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The numerical solution of ElastoHvdrodvnamic Lubrication ( EHL) point contact

problems requires the solution of highly nonlinear systems of equations which pose
a formidable compurational challenge. Multigrid methods provide one efficient ap-
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proach. EHL problems solved using a single grid and multigrid will be compared
and contrasted with a homotopy method which works on the concept of deforming
one problem into another by the continuous variation of a single paramerter. Both
the multigrid and the single grid method employ a new relaxation scheme. Numerical

results on demanding test problems will be used to compare these methods and
suggestions for furure developments to produce robust solvers will be made.

1 Introduction

This paper is concerned with a major computational difficulty
that arises in the numerical solution of ElastoHydrodynamic
Lubrication (EHL) (Gohar. 1988) problems. namely that of
ensuring convergence of the nonlinear equations solver to a
steady-state solution. Two successful methods which have been
used for achieving this are direct iteration (e.g.. Gauss Seidel )
and multigrid methods.

Direct iteration methods have tong been used (e.g. Hamrock
and Dowson. 1977a) in conjunction with finite difference dis-

cretizations on regular meshes. Multigrid methods have also °

been used with great success by Venner (1994a) and Venner
and Lubrecht (1994) with a good summary being given by
Venner (1991b). These numerical methods have attractive
properties such as rapid rate of convergence and are often used
to solve the governing equations simultaneously. However,
these numerical methods are not globally convergent in the
sense that they can always locate a root from an arbitrary start-
ing point. A fundamental limitation of these two methods is
that it is not always possible to take a step that will guarantee
a decrease in the residuals. In contrast, the relatively recently
developed homotopy methods (Garcia, 1981) and (Allgower,
1990) are very powerful globally convergent methods but have
a correspondingly greater computational cost.

These three approaches appear to provide efficient and reli-
able ways of solving EHL problems, but it is important to
understand their relative merits and convergence criteria. This
paper is a first attempt at providing such an understanding in
the context of EHL point contact problems (contact of two
spheres ).

The layout of the remainder of this paper is as follows. In
Section 2 we introduce the form of the equations to be solved.
Multigrid method is described in Section 3 while Section 4
describes the new relaxation scheme and Section S describes
the homotopy method. Sections 6 and 7 describe the test prob-
lems to be used in the comparison between the three methods
and compare the performance of the three methods. Section 8
concludes the paper with a discussion of the merits of the three
methods and suggests some future research directions.

2 Governing Equations

The mathematical model describing the isothermal EHL cir-
cular contact problem with oil entrainment in the positive X-
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direction consists of three nondimensional equations. The Reyn-
olds equation relates pressure (P) to the film thickness ( /) for
a lubricant characterised by a pressure dependent viscosity n
and density p

Lipy o (2P, 2 (2P _ 2o
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=0.X, Ye[X.X]X|V.Y] (1)
with the cavitation condition P = 0 and the boundary condition
P = 0. The nondimensionalization is expressed in terms of the
so-called Moes parameters L and M (Lubrecht et al.. 1987a).
Pressure is in units of the maximum Hertzian pressure
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where « is the pressure coefficient of viscosity of the lubricant.
X and Y are in units of Hertzian radius (b). Film thickness is
in units of b>/R. where R is the reduced radius of the contact.
€ is given by
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where p = | + (up,P/1 + vp,P) if P > 0, otherwise p = |
(£ =5.8x10""andv=1.68 X 10~° (Dowson and Higginson,
1977).n = exp{(apo/)[—1 + (1 + (py/ps)P) 1} . (po =198
3>< 10%, and z = 0.68, (Roelands, 1966) and A = (47/M)

V(2/3M).

The Film Thickness Equation, H (X, Y), computes the elastic
distortion of the surfaces caused by the pressure in the film and
is written as:

H(X.Y)=H(,+§+Z-.-

2
¥, X, ) I, Y' xX'dy
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oy X =X (=)
where H, is a constant.
The final equation is the Force Balance Equation which en-

sures that the integral over the pressure balances the external
applied load:
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f J‘ P(X.Y)dXdY = g (5)
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3
2.1 Finite Difference Discretization of Governing Equa-
tions. The focus of this study is on the iterative solution meth-
ods for the nonlinear equations and so in order to allow compari-
son with existing results we shall follow most EHL studies and
use a regular rectangular mesh. The governing equations are
discretized with the direction of flow in the X-direction and
mesh spacings /1, and /i, in the X and Y directions, respectively.
Due to symmetry. only half the domain is used in the Y-direc-
tion. Reynolds equation (1) is discretized at each nonboundary
mesh point (i, j). ((i = )h, + X,. (j — )h, + Y,) where X,
Y € [X,. X,] X [Y,. Y,]. using central and first order backward
differencing to get

€ (P — Piy) + €viinny Py — Piy)
+ h.% h::(fi.i—lllb(Pr‘.i—l - Pi.j) + ei,iHIlZl(Pi‘(‘i»l - Pij))
- /’\(pi,/‘H(,i - pi—l‘jHi—I.j) =0 (6)
where. €. i €imirr e Eijearn and €0, (P =2, ..., m,
—1:j=2.....n,— l)denote the values of ¢ at the intermediate

locations midway between mesh points. m, and n, are the maxi-

mum number of points in X and Y directions. respectively.
The discretized film thickness Eq. (4) at a point (i. j) is

given by:

Xz, d;,

2

H;; = H, + T (7)

where H, is a constant and d,; is the elastic deformation of the
material due to the applied load. The elastic deformation of the
surface is derived by dividing the pressure distribution into
rectangular blocks of uniform pressure. Thus the elastic defor-
mation. dy y. at a point (X. Y) due to the uniform pressure over
the rectangular area 2a2b is given by Venner (1991b):

ax'dy’

h o
J- 2 B (8)
dda V(X = XY (Y - YT)?

2P
dyy = —_
m

If the entire domain is divided into equal rectangular areas,
then from Dowson and Hamrock (1976), the elastic deforma-
tion, d;;. at a point (i, j) due to contributions of all rectangular
areas of uniform pressure is given by:

2 ’“‘ “‘
d(:/’ = ;5 Z Z Km,uPAJ (9)

A=l i=1

where. m = |i — k| + t.u=|j =1 + 1, m, and n, are the
maximum number of points in the X and Y directions, respec-
tively. The coefficients X, are given by:

r‘ 2 3 o -
24 2 ‘r'—-'_—. 3
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where
h, h,
X,n=Xi—XA+E-~Xq=Xf_XL_?.
h, h,
)’,,=)/j—)’,+-2— and )ﬁ,=Y_,—Y,—3.

One advantage of a regular mesh is that the mn, coefficients
need only be calculated once and stored. [n contrast. on an
irregular mesh it is necessary to store m,n, coefficients for each
mesh point.

The force balance Eq. (5) determines the value of the integra-
tion constant H, and is discretized as follows:

hh, Z z P - 2% = 0. (10)

i=l j=1

The system of Egs. (6). (9). and (10). thus constitutes a finite
difference approximation to a system of integro-differential
equations for the unknown variables H, and P;;. The initial

* pressure distribution is given by the Hertzian pressure profile

(P=(1 =X*=YH"ifX* + ¥Y? < I. otherwise P = 0).
The system of Eqgs. (6), (9). and (10) may thus be written as
a nonlinear system of N, equations of the form

Flg)=0 ()
where the vector of unknowns, g, is defined by

[qh = Pijok=(i—=2)*(m, —2) +j— 1,

i=2....om—=1,j=2,...,n -1

[qln, = Hi. Ny = (m, = 2)»(n, - 2) + |

It should be noted from Egs. (6). (9). and (10) that the
Jacobian 0F/9q is dense due to the dependence of the film
thickness, H,;, at any point on all the pressures P,,. as can be
seen from Eq. (9).

Nomenclature

b = radius of Hertzian contact R = reduced radius of curvature a = pressure viscosity index
G = dimensionless materials parame- U = dimensionless speed parameter e = coefficient in Reynolds equation

ter W = dimensionless load parameter A = dimensioniess speed parameter
H = dimensionless film thickness X, = dimensionless inlet boundary 7 = viscosity
u = reference datum for elastic de- X, = dimensionless outlet boundary p = density

flections x' = coordinate

’

X,
h.. h, = dimensionless mesh size X, X
L = dimensionless materials parame- Y,
ter (Moes) Y, Y
M = dimensionless load parameter AR
(Moes)
P = dimensionless pressure

Py = maximum Hertzian pressure
002 / Vol. 121, APRIL 1999
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\
= dimensionless coordinate
Y, = dimensionless boundary domain
' = dimensionless coordinate
v' = coordinate
2 = viscosity parameter (Roelands)

Sub-, Superscripts

a. b = inlet, outlet
i.j = grid index

k. ! = grid index
x.y = x. v direction
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3 Multigrid Method

The use of multigrid methods in solving EHL problems is
relatively new. This method was introduced into the field by
Lubrecht (Lubrecht et al.. 1986b), who through his extensive
work has made multigrid techniques important for solving EHL
problems. The use of multigrids for solving EHL line and point
contact problems has been described by Venner (1991b).

The concept of muitigrid iteration depends on the asymptotic
nature of errors associated with iterative schemes and how the
schemes reduce these errors. Smooth error components associ-
ated with low frequencies are hardly reduced with the classical
iterative schemes. thus resulting in slow convergence. The op-
posite is true for error components with wavelength of the order
of the mesh spacing. However, low frequency error components
can be adequately represented on coarser grid. In a multilevel
solver, which makes use of a series of coarser grids, each error
component is reduced until it becomes smooth when the same
procedure is applied on a coarser grid.

EHL problems are nonlinear. Thus, when using multigrids.
the standard Correction Scheme cannot be used and the Full
Approximation Scheme must be used instead. In the cavitation
region. in which negative pressures are computed by the solver.
the Reynolds equation is not valid and the computed pressures
are set to zero in the standard manner as shown by Venner
(1991b). This is treated with the multigrid method by using
injection near and in the cavitational region when transferring
the residual and the solution to the coarse grid. Full weighting
is used in the remaining parts of the domain.

The FDMG Multigrid Software of Shaw (Shaw) is used here
as a starting point for implementing the multigrid technique.
FDMG employs Multigrid Full Approximation Scheme (FAS)
to solve nonlinear systems of partial differential equations using
either V or W coarse grid correction cycles. The Jacobi or Gauss
Seidel iterative method can be used as a smoother, The option
for the type of restriction is either injection or full weighting
(Lubrecht et al.. 1987a). The FDMG multigrid software is mod-
ified in order to take the cavitation condition into consideration
and the Full Multigrid Scheme. Venner (1991b), is also intro-
duced. The full multigrid scheme is also known as nested itera-
tion and it works on the principle that coarser grids are used to
generate an accurate initial approximation on the finest grid.

The solution for the isothermal point contact problem is ob-
tained by making use of strong coupling in the direction of
flow, the X-direction. This is known as /-Line relaxation, see
Wesseling (1992) for more details, Thus the discrete equations
are solved simultaneously on a line of points. sweeping across
the grid only in the positive Y-direction due to symmetry. On
each line of points. the relaxation scheme of Nurgat and Berzins
(1996) is employed. as described in the next section.

4 New Relaxation Scheme

The new relaxation scheme employs the same general philos-
ophy as used by Lubrecht and Venner in that either Gauss-
Seidel or Jacobi Line relaxation schemes are used in the differ-
ent regions of the computational domain. The choice of the
relaxation scheme depends very much on the value of ¢ of the
Reynolds equation ( 1 ). Gauss-Seidel and Jacobi Line relaxation
schemes are respectively employed in the non-contact and con-
tact regions of the computational domain. The new relaxation
scheme is employed in the following manner:

Having obtained the correction terms. A P. using /-Line relax-
ation on the line ¥ = j and before applying /-Line relaxation
on the line ¥ = j + I, at every point on the line ¥ = j which
lies in the noncontact region. as shown in Fig. 1. a new approxi-
mation P,; to P, is computed using the equation

P, =P, - WAP, (12)
where W is the damping factor which lies in the range 0.4 to
Journal of Tribology
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Fig. 1 Representation of contact and noncontact regions

0.9. A correct choice of W is critical to ensure convergence of
the method. Besides this. all the correction terms AP in the
contact region on the line ¥ = j are saved in order to update
the solution in the contact region after a complete sweep.

After all interior lines j have been visited. that is after a
complete sweep. a new approximation P,; to P, is computed
at every point on the entire grid which lies only in the contact
region using Eq. (12) but this time the damping factor W lies
in the range 0.1 to 0.2. Thus the saved values of the corrections
AP for the portions of each of the lines in the contact region.
shown as shaded region in Fig. |. are added en-masse at the
end of the iteration. This corresponds to a block Jacobi method
and is one of the distinguishing features of the scheme from that
of Venner (1991b) who uses the distributive Jacobj relaxation
scheme. Having updated all the pressure values on the entire
grid. the elastic deformation at every point on the entire grid is
recalculated using the new pressure values.

S Homotopy Method

The concept of a homotopy is simple. It is the deformation
of one problem into another by the continuous variation of a
single parameter. This parameter may be part of the problem
specification and therefore have some physical significance. or
it may be artificial. The key point here is that one of the prob-
lems will be easy to solve. and this will be continuously de-
formed into one that is hard to solve. In practice, the deforma-
tion process must be discretized and a sequence of intermediate
problems solved. However, by allowing the changes to be suffi-
ciently small at each stage. it can always be arranged that the
solution of one intermediate problem will lie within the domain
of convergence of some locally convergent algorithm for the
next. In this way. solving a series of locally convergent prob-
lems can provide a route to global convergence. This process
is termed continuation ( Allgower., 1990).

Consider the problem of finding a root g* of the nonlinear
equation system given by Eq. (11). A homotopy function Stq.
£) is a function for which # € [0, 1] such that the following
conditions hold:

5(¢4.0) = Q(g) (13)

and S(g, 1) = F(g).
The function S(g. B) (assumed to be continuous though
not necessarily differentiable with respect to 3) represents a
continuous deformation of Q(gq) into F(g) as B varies (not
necessarily monatonically ) from O to 1. [T the problem of finding
4o satisfying :
Q(Qu)=§(gn~0)=9 (14)
is one that can be solved. and a continuous solution path exists
connecting (go. 0) to (¢*, 1) along which S(g. B) = 0. then
continuously tracking the solution path is a globally convergent
method for solving the system (11) (Allgower, 1990).
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Artificially parametrized homotopy functions can be con-
structed in many ways. but those most usually encountered are
convex linear homotopies of the torm

Stg. By =BF(g) + (! - 8)Q(q) (15)
such as the fixed point homotopy
Siig. 8) = BFtgy + (1 = Bitg — qu) (16)
where ¢, can be viewed as an initial estimate of ¢*.
Consider the problem of finding a root of
Stq.8)=0 (17)

for § = 1. where ¢ represents the basic independent variables
of the problem and one or more parameters «; are defined in
terms of J by (usually linear) relationships of the form a;, =
w; (). The problem is assumed to have been easily solved for
the root ¢, corresponding to § = 0 (e.g. using a Newton-type
method ). The parametrized problem form is in the homotopy
form but the dependence upon £ is no longer necessarily linear.
We have found that an efficient homotopy technique for the
robust. simultaneous solution of EHL point contact equations is
the one based upon physical parametrisation. using the pressure
coefficient of viscosity a as the underlying parameter:

a=an+ﬁ(0’*—an) (18)
when 8 = 0, @ = a, (typically 5 X 107°, representing a near
isoviscous case) and when 8 = |, @ = a* (the desired value

for the oil in question is typically 2 x 10~* or more). Nondi-
mensionalization of the governing equations is carried out once
and for all using the final value of p, which is computed from
the final value of @. Viscosity and density are computed from

the local continuation values of alpha and p,. This enables the

continuation process to be carried out without changing the size
of the domain. but the intermediate problems do not correspond
obviously to meaningful physical problems. The initial problem
is easy to solve using a Newton-type method, and working with
a has the added advantage that the same mesh can be used
throughout (the computational domain size does not have to
change as it would were load used as a parameter, for example ).

The kinds of numerical algorithm that can be used to solve
this problem are surveyed in the references ( Allgower, 1990).
We have used a predictor-corrector algorithm. Briefly. points
satisfying Eq. (17) map out a curve in (g. B)-space. the zero
curve, as f varies. The algorithm starts from one point on this
curve and takes a predictor step along the tangent there. The
step size is adaptive. and the algorithm tries to maintain it as
large as possible. The step direction is also chosen to make
doubling back along the path impossible. A series of corrector
steps is then taken with the intention of converging to a point
further along the zero curve. Failing that, a new predictor with
a reduced step size is undertaken. A purely locally convergent
projected Newton method is used for the corrector steps. It
should be noted that the Jacobian matrix is full and so a dense
linear equation solver is used. To save on Jacobian evaluations.
the Jacobian is only updated at points on the zero curve. In
practice. the zero curve does not have to be tracked with high
accuracy. since accumulation of discretisation errors such as
occurs. for example. in the integration of ODE systems, does

Table 2 Test Problem One solved using M-Grid, M =99 and L = 16

Its | Hcent Hmin RMSRES SumP AP

1 0.1950 | 0.1110 3.9001E-04 2.0832 2.091E-02
5 0.1928 | 0.1040 1.7222E-04 2.1144 2.884E-03
10 0.1927 | 0.1038 1.1407E-04 2.1196 2.693E-03
15 0.1927 | 0.1038 9.5991E-05 2.1201 2.630E-03
20 0.1927 | 0.1038 9.1076 E-05 2.1202 2.621E-03

not arise here (Allgower. 1990). This algorithm allows the
tracking of zero curves with rapid changes of arc length and
non-monotonicity with respect to 8. Such situations cause the
failure of simple continuation techniques where the f. Such
situations cause the failure of simple continuation techniques
where the f values are explicitly prescribed and monotonic.

For methods such as that just outlined, cavitation is often
perceived as difficult to handle because it is not possible to
arbitrarily set components of the pressure to zero without com-
promising convergence by introducing discontinuities. We have
used penalty functions (Wu. 1986) to resolve the cavitation
problem. The basic idea is to add on to the discrete Reynolds
equation a term

Y(P) = yP?

for some positive constant y, wherever the pressure is negative.
In this way. the equation cannot be satisfied unless negative
pressures are driven toward zero (squaring the pressure keeps
the problem continuous in first derivatives). The larger v is.
the more this will be case. but also the more sudden will be
changes in curvature of the problem functions. For this reason
we achieve greater robustness by deriving y continually from
the homotopy parameter according to

(19)

(20)

where y* is the target value (typically 1000). In order to be
able to cater for the very hardest problems. we sometimes carry
out the y continuation as a separate phase following completion
of the @ continuation. For many problems. though. the two can
be merged quite satisfactorily.

Yy = By*

6 Test Problem One

This test problem, which appears in Wang ( 1994). is solved
on a domain {(X.V): -45 = X = 1.2, -3.0 = ¥ = 3.0}
using the new relaxation scheme on a single grid and multigrid
and using the homotopy method on a single grid. A 65 by 65
grid is employed when the problem is solved on a single grid
using the new relaxation scheme and the homotopy method, A
finest 65 by 65 grid and a coarsest 17 by 17 grid are used when
the problem is solved using the multigrid method. However.
due to symmetry. only the nodes in the positive Y-direction are
used when the problem is solved using the new relaxation
scheme on a single grid and multigrid. For this highly loaded
problem. the values of Moes dimensionless parameters are M
=99 and L = [6. This in turn gives A = 2.3975 X 1072, The

Table 3 Test Problem One solved using homotopy method, M = 99 and
L=16

Its | Heent Hmin RMSRES | SumP 5P alpha
T 0.6611 | 0.6608 | 1.059E-01 | 2.0944 | 1.000E+00 | 5.000E-09
B . 10 | 0.0897 | 0.0489 | 1.289E-03 | 2.0944 | 3.202E-06 | 5.000E-09
Table 1 Test Problem One solved on a S§-Grid, M =99 and L = 16 1 0.0956 | 0.0515 | 12536-03 | 20944 | & 196E-03 $.000E-09
= 16 | 0.1383 | 0.0740 | 9.280E-04 | 2.0944 | 2.284E-02 | 1.141E-08
its Heent Hmin RMSRES SumP_| 6P 36 | 0.2030 | 0.1261 | 6.584E-05 | 2.0944 | 1.135E-02 | 2.528E-08
100 | 0.1855 | 0.0967 | 5.6671E-03 | 1.9249 | 3.012E-03 39 | 0.2071 | 0.1296 | 6.817E-08 | 2.0944 | 5.809E-04 | 2.205E-08
300 | 0.1918 | 0.1023 | 2.47B4E-04 | 2.0944 | 1.909E-06 40 | 0.2070 | 0.1296 | 2.484E-09 | 2.09044 | 4.077E-06 | 2.206E-08
500 | 0.1919 ) . 41 | 0.2042 | 0.1271 | 4.769E-05 | 2.0944 | 2.632E-03 | 2.206E-08
600 | 0.1919 g }ggg I gg?gggg g'ggzg igggggg 42 | 0.2071 | 0.1208 | 2.722E-00 | 2.0044 | 3.481E-03 | 2.206E-08
: : ) : . 47 | 0.2071 | 0.1304 | 5.851E-09 | 2.0044 | 1.150E-03 | 2.206E-08
613 | 0.1919 | 0.1023 | 9.9189E-07 | 2.0943 | 1.452E-08 48 | 0.2071 | 0.1304 | 3.402E-12 | 2.0944 | 2.441E-06 | 2.208E-08

004 / Vol. 121, APRIL 1999 Transactions of the ASME
/921e$$apl0 07-18-98 13:32:36 asmel ASME: ] Trib



.

Table 4 Summary ot H cent and H min of Test Problem One, M = 99
andlL = 16

Method Hcent | Hmin | Mesh X-domain | Y-domain
S-Gnid 0.192 | 0.102 | 65 x 65 | [-4.51.2] -3.0,3.0
M-Grid 0.193 0.104 85 x 65 [-4.5,1.2) -3.0,3.0]
Homotopy | 0.207 0.130 65 x 65 [-4.5,1.2) -3.0,3.0
Wang 0.175 | 0.097 | 151 x 81 | [-3.5,1.5] -2.0,2.0)

maximum Hertzian pressure. p,. at this load is 1.21 GPa if o
= 2.2056 x 10~*. Hence. the value of & = @ X p, = 27. The
equivalent Hamrock and Dowson’s (1976b) dimensionless pa-
rameters with U fixed at 5.6102 X 107" are W = 3.4125 X
10~° and G = 4865 assuming that both contacts are steel.

6.1 Convergence Criteria. Tables I. 2. and 3 show how
the numerical solution changes with the number of iterations. If
the convergence criterion is based on the change in the pressure
solution from one iteration to the next on a single grid. which
is a common though perhaps unwise practice and is labeled 6P
in Tables | and 3. then the solutions obtained using the new
relaxation scheme and the homotopy method on single grid
have converged to the order of 107* and 107, respectively. A
more commonly used form for checking the accuracy when
using the muitigrid method is to check the change in the pressure
solution on the finest grid and the coarser grid just below it.
This is labeled as AP in Table 2. When the iteration has con-
verged we would expect to see no change in this value and for
this value to reflect the spatial discretization error in the coarser
grid. AP as shown in Table 2 suggests that the pressure solution
obtained using the multigrid method which employs the new
relaxation scheme has converged to the order of 107,

However. if the convergence is based on the Root Mean
Square Residual, labeled RMSRES, then the solutions obtained
using the new relaxation scheme on a single grid and multigrid
have converged to the order of 107% and 107, respectively.
This discrepancy in the RMSRES values appears to be due to
the cavitation region and the nature of the Reynolds equation.
In the cavitation region. Reynolds equation is not valid and
problems arises when transferring residuals and corrections be-
tween grids when using the multigrid method. This is a very
important issue and needs further study. The RMSRES obtained
using the homotopy method on a single grid is of the order
10772

Also shown in Tables I, 2, and 3 are the central, labeled
Hcent, and the minimum. labeled Hmin, film thicknesses ob-
tained using the new relaxation scheme on a single grid (S-
Grid) and multigrid (M-Grid) and the homotopy method on a
single grid. The final values of Hcent and Hmin obtained by
Wang (1994) and ourselves are summarized in Table 4. The
values of Hcent and Hmin obtained by Wang (1994 ), who used
the effective influence method. are different from those obtained
using the three different numerical schemes presented in this
paper mainly due to the use of different mesh domains.

7 Test Problem Two

This test problem. which appears in Venner (1991b), is
solved on a domain {(X.Y): -50=X=12 -35=VY =<
3.5} using the new relaxation scheme on a single grid and

Table 8 Test Problem Two solved using M-Grid, M = 20 and L = 10

Its | Hcent Hmin RMSRES SumP | AP

1 0.4612 | 0.3076 1.3773E-02 2.0842 1.377E-02
5 0.4529 | 0.3057 1.6256E-04 2.0909 8.322E-04
10 0.4526 | 0.3054 7.3911E-05 2.0904 | 2.452E-04
15 0.4525 0.3053 4.3010E-05 2.0905 2.251E-04
20 0.4525 | 0.3053 | 3.6674E-05 2.0905 | 2.236E-04
25 0.4525 | 0.3053 3.6051E-05 2.0905 2.234E-04

65 by 65 grid is employed when the problem is solved on a
single grid using the new relaxation scheme and the homotopy
method. A finest 65 by 65 grid and a coarsest 17 by 17 grid
are used when the problem is solved using the multigrid method.
However. due to symmetry. only the nodes in the positive Y-
direction are used when the problem is solved using the new
relaxation scheme on a single grid and multigrid. For this mod-
erately loaded problem. the values of Moes dimensionless pa-
rameters are M = 20 and L = 10. This in turn gives A\ = 0.2022.
The maximum Hertzian pressure, p,, at this load is 0.5818 GPa
if @ = 1.7 X 107", Hence. the value of @ = a X p, = 10. The
equivalent Hamrock and Dowson's dimensionless parameters
with U fixed at 1.0 X 107" are W = 1.8915 x 10 " and G =
4729 assuming that the boundary materials are different from
those of Test Problem One.

7.1 Results. The numerical solutions and the convergence
histories associated with the three methods are shown in Tables
5. 6. and 7. The Root Mean Square Residual. labeled RMSRES,
obtained using the new relaxation scheme on a single grid and
multigrid and the homotopy method are of the order 107¢, [0 ~*
and 107", respectively. Convergence based on P when using
a single grid method and AP when using the multigrid method.
which is a general practice, suggest that the solution obtained
using the new relaxation scheme on a single grid is of the order
107% as can be seen from Table 5. It is much smaller than that
obtained using the other two methods which are of the order
107" and 107° as can be seen from Tables 6 and 7.

Also shown in Tables 5, 6. and 7 are the central. labeled
Hcent. and the minimum, labeled Hmin, film thicknesses ob-
tained using the new relaxation scheme on a single grid (S-
Grid) and multigrid (M-Grid) and the homotopy method on a
single grid. The final values of Hcent and Hmin obtained by
ourselves, Venner (1991b) and Ehret (1997) are summarized
in Table 8. On a 65 X 65 domain, the discrepancy between the
values of Hcent and Hmin obtained using the three different
numerical schemes presented in this paper is minimal. However,
these values differ from those obtained by Venner (1991b).
The reason for this is not clear but we have noted that slight
differences in the schemes, for example using either a first or
a second order upwinding. can give rise to significant differ-
ences in the results. Table 8 also shows the results obtained
using the muitigrid (M-Grid ) method. which uses the new relax-
ation scheme. compared with the results of Venner (1991b)

Table 7 Test Problem Two solved using homotopy method, M = 20 and
=10

multigrid and using the homotopy method on a single grid. A Tts | Heent | Hmin | RMSRES | SumP | 6P alpha

T | 0.6478 | 0.6468 | 4.302E-01 | 2.0944 | 1.0000E+00 | 5.000E-09

7 | 0.2466 | 0.1765 | 1.371E-02 | 2.0944 | 4.9562E-05 | 5.000E-09

Tabl 5 TotPrblem T soved on s 5.0, M = ana L < 10| | S8 | 0175 | 1m0t | 2t | amus | somets

- 20 | 0.4411 | 0.2953 | 2.023E-03 | 2.0944 | 3.8711E-03 | 1.773E-08

Its Hecent | Hmin RMSRES SumP [ §P 23 | 0.4477 | 0.2008 | 1.340E-03 | 2.0944 | 4.5581E-03 | 1.652E-08

100 0.4322 | 0.2914 1.1204E-02 | 2.0594 1.311E-03 24 | 0.4372 | 0.2027 | 2.333E-03 | 2.0944 | 1.7103E-02 | 1.576E-08

300 0.451 0. 1. | 31 | 0.4530 | 0.3034 | 7.721E-04 | 2.0944 | 7.2105E-03 | 1.733E-08

S il 9066E-03 | 2.0979 | 6.537E-05 37 | 0.4604 | 0.3086 | 2.533E-07 | 2.0944 | 3.7252E-04 | 1.700E-08

500 0.4524 | 0.3054 2.5793E-04 | 2.0947 | 7.447E-06 38 | 0.4604 | 03086 | 9.132E-00 | 2.0044 | 2.9120E-06 1.700E-08

700 | 0.4525 | 0.3054 | 3.3917E-05 | 2.0944 | 9.621E-07 44 | 04605 | 03130 | 1.282E-07 | 2.0944 | 2.7709E-03 | 1.700E-08

1000 | 0.4525 { 0.3055 | 1.6112E-06 | 2.0943 | 4.561E-08 45 | 0.4605 | 0.3130 | 2.762E-11 | 2.0944 | 3.3570E-06 | 1.700E-08
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Table 8 Summary of M cent and H min of Test Problem Two, M = 20
andL =10

-

Method Hcent | Hmin | Mesh X-domain | Y-domain |
5-Grid 0453 | 0306 | 65x65 | [-5.1.2] 3533
M-Grid 0453 | 0305 | 65x65 | [-5.1.2] -3.5,3.5]
Homotopy | 0.460 | 0.313 | 65 x 65 [-5,1.2) [-3.5,3.5)
Venner 0.489 | 0.355 | 65 x 65 [-4.5,1.5] [-3.0,3.0)
M-Grid 0.443 0.304 257 x 257 | [-4.5,1.5) [-3.0,3.0)
Venner 0.498 | 0.345 | 257x 257 | (4515 | [-3.0,3.0]
Ehret 0.431 0.295 257 x 257 | [-4.5,1.5) [-3.0.3.0]

and Ehret. who communicated his results to us, on different
mesh sizes and domains. A summary of these results is that the
results obtained using the three different numerical schemes
presented in this paper and by Ehret are relatively close while
the results of Venner are some what more distant, though still
comparable.

7.2 Remarks. A point to note is that, when using the
homotopy method. the force balance equation, labeled SumP in
Tabies 3 and 7. is satisfied on every iteration but this is not the
case when the new relaxation scheme is employed on a single
grid or multigrid.

An interesting feature about homotopy method is the sudden
sharp drop in RMSRES as can be seen more clearly from Table
7. This may be attributed to the quadratic rate of convergence
of the homotopy method close to the root. A sharp decrease in
6P can also be noticed in Tables 3 and 7.

Since Homotopy method is very expensive in terms of com-
putational time, it was not possible to use a finer mesh than 65
by 65. For the two test problems. the times taken to achieve
the results using the new relaxation scheme on a single grid
and multigrid and the homotopy method were 8.25 mins, 3.2
mins, and 6.06 hr, respectively. for test problem one and for
test problem two the times were 13.5 mins, 2.9 mins, and 5.73
hr. respectively. An SGI R8000 was used for the first two nu-
merical methods and an R10000 processor for the homotopy
method.

8 Discussion and Conclusions

From the results obtained we can say something about the
efficiency of the new relaxation scheme employed on a single
grid and multigrid. The accuracy obtained when the new relax-
ation scheme is used on a single grid suggest the efficiency of
this very simple relaxation scheme. This new relaxation scheme
is explained in detail and compared with the distributive relax-
ation scheme of Venner (1991b) in Nurgat and Berzins (1996).
The numerical results shown in this paper demonstrate how
even a relatively standard multigrid code when used with the
new relaxation scheme may be used to speed up the solution
of EHL probiems. However, this speed can be further enhanced
by making use of the multi-integration scheme (Brandt and
Venner, 1990) to compute the elastic deformation. The homo-
topy method has the property of being very robust and has the
additional advantage of delivering better convergence in terms
of the residual but this is at the expense of much longer CPU
times. There is. however. considerable scope for reducing these
CPU times by using iterative methods for the linear equation
solution rather than the Gaussian elimination methods employed
here. This is an area of our current research (Schlijper et al.,
1996).
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The numerical results shown above raise an outstanding issue
concerning the treatment of convergence in EHL problems. A
further issue. that is of concern. appears to be the effect of
domain size on the final results.
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