computational costs,
quantification of uncertainty and error
estimates and control are tremendously

expensive undertakings that raise entirely new
sets of challenges for both mathematical
algorithm development and high performance
computing. The underpinnings are the
problems of forward and inverse sensitivity

analysis. Forward sensitivity analysis is
concerned with how errors in data,
parameters, and discretization propagate

In terms of computational
costs, quantification of
uncertainty and error
estimates and control are
tremendously expensive
undertakings that raise entirely
new sets of challenges for
both mathematical algorithm
development and high
performance computing.

through a model to affect output. Inverse
sensitivity analysis reverses the point of view
to determine the allowable uncertainty in
inputs to a model given a desired degree of
uncertainty in the model output. This is an ill-
posed inverse problem that provides a
powerful link between model results and
experimental observation. Both types of
problems involve determining how model
output changes with changes in input and
discretization. Whereas in the past one-time
solutions of simple models might have
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sufficed for scientific investigation, both
forward and inverse sensitivity analysis
involves the simulation and analysis of model
behavior for many sets of data/parameter
values and discretizations. What are needed
are entirely new classes of efficient and
robust algorithms for sensitivity analysis and
uncertainty quantification that can scale to
very large numbers of parameters and
expensive simulation models that can
efficiently utilize the millions of processor
cores that characterize future exaflop systems.

3.8 Large-Scale Simulation-Based
Optimization

Advanced CI has the potential to enable a
transformation from simulation to simulation-
based decision-making, which gives rise to
complex optimization problems that include
large-scale forward problems as constraints.
Those optimization problems arise in design
(in which the decision variables represent the
configuration and constitution of the system)
and in manufacturing and operations (in
which the decision variables represent control
parameters). Moreover, decision-making
informed by predictive simulation requires
estimation of uncertain parameters that
characterize the simulation. The resulting
inverse problems seek to estimate these
parameters by minimizing discrepancy with
observations.

Advanced cyberinfrastructure
has the potential to enable a
transformation from
simulation to simulation-based
decision-making.

Unfortunately, the solution of simulation-
based optimization problems, whether in the



form of optimal design, optimal control, or
inverse problems, is notoriously more
challenging than the corresponding forward
problem. First, the optimization problem is
often ill-posed and requires careful
regularization, despite the usual well-
posedness of the forward problem. Second, it
usually results in a 4D space-time boundary
value problem, despite the evolutionary
nature of the forward problem. Third, the
optimization  problem  often includes
inequality ~ constraints, = which  create
difficulties not encountered in the forward
problem. Fourth, the optimization objective
and/or constraints are often formulated in
probabilistic terms. And fifth, the forward
problem is merely a subproblem associated
with optimization, which can be orders of
magnitude more computationally challenging.
Indeed, when the forward problem requires
petascale resources, the optimization problem
will usually be in the realm of the exascale.

Because of those difficulties,
contemporary optimization methods are
inadequate for the solution of frontier
optimization problems that are governed by
large-scale complex simulations. We need
entirely new classes of efficient and robust
optimization algorithms that address the
difficulties listed above and can scale to the
millions of processor cores that characterize
future exaflop systems. The challenges in
creating those algorithms are of the highest
order, but they must be overcome to elevate
decision-making for complex multiscale,
multiphysics simulations from a practice
relying on simple interpolative models to a
more rigorous science based on high-fidelity
predictive simulation.

3.9

Integrated Sensor-Simulation
Systems

Many of the algorithms and methods
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discussed in this chapter must be merged
together to address the challenges of creating
integrated online sensor-simulation systems.
In such systems, the goal is to assimilate data
from sensors, often dynamically, to infer
unknown parameters and states of large-scale
simulations of physical systems (for
example, an evolving hurricane), using
methods from inverse theory. The updated
simulation models are then advanced forward
in time to yield predictions (such as storm
path), which can then be employed for
simulation-based decision-making (such as
how to deploy emergency responders) or
used as a basis for simulation-based optimal
control. Optimal experimental design theory
can then be used to determine optimal
locations of sensors (for example to reduce
uncertainties in the estimation of current
atmospheric state); these locations are then
fed back to steer the sensors to new locations.
This entire cycle of sensing-assimilation-
simulation-prediction-control-steering is then
invoked repeatedly, often in real time, over
the life cycle of the evolving event. Such
systems are becoming known as Dynamic
Data-Driven Application Systems (DDDAS)
[14].

Algorithms and computational methods
underlying DDDAS  face  enormous
challenges. While such systems have been
realized in practice, the models that are at the
core of DDDAS simulations tend to be
simple (such as lumped parameter models or
ODEs), or else if they are high-fidelity
models, the underlying data
assimilation/control/steering algorithms tend
to be simple and often heuristic. The
challenge is to create online dynamic data
driven application systems that employ high
fidelity (multiphysics, multiscale, multi-
model PDE) simulations of the evolving
event in conjunction with provably optimal
algorithms for the assimilation, control, and
steering components. A further serious



challenge is to carry out the DDDAS
framework while rigorously accounting for
uncertainties—in data, in models, in
predictions, and in the design and control
phases. Success in developing high-fidelity
DDDAS systems that operate with quantified
uncertainties will lead to significant
beneficial impacts on many societal problems
in such areas as manufacturing, commerce,
transportation, hazard prediction and
management, and medicine, to name a few.

3.10 Verification, Validation, and
Reproducibility

The viability of predictive simulation in
CS&E is founded on the ability to carry out
verification and validation (V&V) of complex
CS&E models and codes. We distinguish
among four different entities: the physical
system of interest, the mathematical model of
that physical system, the numerical
approximation to the mathematical model
required to render it solvable on a computer
(that is, the computational model), and finally
the software implementation of the numerical
approximation.

Verification is the process of determining
if a computational model of the physical
system is an acceptable approximation of the
mathematical model of the system.
Verification comprises both code verification,
and solution verification. Code verification is
the process of confirming that the computer
code implementing the computational model
correctly employs the algorithms developed
for the implementation. Solution verification
is the process that determines that the
equations and mathematical constructions
governing the model are numerically solved
with sufficient accuracy for specific quantities
of interest (Qol) and for the specific
simulation at hand. Code verification employs
analytical and manufactured solutions to
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assess expected convergence rates. The
adoption of systematic software engineering
practices gives further credibility in the
development of complex scientific codes.

An additional mechanism for verification
lies in the emerging initiative for reproducible
computational research, which advocates that
all details of computations, code, and data, be
made conveniently available to other
researchers [59]. Often the steps taken to
generate computational results are embodied
in software scripts or code. The predictions of
large-scale complex simulation codes involve
large numbers of small decisions, from data
collation and filters to parameter settings in
algorithms  and  software  invocation
sequences. Those decisions are often
impossible to capture completely in the final
published papers, simply because of their
large number. In those cases a convenient
way to communicate research methodology is
to release the underlying code for inspection.
Release of the accompanying data is the
second necessary step for reproducibility of
published computational findings.

Solution verification is the province of
the field of a posteriori error estimation.
Several decades of advances in this area
provide the capability of yielding rigorous
and, in many cases, guaranteed bounds on
errors for specific applications. New error
estimation techniques have been advanced
that enable the estimation and control of
modeling error, error due to uncertainty, and
approximation error for multiphysics and
multiscale models. The challenge for CS&E
is the development of rigorous a posteriori
error estimates and adaptive control of all
components of error for the sort of complex,
multiphysics, multiscale models
characterizing Grand Challenge problems (as
exemplified by those in Section 2.1) remains
a challenging problem in CS&E that must be
overcome to build confidence in the



predictions of such codes.

Validation of a model, in contrast,
involves comparisons with reality, that is,
experimental observations. We understand
that validation is a process designed to give
confidence in a model or to reject it: no
model can actually be “validated”; it can be
“not-invalidated” by physical observations,
and common terminology is to declare such
models as valid, a subjective decision. But
before we can validate, by a criterion, any
uncertain model parameters and other input
data must be inferred from available
experimental observations via a calibration
process. However, the experimental data are
themselves uncertain (due to measurement
errors), and there may be uncertainties
associated with the mathematical form of the
model  (structural  uncertainty).  The
calibration problem thus seeks to determine
probability distributions of model parameters
that are consistent with the probability
distributions of the observed quantities in the
calibration experiment, the model uncertainty,
and any prior information on the parameters.
Bayesian inference provides a systematic
framework for accounting for all of these
sources of uncertainty in the calibration
process. However, for problems with high-
dimensional uncertain inputs and expensive
forward models, the Monte Carlo sampling
techniques that underlie standard approaches
used in Bayesian inference quickly become
untenable.

A calibrated model can then be subjected
to a validation test using additional validation
experiments not used for calibration. The
uncertainties of the calibrated parameters,
which are now random variables, are
propagated through the calibrated model to
produce probability distributions of outputs;
these outputs are compared with the
probability distributions of measurements
from validation experiments using
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appropriate metrics and associated rejection
criteria to assess model validity. If the model
is rejected, then either it must be recalibrated
with more or better data, or the model form
itself needs to be refined, for example, to
include a neglected phenomenon or to remove
a simplifying assumption. In this way, the
validation process drives model development
and experimental measurements. The major
computational challenges here are
propagating  uncertainties from  model
parameters to code outputs. As is the case
with  inverse uncertainty  propagation,
contemporary ~ methods  for  forward
propagation of uncertainty break down for
expensive models and high-dimensional
parameter spaces. Overcoming the curse of
dimensionality for forward and inverse

Overcoming the curse of
dimensionality for forward and
inverse uncertainty
propagation is critically
needed for the development of
rigorous and scalable methods
for validation of large-scale
complex models.

uncertainty propagation is critically needed
for the development of rigorous and scalable
methods for validation of large-scale complex
models.

A vital component of reproducible
research in computational science is openly
accessible code and data. With the expanding
role of data-driven  discovery and
computational modeling and simulation in
scientific discovery, the reproducibility of
results places new demands on the robustness
and documentation of software.



e Advanced  computational methods
become even more critical as problem

The life’s blood of CS&E s size¢ and complexity (multiscale,
multiphysics, multimodel) increase.

3.11 Recommendations

computational methods. Often undervalued

and taken for granted, excellence in research e Advanced computational methods that
in this area is key to international leadership map to emerging (manycore, hybrid)
in broad areas of CS&E and CI. This chapter architectures are generally not available
has reviewed the challenges associated with and will need to be developed and
computational algorithms and methods as supported.

they face a new generation of complex e A lack of investment in computational
problems in CS&E that must be solved on methods will result in our inability to
new generations of computing systems. The make effective use of new HPC systems,
main conclusions drawn are: thus jeopardizing NSF HPC and other CI

e An algorithmic Moore’s Law has held Investments.

over the past four decades, with
simulation capability progressing as
much from developments in more
sophisticated computational algorithms
as from advances in hardware capability.

The overall recommendation from this
chapter is given below.

RECOMMENDATION:

A broad-based, comprehensive, long-term, and vigorous research program in
advanced computational methods should be established to overcome the
challenges faced in devising, analyzing, and scaling up new computational
methods for a new generation of critical CS&E problems on advanced computing
systems. These should include advances in discretization methods, solvers,
optimization, and validation and uncertainty quantification methods, including the
facilitation of reproducible research through affirmative steps such as the creation
of repositories for code and data, all targeted at enabling new frontiers in large-
scale multiphysics simulations on emerging architectures. This program should
support multidisciplinary and interdisciplinary teams that bring together applied
mathematicians, computer scientists, and computational scientists and engineers.
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High Performance Computing

for Grand Challenge Problems

4.1 Challenges of Exascale
Computing

Transformative discovery and innovation
in most disciplines important to meeting the
Grand Challenges, such as climate, energy,
environment, national security, disaster

As CS&E moves more towards
adopting rigorous standards for
validation, verification,
documentation, and reproducibility,
routine access to HPC is crucial.

preparedness, and medicine, depend on the
pervasive and seamless availability of
computing at scale. According to many
projections, general purpose exascale
computing equipment is likely to be available
in the next 10-15 years [35]. However, this
will likely be made possible only by dramatic
changes in processor architectures, including
very large scale of multi-core processing
(perhaps in the range of 1000 cores per chip
or beyond), power management, and
packaging. New methodologies for power
management at circuit, device, and system
level, locality and concurrency of data and the
computations that use/generate it, and
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resilience to system faults, are going to be
crucial to development of these systems.
Adoption and efficient use is thus likely to
require many advances in programming
models, tools, and techniques, training, and
workforce development, and will also require
significant investment in upgrading the
applications and software stack.

Concurrent to this revolution is another
paradigm shift in the quantity, quality, and
availability of digital data and its use in
driving modeling and simulation. Computing
is increasingly data driven and conversely
HPC is often constrained by the high volume
of data it generates and consumes. HPC needs
to respond to these needs with architectures
that are more flexible in terms of the balance
between data handling capabilities and
processing power. While we keep our focus
on catering to the evolving science needs, it is
also clear that advancement in the grand

Computing is increasingly
data driven and conversely
HPC is often constrained by

the high volume of data it

generates and consumes.

challenge science areas is greatly dependent
on low barrier and adequate access to the



existing models of computing at scale.
Ubiquitous and seamless availability of high
end computing from the scientists’
workbench are necessary to deliver on the
promises of computational science.  As
CS&E moves more towards adopting
rigorous standards for validation, verification,
documentation, and reproducibility, routine
access to HPC is crucial.

Resource provision modalities like those
advocated by “clouds” and grids will need to
be integrated with HPC provisioning.* Such
provisioning, which can demystify the usage
of HPC when coupled with appropriate CI for
collaboration, can transform scientific
investigation for entire disciplines, leading to
an age of wunmatched innovation and
discovery. However, much needs to be done
to ensure that these cloud environments that
are currently driven by the needs of
commercial processors are also addressing the
needs of the NSF community. Recent
partnerships between NSF and commercial
vendors on making these environments
available to NSF funded scientists through a
peer-reviewed competition are commendable
[54]. A balanced provision of extreme and
moderate scale computing is clearly needed
as advocated in the three tier structure of
Track I, II and III in the cyberinfrastructure
vision [13]. The interpretation of the Tracks
will need to be done in the context of
available hardware options. The intermediate
and lower end tracks must clearly include
these mechanisms for modest scale HPC
provisioning. NSF investments in these areas
are crucial to ensure that these promising
technologies are developed in manners
consistent with the needs of NSF users.

* The present NSF sponsored investment in the
TeraGrid gateway is an early and successful
example of such provisioning of HPC for well-
defined communities.
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This is also an area where there exist
significant opportunities for cooperation
nationally (across multiple federal agencies
NSF, DOE/OASCR, NASA, DOD, etc.) and
internationally (e.g., with the PRACE Project)
for synergistic investments. Progress in use
and development of these resources will
require much joint investment — see for
example [25] for details of such an initiative.

4.2 Core HPC Advances Needed
for GC Communities

A quantum increase in machine, software,
and human resources must continue to be
provisioned for widespread use among NSF
researchers. The great quality and quantity of
science enabled by existing resources (see, for
example, http://www.teragrid.org) clearly shows
that these resources are now an essential part
of the research methodology for the NSF
research community. HPC architectures,
methodologies, and software to exploit these
architectures are in a constant state of flux.
Grand challenge applications need to take the
fullest advantage of those systems at the
earliest possible opportunity. Thus, it is
necessary for the NSF research community to
have early and low barrier access to the best
equipment, methodologies, and software.

Apparent from the grand challenges listed
carlier is the diversity of the applications
addressed by NSF researchers. That diversity
requires  support for very different
computational methodologies and computer
architectures in the NSF HPC arsenal. The
constant evolution of these architectures and
development of new methodologies dictate a
consistent  policy of forward looking
investment in innovative hardware. The
equipment available in the NSF portfolio of
HPC resources should not only be able to
meet the existing needs of the user
community but also act as a driver for the



development of effective strategies and tools
for best use of forthcoming machines by the
considerable NSF computational science
research community.

A list of developments and special
capabilities needed for exascale platforms for
HPC systems in the future (O(10) years) was
recently proposed by a group of international
experts as part of a roadmap for exascale
software [25]. Significant among these are a
need to reduce power costs to 25 pico-joules
per floating point operation, 10 billion-way
concurrency for simultaneous operation and
latency hiding, O(100) petabytes capacity mix
of DRAM and nonvolatile memory, and
bandwidths of the order of 1 terabit enabled
by optical technologies. Each one of these
features is going to be necessary to attain the
target of a usable exascale computer that
satisfies the “politico-economic” constraint of
25MW for the maximum power consumed.
Ensuring that the software and hardware
developments targeted here do actually
happen is challenging and will need the
detailed and balanced program of investment
we outline below.

4.3 Software Stack - Programming

Models, Compilers, Debuggers,
and Development Environments
for Extreme Scales

The Message Passing Interface (MPI)
based programming model, which requires
the inherently flat architecture of most of the
high end computers used today, will need to
be reinvented to meet the application
challenges outlined in the previous section.
New programming models that allow
researchers to exploit the heterogeneity of
processing elements and the hierarchy of
memory and data storage need to be
developed. Current attempts at using, for
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example, Partitioned Global Address Space
(PGAS) languages need to be investigated,
but there also needs to be fresh thinking on
alternate approaches that enable Grand
Challenge applications to take advantage of
locality of data and memory usage where they
exist. New generations of architectures will
need innovative combinations of different
types of processors and accelerators for
processing, memory and storage structures,
and application-driven asynchronous usage of
machine elements. These architectures will
need new programming modalities and tools.

Computer architecture development is
guided by the power budget as much as by
the computing needs of the Grand Challenge
applications. That constraint will be crucial to
the move to the next stage of development.
Recent analysis [16] indicates that, to deliver
the necessary computing at power budgets
that are realistic, significant reductions will
have to be made in the power consumed at all
scales of computing equipment. Usage of
graphics processing units and accelerators to
provide customized computing capability has
made multiteraflop and petaflop scale
computing  affordable. = However, this
approach is unlikely to be adequate for the
next generation. A more holistic approach,
one integrating application-aware approaches
to power management, is likely to be needed.

4.4 New Numerical Algorithms to
Efficiently Use Petascale and
Exascale Architectures

The scaling to a million chips (with a
thousand cores per chip) and the use of
special-purpose accelerators, graphics cards,
and data appliances will require the
development of new algorithms and
methodologies to deal with the fundamental
shift in the computing and data storage and



access architectures. The parallel algorithms
currently used in most applications presume a
relatively flat processor layout, static
partitioning, and scheduling based on a priori
knowledge of the architecture and problem.
The next generation of codes will need to
exploit the fine-grain parallelism at the
intranode/socket level (O(1000) cores with
shared memory and coherent caches) and the
coarse-grain inter-node parallelism (O(10000)
nodes with relatively low bandwidth)
simultaneously and respond to changes in
machine and code needs at runtime.
Algorithms that contain even limited fractions
with O(P) schemes (P is the number of nodes)
will have insurmountable bottlenecks in
effectively scaling to future architectures.
Locality of data and avoidance of nonlocal
memory references will be needed. New
algorithms must be created that enable such
methodologies.

4.5 Data Flow and Data Analysis at
Extreme Scale

Many of the next generation Grand
Challenge applications will be “data
intensive.” The ratio of data movement to
computing required by such applications is
quite different from that for compute-
intensive applications. Very large volumes of
data need to be moved among processing
elements and from secondary and tertiary
storage. To enable such applications, great
attention has to be paid to the data flow
among the interacting components of the
applications and the computing devices. Data
required for a particular computation may
reside immediately next to the processing
element and available instantly, or the data
may be as far away as a central repository a
continent away. The systematic development
of input and output systems to enable such

42

data access dynamically will be a great
challenge and will require much investment.
Novel /O architectures taking advantage of
either localized preprocessing and/or solid
state disks are also being developed. These
architectures will fundamentally change the
programming model that is appropriate for
most applications. These core needs naturally
lend themselves to a preliminary set of
recommendations. Those recommendations
must be coordinated with the companion
groups working on a plan to address HPC
needs of the NSF community before they are
submitted to the community of stakeholders.

Coordinated investment in developing
these critical technologies is needed. Ad hoc
and diffuse funding models are unlikely to
succeed. A piecemeal and unfocused strategy
governing investment in these technologies in
conjunction with other broad research goals is
unlikely to succeed. Thus, success also
requires that a single organization take the
lead role in coordinating this investment. The
recommendations  summarized in the
Executive Summary are to be interpreted in
the context of the recommendation towards
evolution of the Office of Cyberinfrastructure
into an agent for the support of CS&E at
large.

4.6 Recommendations

NSF has taken on the challenge of
providing and maintaining the computational
infrastructure for advanced computing for two
decades. Providing the new infrastructure
needed to meet the Grand Challenges in the
future will be an especially daunting
objective.



RECOMMENDATION:

It is recommended that NSF, through OCI, continue to give high priority to funding
a sustained and diverse set of HPC and innovative equipment resources to
support the wide range of needs within the research community. These needs
include support for the development of technologies to meet the foremost
challenges in HPC, such as power-aware and application-sensitive architectures,
new numerical algorithms to efficiently use petascale and exascale architectures,
and data flow and data analysis at the extreme scale.
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Software Infrastructure for

Grand Challenge Communities

5.1 Introduction

Computational modeling and simulation
as well as data analysis and visualization are
critical to advancement in many areas of
science—from astronomy and astrophysics;
to climate change prediction and hazard
analysis, mitigation and response; to
nanoscale science and technology and the

The software infrastructure for

science and engineering is a
critical part of the national
cyberinfrastructure.

biological sciences. Engineering innovation
has also been revolutionized with high
performance computing, especially
replacement of expensive physical prototypes
with virtual ones that lead to more optimal
designs at much lower cost in less time.
Although high performance computers are
the enabling technology, such advances are
driven by scientific and engineering
applications — software — that capture the
physics, chemistry, and biology in the
description of the natural or engineered
system. The software infrastructure for
science and engineering is a critical part of
the national cyberinfrastructure.
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The software used in the solution of
science and engineering problems, including
ones that are Grand Challenges, is a complex
hierarchy of software components, often
referred to as the software stack. As
discussed in the Task Force Report on
Software, this software hierarchy includes:

e Computing systems software  for
operating and managing computer
systems, such as operating systems and
file systems for individual computers and
middleware for distributed computing
systems;

e Tools for developing computational
science and engineering applications and
data analysis and visualization tools, such
as compilers, debuggers, and numerical
libraries; and

e Science and engineering applications,
including the tools needed to analyze and
visualize the data produced by these
applications.

Advances in computing systems software
are needed to operate and manage the
increasingly complex computing systems

Advances in software are required in
all areas: computing systems
software, middleware, and science
and engineering applications to solve
Grand Challenge problems.




required to solve Grand Challenge problems;
middleware is needed to provide the required
functionality in distributed computing
environments for addressing a growing class
of  data-intensive = Grand  Challenges;
advanced tools are needed to facilitate the
development of sophisticated applications
and analysis tools; and, finally, a new
generation of science and engineering
applications is needed to take full advantage
of the extraordinary capabilities provided by
the advanced computing technologies needed
to solve Grand Challenge problems. In this
chapter we will focus on the science and
engineering applications needed to address
the types of Grand Challenges outlined in
Chapter 2.

5.2 Key Issues in Software

Development

As the scientific and engineering
communities solve ever more complex
problems in an environment of ever
advancing computing technologies, a number
of key issues must be taken into account,

including:

Evolution of Computing Technologies.
Computing technologies continue to evolve
with major changes arising nearly every
decade. In the past two decades, we have
seen the decline of vector computers and the
emergence of parallel computers powered by
microprocessors with performance
approaching that of the earlier generation of
supercomputers. These single core
microprocessors are now being replaced by
multi-core and many-core microprocessors.
Single processor performance increased by a
factor of 1000 from the mid 1970s to the mid
2000s, but in 2004 performance leveled off
as thermal effects prevented further increases
in processor frequency. Now, increases in
cores per chip provide the engine for
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advances in performance and software must
adapt to exploit this new level of parallelism.
Many other factors are also in flux, for
example, the performance of memory
subsystems and the speed of the processor
interconnect relative to that of the
microprocessor; these changes also have
significant implications for the design of
scientific software.

Evolution of Scientific Software. Major
science and engineering applications have
lifetimes measured in decades. However,
they are constantly changing as the science
questions advance and understanding of
phenomena improves while, in parallel, the
underlying computational algorithms and
numerical methods continue to improve.

Major science and engineering
applications have lifetimes that
are often measured in decades
and, thus, must evolve as the
underlying computing
technologies change.

Science and engineering applications, which
may contain tens of thousands to millions of
lines of code, must also adapt as the
computing technology changes—from minor
revisions as the computer hardware and
systems software evolve to major revisions
as disruptive changes in computing hardware
and algorithms occur. As an example,
consider GAUSSIAN, which was developed
by John Pople, who won the Nobel Prize in
Chemistry in 1998. Pople began the
development of GAUSSIAN, which is still
the most widely used computational
chemistry application today, in the late 1960s
[23] and it has continued to evolve over the
past forty years [42]. However, the
performance of GAUSSIAN has now



reached a plateau and will likely not increase
further unless it is rewritten to exploit multi-
and many-core processors. This is a major
undertaking for such a complex molecular
modeling application.

Reproducibility of Computational Results.
Another example of a disruptive change in
the evolution of scientific software comes
with the increasing use of workflows to
coordinate the numerous steps in a research
task and their impact on the reproducibility
of results. Use of computational tools is
appearing in an increasing number of
scientific research settings in which the tools
are used in complex, highly differentiated,
and granular workflows. As a result,
reproducibility is poised to become a key
issue in  computational science and
engineering and in data management. Tools
for provenance tracking are emerging but
need to be developed at a faster rate and for a
much wider number of research problems
[57]. Version control systems for code
development exist but are not routinely used
by all computational scientists. Version
control and provenance are not just important
for software but for data as well. With the
diverse background of the many researchers
using computation, provenance tools must be
easy to use and be applicable to new
problems.

5.3 Multiple Activities of Software

Development

In the past, development of applications
for science and engineering was driven by a
patchwork of individually funded projects
with little attempt to coordinate and integrate
the best approaches into a single package.
Some research communities addressed this
problem by developing applications that
integrated the advances being made into a
“community code,” although there was
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usually no direct support for this effort
(GAUSSIAN is an excellent example of this
practice). With the increasing complexity of
computing systems, it is no longer possible to
take full advantage of the advances in
computing technology using this ad hoc
approach. Now is the time to re-examine how
best to support the development,

Now is the time to re-examine
how best to support the
development, maintenance,
and upgrading of the software
needed by the nation’s
researchers to advance
science and engineering.

maintenance, and upgrading of the software
needed by the nation’s researchers to advance
science and engineering, However, it must be
recognized that the development of
computational science and engineering
software requires the support of multiple
activities:

1. Development of software to test new
concepts, mathematical models, and/or
algorithms. These activities are usually
targeted at the development of software to
demonstrate a concept, model or
algorithm and are undertaken by
individual scientists or small groups.

2. Development of community codes. These
applications are intended to support the
research of a well-defined community of
users, many of whom may participate in
the development of the software. This
software may employ the new concepts
and algorithms developed either by small
groups, those developed by the
community of researchers involved, or by
the teams of researchers tacking Grand
Challenge  problems (see  below).



Facilitating collaborative code
development has the corollary effect of
supporting reproducibility of published
computational results by making the code
widely available, independently tested,
and useful well beyond the originating
research group.

3. Development of software targeted for use
on the nation’s most powerful computing
systems.” These are often large
collaborative  efforts  that include
distributed teams of computer scientists
and applied mathematicians as well as
disciplinary scientists and/or engineers.
The development of this software often
poses unique challenges since it is
targeted at computers at the leading edge
of computing technologies of a scale and
complexity previously nonexistent.

The current funding mechanisms at NSF
work well for activity 1, where principle

Long-term funding is needed

to support the production of

reliable, robust software for a

broad audience of scientists
and engineers.

investigators are funded for a limited number
of years to develop an innovative new
concept, model, or algorithm. However, they
are far from optimum for activities 2 and 3,
where long-term funding is needed to support
the production of reliable, robust software for
a broad audience of scientists and engineers.

> Such as the Track 1 and 2 systems funded by the
NSF and the leadership computing facilities
funded by the U.S. Department of Energy.
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The technical issues encountered in
developing software for advanced computing
systems rival those encountered in other
research  activities and require an
understanding of a broad range of disciplines,
from the scientific problems that are being
targeted to the wunderlying computing
technology and algorithms. The computer
science community has, at times, provided
high-level languages and programming aids
to ease the programming effort. Yet, science
and engineering software often lags behind,
as illustrated by the GAUSSIAN example,
due to lack of sufficient funding to rewrite or
revise the software, uncertainties in support
for some of the basic software infrastructure
provided by computer scientists, and the
detailed knowledge and expertise required to

implement the most sophisticated
applications on modern highly parallel
computers.

In the current funding environment,
many software advances are not fully
exploited and may even be lost because there
is no mechanism for the identification of the
most valuable software and its long-term
maintenance and evolution. Although, as
noted above, some communities have dealt
with this issue by establishing loose
coalitions devoted to the development and
maintenance of selected software packages,
the sustainability of these efforts is

NSF must recognize the
critical role of software in the
nation’s cyberinfrastructure
and ensure that widely used
software is maintained and
continues to evolve.

questionable. In addition, because of the lack
of direct funding, the level of effort is often



minimal, which can lead to suboptimal
software. NSF must recognize the critical
role of software in the nation’s
cyberinfrastructure and ensure that widely
used software is maintained and continues to
evolve in response to community needs.
Professional staff will play a key role in
achieving this goal. These individuals have a
unique combination of knowledge and
expertise—disciplinary science or
engineering, computational science or
engineering, software engineering, and high
performance computing—that is essential for
creating, maintaining, and evolving these
usually complex software packages. Funding
agencies should explicitly include support for
professional staff in their grants and help
create a satisfactory career path for them.

A major development within the past
decade has been the use of an open source
license as a means of making software freely
available to the computer and computational
science community. Although Linux is the
best-known example of open source software
[43], many science and engineering software
developers have long made their software
freely available to the community. This
practice allows researchers to quickly build
on the innovations of others to advance their
work. Because of the clear benefits of this

Making software developed
under federal support available
via an open source license is
critical for the development of
a computing software stack for
science and engineering.

approach, federal agencies have begun to
require that software developed under their
support be made available via an open source
license. This requirement is critical for the
development of a computing software stack
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for science and engineering, where the
software developed by several groups, who
may be funded by more than one federal
agency, must work together. In fact,
discussions are currently under way on the
development of the software stack for
exascale computers that will likely require the
integration of software developed by
researchers funded by agencies in several
countries [44]. Also, recent work on code and
data release accompanying published results
indicate the wuse of the “Reproducible
Research Standard,” or similar open licensing
structure [59].

5.4 Exemplary Programs and
Projects in Software

Development

Although the importance of software for
advancing science and engineering has long
been recognized at federal agencies that
support research, few explicitly support
software development as an end in itself. As
two examples to the contrary, the National
Institutes of Health (NIH) has supported the
development and continuing evolution of
NAMD, a molecular dynamics application
targeted at computational modeling of large
biomolecular systems [45], since the late
1980s through its National Center for
Research Resources program [46] and, in the
1990s, as part of the Environmental
Molecular Sciences Laboratory Project, the
U.S. Department of Energy supported the
development and continuing evolution of
NWChem, one of the few molecular science
applications that scales to 100,000 cores [2].
These applications are used by tens of
thousands of researchers worldwide and are
exemplary of major software development
projects that have had an extraordinary



impact.® However, even in these cases, the
full cost of the software development effort
are not being fully supported.

More recently, programs have arisen that
target the development of software for
science and engineering. Principal among
these are the Biomedical Information Science
and Technology Initiative (BISTI) [47] at the
National Institutes of Health, which has
focused on the development of scientific
applications  important to  biomedical
research, and the Scientific Discovery
through Advanced Computing (SciDAC)
program [48] at the U.S. Department of
Energy, which is focusing on the
development of the software stack needed for
scientific and engineering research relevant
to DOE’s mission. Both of these initiatives
have seen significant investment and are
serving their target community’s needs,
although, again, few would argue that the
level of support is adequate to meet the
challenges posed by petascale computing
(and beyond) technologies needed by the
Grand Challenges.

At NSF, funding for the National Center
for Atmospheric Research has long included
support for the development of software for
the atmospheric sciences research
community. In particular, NSF supported
development of the NCAR Graphics package
[49], the netCDF library and interface [50],
and the Community Climate System Model
[51] and the Weather Research Forecasting
[52] applications. All of this software has
found application outside NCAR and the

® It should be noted that some of the technology
developed in the NWChem project, e.g., Global
Arrays, has been used in many other molecular
science applications, e.g.,, GAMESS-US and
MolPro, and Charm++, which lies at the heart of
NAMD, is now being used in a number of other
scientific applications.
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community that it directly supports. The
NSF’s Supercomputing Centers Program also
funded the development of a substantial suite
of software that facilitated the use of the
supercomputers installed in those facilities.
More recently, these supercomputing center’s
efforts have been replaced by several
independent programs, e.g., SDCI (Software
Development for Cyberinfrastructure) and
STCI (Strategic Technologies for
Cyberinfrastructure), which are funding a

It is yet to be seen if the SDCI
program will be able to create
and maintain the integrated
software stack needed by the
nation’s science and
engineering research
community.

number of important efforts; e.g., the Alpaca
project [53], which is developing high-level
tools to help scientists develop and maintain
large, complex applications. It has yet to be
seen if the SDCI program will be able to
create and maintain the integrated software
stack needed by the nation’s science and
engineering research community.

5.5 Recommendations

Software to support the Grand
Challenges in science and engineering are a
critical part of the national
cyberinfrastructure. Software investments
often have a broad impact because, more
often than not, the software created in one
project is widely disseminated and
incorporated in other research projects,
enabling them to achieve their goals.
Computational science and engineering will
advance most rapidly if the National Science
Foundation develops a cyberinfrastructure



program that carefully Dbalances its
investments in computer hardware and
computer software.

It is recommended that NSF establish a
program to support the development of
scientific software for Grand Challenge
communities that complements the single
investigator programs that are currently so
successful. It must not only support the
creation of new concepts, models, and
algorithms, it must also support the creation,
maintenance, and evolution of major science
and engineering applications. While it is
clearly —premature to prescribe new
mechanisms for supporting the development
of the software needed for computational
science and engineering research, a few core
ideas are beginning to emerge.

e Groups that can integrate expertise in
computing technology, software engineering,
and computational methodology with science
and engineering and are embedded in
application domains, can provide a much
needed locus for the sustained development
and maintenance of essential science and
engineering software.

e Professional staff, individuals who have
expertise in science or engineering, computer
science  and/or  engineering,  software
engineering, and  high  performance
computing, are critical to creating science
and engineering applications that can evolve
to meet the needs of the communities they
serve as well as evolve as computing
technology changes.

With the arrival of petascale computers
and the expected progression toward multi-
petascale and exascale computers in the next
decade as well as the rapidly growing
capabilities in  data-driven  discovery,
opportunities for advancing science and
engineering have never been higher. Also,
with the expanding role of data-driven
discovery and computational modeling and
simulation in decision support as well as
scientific discovery, the reproducibility of
results places new demands on the robustness
and documentation of software. As a result,
the demands on innovative and sustainable
software have never been higher. These
considerations lead to the following
recommendations.

RECOMMENDATIONS:
It is recommended that NSF:

1) Support the creation of reliable, robust science and engineering applications
and data analysis and visualization applications for Grand Challenges as well as
the software development environment needed to create these applications.

2) Provide support for the professional staff needed to create, maintain, evolve
and disseminate the above applications as part of its grant funding.

3) Establish best practices for the release of science and engineering
applications and data as well as the workflows involved in their creation to ensure

the reproducibility of computational results.
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6.1 The Data Challenge

Digital technologies have transformed
every facet of research, from the questions
asked and the methods used to the ways in
which researchers interact. Since 2003, digital
information makes up 90 percent of all
information production, vastly exceeding the
amount of information on paper and film. As
simulations and experiments generate many

Since 2003, digital information
makes up 90 percent of all
information production. One
of the greatest scientific and
engineering challenges of the
twenty-first century is to
understand and make effective
use of the growing body of
information.

petabytes and even exabytes of data, science
is becoming increasingly data intensive. For
example, climate models are expected to
generate hundreds of exabytes by 2020 [9],
and the Large Hadron Collider (LHC) will
produce roughly 15 petabytes of data
annually over its estimated 15-year lifespan
[86]. Thus, one of the greatest scientific and
engineering challenges of the 21% century is
the endeavor to understand and make
effective use of this growing body of

Data and Visualization
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information. Scientific breakthroughs will be
powered by advanced computing capabilities
that help researchers manipulate, explore, and
model massive datasets. Indeed, a deluge of
data has shaped a new era in computing, a
shift called by Jim Gray the “fourth
paradigm” of science, which will focus on the
power of data-intensive computing [27],
following the first three paradigms of
science—experiments, theoretical hypothesis,
and computer simulation. In this paradigm,
science follows a data-first approach in which
massive amounts of data are collected by
automated instruments and then processed via
visualization, data mining, and statistical
modeling to discover regularities and generate
and test hypotheses.

Several reports and books have been
published in recent years that discuss the
challenges created by the ‘“tsunami” of
scientific  data and the  potential
transformative opportunities for science and
society [e.g., 22, 61]. Many studies have
begun to address the major issues in the
management, policy, research challenges, and
use of digital data. These issues include the
integrity, accessibility, and stewardship of
data [15], the long-term preservation of
digital data [31], and the economical
sustainability of data [60], as well as the
challenges in scientific visualization [37, 28,
65], modeling and simulation [58, 35], data
analysis [32], and software development [17,
25]. To address those issues [5], major
committees have been established, including
the Interagency Working Group on Digital




Data (IWGDD) and the National Research
Council Board of Research Data and
Information (BRDI).

This chapter focuses on data and
visualization issues relevant to Grand
Challenge = Communities and provides
scientific case studies of each. Those aspects
are (i) value proposition of digital scientific
data and visualization, (ii) data science and
data infrastructure as a major component of
research in cyberinfrastructure, and (iii) the
scientific and user communities of data-
intensive science.

6.2 Broad Impact of Digital
Scientific Data

The continuous cycle of generation,
access, and use of an ever-increasing range
and volume of digital data is transforming all

elements of science. To harness the
accelerating data explosion, our most
important  tools now include data

management and visualization. Indeed, the re-
use and re-purposing of digital scientific data
and visualization capabilities will have a
dramatic impact on scientific, biomedical, and
engineering research; defense and national
security; and industrial innovations.

Success  Stories. Access to  high
performance computing resources to collate,
interpret, model, and visualize scientific data
in real-time has led to significant advances in
our understanding of weather, fundamental
physics, chemistry and structural biology, and
earthquakes among other fields of scientific
discovery. A relevant and representative
success story for data and visualization is the
real-time  prediction of tornados as
exemplified by the NSF Center for Analysis
and Prediction of Storms
(http://Iwww.caps.ou.edu/) where weather data
is sampled in real-time and sent over
dedicated links to high performance
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computing resources for modeling and
simulation followed by visualization to map
out high probability regions and tracks for
tornados (http://www.psc.edu/science/2007/
storms.html/).

Several examples of projects under way
illustrate the demands on data management,
and challenges and opportunities of data-
driven science:

1) Global Earth Observation System of
Systems (GEOSS). Earth observations are the
data collected about the earth’s land,
atmosphere, oceans, biosphere, and near-
space environment. These data are collected
by means of instruments that sense or
measure the physical, chemical, and/or
biological properties of the earth. These data
provide critical information to assess climate
change and its impacts; ensure healthy air
quality; manage ocean, water, mineral and
other natural resources; monitor land cover
and land use change; measure agricultural
productivity and trends; and reduce disaster
losses. The Strategic Plan for the U.S.
Integrated Earth Observation System directly
supports the efforts of more than 70 countries,
who are working together to achieve a
GEOSS — which will interconnect a diverse
and growing array of instruments and systems
for monitoring and forecasting changes in the
global environment  (http://usgeo.gov/docs/
EOCStrategic_Plan.pdf).

2) Reverse Engineering the Brain. The
brain is the most complex biological system
we know, and understanding its functionality
is the compelling biological challenge of the
century. How do thought, action, and emotion
arise from the building blocks of life? The
National Academy of Engineering has
selected reverse engineering the brain as one
of its grand challenges. The cerebral cortex
of the human brain contains more than 160
trillion synaptic connections that originate
from Dbillions of neurons. Given the




complexity of the nervous system, it is not
surprising that the neurosciences are rich in
the use of and need for data. The
neurosciences now rely heavily on in vivo
imaging methods and computational models,
both of which depend on computing power
and mathematical techniques. Large-scale,
high-resolution images of small sections of
the brain are already measured in tens of
petabytes and increasing. In addition,
neuroscientists must work across multiple
scales of resolution and must integrate such
diverse data sets as cellular neuroimaging,
gene expression data, genotype data, neuronal
morphology, and clinical data. With new
technologies, there are hopes to ultimately
create a ‘“connectome”—a complete circuit
diagram of the brain. This goal will require
intensive and large-scale collaborations
among biologists, engineers, and computer
scientists.

3) Integrated Public Use Microdata
Series (IPUMS). The study of powerful large-
scale trends such as economic development,
urbanization, expanding migration,
population aging, and mass education by
social, behavioral, and other scientists
requires access to global-scale micro-data —
data about individuals, households, and
families collected by census offices around
the world. IPUMS provides researchers and
educators with interoperable access to data
from more than 130 censuses in 35 countries,
representing more than 279 million person
records. This powerful digital collection
meets  critical research needs while
successfully preserving appropriate privacy
and confidentiality rights. In addition, [IPUMS
allows researchers to construct frameworks
for analyzing and visualizing the world’s
population in time and space. This broader
view allows researchers to identify agents of
change, to assess their implications for
society and the environment, and to develop
policies and plans to meet or prevent future
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challenges at local, regional, national, and
global scales
(https://international.ipums.org/international/).

4) Next-Generation — Sequencing and
Genomics. Genome sequencers are making
rapid advances, with those newly available in
2010 having up to 1000 times more
throughput, thus enabling results up to 1000
times less costly than the previous generation
DNA sequencing tools; these advances are
transforming life sciences research. It is now
feasible to study metagenomics—the
collection of genomes recovered directly from

environmental samples — to characterize
unculturable  organisms and  complex
microbial communities in their natural

environment. This also includes the study of
the human microbiome—the collection of
genomes of microbes in the human body, and
their impact on human health and human
disease. The Ilarge-scale sequencing of
individual human genomes can uncover
genetic variants associated with disease,
leading to the potential use of the personal
genome in medicine. Where high-throughput
sequencing was previously limited to large
genome centers, next-generation sequencing
has brought the field of genomics back into
the laboratories of single investigators or
small academic consortia. With a throughput
of one terabyte per day and increasing, it
requires cost-effective, compact solutions that
provide high performance computational
power combined with vast storage capabilities
in order to fully exploit the success of modern
sequencers.

5) Sensor Networks. Many areas of
science and engineering, such as terrestrial
ecology, oceanography, and geosciences, are
rapidly becoming data-driven sciences. Large,
spatially-distributed  and  heterogeneous
networks of sensors are being deployed
including fixed instruments, mobile sensors,
and citizen scientists. The resulting data are



voluminous, spatially  distributed, and
collected on different time scales and with
different sampling plans and sampling biases.
Furthermore, the miniaturization of sensor
technology is driving a tradeoff from
deploying a small number of expensive,
highly-reliable sensors to deploying many
thousands of cheap, unreliable sensors. This
gives rise to many challenges: (i) data
cleaning: quality assurance and quality
control of raw data must be fully automated,
because the data are too voluminous for
manual inspect and cleaning; (ii) data fusion:
data at multiple spatial-temporal scales and
collected under different protocols must be
fused to a single scale or by employing novel
multi-scale modeling methodologies; (iii)
data filtering/disposal/transport: typically data
are collected at distributed remote locations;
analyzed at a second site, usually a computing
facility; visualized and interpreted at a third
site such as the scientist’s desktop; and finally
must be assimilated into predictive models
and decision-making tools such as for forest
management, public health management, etc.
Necessary  cyberinfrastructure  includes
greatly improved networking, algorithms, and
low power hardware for in situ data
reduction/compression/sampling, multi-
resolution, multi-tiered distributed data
storage, algorithms for petascale data mining,
and distributed algorithms for visualization
and decision support.

6.3 The Need for a Data
Infrastructure

Data-centric science is characterized by
the massive scale and complexity of data and
the interdisciplinary and multidisciplinary
nature of data generation, management,
analysis, and use. The heterogeneous methods
and devices for data generation and capture
and the inherently multi-scale, multi-physics
nature of many sciences have resulted in a
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mass of data with hundreds or thousands of
attributes or dimensions and spanning
multiple spatial and temporal scales. Thus,
not only are centralized storage repositories
“data-intensive”, but so are the far greater
volumes of data that are network-accessible
in offices, labs, and homes and by sensors
and portable devices. Thus, data-intensive
computing should be considered more than
just the ability to store and move larger
amounts of data. The complexity of the new
datasets, as well as the increasing diversity of
the data flows, is rendering the traditional
compute/datacenter model inadequate for
modern scientific research.

Indeed, as the International Exascale
Project Roadmap [25] emphasizes, “The
potential impact of Exascale computing will
be measured not just in the power it can
provide for simulations but also in the
capabilities it provides for managing and
making sense of the data produced.” New
infrastructures are needed to enhance
capabilities for finding, using, and integrating
data to accelerate its use in discovery and
innovations.

Deficiency of Current Data
Infrastructure and Lessons Learned. There is
currently a lack of robust cyberinfrastructure
for data science.  The recent DataNet
program, for example, is of an exploratory
nature and not structured to provide general-
purpose data infrastructure. Similarly, the
storage and archive resources of the TeraGrid
are designed only to support infrastructure
for TeraGrid compute systems. As the world
becomes more instrumented and our
processes for dealing with significant data in-
flow from sensors or experiment and data
out-flow from simulation models becomes
limiting, data and visualization become an
ever-increasing challenge. This challenge is
not only the physical management of the
data, but also in the software tools to



manage, migrate, cache, and -efficiently
analyze the data. Lessons from TeraGrid
show that the standard model of running on
high performance computing resources
remotely followed by transferring the data
back locally for analysis and visualization is
breaking down. Large scale data easily
generated in a few days may presently takes
weeks to transfer back to home institutions,
and even this assumes high speed
interconnect and the availability of local
resources to store the data. Researchers are
spending more time on data management and
simulation workflow than actually doing the
science. Previously, obtaining data was rate-
limiting; now the aggregation, analysis,
interpretation, and visualization have become
the limiting step. What is needed are ways to
facilitate both remote, local, and on-the-fly
data analysis and management. A step in the
right direction is the InCommon federation of
resources (http://www.incommonfederation.org/)
that allows an authenticated user to get direct
access to TeraGrid. However, this needs to
be broadened to facilitate access to the data,
for example to mount remote disk resources
from the TeraGrid locally.

Data characteristics and infrastructure
requirements. Scientific data must be thought
of hierarchically or as tiered with different
levels of performance, reliability, security,
and accessibility. Scratch disk space, high
performance parallel, global file systems,
archives, and real-time data streams
necessitate different requirements;
specifically, different policies, economies,
and expectations related to lifetime, costs,
value, and reliability. In the ideal scenario,
real-time data flow would come into and out
of simulations running on large parallel
resources with on-the-fly analysis and
visualization capturing data as fast as
possible as a means to understand and
potentially steer the simulations. Yet, not all
of the data can likely be saved, so data
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subsets will be either aggregated, reduced, or
less  frequently time sampled and
subsequently saved on high performance
parallel disks. Data will then be analyzed by
other loosely coupled resources, which in
turn may be reduced for longer term storage
on more cost effective, ideally globally
accessible, file systems for further analysis,
and processing, ideally remotely and locally.

When data has to move between
resources, middleware should facilitate
migration, data integrity, caching, and also
provide metrics for the expected timescale
for the data availability. Gold standard data
should be archived, and policies set to
understand worth, cost, lifetime, need for
annotation, and dissemination. Another
complication is the notion of distributed data
where collaborations independently work on
pieces of the puzzle but later need to manage,
integrate, and analyze the data.

The characteristics of scientific data
further  necessitate  robust  high-speed
computer networks for several distinct
reasons: (i) as instruments grow in diversity
of location and richness of data, increasingly
the data needed for the workflow will be large
and not co-located with the processing
resources; (ii) workflows are becoming more
complex, and include data acquisition and
processing, simulation and modeling, data
analysis, and visualization by the discipline
scientists; and (iii) the resources needed by
the various workflow steps are not likely to
all be in the same location. All these
observations emphasize two key applications
of computer networks: (a) moving large data
sets and (b) supporting effective remote
visualization (e.g., by streaming visualization
flows at high speed over wide area.).

Components of a Robust Data
Infrastructure. Major advances in computer
science and engineering will be key to



addressing the cyberinfrastructure needed to
empower data-intensive science. An end-to-
end approach is required that encompasses
the entire data life cycle from the initial data
acquisition, to data management and storage,
and to data integration, analysis, visualization
and knowledge discovery. An important
rationale underlying the end-to-end approach
is the central role reproducibility plays in our
scientific efforts. Without the communication
of the entire data life-cycle and data
processing it is difficult — if not impossible —
for fellow scientists to verify and replicate
data-driven findings. While there are various
domain-specific scientific applications, data-
intensive science shares major common
cyberinfrastructure needs [17, 25, 32, 35, 65].
A robust persistent data infrastructure will
consist of several major components:

1) Data Analysis and Visualization.
Innovative research is needed in the areas of
data analysis, mining, and visualization to

New mathematical and
statistical approaches and
algorithms are needed to scale
with the size of the data, along
with related parallel
implementations able to scale
with the exascale computing.

promote enhanced capabilities for finding,
understanding, visualizing, and interacting
with data, and to gain novel insights from
extreme scale, complex scientific data.
Visual analysis systems that enable
interaction between the scientist users, the
data analysis system, and the data are critical
for supporting scientific discovery and for
enhancing communication about science
outcomes. Visual data analysis is needed for
extreme scale, heterogeneous, and high-
dimensional scientific data. New
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mathematical and statistical approaches and
algorithms are needed to scale with the size
of the data, along with related parallel
implementations able to scale with the
exascale computing. New models and tools
are needed for indexing, querying, and
searching massive datasets. New algorithms
should make effective use of new computer

architectures being developed and the
associated  development  of  scalable
algorithms, libraries and tools.

2) Data Integration and

Interoperability. To promote the effective
integration and interoperability of data and
data tools, systems, services, and resources
will require the use and development of
common standards. Also needed are
ontologies for semantic data integration and
analysis, support for collaborative data
analysis, as well as knowledge representation
and machine reasoning research to support
automated analysis of large data sets and
integration of data from multiple sources.

3) Data Provenance and Stewardship.
Concepts, strategies, tools, and automated
protocols should be developed for data
quality assessment and control, validation,
authentication, provenance, and attribution.
Data should be documented adequately
enough to find it, interpret it, and understand
its provenance — the processes that gave rise
to it. This requires a robust infrastructure for
uniquely naming data sets that will
persistently resolve to the underlying data. In
addition, high quality metadata will be
necessary to properly interpret data for
subsequent visualization and analysis. This
will facilitate repeatability. By encapsulating
context with the data, associated metadata
can be properly interpreted in light of new
discoveries. Support for automatic tracking
of data usage as well as attribution of
origination are needed to assess a data
contribution. Indeed reproducibility can be



used as a framing mechanism for the drive
toward open data and shared analysis. On
data disposition, deciding what data to keep
or discard can be guided by the application.
Best practices need to be developed for
disposition  decision-making,  including
strategies and practices for understanding the
relationship between cost and benefits of
archiving data.

engineering challenges in both

Not only is the data volume
rapidly heading towards
exabytes, but there are
significant scientific and

simulation and data analysis

that are already exceeding
petaflops and rapidly

approaching the exaflops.

4) Scientific Workflow and Metatools.
Scientific workflow allows a scientist to
specify end-to-end control and data flow as a
series of structured activities, computation,
data analysis, and knowledge discovery.
Meta tools are needed to aid process
navigation, hypothesis tracking, workflows,
provenance tracking, advanced collaboration,
and sharing, as well as to support a proper
balance between batch mode and interactive
data exploration. Such tools are crucial to
facilitating reproducibility and the ability of
computational scientists to effective store and
communicate the analysis underlying their
results. Efforts to develop such tools are vital
to the integrity and verifiability of data-
driven computational findings.

5) Exascale Computing. Increasingly,
experiments and observational systems are
finding that not only is the data volume
rapidly heading towards exabytes, but there
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are significant scientific and engineering
challenges in both simulation and data
analysis that are already exceeding petaflops
and rapidly approaching the exaflops range.
Hardware architectures, programming
models, and algorithms for such data- and
compute-intensive  scientific  applications
must be explored. In particular, using
exascale performance to rapidly do model
simulations will allow the integration of data
analysis and visualization into simulations to
avoid storing vast amounts of data.

6) Active Storage and Online Analysis.
Extreme scale data sets are too large to easily
move and often infeasible to analyze in their
raw form. Modern storage architectures can
be exploited for performing various
important analysis tasks. Online analytics can
potentially reduce the need to store certain
types of data. The needs include active
storage processing studies, software libraries
to embed functions within storage, and data
analysis techniques. Also needed are data
reduction  methods and  hierarchical
representations for data reduction prior to
post-analysis.

7) Data Storage and Management. Data
storage needs include new scalable storage
devices, caching algorithms to move data
in/out from dynamic storage providing high
level of performance, as well as scalable file
systems with improvements in parallel I/O
libraries. New database system approaches
are needed to scale in performance, usability,
query, data modeling, and an ability to
incorporate complex data types in scientific
applications. Scalable data format and high-
level libraries for data access need to be
extended and redesigned. New storage
formats that emphasize scalability and
parallel I/O along with the capabilities to
incorporate  analytics and  workflow
mechanisms need to be developed.



8) High-Speed Computer Networks. As
the data increasingly flow physically from
instrument and archive to various computing
facilities to visualizations that involve the
optic nerve of the science user, high-speed
wide-area networks will be essential to the
success of data-intensive science. Note
specifically that the needed computer
networks extend to the campuses of research
universities. Thus, the architectures and
designs of these networks will require a
coordinated national effort that will include
network leaders that operate at the national
backbone, regional, and campus levels.

6.4 Communities for Data-Intensive
Science

Digital access can multiply the value of
information through repeated use. While the
ready availability of diverse data is shifting
scientific approaches from the traditional,
hypothesis-driven  scientific method to
science based on exploration, current analysis
and visualization methods lag far behind our

ability to create data. Multi- and
interdisciplinary skills are needed to handle
diverse issues such as automatic data

interpretation, summary visualizations, and
data integration from multiple disciplines and

Current analysis and
visualization methods lag far
behind our ability to create data.
Multi-and interdisciplinary skills
are needed to handle diverse
issues such as automatic data
interpretation, summary
visualizations, and data
integration from multiple
disciplines and domains.
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domains. High performance computers will
be needed to analyze the massive scale and
complex data on a time scale that is practical
in human terms. A systematic effort is
needed to train the next generation of data
scientists who can work in a multi-
disciplinary team of researchers in high
performance  computing, = mathematics,
statistics, domain-specific sciences, etc.

The value of scientific data is realized
only when the data are effectively analyzed
and the results are presented to the science
community, policymakers, and public in an
understandable way. This means that
computational scientists must have the tools
to track, save, and communicate their data
analysis so that others are able to reproduce
the findings. There are numerous examples
of data re-use and re-purposing beyond the
communities that generate the data. Because
scientific data are often used in different
ways according to their contexts and have
varying life cycle requirements, solutions
should support communities of practice and
leverage their capabilities while promoting
data integration and interoperability. Because
those communities of practice are changing
the way data are used and re-used and the
way science in those communities is done,
the community processes present an
opportunity for research in the social,
behavioral, and other sciences.

The challenge is to take data sets that
were collected for a variety of other purposes
and synthesize them to address important
scientific and policy questions. Thus
cyberinfrastructure  requirements include
support for data discovery (finding these
existing data sets), schema mapping and data
transformation (to convert the data into
common frames of reference), and new
computational statistics, machine learning,
data mining, and visualization algorithms



that can support the modeling and

visualization needed for synthesis studies.

An example of data repurposing is bird
migration modeling. Bird migration is poorly
observed and poorly understood, because
birds are generally too small to -carry
instruments. One promising approach to
obtaining data is to re-analyze existing data
collected by the network of NEXRAD
Doppler radar stations operated by the
National Weather Service. Fortunately, this
data, in relatively unfiltered form, has been
archived for the past 15 years. The BirdCast
project is analyzing this data and combining

it with citizen science bird checklists
(http://www.ebird.org), a  network  of
microphone arrays that capture species-

diagnostic flight calls (http:/www.xbat.org),
and several other data sources (weather
forecasts, MODIS land cover data products,
etc.) in order to develop statistical models of
migration. Migration modeling is a grand
challenge for ecology and conservation. It
will  only be possible by fusing
heterogeneous data from many sources,
including data collected for a wide variety of
other purposes.

Another example, GEOSS, is a “system
of systems” that supports policymakers,
resource managers, science researchers, and
many other experts and decision makers.
Built on existing observational systems and
incorporating new systems for earth
observation and modeling, this emerging
public infrastructure links a diverse and
growing array of instruments and systems for
monitoring and forecasting changes in the
global environment. = GEOSS  further
highlights the need for coherence among
data-sharing  principles  adopted by
international science collaborations and the
policy and legal frameworks in place in the
national jurisdictions where researchers
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operate
(http://earthobservations.org/geoss_dsp.shtml).

Data-intensive =~ computing  promises
breakthroughs across a broad spectrum of
sciences and engineering and presents
significant opportunities in the areas of
energy, climate, socioeconomics, biology,
and medicine. It will require the close
collaboration of stakeholders in all sectors to
fully realize the value of scientific data for
science and society.

6.5 Recommendations

New opportunities are on the horizon for
the development of creative uses of digital
scientific data in innovative combinations for
purposes of discovery, innovation, and
progress. At the same time, the increasing
demand for data processing, storage, and
transfer in large-scale simulations based on
data-informed models, stochastic systems,
and requirements for model validation and
uncertainty quantification represent new
challenges in data-intensive computing.

With the increasingly significant impact
of data-driven science, we need to better
communicate the value proposition of digital
scientific data and visualization to the broad
scientific community, policy makers, and the
public—how science will be enabled with
open access data, including novel
visualization = and interpretation;  how
discovery will be enabled by integration,
transcending fields; and how new data types
will motivate new  applications and
discoveries. To fully realize the value of
research data, NSF must support research
infrastructure,  robust and  persistent
cyberinfrastructure, and training of data
scientists and professionals to empower data-
driven science and data-intensive computing
for discovery, innovation, and solution of
society’s pressing problems in health, energy,



environment, and food.

RECOMMENDATIONS:

NSF, largely through and coordinated by OCI, should support research
infrastructure and robust persistent cyberinfrastructure to empower data-driven
science and data-intensive computing for discovery, innovation, and solution of
society’s pressing problems in health, energy, environment, and food.

1) Research: Funding for research on data management, network infrastructure,
data analysis, and data visualization (i) to manage the pipeline from field
instruments to large-scale data analysis to end-user visualization and to public and
policy makers, and (ii) to support data-intensive computing.

2) Data Infrastructure: Support for robust, persistent cyberinfrastructure to
support the coordinated flow, storage, and management of data from instrument to
(remote and local) computing resources to archiving and visualization.

3) Education: Support for building (i) the next-generation of data scientists who
can work in a multi-disciplinary team of researchers in high performance
computing, mathematics, statistics, domain-specific sciences, etc., (ii) data
curation professionals who can support meta-data collection, indexing, and
access, collaborating with scientists who collect and consume data.
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Workforce Development in
Computational Science and

7.1 The Status of Education in

CS&E in the U.S.

As carlier chapters have made clear, at
the heart of all Grand Challenge projects is
CS&E, a discipline built on interdisciplinary
collaborations and deep knowledge of
computational and applied mathematics and
the scientific and engineering disciplines, as
well as sophistication in computational skills.
However, students often lack a fundamental
understanding of the mathematical basis for
scientific computation. In the U.S., this

Universities are not
adequately preparing today's
students with the right
background, skills, breadth,
and depth to become
tomorrow's computational
scientists and engineers, able
to harness powerful new
supercomputers for scientific
discovery and engineering
innovation.
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deficiency of understanding begins even
before high school, and it continues to affect
students throughout their undergraduate and
graduate careers. Rather than teach these
fundamentals as we did in earlier decades, the
Science, Technology, Engineering, and Math
(STEM) undergraduate curricula at many
colleges and universities increasingly rely on
the “black box” use of commercial software
packages. As a result, students fail to learn
the underlying concepts of modeling,
programming, and “algorithmic thinking” that
are critical to using computers in a scientific
context [63].

The problem worsens as computers
increase in complexity. Universities are
falling behind in providing students with the
knowledge needed to design algorithms and
write software for modern architectures, such
as those comprising multicore and hybrid
processors that will take us to exascale
computing and beyond [21,24]. The problem
is exacerbated by the fact that computational
science and engineering is considered neither
the responsibility of the computer science
departments, nor of domain sciences or
engineering. As a result, teaching the core
competencies of CS&E falls between the




cracks. Many students, therefore, fail to learn
what is required to apply computing to the
pressing and multifaceted technological
challenges we face as a nation. For example,
predicting and mitigating the impacts of
climate change and designing clean energy
technologies  will require a  robust
understanding of CS&E. Yet our universities
are not delivering the formal education
required to address those global challenges.
The core competencies of CS&E — including
high performance computing (HPC) — are
rapidly evolving, and most universities are
not keeping pace. There are over 100
graduate programs in CS&E at U.S.
universities, yet few schools have the
necessary expertise or curricula in “bleeding-
edge” HPC to prepare students to use next-
generation architectures. The gap is widening
between what is currently taught at most
institutions and the skills needed for 21%
century R&D [20, 24, 40].

The current generation of students favors

Programming the next generation of
petascale and exascale computers
for discovery and innovation requires
new skills and knowledge that are
rare among today’s computational
scientists and engineers.

New curricula, and new approaches
to teaching and learning CS&E, are
urgently needed.

the culture of open-source software in which
individuals and teams can contribute in a
shared community to public-domain codes.
Those students, however, receive no formal
training in creating sustainable codes that are
essential for robust and effective software
engineering. The skills essential for applying
CS&E in modern scientific and technological
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enterprises are not broadly taught in the
sciences or engineering, and the lack of those
skills is  significantly —hampering the
innovative potential of U.S. industry [66].
Topics missing from the curricula include 1)
uncertainty quantification, 2) verification and
validation, 3) risk assessment, and 4) decision
making [24].

Of course, there are some graduate and
postdoctoral students who do receive the
proper education and training in CS&E and
who want to pursue careers in academia, but
those students often fail to blend in with
existing faculty and departmental cultures.
Computer science departments may be loathe
to hire computational scientists. Similarly,
application fields typically retain only a
small fraction of computational scientists on
the faculty, preferring to hire
experimentalists over “theorists.” As a result,
universities are evolving slowly in their
ability to transform research and education
by fully leveraging CS&E. The lack of a
long-term commitment to funding of CS&E
is a major contributing factor. Programs
such as NSF’s CDI program (and, before it,
ITR and KDI) focused on or embraced
elements of CS&E, but they were short-term
initiatives, not permanent programs. Thus,
ostensibly, NSF demonstrates no long-term
commitment to the support of CS&E
researchers, and that support is essential to
attract new cyber science talent to the field of
CS&E. U.S. universities follow the lead of
the NSF: there will be no sustainable
infrastructure for CS&E in most universities
until there is one at NSF.

7.2 Global Considerations

Many countries embrace CS&E and
recognize the role it will play — indeed, is
already playing — in driving R&D. France,
Germany, China, and Japan have made major,
long-term commitments to HPC. Europe



already leads the U.S. in critical elements of
CS&E. China is dedicating the equivalent of
$1 billion/year to a new university program
that requires research projects for graduate
students to have integrated simulation and

modeling  components. Germany  is
restructuring  universities to  leverage
university-industry partnerships. Singapore

and Saudi Arabia are investing enormous
sums into CS&E. In comparison, the U.S. is
at risk of losing its leadership position in a
field it invented. That decline in our research
status would have a major impact on the
nation’s ability to compete and innovate in
the 21* century [11, 39, 58, 66].

We believe these issues necessitate
concrete action and leadership from
policymakers. While there are some federal
programs aimed at addressing inadequacies in
CS&E training and education, we believe
more resources and a coordinated approach
are needed to address and overcome these
pressing challenges.

7.3 Existing Programs

The challenges and needs outlined above
demonstrate the need for US policymakers to
rethink their approach to funding CS&E
education. The NSF and other scientific
agencies have programs in place supporting
individual CS&E initiatives, but it is clear
that additional resources and programs are
required for the US to remain competitive in
the CS&E field and in the global knowledge
economy. The following examples illustrate
a few of the existing programs, along with
their potential for impacting CS&E education.

The NSF CISE directorate houses the
Pathways to Revitalized Undergraduate
Computing  Education (CPATH) [12].
CPATH focuses on providing K-12 and
undergraduate students with fundamental
computing concepts and methodologies
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necessary for building more advanced
computational skills. Of the 26 awards made
in FY 2009, only four address aspects
directly related to CS&E generally by
enabling curricula that incorporate concepts
of simulation, modeling, and/or parallel
computing. While this program 1is an
important mechanism for enhancing CS&E
curricula, its effect is on a relatively small
scale and reaches a limited audience. To
transform CS&E to meet the challenges
outlined earlier in this report, a broader and
more scalable approach is needed.

The NSF Course, Curriculum, and
Laboratory Improvement (CCLI) program
focuses on improving the quality of STEM
education for all undergraduate students.
Only very few of its awards, however, even
touch on aspects of CS&E curricula.

There are several excellent examples of
CS&E programs at the undergraduate level
abroad. A recent study [24] reported the
strong impact of extending the CS&E
curriculum into the undergraduate arena at
leading universities in Switzerland and
Germany. A positive influence was felt
throughout the STEM  undergraduate
curriculum. The availability of computational
and analytical courses attracted students from
a wide range of departments.

The NSF Graduate Research Fellowships
Program is an important source of support for
graduate students in all non-biomedical fields
of science. However, of the 1,248 awards
made in 2009, only 82 were in the CISE
cohort. Just 11 of those awards were related
to scientific or parallel computing. Such
limited and highly competitive opportunities
provide little incentive for CS&E students to
continue on to earn advanced degrees.

The NSF Integrative Graduate Education
and Research Traineeship (IGERT) program
provides multidisciplinary traineeship grants



in all areas supported by NSF. However, the
number of these grants focusing on CS&E
topics is extremely small.

NSF supports a limited number of
computational science fellows through its
Mathematics Research Training Group (RTG)
program.

The Department of Energy
Computational Science Graduate Fellowship
program supports CS&E graduate fellows. In
2010 the program was able to add 20 new
fellows bringing the total number currently
being supported to about 80. Unfortunately
the program is typically able to fund less than
5% of the total applicant pool and even more
critically, the review process leads to an
annual pool of around 60 highly qualified
applicants ready to study computational
science and engineering.

7.4 An Educational Call to Arms

To leverage and exploit the full potential
of CS&E, new curricula must achieve the
following:

1) Balance domain topics and
mathematical and computational skills in a
way that provides both depth and breadth;

2) Teach software engineering skills
needed to write, modify, verify, and validate
robust and efficient CS&E codes that will
address community needs over the long term;

3) Teach underlying algorithms and their
applications in a highly parallel multicore
environment;

4) Teach the fundamentals of simulation
and modeling over a wide range of scales and
applications [20].

Another way to state the challenges
before us is to ask: How do we 1) modernize
the CS&E curriculum, 2) provide the needed
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depth and breadth in education and training
reflective of  the 21" century
cyberinfrastructure, given typical curriculum
constraints, and 3) grow and diversify the
workforce?

Beyond traditional university
experiences, learning opportunities must be
provided to CS&E practitioners in the
workforce so that they can stay current as
computing architectures and paradigms
continue to evolve. At the same time,
opportunities must be created to support and
nurture new computational scientists and
engineers entering the workforce.

To meet the challenges, new approaches
to education, training, and workforce
development in CS&E are needed. These
approaches are described below:

1) New approaches to undergraduate and
graduate  CS&E  education. These
approaches should include the development
of new curricula, courses, and/or programs
in CS&E that address the computational and
analytical skills required in virtually all
STEM disciplines. Courses should be
carefully developed and well-tested, with
the objective of making the materials
available to all colleges and universities in a
form that is easy to extend and modify.

Work on a few foundational
undergraduate courses is urgently needed.
At the same time, the issues of integrating
CS&E more broadly into the undergraduate
STEM curriculum are complex and require
study. Attention to undergraduate CS&E is
essential; most applicants to graduate school
have not even heard of CS&E because of its
absence in the undergraduate curriculum.
Summer institutes emphasizing basic CS&E
skills as well as research activities and
REU/RET sites focusing on CS&E are
recommended for undergraduates and for
exceptional high school students.



2) New virtual communities engaged in
CS&E education. A virtual community
could develop and disseminate teaching
materials, innovations, and best practices
nationwide, thereby accelerating the
development and modernization of the
curriculum. This approach entails physical

and virtual centers and schools and
institutes  leveraging expertise  across
multiple institutions, including national

laboratories, and supercomputing centers.

Training in CS&E skills at all levels
needs to be made available online and
supported 24/7, making the training broadly
accessible. This accessibility will also
facilitate worker retraining for those
computational scientists needing to keep up
with new developments in computer
architectures. Candidate topics for short
courses include basic computer and
programming skills, high performance
computing skills such as programming for
many-core and GPU, and basic data mining
and data analysis skills.

3) Institution-based traineeship grants
that  train  graduate  students  and
postdoctoral fellows in the
multidisciplinary, team-oriented iteration
between experiment, theory and
computation. This procedure is rapidly
becoming a paradigm in critical STEM
research areas and has long been a standard
in government laboratories and industry.

This training could be done through
institution-based grants large enough to
develop a critical mass of collaborative
students and faculty. Dual advising from
multiple  disciplines ~ would  tighten
multidisciplinary links. Universities and
colleges must work hand in hand with
government laboratories and industry to
create internship experiences that coordinate
with and broaden thesis research. In some
research areas, internships in experimental
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laboratories for computationally-oriented
students, as well as internships in
computational laboratories for

experimentally-oriented students, can best
develop the scientific and communication
skills to excel in the 21* century research

environment, including sustainable
approaches to software engineering,
verification, validation, and uncertainty

quantification, and reproducibility.

4) Coordination of the substantial
resources of multiple agencies, government
laboratories, supercomputer centers and
industry. Such coordination is essential for
accelerating progress in CS&E education
and removing a critical bottleneck in
undergraduate, graduate, and postgraduate
education. A pan-agency/lab program could
match undergraduate and graduate students
to industry co-op opportunities, ‘“summer
camps,” and internships at supercomputer
centers and elsewhere. As part of this effort,
undergraduates and educators everywhere
should be able to view the skills that are
expected for qualified applicants. Such
placement is currently performed on an ad
hoc basis, relying on personal contacts that
may or may not be available at any given
institution or in any given situation. Such a
program could serve as an information
center for opportunities and fellowships for
on-site, on-line, and virtual courses,
ensuring that these resources are universally
available and easy to locate.

5) Transitional grants to foster a broader
and more diverse workforce and to
encourage the very best students to continue
in CS&E careers. Federal agencies must
help facilitate the transition of exceptionally
talented graduate and postdoctoral students
in CS&E to permanent positions in
academia as well as industry and
government/national labs. New types of
federal grants that are portable, flexible, tied



to the individual, and carry the recipient —
with appropriate mentoring and checkpoints
— through the equivalent of tenure, would
demonstrate a long-term commitment to the
CS&E discipline to universities and labs. By
demonstrating the ability to generate long-
term funding in CS&E to support one’s
research  program from day one,
computational scientists and engineers
should pose less of a perceived “risk” to
institutions trying to evolve structurally to
better support 21% century cyber science
research and education.

6) Sustainable, permanent programs in
CS&E that support CS&E as a discipline in
its own right. These programs are needed at
all funding agencies to demonstrate a long
term commitment to supporting CS&E
research. This proof of commitment is
essential to encourage new cyber science
workers to enter the field of CS&E, and it is
essential to support universities in the
creation of new permanent positions and
programs in CS&E. At NSF, OCI should
establish a permanent program in CS&E as
a core mission for the Office, in partnership
with the Directorates.

The overall effect of the needed
approaches to CS&E education, training and
workforce development described above
would be (1) to increase the size and
diversity of the CS&E workforce; and (2) to
modernize CS&E curricula with the
knowledge and skills reflective of 21%
century cyberinfrastructure. The impacts
should be felt across the entire STEM
undergraduate and graduate curriculum at
colleges and universities nationwide. Note
that each of the approaches outlined above
pays particular attention to issues of
scalability, accessibility, and engagement of
government and industry.
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7.5 Summary

A shortage at all levels of appropriately
trained people in computational and
analytical methodology is a major barrier to
progress in most areas of science and
engineering, and a serious workforce issue. A
broad range of coordinated efforts could be
initiated to address these problems. Such
efforts should (1) increase the size and
diversity of the CS&E workforce; and (2)
modernize the CS&E curricula with the
knowledge and skills reflective of 21* century
cyberinfrastructure.

The impacts of broadening and
modernizing our CS&E  educational
infrastructure will be felt across the entire
STEM  undergraduate @ and  graduate
curriculum. That infrastructure will need to
be accessible to colleges and universities
nationwide. In our recommendations, we
have paid particular attention to issues of
scalability, accessibility, and engagement of
government and industry.

7.6 Recommendations

Our nation is losing its leadership
position in CS&E among our principal
competitors in the industrialized world. Much
of the traditional compartmentalization of
knowledge, both  within our major
universities, and to an extent within NSF
itself, is not well suited for interdisciplinary
research vital to CS&E. It is important that
actions be taken by NSF to address those
issues.



RECOMMENDATIONS:

NSF should support education, training, and workforce development through the
following grants and new programs:

1) Educational excellence grants at the undergraduate and graduate levels,
which include funding for the development of new, courses, curricula, and
academic programs in CS&E that address the computational and analytical skills
required in virtually all STEM disciplines. (i) Courses should be carefully developed
and well-tested, with the objective of making the materials available to all colleges
and universities in a form that is easy to extend and modify. (ii) Work on a few key
foundational undergraduate courses is urgently needed. At the same time, the
issues of integrating CS&E more broadly into the undergraduate STEM curriculum
are complex and require study. (iii) Summer institutes emphasizing basic CS&E
skills, as well as research activities, and REU/RET sites focusing on CS&E are
recommended for undergraduates and for exceptionally talented high school
students.

2) Support for the formation of virtual communities engaged in CS&E education,
including virtual entities leveraging expertise across colleges, universities, national
and government laboratories, and supercomputing centers. In particular, training,
in the form of short courses in core skills at all levels should be available online
and supported 24/7, making the training broadly accessible. Candidates for short
courses should include (i) basic computer and programming skills; (i) HPC skills:
programming and multicore, many-core, GPU; (iii) basic data mining and data
analysis skills.

3) Institution-based traineeship grants that train graduate students and
postdoctoral fellows in the multidisciplinary, team-oriented iteration among
experiment, theory, and computation that is rapidly becoming a paradigm in critical
STEM research areas and that has long been a standard in government
laboratories and industry. The grants should be large enough to develop a critical
mass of collaborative students and faculty.

4) The creation of a pan-agency facility or program to coordinate training in
CS&E education, including training for young scientists and graduate students in
communicating their work to an audience of non-specialists, and which provides a
service to match students to industry co-op opportunities and to summer institutes
and internships at supercomputer centers and elsewhere, and which serves as an
information clearing house for opportunities and fellowships for on-site, on-line,
and virtual courses.
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5) Grants that facilitate the transition of exceptionally talented graduate and
postdoctoral students in computational science and engineering to permanent
positions in academia as well as industry and government/national labs.

6) Sustainable, permanent programs in CS&E research and education at all
funding agencies to demonstrate a long-term commitment to supporting CS&E as
a discipline, thereby creating reliable partners for universities seeking institutional
transformational change and for trained workers seeking careers in CS&E.
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Grand Challenge Communities
and Virtual Organizations

8.1 The Role of Virtual

Organizations in Grand

Challenge Communities

As noted in the Introduction,
collaboration has long been an essential
aspect of research. Grand Challenge
Communities face special challenges and
opportunities with respect to collaboration. A
separate report to the Advisory Committee for
Cyberinfrastructure from Group 2 of the
Grand Challenges Task Force will address
this history and argue for a more assertive
NSF response to the broad challenge of
improving the means for collaboration.
Likewise, previous chapters of this report
have explained the revolutionary effects on
research from cyberinfrastructure in high
performance computing, improved software,
advanced models and algorithms, effective
management of scientific data, new
capabilities in visualization, and specialized
education and training to enable effective
development and use of cyberinfrastructure.
This chapter addresses the role of
cyberinfrastructure as a complementary and
enabling asset in the coordination and
execution of research activity, especially as
captured in the idea of virtual organizations.

It might seem curious that a discussion of
virtual organizations appears in a report
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coming from the NSF Office of
Cyberinfrastructure, but technological
innovation often gives rise to organizational
and social innovation. An office charged with
innovations in cyberinfrastructure should also
support and engage the accompanying virtual
organizations they foster. OCI’s investment in
virtual organizations is a down-payment on a
larger set of investments that need to be made
across NSF and in other federal funding
agencies as new ways of doing research
evolve. Cyberinfrastructure has changed the
way we think about how research can be
conducted. Computer power, data storage,
and other elements of cyberinfrastructure
have improved dramatically in a short period
of time. Unfortunately, the social and
institutional environments of universities,
departments, laboratories, funding agencies,
and so forth often evolve more slowly. New

Virtual organizations
connect people across
disciplinary, institutional, and
geographic boundaries.
Cyberinfrastructure can enable
virtual organizations, potentially
revolutionizing science and
engineering work.




ways of organizing the assets brought to bear
on Grand Challenges are necessary to
optimize the community part of Grand
Challenge Communities. At the moment,
slow progress on these coordination and
execution issues is a rate limiter to research
progress.

Virtual
across  disciplinary,
geographic boundaries. Cyberinfrastructure
can facilitate such connections through
communications (e.g., teleconferencing,
email), shared resources (e.g, data
repositories), and tools (e.g, workflow
coordination systems). Cyberinfrastructure
can also mediate collaborations by linking
observational instruments, data streams,
experimental tools, and simulation systems
with individuals, who might be alone or in

organizations connect people
institutional, and

groups, but who as a community are
distributed across the globe.
Cyberinfrastructure can  enable  virtual

organizations, potentially revolutionizing the
way science and engineering are practiced.
This is not primarily a technological
revolution, although technology makes it
possible. It is, rather, a sociotechnical
revolution in that it involves representing
interlinked social and technical changes in
research across all fields of science and
engineering. OCI cannot address all aspects
of this revolution, but its position in the
Office of the Director allows it to work across
directorates to address some aspects.
Certainly OCI should continue its leadership
role in this area.

8.2 Examples of Virtual
Organizations in Grand

Challenge Communities

Four examples from the recent history of
science and engineering research provide an

72

indication of how important
cyberinfrastructure can be in facilitating
collaboration in different kinds of grand
challenges.

8.2.1 ATLAS at CERN

High-energy physics has a long history of
collaboration in creating and accessing
unusual and expensive equipment such as
particle accelerators. It has adopted modern
cyberinfrastructure and evolved sophisticated
coordination mechanisms that allow a
distributed community of scientists to
collaborate across long distances and over
significant periods of time. The ATLAS (A
Torroidal Lhc ApparatuS) Project at the
Large Hadron Collider at CERN in Europe
(http://atlas.ch/) is centered on a large, custom-
made detector buried along a 27-km circular
tunnel that accelerates hadronic elementary
particles to nearly the speed of light. The
particles collide within the detector, which
measures the momentum and energy carried
by the particles to aid in the search for the
elusive  Higgs particle, evidence of
supersymmetry and other important aspects
of contemporary high-energy  physics.
ATLAS will detect 100 interesting “events”
per second out of about one billion that occur,
and channel data into a sophisticated, tiered,
distribution system. Tier 0 at CERN takes in
the raw data, reconstructs the data in ways
investigators can use, and sends the data to
the Tier 1 sites - ten nodes in different
countries - where they are distributed further
to investigators through Tier 2 sites
(http://cerncourier.com/cws/article/cern/31519).

ATLAS involves nearly 3,000
investigators from nearly 40 countries
working in dozens of labs, institutes,

departments, and universities. ATLAS started
before the term Virtual Organization became
popular, but it has been highly collaborative
from the start through the cyberinfrastructure



of the ATLAS Collaboratory Project
(http://atlascollab.umich.edu/). ATLAS, and the
work of high-energy physics generally,
demonstrates the long-standing importance of
cyberinfrastructure-enabled collaboration in
pursuit of Grand Challenges. The -early
development of the World Wide Web at
CERN around 1990 is a part of this history,
with consequences the entire world can now
appreciate.

8.2.2 The George E. Brown Network for

Earthquake  Engineering  Simulation
(NEES)
NEES is a shared national network

linking 14 research sites distributed across the
United States with collaborative tools, data
support, and earthquake simulation software
(https://www.nees.org). Earthquake engineering
experimental research was traditionally
conducted at specialized facilities — shake
tables, tsunami tanks, etc. — within the field’s
subdisciplines (geology, civil engineering,
mechanical engineering, etc.). NEES employs
cyberinfrastructure to facilitate new and more
productive forms of collaboration, making
better use of facilities and encouraging
interaction among the field’s specialties. This
collaboration requires coordination across
states, agencies, university systems, and
departments to enable access to what were
previously narrowly-held assets. Issues of
structure, governance, funding, and
ownership rights had to be negotiated and
agreed upon for NEES to function.

NEES touches on two Grand Challenges.
One is the need to improve the engineering of
structures in a world subject to dramatic
seismic events, such as the 2004 earthquake
and tsunami in the Indian Ocean and the 2010
earthquake in Haiti, each of which killed
more than 200,000, displaced many more,
and caused billions of dollars in damage.
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Another is to bring together previously
fragmented fields of research to achieve
greater integration, enabling these fields to
tackle previously elusive Grand Challenges.
Many other research communities remain
fragmented, moving only slowly toward
coalescence.

8.2.3 The Community Earth System
Model (CESM)

The CESM is a fully-coupled
(atmosphere, ocean, land, biosphere, and
cryosphere) global climate model with state-
of-the-art computer simulations of the earth's
past, present, and future climate states
(http://www.cesm.ucar.edu/). It is sponsored by
two different federal entities, the National
Science  Foundation (NSF) and the
Department of Energy (DOE), with different
mandates, policies, and procedures, but with
overlapping interests. It is administered by
the National Center for Atmospheric
Research (NCAR). The CESM was built as a
community of practice with the goal of
collaborative learning and investigation of
the earth’s climate system. It is directed by a
Scientific Steering Committee (SSC) of
researchers from many institutions, led by a
Chief Scientist, and advised by a board of
scientific advisors also drawn from many
institutions.  Voluntary working groups
involving yet more scientists from different
institutions propose model components to the
SSC. The entire community meets once a
year at the CESM Workshop to plan work
and deal with challenges. Face-to-face
meetings are augmented by heavy use of
teleconferencing and  virtual — meeting
technology. The CESM has improved
understanding in a number of disciplines
related to climate change, and has informed
policy through national and international
assessments such as the Intergovernmental
Panel on Climate Change.




The CESM is a Virtual Organization that
embodies the current state of knowledge
about the component processes of the earth
system. A knowledgeable core team of
scientists and software engineers work
together to configure and validate the model
in preparation for public release. The
participants come together through the virtual
organization because their own interests
cannot be advanced except in conjunction
with a state of the art, coupled model running
on high performance computers. Unlike
ATLAS, a physical instrument that measures
physical phenomena, or NEES, a set of
physical instruments that simulate physical
phenomena, the CESM is an abstraction that
attempts to capture and reflect an enormously
complicated set of physical phenomena
interacting with one another. This is a new
and exciting frontier of research that cannot
be done any other way.

8.2.4 TeraGrid

TeraGrid is one of the world’s largest,
most comprehensive distributed
cyberinfrastructure facilities for open science
research (https://www.teragrid.org/). It is an
NSF-funded network of computational
resources at 11 resource provider sites and 6
software  integration  sites  distributed
throughout the United States. It includes high
performance computers, massive data storage
systems, visualization resources, data
collections, and tools connected by high-
bandwidth networks and integrated by
coordinated  policies, operations, user
support, education, outreach, and training.
TeraGrid provides researchers with access to
more than 60 petabytes of data storage and
more than two petaflops of computing
capacity that can be brought to bear on any
science or engineering project. It supports
complex  modeling, simulation, and
visualization in multiple scientific domains
for multiple user communities, including
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chemistry, astrophysics, atmospheric science,
biochemistry, biology, mathematics, earth
sciences, electrical and communication
systems, industrial engineering, materials
research, mechanical engineering, medicine,
meteorology, pharmaceutical science,
physics, social science, and seismology.

Each resource provider secures its own
funding and manages its own facilities and
equipment, but also contributes to the
common pool of computational resources,
generally with  support from  NSF.
Coordination of TeraGrid policy and
planning, operation and user support, and
software and services is the responsibility of
the Grid Infrastructure Group (GIG). The
GIG is led by the University of Chicago and
includes members from the resource
providers. Direction is provided by the
TeraGrid Forum, consisting of the Principal
Investigator of each resource provider and
the GIG. In a manner similar to the CESM,
each working group of scientists, managers,
and technical professionals reports to a GIG
member on issues of common concern and
for making recommendations to the overall

TeraGrid is a general-purpose
cyberinfrastructure serving any
domain of science. It operates
as a Virtual Organization to
provide resources for
investigators.

TeraGrid. Management and planning 1is
coordinated via weekly and biweekly
teleconferences and quarterly face-to-face
meetings. Unlike ATLAS, NEES, and
CESM, TeraGrid is a general-purpose
cyberinfrastructure serving any domain of
science. It operates as a Virtual Organization



to provide resources for investigators.

8.3 Virtual Organizations in Grand

Challenges of the Future

OCI’s focus on virtual organizations
recognizes the importance of
cyberinfrastructure and collaboration as
complementary assets, and attempts to
accelerate the process of technological
development and learning required to exploit
the opportunities to improve productivity and
effectiveness in research work. OCI draws
upon its expertise in virtual organizations to
accelerate the transfer of knowledge about
successful and unsuccessful collaboration and
coordination efforts. Deployment of this
knowledge enables NSF to better support

potential nascent Grand Challenge
Communities.
The sociotechnical coordination of

research is rightly seen as part of the
“science” in the recently created program on
the Science of Science and Innovation Policy,
focusing on improving collaboration and
stimulating creative potential [55].
Coordination, however, goes beyond policy
and takes a central role in the routine activity
at the heart of research. OCI’s virtual
organizations program recognizes this need,
and should continue to refine its efforts
through Virtual Organizations as
Sociotechnical Systems (VOSS) program
solicitations, while adding new activities to
summarize and deploy best practices for
virtual organizations in research [56].

8.4 OCI and Virtual Organizations

OCI has already taken a leadership role
by creating NSF’s first focused program on
virtual organizations and by working with the
SBE and CISE Directorates. This leadership
role should continue, although, as noted in the
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larger report on collaboration, OCI cannot be
expected to cover all of the topics in this
broad area. OCI’s continued leadership can

help to catalyze the development,
implementation, and evolution of a
functionally complete national

cyberinfrastructure that integrates physical,
organizational, and cyberinfrastructural assets
and services to support virtual organizations.
OCI can also promote and support the
establishment  of  world-class  virtual
organizations that are secure and efficient.
Finally, it can support the development of
common  cyberinfrastructure  resources,
services, tools, and knowledge for effective
and efficient, end-to-end cyberinfrastructure
across all science and engineering fields.

There are two ways OCI can advance
virtual organizations within NSF. First, OCI
can expand its sponsorship of technological
and organizational development relevant to
virtual organizations within OCI and across
NSF directorates. In addition to the VOSS
solicitation, OCI should remain involved in

NSF-sponsored development of
collaboratories, digital repositories,
observatories, science and engineering

gateways, computational grids, and synthesis
centers. OCI’s active participation in the
cross-directorate initiative Cyber-Enabled
Discovery and Innovation (CDI) has helped
promote innovation in computational thinking
(http://www.nsf.gov/crssprgm/cdi/). In addition to
virtual ~ organizations, CDI  embraces
“understanding complexity” and moving
“from data to knowledge.” As CDI draws to
a close, OCI will participate in a new cross-
directorate  program, tentatively titled
Research Coordination Networks. This effort
should continue the advance of virtual
organizations across disciplinary,
organizational, institutional, and geographical
boundaries.

Second, OCI should gather what has been



learned about virtual organizations and bring workshops, and meetings to disseminate

best practices into the requirements and information  about best practices in
specifications of research and development. distributed, interdisciplinary, cyberinfrastruc-
The best practices, as well as the technologies ture-enabled virtual organizations.

and other complementary elements of virtual

organizations, can be incorporated by NSF 8.5 Recommendations

into solicitations and reports, expectations of

program officers, and the expertise of The benefits of virtual organizations to
reviewers, panelists, committees of visitors, scientific and engineering productivity are
and PIs. This approach should stimulate the pervasive and difficult to single out, as are the
development of proposals that include issues relative to integrating them into a
sensible plans for virtual organizations as large-scale cyberinfrastructure. These and
well as criteria for assessments of success. related issues are worthy of further study.

OCI can facilitate the creation and
maintenance of resource  repositories,

RECOMMENDATIONS:

The NSF should initiate a thorough study outlining best practices, barriers, success
stories, and failures, on how collaborative interdisciplinary research is done among
diverse groups involved in Grand Challenge projects.

The NSF should invest in research on virtual organizations that includes:

1) Studying collaboration, including virtual organizations, as a science in its own
right;

2) Connecting smaller virtual organizations to the large-scale infrastructure by
providing supplementary funds to such projects, supporting development of tools,
applications, services, etc. with a mandate to disseminate those elements to other
communities and users;

3) Investing in systematic, rigorous project-level and program-level evaluations to
determine the benefits from virtual organizations for scientific and engineering
productivity and innovation;

4) Encouraging NSF program officers to share information and ideas related to
virtual organizations with training and online management tools.
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Concluding Comments

Formidable science and engineering Grand Challenges that affect our nation’s welfare, security,
and competitiveness loom ahead that can be addressed by advances in CS&E enabled by advances
in cyberinfrastructure. These advances will require the development of collaborative communities
of researchers from diverse areas of science and engineering, and innovative virtual organizations,
and this in itself will represent a challenging undertaking. The National Science Foundation,
through the Office of Cyberinfrastructure, can play a fundamental role in addressing these
challenges and advancing the frontiers of scientific discovery and enabling innovative advances in
engineering. It is hoped that this study provides insight and recommendations that will be useful in
structuring strategic programs within the Foundation that will aid in accomplishing these ends.
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Appendix A: OCI - GCC’s and VO’s Workshops
August 25, 2009 - Workshop Attendees

Workshop Organizers
J. Tinsley Oden (U Texas-Austin)
John Leslie King (U Michigan)
Jon Bass (U Texas-Austin)

Universities
Klaus Bartschat (Drake U)
Donald Estep (Colorado State U)
Michael Gurnis (Caltech)
C. William McCurdy (UC Davis)
Linda Petzold (UC Santa Barbara)
Klaus Schulten (U Illinois — UC)
Cathy Wu (U Delaware)

Government Laboratories
John Drake (ORNL)

NSF
Paul Messina (Consultant, OCI)
Abani Patra (OD/OCI)
Barry 1. Schneider (OD/OCI)
Susan J. Winter (OD/OCI)

Several other NSF participants.

Omar Ghattas (U Texas-Austin)
Barry 1. Schneider (NSF)

Thom Dunning (U Illinois — UC)
Sharon Glotzer(U Michigan)

James Kinter (IGES Inc.)

Abani Patra (U Buffalo)

Tamar Schlick (New York U)
Victoria Stodden (Yale Law School)
Katherine Yelick (UC Berkeley)

Suzanne Iacono (CISE/CNS)
Edward Seidel (MPS/OAD)
Judith Sunley (SBE/OAD)
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April 22-23, 2010 - Workshop Attendees

Workshop Organizers
J. Tinsley Oden (U Texas-Austin) Chair

John Leslie King (U Michigan) Co-Chair

Thom Dunning (U Illinois - UC)
Michael Gurnis (Caltech)

Linda Petzold (UC Santa Barbara)
Cathy Wu (U of Deleware)

Universities

Guy Almes (Texas A&M)

Jon Bass (U Texas-Austin)

Warren Bicknell Mori (UCLA)
James Brasseur (Penn State)
Hai-Ping Cheng (U Florida)
Thomas Cheatham III (U of Utah)
Peter Cummings (Vanderbilt)

John Drake (U of Tennessee)
Robert Fisher (U of Massachusetts)
James French (U of Virginia)
Gwen Jacobs (Montana State U)
George Karniadakis (Brown U)
Alexei Khokhlov (U of Chicago)
Rubin Landau (Oregon State U)
William Lester (UC Berkeley)
Philip Maechling (USC)

W. Richard McCombie (CSH Lab.)
Donald Pellegrino (Drexel University)
Karl Schulz (TACC)

Valerie Taylor (Texas A&M)
Renata Wentzcovitch (U of Minnesota)
Nancy Wilkins-Diehr (SDSC)

P. K. Yeung (Georgia Tech)

Omar Ghattas (U Texas-Austin) Co-Chair
Barry 1. Schneider (NSF) Liaison

Donald Estep (Colorado St)

Abani Patra (U Buffalo)

Victoria Stodden (Yale Law School)

Lorena Barba (Boston U)

Jerry Bernholc (North Carolina State U)
George Biros (Georgia Tech)

Richard Brower (Boston U)

Ronald Cohen (Carnegie Inst. of Washington)
Michael Clark (Harvard)

Thomas Dietterich (Oregon State U)

Jacob Fish (Rensselaer Polytechnic Inst)
Geoffrey Fox (Indiana U)

Lincoln Greenhill (Harvard)

Lennart Johnson (U of Houston)

Daniel Katz (U of Chicago)

Jeongnim Kim (UIUC)

Alan Laub (UCLA)

Wing Kam Liu (Northwestern U)

Dimitri Mavriplis (U of Wyoming)

Richard Moore (SDSC)

Ralph Roskies (PSC)

Mark Shephard (Rensselaer Polytechnic Inst)
Homer Walker (Worcester Polytechnic Inst)
Phillip Westmoreland (U of Massachusetts)
Paul Woodward (U of Minnesota)

John Ziebarth (Krell Inst)
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Government Agencies and Laboratories

Randy Avent (OSD)

Robert Bonneau (AFOSR)
Anne Chaka (NIST)
Frederica Darema (4FOSR)
Thomas Pinelli (NASA)
Sharon Welch (LARC)

Industry
Susan Fratkin (Fratkin Assoc.)

NSF
Estela Blaisten-Barojas (MPS/CHE)
Clark Cooper (ENG/EFRI/CMM]I)
Evelyn Goldfield (MPS/CHE)
Daryl Hess (MPS/DMR)
Bradley Keister (MPS/PHY)
Jacqueline Meszaros (SBE/SES)
Manish Parashar (OD/OCI)
Irene Qualters (OD/OCI)
Barry 1. Schneider (OD/OCI)
Serdar Ogut (MPS/DMR)

Amber Boehnlein (FNAL)
Kimberly Budil (DOE)
Lee Collins (LANL)

Mark Pederson (DOE)
Taiching Tuan (4rmy)

David Salzman (LightSpin Tech.)

Almadena Y. Chtchelkanova (CISE/CCF)
Cheryl Eavey (SBE/SES)

Horst Henning Winter (ENG/CBET)
Leland Jameson (MPS/DMS)

Fae Korsmo (OD)

Eduardo Misawa (ENG/CMM]I)

Joy Pauschke (ENG/CMMI)

Thomas Russell (OD/OI4)

Edward Seidel (MPS/OAD)
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Appendix B: ACCl Recommendation Letter for
the Creation of a Program in CDS&E

Dear Dr. Bement,

At the May 2010 meeting, the National Science Foundation Advisory Committee for
Cyberinfrastructure unanimously endorsed the following recommendation:

The National Science Foundation should create a program in
Computational and Data-Enabled Science and Engineering (CDS&E),
based in and coordinated by the NSF Office of Cyberinfrastructure.

The new program should be collaborative with relevant disciplinary programs in other
NSF directorates and offices.

Computational and Data-Enabled Science and Engineering (CDS&E) is now clearly
recognizable as a distinct intellectual and technological discipline lying at the
intersection of applied mathematics, computer science, and core science and
engineering disciplines. It is dedicated to the development and use of computational
methods and data mining and management systems to enable scientific discovery and
engineering innovation.

CDS&E builds on the area of Computational Science and Engineering, growing out of
scientific computation and the explosion of production of digital data. We regard CDS&E
as explicitly recognizing the importance of data-enabled, data-intensive, and data-
centric science. CDS&E broadly interpreted now affects virtually every area of science
and technology, revolutionizing the way science and engineering are done. Theory and
experimentation have for centuries been regarded as two fundamental pillars of
science. It is now widely recognized that computational and data-enabled science forms
a critical third pillar. CDS&E includes new methodologies for science and engineering
that are indispensible to the nation’s welfare, competitiveness, and standing in the
international scientific community and global economy.

Computational and Data-Enabled Science and Engineering (CDS&E) is fundamentally
important to the long-term NSF strategic initiative called CF21: Cyberinfrastructure
Framework for 21st Century Science and Engineering. The NSF CF21 vision calls for a
“comprehensive plan for education and outreach in computational science to support
learning and workforce development for 215t century science and engineering.”

NSF can make a strong statement that will lead the Foundation, researchers it funds,
and US universities and colleges generally, by recognizing Computational and Data-
Enabled Science and Engineering as the distinct discipline it has clearly become.

\QNA,.C{ RN-’“§.. o) 2[2.000

Approved Date
Arden L. Bement, Jr.

Director

National Science Foundation
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