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A New Relaxation Scheme (NRS) is presented in this paper to solve Elasto Hydrodynamic Lubrication (EHL)
point contact problems. The solutions obtained are compared with those obtained by Ehret [6] who employed

the Distributive Relaxation Scheme (DRS) of Venner [2].

Results obtained using the two schemes are in close

agreement which is very encouraging although it is too early to draw any conclusions. The new relaxation scheme
thus provides an alternative approach to the distributive relaxation scheme.

1. INTRODUCTION

Over the last few decades various numerical al-
gorithms have been presented for solving Elasto
Hydrodynamic Lubrication (EHL) [1] point con-
tact problems. One of the most effective method
to date for solving these problems is the use of
multigrid methods. Extensive use of multigrid
methods in solving EHL problems have been pre-
sented by Venner [2] and [3] and Venner and Lu-
brecht [4]. The development of multigrid multi-
integration by Brandt and Lubrecht [5] and Ven-
ner [2] has also greatly enhanced the efficiency of
multigrid methods for EHL problems. Venner [2]
and more recently Ehret [6] employed Gauss-
Seidel line and Jacobi distributive line relaxation
schemes with multigrid multi-integration scheme
to solve EHL problems. This scheme 1s known as
the Distributive Relaxation Scheme (DRS).

The aim of this paper is to present a New
Relaxation Scheme (NRS) to solve EHL point
contact problems using the multigrid method.
The new relaxation scheme employs Gauss-Seidel
and Jacobi line relaxation schemes and is an
alternative approach to the distributive relax-
ation scheme. In both the distributive relax-
ation scheme of Venner [2] and the new relax-
ation scheme, the choice of the relaxation scheme
is dependent on the value of the coefficient ¢ of
the Reynolds equation. The main difference be-
tween these two approaches is in how they treat
the contact region of the EHL problem. Various
test problems are used in order to compare the

results obtained using the distributive relaxation
scheme employed by Ehret [6] and the new relax-
ation scheme.

The layout of the rest of the paper is as follows.
In section (2) we introduce the form of the equa-
tions to be solved. The multigrid method to be
used is described in section (3) while section (4)
describes different relaxation schemes which in-
cludes the distributive and the new relaxation
schemes. Section (5) describes the test problems
to be used in the comparison between the two re-
laxation schemes and the paper is concluded in
section (6).

2. GOVERNING EQUATIONS

The mathematical model describing the
isothermal EHL circular contact problem with oil
entrainment in the positive X-direction consists of
three non-dimensional equations. The Reynolds
Equation relates pressure (P) to the film thickness
(H) for a lubricant characterised by a pressure de-
pendent viscosity 7 and density p
L(P) = 5% (¢5%) + 77 (57)
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with the cavitation condition P > 0 and
the boundary condition P = 0. The non-
dimensionalisation is expressed in terms of the so-
called Moes parameters L and M, [7]. Pressure



is in units of the maximum Hertzian pressure
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where « is the pressure coefficient of viscosity of
the lubricant. X and Y are in units of Hertzian
radius (b). Film thickness is in units of b?/R,
where R is the reduced radius of the contact. ¢ is
given by:
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where p = 1+ 1+Z;};;PP if P> 0, otherwise p =1

(0 = 58 x 1071 and v = 1.68 x 107°, [8]) ,
n=exp {1+ (1+ p—hP)Z]} (po = 1.98x 108

and z = 0.68, [9]) and A = 32 ¢/ 3.

The Film Thickness Equation, H(X,Y"), com-
putes the elastic distortion of the surfaces caused
by the pressure in the film and is written as:

H(X, y):HOJrXTJrYT
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where Hg 1s a constant.

The final equation 1s the Force Balance Equa-
tion which ensures that the integral over the pres-
sure balances the external applied load:

Yo rXo 27
/ / P(X,Y)dX dy = 2F. (5)
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2.1. Finite difference discretisation of gov-
erning equations
The governing equations are discretised with
the direction of flow in the X-direction and mesh
spacings h, and hy in the X and Y directions
respectively. Due to symmetry, only half the do-
main is used in the Y-direction. Reynolds Equa-
tion (1) is discretised at each non boundary mesh
point (4, j), ((i = 1)hy + Xq, (j —1)hy +7Y,) where
X, Y € [Xq, X3] x[Ya, V3], using central and back-
ward differencing to get:

)dX dy’
+ (Y =Y')?

(4)

Lij =€ 1 j(Picyj—=Pij)teys j(Pigrj—Pij)+

hhy (€ -1 (Pij-1=Pij)+€ jpi(Pijer—Piy))
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where, € 1,615,641 and ¢ ;1 (i =
2,...,meg—1;j=2,...,ny—1) denote the values
of ¢ at the intermediate locations midway between
mesh points. m, and n, are the maximum num-
ber of points in X and Y directions respectively.

The discretised film thickness equation (4) at a

point (¢, j) is given by:
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where Hy is a constant and d; ; is the elastic de-
formation of the material due to the applied load.
The elastic deformation of the surface i1s derived
by dividing the pressure distribution into rectan-
gular blocks of uniform pressure. Thus the elastic
deformation, dx vy, at a point (X,Y) due to the
uniform pressure over the rectangular area 2a2b
is given by Venner [2]

oP b e dx dy’
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where 7 = /(X — X" )2+ (Y —Y')2

If the entire domain is divided into equal
rectangular areas, then from Dowson and Ham-
rock [10], the elastic deformation, d; ;, at a point
(4, ) due to contributions of all rectangular areas
of uniform pressure is given by:

y]zwzzzl\mnpkl (9)
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where, m = |i—k|+1,n=1]j—1]+1, my and n,
are the maximum number of points in the X and
Y directions respectively. The coefficients K, ,
are independent of pressure, P.

One advantage of a regular mesh is that the
mgny, coefficients need only be calculated once
and stored. In contrast, on an irregular mesh it
is necessary to store mgn, coefficients for each
mesh point.

The force balance equation (5) determines the
value of the integration constant Hy and 1s dis-
cretised as follows:

hohy %ZPU —: : (10)
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3. MULTIGRID METHOD

The use of multigrid methods in solving EHL
problems was introduced by Lubrecht [11], who
through his extensive work has made the multi-
grid method an important technique in solving
such problems. The use of multigrids for solving
EHL line and point contact problems has been
described by Venner [2].

The concept of multigrid iteration depends on
the asymptotic nature of errors associated with it-
erative schemes and how the schemes reduce these
errors. Smooth error components associated with
low frequencies are hardly reduced with the clas-
sical iterative schemes, thus resulting in slow con-
vergence. The opposite is true for error compo-
nents with wavelength of the order of the mesh
spacing. However, low frequency error compo-
nents can be adequately represented on coarser
grid. In a multilevel solver, which makes use of
a series of coarser grids, each error component is
reduced until it becomes smooth when the same
procedure is applied on a coarser grid.

The FDMG Multigrid Software of Shaw [12]
is used as a starting point for implementing the
multigrid technique. FDMG employs the Multi-
grid Full Approximation Scheme (FAS) to solve
nonlinear systems of partial differential equations
using either V or W coarse grid correction cycles.
The Jacobi or Gauss Seidel iterative method can
be used as a smoother. The option for the type of
restriction is either injection or full weighting [7].

EHL problems are nonlinear. Thus, when using
multigrids, the standard Correction Scheme can
not be used and the Full Approximation Scheme
must be used instead. In the cavitation region,
in which negative pressures may be computed by
the solver, the Reynolds equation is not valid and
the computed negative pressures are set to zero
in the standard manner as used by Venner [2].
The cavitation region is treated with the multi-
grid method by using injection near and in the
cavitational region when transferring the residual
to the coarse grid. Full weighting is used in the
remaining part of the domain. The elastic defor-
mation and force balance equations get updated
on each grid using the updated pressure values.
The only substantial modification to FDMG has

been to take symmetry boundary conditions and
cavitation into consideration.

The solution for the isothermal point contact
problem is obtained by making use of strong cou-
pling in the direction of flow, the X-direction.
Thus the discrete equations are solved simulta-
neously on a line of points, sweeping across the
grid only in the positive Y-direction due to sym-
metry. On each line of points, the new relaxation
scheme is employed, as described in section (4.3).

4. RELAXATION SCHEMES

The coefficient € of the Reynolds equation (1)
varies several orders of magnitude over the cal-
culational domain. In both the inlet and outlet
regions € >> 1 whereas in the contact region e
is very close to zero. Hence, in the dry contact
region, i.e. (X? 4+ Y?) < 1, the integral aspect
of the problem dominates whereas in the remain-
ing part of the domain the problem behaves like
a differential problem. When ¢ is small Reynolds
equation (1) reduces to %%2 = 0 which is a rela-
tion in the X-direction only. Consequently when
discretised there is no direct coupling via pres-
sure between adjacent grid points in Y-direction.
When € is large the term aé‘;ﬁ[) in Reynolds
equation (1) is small compared to the differential
terms. Thus the Reynolds equation (1) has the
form of the 2-D Poisson type equation. The value
of € plays an important role in deciding which re-
laxation process to apply to the solution of the
discretised Reynolds equation (6) with H; ; eval-
uated using equation (7). The relaxation process
employed must be a stable error smoother over
the entire domain and must be able to cope with
the extreme values of € which are a nonlinear func-
tion of pressure. The general approach taken in
the successful distributive relaxation scheme of
Venner [2] (see also Ehret [6]) and also in the
new relaxation scheme described here is to make
the choice of relaxation scheme dependent on the
value of ¢. The precise difference between the
schemes will be described in section (4.4).

When ¢ is large, (a Poisson type problem), a
one point Gauss-Seidel relaxation provides good
error smoothing and stability. This is where given
an approximation ]Sm' and the associated approx-




imation H; ; to F;; and H; ; respectively, a new
approximation P; ; is computed using
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where r; ; is the residual at the point (7, j) and
Ei,j = L(Pgm') is given by equation (6). How-
ever, the performance of a one point Gauss-Seidel
relaxation begins to deteriorate as e decreases.
Firstly the relaxation becomes unstable - low fre-
quency error components are amplified and the
relaxation process diverges. Secondly, due to the
loss of coupling in the Y-direction, the relaxation
becomes ineffective in reducing high frequency er-
ror components in Y-direction.

The problem of stability can be overcome by
using a relaxation scheme which has properties
of both Gauss-Seidel and Jacobi relaxations. For
a standard Gauss-Seidel relaxation the new up-
dated solution get used immediately in relaxing
subsequent equations whereas for a standard Ja-
cobi relaxation the new updated solution replaces
the old one at the end of a complete sweep. The
relaxation scheme used in order to achieve stabil-
ity depends very much on the value of ¢ which
is much smaller in the contact region than the
non-contact region of the computational domain.

The problem of loss of coupling can be over-
come by making use of line relaxation instead of
point relaxation. This implies that instead of vis-
iting the grid points one by one in some order,
e.g. lexicographic order, and solving the discrete
equation at each grid point, a system of discrete
equations on a line of points are solved simulta-
neously. This must be done on a line which is in
the direction of strong coupling. For EHL point
contact problems there is strong coupling in the
X-direction. Hence, we use points on a line in the
X-direction, known as I-Line relaxation. That is
onalineY =j(j=1,...,ny), where n, is the
maximum number of points in the Y-direction.

4.1. I-Line relaxation
Suppose P is an approximation to the true so-
lution P then at a point (¢, j), L; ; = L(P. )Z i #0

and L; ; = L(P); ; = 0. Taylors theorem gives:
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where Ei,j = L(pm') is the discretised Reynolds
equation (6) at the point (X;,Y;). If we only
consider points at (¢ — 1,7), (¢,4) and (i + 1,7)
then equation (12) can be rewritten as:

Li Li;
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For a constant j, that is on a line Y = j, equa-
tion (13) results in a tridiagonal system of equa-
tions which are solved simultaneously for the cor-
rection term AP . Having obtained AP, a new
approximation P; j to P ; is computed using:

Pij=Pj—WAP;; (14)
where W 1s a damping factor. A correct choice of
W is critical to ensure convergence of the method.

4.2. Distributive relaxation scheme

The distributive relaxation scheme works on
the principle that the relaxation process remains
local. That 1s relaxing at a point X; has minimal
effect at points X; far away from X;.

The distributive relaxation scheme employed
by both Venner [2] and Ehret [6] makes use
of Jacobi Distributive Line Relaxation (JDLR),
Gauss-Seidel Line Relaxation (GSLR) and Point
Gauss-Seidel (PGS) depending on the pressure
values on the domain. JDLR is employed in re-
gions of domain where pressure is large, which
means ¢ 1s small, whereas in the remaining part
of the domain, excluding the cavitation region
where PGS 1s employed, GSLR is employed.
Gauss-Seidel line relaxation and point Gauss-
Seidel schemes employed are as described in sec-
tion (4).

When using JDLR a new approximation Fi,j
to ]Sm' i1s computed using

Fi,j = pi,j + (SPZ'J' (15)



where (SPZ'J' = APZ'J' — %(APi—l,j + APi+1,j +
AP;;_1+ AP; j41). A new approximation Fi,j
to H; ; is also computed using

i+1 j41
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It is not necessary to obtain the exact repre-
sentation of H; ; as is shown by Wang [13]. The
correction terms, AP, are obtained using line re-
laxation by solving a system of equations of the
form given by

OL; OL;
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Since JDLR is a Jacobi relaxation scheme, the
solution P gets updated after a complete sweep.
The numerical scheme employed makes use of the
full multigrid solver and of the multi-integration
techniques [2] and [5] to compute elastic defor-
mation.

4.3. New relaxation scheme

The new relaxation scheme makes use of Ja-
cobi and Gauss-Seidel line relaxation schemes de-
pending on the value of the coefficient € of the
Reynolds equation (1). Jacobi and Gauss-Seidel
line relaxation schemes are respectively employed
in the contact and non-contact regions of the com-
putational domain. This new relaxation scheme
is employed in the following manner:

Having obtained AP using I-Line relaxation on
the line Y = j and before applying I-Line relax-
ation on the line Y = 5+ 1, at every point on the
line Y = j which lies in the non-contact region,
as shown in Figure (1), a new approximation P; ;
to ]Sm' is computed using equation (14) with the
damping factor W lying in the range 0.5 to 0.8.
Besides this, all the correction terms AP in the
contact region on the line Y = j are saved in or-
der to update the solution in the contact region
after a complete sweep.

[ contact region
1 non-contact region

Figure 1 Representation of contact and non-
contact regions.

After all interior lines j have been visited, that
is after a complete sweep, a new approximation
Fi,j to ]Sm' 1s computed at every point on the
entire grid which lies only in the contact region
using equation (14) but this time the damping
factor W lies in the range 0.1 to 0.2. Thus the
saved values of the corrections AP for the por-
tions of each of the lines in the contact region,
shown as shaded region in Figure (1), are added
en-masse at the end of the iteration. This cor-
responds to a block Jacobi method. Having up-
dated all the pressure values on the entire grid,
the elastic deformation at every point on the en-
tire grid is recalculated using the new pressure
values.

4.4. Differences between DRS and NRS
The Distributive Relaxation Scheme (DRS) dif-
fers from the New Relaxation Scheme (NRS) in
many ways and it is now possible to describe the
differences between these two relaxation schemes.
The DRS makes use of Jacobi distributive
and Gauss-Seidel line relaxation schemes in the
contact and non contact regions of the compu-
tational domain respectively whereas the NRS
makes use of Jacobi and Gauss-Seidel line re-
laxation schemes in the contact and non con-
tact regions of the computational domain respec-
tively. Besides this, the DRS also makes use of
the point Gauss-Seidel scheme in the cavitation
region. In the DRS, regions of the domain where
JDLR is employed, the correction terms at the
points (¢,7), (i £ 1,7) and (¢,j £ 1) are used to



update the solution at the point (7, ) as shown
in equation (15) whereas in the remaining part
of the domain, where Gauss-Seidel line relaxation
and point Gauss-Seidel schemes are employed, the
method used to update solution is similar to the
one used in the NRS. The solution, P, at a point
(¢,7) in the NRS is updated using the correction
term AP;; as shown in equation (14). The cor-
rection terms in the NRS are obtained by solving
a tridiagonal system of equations as can be seen
from equation (13) whereas in the DRS, regions of
domain where JDLR is employed, the system of
equations are pentadiagonal as can be seen from
equation (17). However, they will be tridiagonal
in regions where the Gauss-Seidel line relaxation
scheme 1s employed. In DRS a new film thickness
equation (16) is used when dealing with the cou-
ette term of the Reynolds equation (1). This is
not the case in the NRS.

The main difference between the DRS and the
NRS is in the contact region of the computational
domain. This is where the Jacobi distributive line
relaxation scheme is employed by the DRS and
the Jacobi line relaxation scheme is employed by
the NRS. The system of equations solved in order
to obtain the correction terms and the way pres-
sures are updated at a point (¢, 7) are also differ-
ent in the two schemes. The results obtained, as
shown in section (5), show that the NRS appears
to work as well as the DRS, though the NRS is a
much simpler scheme than the DRS.

5. TEST PROBLEMS

Results obtained using Multigrid Multi-
Integration method (MIM) [2], which employs
distributive relaxation scheme, and Multigrid
method (MM), which makes use of the new re-
laxation scheme are compared. Three test prob-
lems defined by the Moes parameters M and L are
considered where for each test problem the Moes
parameter L was fixed at 10, 14 and 28 while the
Moes parameter M was varied from 10 to 200 for
the three cases. A value of o = 2.2 x 1078, hence,
the maximum Hertzian pressure varied from 0.44
GPa to 2.71 GPa, was considered in all the test
problems.

Test problems solved using MIM employed

513 x 513 mesh points on the finest grid and
17 x 17 mesh points on the coarsest grid. When
the Moes parameter L was fixed at 10 and 28,
a finest grid of 129 x 129 and a coarsest grid of
17 x 17 was used when solved using MM. How-
ever, for the case L = 14, a finest grid with
257 x 257 mesh points was employed. Both MIM
and MM make use of a full multigrid scheme and
the discretisation schemes are the same for the
two methods as described in section (2.1).

The minimum and central film thicknesses ob-
tained using the two methods have been com-
pared and the results are shown in Tables 1 and
2. The minimum and central film thicknesses
obtained using the two methods are in general
agreement especially for the case L = 14 where
the computational domains employed by the two
schemes are the same and the mesh resolution
of the solutions obtained using the MM scheme is
higher than that of the other two cases, L=10 and
L=28. However, a discrepancy of about 5% is ob-
served for the other two cases, L=10 and L=28.
This can be attributed to the different size of do-
mains employed by the two schemes and primarily
to the differences in the mesh resolution. For solu-
tions obtained using the MIM scheme, the domain
employed was dependent on the Moes parameter
M and the following domains were employed:
[M<10=> -7T< X <2and —45<Y <4.5],
[I0< M <Hh0=-H<X<2and -35<Y <
3.5] and [50 < M < 500 = —45 < X < 15
and —3 <Y < 3]. For solutions obtained us-
ing the MM scheme, the above domain was em-
ployed only for the case L = 14. However, when
the Moes parameter L was fixed at 10 and 28
the domain employed was —4.5 < X < 1.5 and
—3 <Y < 3. Figure 2 shows the pressure profile
for the case L = 14 and M = 100.

The efficiency of the solution is based on the
Root Mean Square Residual (RMSR) and the
mean absolute residual (Norm0). The solutions
obtained by Ehret using MIM, Norm0 was of the
order 1.0 x 1077 and hardly any change in Norm0
was observed after a number of iterations. For
the solutions obtained using MM, the RMSR and
Norm0 were of the order 1.0x 10~*and 1.0 x 1077
respectively. Hardly any change was also ob-
served in the RMSR and Norm0 after about 5



Figure 2 3D pressure profile for M=100 & L=14
on a 257 x 257 mesh with domain [-4.5 < X < 1.5
& -3 <Y <3].

to 6 multigrid iterations (V-cycles). An analysis
of the residuals showed that the main reason in
not achieving very small residuals was due to the
free boundary in the cavitation region and the
pressure spikes. Work is still being done in order
to reduce residuals in these regions.

Results obtained by Ehret using MIM were car-
ried out on a Sun Sparcstation 20 whereas an
SGI R8000 was used for the solutions obtained
using multigrid method which employed the new
relaxation scheme. When using MIM, 5 V-cycles
are performed in about 30 minutes whereas when
MM is employed, time taken to do 5 V-cycles was
about 60 minutes. The bulk of the difference in
this computing time is due to the use of multi-
integration method by Ehret. Adoption of this
approach in the new relaxation scheme may well
mean that the two procedures are more evenly
matched computationally.

6. CONCLUSION

A new relaxation scheme for solving EHL prob-
lems have been presented in this paper and the

numerical results obtained are compared with
those obtained by Ehret [6] who employed dis-
tributive relaxation scheme. The results obtained
show that the new relaxation scheme appears to
work as well as the distributive relaxation scheme.
This new relaxation scheme is very simple and
the results obtained are very encouraging. How-
ever, it is too early to draw any conclusions at
this stage as more work still needs to be done
in order to analyse the accuracy of the solutions.
An analysis of the residuals showed that in the
free boundary cavitation and the pressure spike
regions the residuals are relatively higher than
those in the other regions of the computational
domain. The results obtained also indicate that
both the size of the computational domain and
the mesh resolution does have an influence on the
solutions.
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