
A new relaxation scheme for solving EHL problems(E. Nurgat and M. Berzins)aaSchool of Computer Studies, University of Leeds,Leeds LS2 9JT, United KingdomA New Relaxation Scheme (NRS) is presented in this paper to solve Elasto Hydrodynamic Lubrication (EHL)point contact problems. The solutions obtained are compared with those obtained by Ehret [6] who employedthe Distributive Relaxation Scheme (DRS) of Venner [2]. Results obtained using the two schemes are in closeagreement which is very encouraging although it is too early to draw any conclusions. The new relaxation schemethus provides an alternative approach to the distributive relaxation scheme.1. INTRODUCTIONOver the last few decades various numerical al-gorithms have been presented for solving ElastoHydrodynamic Lubrication (EHL) [1] point con-tact problems. One of the most e�ective methodto date for solving these problems is the use ofmultigrid methods. Extensive use of multigridmethods in solving EHL problems have been pre-sented by Venner [2] and [3] and Venner and Lu-brecht [4]. The development of multigrid multi-integration by Brandt and Lubrecht [5] and Ven-ner [2] has also greatly enhanced the e�ciency ofmultigrid methods for EHL problems. Venner [2]and more recently Ehret [6] employed Gauss-Seidel line and Jacobi distributive line relaxationschemes with multigrid multi-integration schemeto solve EHL problems. This scheme is known asthe Distributive Relaxation Scheme (DRS).The aim of this paper is to present a NewRelaxation Scheme (NRS) to solve EHL pointcontact problems using the multigrid method.The new relaxation scheme employs Gauss-Seideland Jacobi line relaxation schemes and is analternative approach to the distributive relax-ation scheme. In both the distributive relax-ation scheme of Venner [2] and the new relax-ation scheme, the choice of the relaxation schemeis dependent on the value of the coe�cient � ofthe Reynolds equation. The main di�erence be-tween these two approaches is in how they treatthe contact region of the EHL problem. Varioustest problems are used in order to compare the

results obtained using the distributive relaxationscheme employed by Ehret [6] and the new relax-ation scheme.The layout of the rest of the paper is as follows.In section (2) we introduce the form of the equa-tions to be solved. The multigrid method to beused is described in section (3) while section (4)describes di�erent relaxation schemes which in-cludes the distributive and the new relaxationschemes. Section (5) describes the test problemsto be used in the comparison between the two re-laxation schemes and the paper is concluded insection (6).2. GOVERNING EQUATIONSThe mathematical model describing theisothermal EHL circular contact problem with oilentrainment in the positive X-direction consists ofthree non-dimensional equations. The ReynoldsEquation relates pressure (P) to the �lm thickness(H) for a lubricant characterised by a pressure de-pendent viscosity � and density �L(P ) = @@ X �� @ P@ X �+ @@ Y �� @ P@ Y ��@ (�H)@ X = 0 ; X; Y 2 [Xa; Xb]� [Ya; Yb] (1)with the cavitation condition P � 0 andthe boundary condition P = 0. The non-dimensionalisation is expressed in terms of the so-called Moes parameters L and M , [7]. Pressure



is in units of the maximum Hertzian pressureph = L�� 3r3M2 (2)where � is the pressure coe�cient of viscosity ofthe lubricant. X and Y are in units of Hertzianradius (b). Film thickness is in units of b2=R,where R is the reduced radius of the contact. � isgiven by:� = �H3�� (3)where � = 1 + �phP1+vphP if P > 0, otherwise � = 1(� = 5:8 � 10�10 and v = 1:68 � 10�9, [8]) ,� = exp f�p0z [�1 + (1 + php0P )z]g (p0 = 1:98�108and z = 0:68, [9]) and � = 4�M 3q 23M .The Film Thickness Equation, H(X;Y ), com-putes the elastic distortion of the surfaces causedby the pressure in the �lm and is written as:H(X;Y ) = H0 + X22 + Y 22+ 2�2 Z YbYa Z XbXa P (X 0 ; Y 0) dX 0 dY 0p(X �X 0 )2 + (Y � Y 0 )2 (4)where H0 is a constant.The �nal equation is the Force Balance Equa-tion which ensures that the integral over the pres-sure balances the external applied load:Z YbYa Z XbXa P (X;Y ) dX dY = 2�3 : (5)2.1. Finite di�erence discretisation of gov-erning equationsThe governing equations are discretised withthe direction of 
ow in the X-direction and meshspacings hx and hy in the X and Y directionsrespectively. Due to symmetry, only half the do-main is used in the Y-direction. Reynolds Equa-tion (1) is discretised at each non boundary meshpoint (i; j), ((i�1)hx+Xa; (j�1)hy+Ya) whereX;Y 2 [Xa; Xb]�[Ya; Yb], using central and back-ward di�erencing to get:Li;j = �i�12 ;j(Pi�1;j�Pi;j)+�i+ 12 ;j(Pi+1;j�Pi;j)+h2xh�2y (�i;j�12 (Pi;j�1�Pi;j)+�i;j+ 12 (Pi;j+1�Pi;j))�hx(�i;jHi;j � �i�1;jHi�1;j) (6)

where, �i+ 12 ;j; �i�12 ;j; �i;j+12 and �i;j�12 (i =2; : : : ;mx�1 ; j = 2; : : : ; ny�1) denote the valuesof � at the intermediate locations midway betweenmesh points. mx and ny are the maximum num-ber of points in X and Y directions respectively.The discretised �lm thickness equation (4) at apoint (i; j) is given by:Hi;j = H0 + X2i2 + Y 2j2 + di;j (7)where H0 is a constant and di;j is the elastic de-formation of the material due to the applied load.The elastic deformation of the surface is derivedby dividing the pressure distribution into rectan-gular blocks of uniform pressure. Thus the elasticdeformation, dX;Y , at a point (X;Y ) due to theuniform pressure over the rectangular area 2a2bis given by Venner [2]dX;Y = 2P�2 Z b�b Z a�a dX 0 dY 0r (8)where r =p(X �X 0 )2 + (Y � Y 0 )2 .If the entire domain is divided into equalrectangular areas, then from Dowson and Ham-rock [10], the elastic deformation, di;j, at a point(i; j) due to contributions of all rectangular areasof uniform pressure is given by:di;j = 2�2 mxXk=1 nyXl=1 Km;nPk;l (9)where, m = ji� kj+1, n = jj� lj+1, mx and nyare the maximum number of points in the X andY directions respectively. The coe�cients Km;nare independent of pressure, P .One advantage of a regular mesh is that themxny coe�cients need only be calculated onceand stored. In contrast, on an irregular mesh itis necessary to store mxny coe�cients for eachmesh point.The force balance equation (5) determines thevalue of the integration constant H0 and is dis-cretised as follows:hxhy mxXi=1 nyXj=1Pi;j � 2�3 = 0: (10)



3. MULTIGRID METHODThe use of multigrid methods in solving EHLproblems was introduced by Lubrecht [11], whothrough his extensive work has made the multi-grid method an important technique in solvingsuch problems. The use of multigrids for solvingEHL line and point contact problems has beendescribed by Venner [2].The concept of multigrid iteration depends onthe asymptotic nature of errors associated with it-erative schemes and how the schemes reduce theseerrors. Smooth error components associated withlow frequencies are hardly reduced with the clas-sical iterative schemes, thus resulting in slow con-vergence. The opposite is true for error compo-nents with wavelength of the order of the meshspacing. However, low frequency error compo-nents can be adequately represented on coarsergrid. In a multilevel solver, which makes use ofa series of coarser grids, each error component isreduced until it becomes smooth when the sameprocedure is applied on a coarser grid.The FDMG Multigrid Software of Shaw [12]is used as a starting point for implementing themultigrid technique. FDMG employs the Multi-grid Full Approximation Scheme (FAS) to solvenonlinear systems of partial di�erential equationsusing either V or W coarse grid correction cycles.The Jacobi or Gauss Seidel iterative method canbe used as a smoother. The option for the type ofrestriction is either injection or full weighting [7].EHL problems are nonlinear. Thus, when usingmultigrids, the standard Correction Scheme cannot be used and the Full Approximation Schememust be used instead. In the cavitation region,in which negative pressures may be computed bythe solver, the Reynolds equation is not valid andthe computed negative pressures are set to zeroin the standard manner as used by Venner [2].The cavitation region is treated with the multi-grid method by using injection near and in thecavitational region when transferring the residualto the coarse grid. Full weighting is used in theremaining part of the domain. The elastic defor-mation and force balance equations get updatedon each grid using the updated pressure values.The only substantial modi�cation to FDMG has

been to take symmetry boundary conditions andcavitation into consideration.The solution for the isothermal point contactproblem is obtained by making use of strong cou-pling in the direction of 
ow, the X-direction.Thus the discrete equations are solved simulta-neously on a line of points, sweeping across thegrid only in the positive Y-direction due to sym-metry. On each line of points, the new relaxationscheme is employed, as described in section (4.3).4. RELAXATION SCHEMESThe coe�cient � of the Reynolds equation (1)varies several orders of magnitude over the cal-culational domain. In both the inlet and outletregions � >> 1 whereas in the contact region �is very close to zero. Hence, in the dry contactregion, i.e. (X2 + Y 2) � 1, the integral aspectof the problem dominates whereas in the remain-ing part of the domain the problem behaves likea di�erential problem. When � is small Reynoldsequation (1) reduces to @ (�H)@ X = 0 which is a rela-tion in the X-direction only. Consequently whendiscretised there is no direct coupling via pres-sure between adjacent grid points in Y-direction.When � is large the term @ (�H)@ X in Reynoldsequation (1) is small compared to the di�erentialterms. Thus the Reynolds equation (1) has theform of the 2-D Poisson type equation. The valueof � plays an important role in deciding which re-laxation process to apply to the solution of thediscretised Reynolds equation (6) with Hi;j eval-uated using equation (7). The relaxation processemployed must be a stable error smoother overthe entire domain and must be able to cope withthe extreme values of �which are a nonlinear func-tion of pressure. The general approach taken inthe successful distributive relaxation scheme ofVenner [2] (see also Ehret [6]) and also in thenew relaxation scheme described here is to makethe choice of relaxation scheme dependent on thevalue of �. The precise di�erence between theschemes will be described in section (4.4).When � is large, (a Poisson type problem), aone point Gauss-Seidel relaxation provides gooderror smoothing and stability. This is where givenan approximation ~Pi;j and the associated approx-



imation ~Hi;j to Pi;j and Hi;j respectively, a newapproximation P i;j is computed usingP i;j = ~Pi;j +  @ ~Li;j@ ~Pi;j!�1 ri;j (11)where ri;j is the residual at the point (i; j) and~Li;j = L( ~Pi;j) is given by equation (6). How-ever, the performance of a one point Gauss-Seidelrelaxation begins to deteriorate as � decreases.Firstly the relaxation becomes unstable - low fre-quency error components are ampli�ed and therelaxation process diverges. Secondly, due to theloss of coupling in the Y-direction, the relaxationbecomes ine�ective in reducing high frequency er-ror components in Y-direction.The problem of stability can be overcome byusing a relaxation scheme which has propertiesof both Gauss-Seidel and Jacobi relaxations. Fora standard Gauss-Seidel relaxation the new up-dated solution get used immediately in relaxingsubsequent equations whereas for a standard Ja-cobi relaxation the new updated solution replacesthe old one at the end of a complete sweep. Therelaxation scheme used in order to achieve stabil-ity depends very much on the value of � whichis much smaller in the contact region than thenon-contact region of the computational domain.The problem of loss of coupling can be over-come by making use of line relaxation instead ofpoint relaxation. This implies that instead of vis-iting the grid points one by one in some order,e.g. lexicographic order, and solving the discreteequation at each grid point, a system of discreteequations on a line of points are solved simulta-neously. This must be done on a line which is inthe direction of strong coupling. For EHL pointcontact problems there is strong coupling in theX-direction. Hence, we use points on a line in theX-direction, known as I-Line relaxation. That ison a line Y = j (j = 1; : : : ; ny), where ny is themaximum number of points in the Y-direction.4.1. I-Line relaxationSuppose ~P is an approximation to the true so-lution P then at a point (i; j), ~Li;j = L( ~P )i;j 6= 0

and Li;j = L(P )i;j = 0. Taylors theorem gives:Li;j = ~Li;j + nyXl=1 mxXk=1 @ ~Li;j@ ~Pk;l �Pk;l +O(�P )2 (12)where ~Li;j = L( ~Pi;j) is the discretised Reynoldsequation (6) at the point (Xi; Yj). If we onlyconsider points at (i � 1; j), (i; j) and (i + 1; j)then equation (12) can be rewritten as:@ ~Li;j@ ~Pi�1;j�P i�1;j + @ ~Li;j@ ~Pi;j �P i;j+ @ ~Li;j@ ~Pi+1;j�P i+1;j + ~Li;j = 0 : (13)For a constant j, that is on a line Y = j, equa-tion (13) results in a tridiagonal system of equa-tions which are solved simultaneously for the cor-rection term �P . Having obtained �P , a newapproximation P i;j to ~Pi;j is computed using:P i;j = ~Pi;j �W �P i;j (14)where W is a damping factor. A correct choice ofW is critical to ensure convergence of the method.4.2. Distributive relaxation schemeThe distributive relaxation scheme works onthe principle that the relaxation process remainslocal. That is relaxing at a point Xi has minimale�ect at points Xj far away from Xi.The distributive relaxation scheme employedby both Venner [2] and Ehret [6] makes useof Jacobi Distributive Line Relaxation (JDLR),Gauss-Seidel Line Relaxation (GSLR) and PointGauss-Seidel (PGS) depending on the pressurevalues on the domain. JDLR is employed in re-gions of domain where pressure is large, whichmeans � is small, whereas in the remaining partof the domain, excluding the cavitation regionwhere PGS is employed, GSLR is employed.Gauss-Seidel line relaxation and point Gauss-Seidel schemes employed are as described in sec-tion (4).When using JDLR a new approximation P i;jto ~Pi;j is computed usingP i;j = ~Pi;j + �P i;j (15)



where �P i;j = �P i;j � 14 (�P i�1;j + �P i+1;j +�P i;j�1 + �P i;j+1). A new approximation Hi;jto ~Hi;j is also computed usingHi;j = ~Hi;j + 2�2 i+1Xk=i�1 j+1Xl=j�1Ki;k;j;l�P k;l : (16)It is not necessary to obtain the exact repre-sentation of Hi;j as is shown by Wang [13]. Thecorrection terms, �P , are obtained using line re-laxation by solving a system of equations of theform given by@ ~Li;j@ ~Pi�2;j�P i�2;j + @ ~Li;j@ ~Pi�1;j�P i�1;j +@ ~Li;j@ ~Pi;j �P i;j + @ ~Li;j@ ~Pi+1;j�P i+1;j +@ ~Li;j@ ~Pi+2;j�P i+2;j + ~Li;j = 0 : (17)Since JDLR is a Jacobi relaxation scheme, thesolution P gets updated after a complete sweep.The numerical scheme employed makes use of thefull multigrid solver and of the multi-integrationtechniques [2] and [5] to compute elastic defor-mation.4.3. New relaxation schemeThe new relaxation scheme makes use of Ja-cobi and Gauss-Seidel line relaxation schemes de-pending on the value of the coe�cient � of theReynolds equation (1). Jacobi and Gauss-Seidelline relaxation schemes are respectively employedin the contact and non-contact regions of the com-putational domain. This new relaxation schemeis employed in the following manner:Having obtained �P using I-Line relaxation onthe line Y = j and before applying I-Line relax-ation on the line Y = j+1, at every point on theline Y = j which lies in the non-contact region,as shown in Figure (1), a new approximation P i;jto ~Pi;j is computed using equation (14) with thedamping factor W lying in the range 0.5 to 0.8.Besides this, all the correction terms �P in thecontact region on the line Y = j are saved in or-der to update the solution in the contact regionafter a complete sweep.
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Y=j+1Figure 1 Representation of contact and non-contact regions.After all interior lines j have been visited, thatis after a complete sweep, a new approximationP i;j to ~Pi;j is computed at every point on theentire grid which lies only in the contact regionusing equation (14) but this time the dampingfactor W lies in the range 0.1 to 0.2. Thus thesaved values of the corrections �P for the por-tions of each of the lines in the contact region,shown as shaded region in Figure (1), are addeden-masse at the end of the iteration. This cor-responds to a block Jacobi method. Having up-dated all the pressure values on the entire grid,the elastic deformation at every point on the en-tire grid is recalculated using the new pressurevalues.4.4. Di�erences between DRS and NRSThe Distributive Relaxation Scheme (DRS) dif-fers from the New Relaxation Scheme (NRS) inmany ways and it is now possible to describe thedi�erences between these two relaxation schemes.The DRS makes use of Jacobi distributiveand Gauss-Seidel line relaxation schemes in thecontact and non contact regions of the compu-tational domain respectively whereas the NRSmakes use of Jacobi and Gauss-Seidel line re-laxation schemes in the contact and non con-tact regions of the computational domain respec-tively. Besides this, the DRS also makes use ofthe point Gauss-Seidel scheme in the cavitationregion. In the DRS, regions of the domain whereJDLR is employed, the correction terms at thepoints (i; j), (i � 1; j) and (i; j � 1) are used to



update the solution at the point (i; j) as shownin equation (15) whereas in the remaining partof the domain, where Gauss-Seidel line relaxationand point Gauss-Seidel schemes are employed, themethod used to update solution is similar to theone used in the NRS. The solution, P , at a point(i; j) in the NRS is updated using the correctionterm �P i;j as shown in equation (14). The cor-rection terms in the NRS are obtained by solvinga tridiagonal system of equations as can be seenfrom equation (13) whereas in the DRS, regions ofdomain where JDLR is employed, the system ofequations are pentadiagonal as can be seen fromequation (17). However, they will be tridiagonalin regions where the Gauss-Seidel line relaxationscheme is employed. In DRS a new �lm thicknessequation (16) is used when dealing with the cou-ette term of the Reynolds equation (1). This isnot the case in the NRS.The main di�erence between the DRS and theNRS is in the contact region of the computationaldomain. This is where the Jacobi distributive linerelaxation scheme is employed by the DRS andthe Jacobi line relaxation scheme is employed bythe NRS. The system of equations solved in orderto obtain the correction terms and the way pres-sures are updated at a point (i; j) are also di�er-ent in the two schemes. The results obtained, asshown in section (5), show that the NRS appearsto work as well as the DRS, though the NRS is amuch simpler scheme than the DRS.5. TEST PROBLEMSResults obtained using Multigrid Multi-Integration method (MIM) [2], which employsdistributive relaxation scheme, and Multigridmethod (MM), which makes use of the new re-laxation scheme are compared. Three test prob-lems de�ned by the Moes parameters M and L areconsidered where for each test problem the Moesparameter L was �xed at 10, 14 and 28 while theMoes parameter M was varied from 10 to 200 forthe three cases. A value of � = 2:2�10�8, hence,the maximumHertzian pressure varied from 0.44GPa to 2.71 GPa, was considered in all the testproblems.Test problems solved using MIM employed

513 � 513 mesh points on the �nest grid and17 � 17 mesh points on the coarsest grid. Whenthe Moes parameter L was �xed at 10 and 28,a �nest grid of 129 � 129 and a coarsest grid of17 � 17 was used when solved using MM. How-ever, for the case L = 14, a �nest grid with257� 257 mesh points was employed. Both MIMand MM make use of a full multigrid scheme andthe discretisation schemes are the same for thetwo methods as described in section (2.1).The minimum and central �lm thicknesses ob-tained using the two methods have been com-pared and the results are shown in Tables 1 and2. The minimum and central �lm thicknessesobtained using the two methods are in generalagreement especially for the case L = 14 wherethe computational domains employed by the twoschemes are the same and the mesh resolutionof the solutions obtained using the MM scheme ishigher than that of the other two cases, L=10 andL=28. However, a discrepancy of about 5% is ob-served for the other two cases, L=10 and L=28.This can be attributed to the di�erent size of do-mains employed by the two schemes and primarilyto the di�erences in the mesh resolution. For solu-tions obtained using the MIM scheme, the domainemployed was dependent on the Moes parameterM and the following domains were employed:[M � 10 ) �7 � X � 2 and �4:5 � Y � 4:5] ,[10 < M � 50 ) �5 � X � 2 and �3:5 � Y �3:5] and [50 < M � 500 ) �4:5 � X � 1:5and �3 � Y � 3] . For solutions obtained us-ing the MM scheme, the above domain was em-ployed only for the case L = 14. However, whenthe Moes parameter L was �xed at 10 and 28the domain employed was �4:5 � X � 1:5 and�3 � Y � 3. Figure 2 shows the pressure pro�lefor the case L = 14 and M = 100.The e�ciency of the solution is based on theRoot Mean Square Residual (RMSR) and themean absolute residual (Norm0). The solutionsobtained by Ehret using MIM, Norm0 was of theorder 1:0�10�7 and hardly any change in Norm0was observed after a number of iterations. Forthe solutions obtained using MM, the RMSR andNorm0 were of the order 1:0�10�4 and 1:0�10�5respectively. Hardly any change was also ob-served in the RMSR and Norm0 after about 5



Figure 2 3D pressure pro�le for M=100 & L=14on a 257�257mesh with domain [�4:5 � X � 1:5& �3 � Y � 3].to 6 multigrid iterations (V-cycles). An analysisof the residuals showed that the main reason innot achieving very small residuals was due to thefree boundary in the cavitation region and thepressure spikes. Work is still being done in orderto reduce residuals in these regions.Results obtained by Ehret using MIM were car-ried out on a Sun Sparcstation 20 whereas anSGI R8000 was used for the solutions obtainedusing multigrid method which employed the newrelaxation scheme. When using MIM, 5 V-cyclesare performed in about 30 minutes whereas whenMM is employed, time taken to do 5 V-cycles wasabout 60 minutes. The bulk of the di�erence inthis computing time is due to the use of multi-integration method by Ehret. Adoption of thisapproach in the new relaxation scheme may wellmean that the two procedures are more evenlymatched computationally.6. CONCLUSIONA new relaxation scheme for solving EHL prob-lems have been presented in this paper and the

numerical results obtained are compared withthose obtained by Ehret [6] who employed dis-tributive relaxation scheme. The results obtainedshow that the new relaxation scheme appears towork as well as the distributive relaxation scheme.This new relaxation scheme is very simple andthe results obtained are very encouraging. How-ever, it is too early to draw any conclusions atthis stage as more work still needs to be donein order to analyse the accuracy of the solutions.An analysis of the residuals showed that in thefree boundary cavitation and the pressure spikeregions the residuals are relatively higher thanthose in the other regions of the computationaldomain. The results obtained also indicate thatboth the size of the computational domain andthe mesh resolution does have an in
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Table 2 Central �lm thicknesses for L = 10, L = 14 and L = 28:3L = 10:0 U = 0:089� 10�10 G = 4869M W (�10�6) Ph(GPa) MIM (�10�6) MM (�10�6)20 0:173 0:44 17:79 18:2750 0:433 0:60 17:17 18:02100 0:867 0:76 16:59 17:24200 1:733 0:96 15:66 16:59L = 14:0 U = 0:343� 10�10 G = 4869M W (�10�6) Ph(GPa) MIM (�10�6) MM (�10�6)20 0:477 0:62 41:54 41:0350 1:191 0:85 40:30 41:01100 2:384 1:07 39:13 39:25200 4:767 1:35 37:71 38:16L = 28:3 U = 5:707� 10�10 G = 4869M W (�10�6) Ph(GPa) MIM (�10�6) MM (�10�6)20 3:927 1:26 247:82 252:9450 9:818 1:72 245:02 255:99100 19:64 2:15 239:56 245:61200 39:27 2:71 233:76 241:4413. D. Wang, Elastohydrodynamic Lubrication ofPoint Contacts for Layers of Soft Solids andfor Monolithic Hard Materials in the Tran-sient Bouncing Ball Problems, PhD. Thesis,Department of Mechanical Engineering, Uni-versity of Leeds, 1994.


