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Figure 1: Analysis pipeline for instrumenting empirical user studies with provenance data for flexible analysis of the collected
data. During study design (1), the visualizations, tasks, and any controlled variables are defined. The visualization technique is
(2) instrumented using provenance and response logging. The (3) user study produces the (4) study data, which is then analyzed
in (5) reVISit using a suite of data analysis methods. (6) The outcomes of the analysis process include quality control, detecting
participant analysis strategies, and generating new hypotheses. The process can be also be used to refine pilot studies.

ABSTRACT
Quantifying user performance with metrics such as time and accu-
racy does not show the whole picture when researchers evaluate
complex, interactive visualization tools. In such systems, perfor-
mance is often influenced by different analysis strategies that sta-
tistical analysis methods cannot account for. To remedy this lack
of nuance, we propose a novel analysis methodology for evalu-
ating complex interactive visualizations at scale. We implement
our analysis methods in reVISit, which enables analysts to explore
participant interaction performance metrics and responses in the
context of users’ analysis strategies. Replays of participant sessions
can aid in identifying usability problems during pilot studies and
make individual analysis processes salient. To demonstrate the ap-
plicability of reVISit to visualization studies, we analyze participant
data from two published crowdsourced studies. Our findings show
that reVISit can be used to reveal and describe novel interaction pat-
terns, to analyze performance differences between different analysis
strategies, and to validate or challenge design decisions.
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1 INTRODUCTION
The diversity of methods for evaluating visualization techniques
have expanded significantly over the last decade, but controlled
empirical studies remain an important tool. Crowdsourcing, in par-
ticular, has made it possible to efficiently collect large amounts
of data from empirical experiments [4]. Studies that evaluate user
performance are either geared toward understanding human per-
ceptual and cognitive limits or focused on evaluating an interactive



CHI ’21, May 08-13, 2021, Yokohama, Japan Carolina Nobre, Dylan Wootton, Zach Cutler, Lane Harrison, Hanspeter Pfister, and Alexander Lex

system or technique [25]. Although crowdsourced studies have
been widely applied to perceptual experiments and simple visual-
izations, we recently proposed methods for using crowdsourced
empirical studies for sophisticated interactive visualizations [29].
Evaluation of such complex systems, however, comes with new
challenges, including the need to train participants on using these
visualizations as well as controlling for the effect of different inter-
action affordances on participant performance.

Accuracy and time are standard metrics used to quantify user
performance in empirical studies, but metrics can also be more
diverse, including insights [15] and open-ended responses [25].
Capturing time and accuracy as performance metrics is a well-
established practice, but numerous visualization researchers and
cognitive scientists have highlighted problems with relying solely
on these two metrics [17, 18]. For example, speed and accuracy
often lack the required precision to measure cognitive effort, and
different analysis strategies can produce vastly different accuracy
and speed responses [30]. This problem is compounded when eval-
uating complex visualizations, since different levels of participant
expertise, diverging but equally valid analysis strategies, and fa-
miliarity with the technique can influence task performance. It is
therefore essential in empirical studies to capture and evaluate more
comprehensively how participants interact with complex visualiza-
tions [29] and what effect their different analysis strategies have
on task performance. Understanding different analysis strategies
and how they affect performance requires both data collection and
a human-in-the-loop approach, as user analysis strategies are hard
to objectively quantify. For example, knowledge about the goals of
the study and the properties of the interface being evaluated can
play a crucial role in interpreting participant actions.

The first contribution of this paper is a novel analysis method-
ology for evaluating complex interactive visualizations at
scale. This methodology complements existing empirical study
approaches in that it provides a set of guidelines along all phases of
study design and is applicable to both quantitative and qualitative
large-scale studies. The proposed workflow covers steps from the
initial study design to outcomes of the data analysis stage (Figure 1).
A pillar of this methodology is fully instrumenting interactive vi-
sualizations using provenance tracking [8]. We distinguish prove-
nance tracking [32] from logging since provenance data makes it
possible to fully reconstruct an application’s state, and hence re-
trace and analyze all of a participant’s actions. The provenance and
response data captured during the study is then used for data analy-
sis. Actionable outcomes of this analysis include characterizing user
analysis strategies, process and design validation of visualizations
during pilot studies, and hypothesis generation for downstream
statistical analysis. However, analyzing the results of provenance-
tracked user studies is complex because it relies on two orthogonal
data streams — interaction provenance and user responses to study
prompts — which, when combined, support a richer understanding
of the types of analysis different visualization techniques support.

To address this challenge, we developed the open-source re-
VISit system1, which enables analysts to capture and characterize
different interaction approaches and their influence on task perfor-
mance (Figure 1–5). ReVISit provides support for both exploratory

1https://vdl.sci.utah.edu/reVISit/

and query-driven analysis of empirical study data. Overview-first
summaries support open-ended exploration to highlight high-level
patterns. Analysts can also take a bottom-up approach, querying
for specific interactions, participants, or performance metrics. A
‘playback’ feature recreates a participant’s analysis path within the
study, allowing the analyst to see the sequence of actions that the
participant executed. The reVISit workflow complements statistical
analysis tools by allowing analysts to look more closely at how
participants solve tasks, and externalize their findings with tags
directly in the data. ReVISit then interfaces with statistical analysis
tools by supporting the export of the study data along with analyst
metadata such as tags and annotations.

We validate our approach and our tools in two detailed case
studies using previously published crowdsourced user stud-
ies [12, 29]. Our findings show that reVISit can be used to reveal
and describe different analysis approaches, to analyze performance
differences between various strategies, and to validate or challenge
design decisions in the interactive visualizations.

2 RELATEDWORK
Current analysis workflows for collecting and analyzing data from
empirical studies can vary depending on: (1) the types of data col-
lected, (2) the goals of the study, and (3) the data analysis approaches
used on the study output. Here, we discuss existing approaches to
each of these categories, as outlined in Figure 2.

2.1 Data Collection
The data that is collected during empirical user studies is dictated
by the intended study goal and ensuing analysis. Carpendale et
al. [6] classify empirical studies into two broad camps: those that
strive to capture ‘realism’, i.e., observational studies, and those that
prioritize ‘precision’, or controlled studies.

Observational studies capture participant insights during the
analysis process with think-aloud sessions and video recordings
of participants. These studies are well suited for capturing visual
analysis and reasoning processes [24, 26]. However, given the re-
sources required to observe participants and extract insights from
the captured qualitative data, this approach does not scale well
to large numbers of participants. Conversely, controlled studies
capture information in a controlled environment via tasks with
measurable performance metrics. These studies prioritize precision
over realism, and provide valuable empirical evidence on how the
evaluated visualizations perform under different conditions [23].
Although they can be deployed to large groups via crowdsourc-
ing, these approaches rarely capture why certain stimuli perform
differently or how participants interact with the stimuli.

The reVISit workflow builds on existing approaches to data col-
lection by integrating data types captured in observational studies
to add a ‘situated’ component to controlled studies. To this end,
we capture stateful interaction provenance (Figure 1–2), which
allows analysts to play back participant actions as performed in
the original study. This simulates a video playback of the partici-
pant’s interactions, and gives analysts insitu context that cannot
be captured by quantitative metrics alone. By applying event se-
quence mining algorithms to the captured provenance data, we
make analysis of interaction sequences scalable to large studies.
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Figure 2: Existing approaches for different aspects of collecting and analyzing user study data on interactive visualizations.
(1) Observational studies capture participant insights and reasoning. Controlled studies collect performance metrics for each
task. (2) Visual data analysis and reasoning studies aim to capture the analysis process, whereas user performance studies
analyze the study outcome. (3) Qualitative approaches derive themes and capture insights from user responses. Quantitative
methods analyze measurable user performance metrics such as accuracy and time. Provenance and event sequence visualiza-
tion methods support investigation of the analysis process. ReVISit and our workflow build on these existing approaches by
capturing multiple sources of data to support insights about how user analysis approaches influence performance metrics.

2.2 User Study Goals
Lam et al. [25] organize the space of empirical studies in visualiza-
tion according to the study goals and types of research questions. Of
direct relevance to user studies that assess interactive visualization
are those that evaluate visual data analysis and reasoning (VDAR)
and those that capture user performance (UP).

The main goal of VDAR evaluations is to assess a visualization
tool’s ability to support visual analysis and reasoning about data.
Study outputs include quantifiable metrics such as the number of
insights obtained during analysis, as well as subjective feedback
such as opinions on the quality of the data analysis experience.
User performance studies are those that measure participant per-
formance on a set of task in terms of metrics such as time and
accuracy. Outputs in these studies are generally quantitative and
are analyzed using descriptive statistics such as means, standard
deviations, confidence intervals, and p-values.

In this work, we contribute a novel methodology that supports
goals from both VDAR and UP user studies. Detailed provenance
data supports inquiries on how participants perform visual analysis
to solve each task. Additionally, qualitative participant responses
shed light on the types of insights they achieve while solving the
tasks throughout the study. Quantitative metrics captured during
the study provide information on performance. One of the key
strengths of the proposed methodology is that in capturing multiple
sources of data that support both VDAR and UP goals, analysts can
now investigate how data analysis informs user performance.

2.3 Data Analysis
To support the investigation of how data analysis patterns affect
user performance, reVISit leverages data analysis approaches in the
areas of provenance visualization, event sequence visualization, and
general qualitative and quantitative methods. Provenance data in
the context of data visualization refers to the history of interactions,
visualization states, insights, or the reasoning an analyst traverses
during analysis [14, 32]. Provenance visualization research investi-
gates how this data can inform user engagement, insight generation,
analysis replication, and general analysis strategies [35]. ReVISit
builds on existing provenance visualization research by using prove-
nance to support playback of participant analysis sessions directly

in the original study stimulus. This playback gives analysts con-
text for understanding interaction patterns that can greatly aid in
assigning semantic meaning to different approaches.

Interaction provenance is often captured as a series of events.
Event sequence exploration methods can be grouped into two main
categories: exploration through overview or through pattern search-
ing [5]. ReVISit supports both overview and query-centric methods
to analyze the event sequences in the provenance data. Visual ana-
lytics systems focused on event sequences allow analysts to interac-
tively explore and derive insights from large amounts of interaction
provenance data [3, 13, 16, 34]. For example, Blascheck et al. [3]
introduce VA2, an evaluation approach for VA applications. The
system is focused on gaining insights into how users perceive and
interpret a new visualization approach through interaction logs and
eye tracking data. To this end, they focus on identifying interaction
patterns to derive common participant strategies. ReVISit expands
on VA2 and related efforts by also supporting linked analysis of
interaction provenance with participant performances as captured
by both quantitative and qualitative metrics.

Qualitative data captured in user studies can be analyzed us-
ing several existing methods [1, 27, 33]. Many of these methods
are types of thematic analysis, where themes are extracted from
the underlying data and then used to guide the coding of user re-
sponses [19]. Coding is the process of labeling raw data, and then
using the collected codes to form a theory [7]. ReVISit supports the
thematic analysis of qualitative study results, allowing analysts to
create and store codes at several levels of granularity, from specific
segments of text data, to individual participants, to entire groups
of participants as defined by analyst-driven faceting of the data.
These codes can then be exported with the final dataset and used
in further analysis outside reVISit.

Although many empirical studies in visualization and HCI ana-
lyze quantitative results with null hypothesis significance testing
(NHST), this practice has come under increased criticism [22]. In-
stead, researchers are advocating for transparent statistics [9], which,
among other things, proposes straightforward graphical communi-
cation of the results, including a representation of the associated
uncertainties [9, 22]. In reVISit, we follow these recommendations
for rendering quantitative metrics, showing 95% bootstrapped confi-
dence intervals as well as a histogram of the underlying distribution
of data. Analysts can also export the data and any computed metrics
for more in-depth statistical treatment outside reVISit. Ultimately,
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reVISit builds on existing data analysis methods for empirical stud-
ies by leveraging the analysis of exploration and reasoning data to
inform the interpretation of user performance metrics.

3 GOALS AND TASK ANALYSIS
We designed reVISit and our workflow to address the analysis needs
of researchers conducting empirical studies to evaluate interactive
visualizations at scale. As discussed in Section 2, analysis of user
studies that investigate interactive systems focuses on either under-
standing the visual analysis process or user performance. ReVISit
expands on the types of analysis tasks that are possible by also
supporting inquiries on how visual analysis strategies influence user
performance.

T1 Discover analysis strategies. Although performance met-
rics can indicate whether participants are able to solve a task
successfully, they do not reveal how users solve the task. Un-
derstanding the interaction sequences used by participants
can either confirm or challenge visualization designers’ as-
sumptions about how a technique supports a given task.
Additionally, more than one approach often exists to per-
forming a task on interactive visualization. Understanding
the different, and sometimes unexpected, ways in which par-
ticipants solve tasks can provide valuable insight into how
interactions affordances are being used. Investigating per-
formance metrics on these different strategies can highlight
the strengths and weaknesses of each approach.

T2 Disambiguate variations in performance. Statistical anal-
ysis of performance metrics such as accuracy and time can-
not discern between the different approaches used to achieve
those metrics. However, an understanding of different anal-
ysis strategies can shed light on which approaches were
more successful, as well as possible reasons for unsuccessful
interactions.

T3 Validate or challenge visualization and interaction de-
sign decisions.Designing interactive visualizations requires
making decisions about which interactions and which visual
encodings to provide and how to introduce them to novice
users. Analysis of interaction patterns can help researchers
investigate whether the design decisions were appropriate
and led to both engagement from participants and successful
task responses.

T4 Quality control of study data. Running large studies has
the benefit of statistical robustness, but with the drawback
of making it challenging to control for the quality of the
trials. Provenance data can be useful for quality control, as
it, for example, can reveal participants who disengage with
the tasks for longer periods of time, thereby skewing the
concept of ‘time to complete’ for that task.

T5 Process validation for pilot studies. Pilot studies are a
common device to identify problems in the study process,
find bugs and usability issues in the stimuli, and validate
the assumptions made when designing a user study. Joint
analysis of interaction patterns and results at the pilot phase
can reveal whether participants understand the technique

well enough to perform the tasks in a satisfactory way, or
whether usability problems hinder them in completing a task.
Additionally, analysis of pilot data can highlight whether the
captured provenance appropriately supports the questions
the analyst wishes to investigate with the deployed study
data.

T6 Explore new hypothesis. Although user studies are often
designed to test a predefined set of hypothesis, freely explor-
ing the resulting data can lead to unexpected findings. This
is particularly true for more complex systems, where our
assumptions on how users engage with unfamiliar tools may
be inadequate.

To address these goals, we developed a workflow that outfits
user studies with detailed provenance tracking and a set of analysis
methods for mining insights from the resulting data. Next, we
describe the workflow along with considerations of how analysts
can implement it in their own empirical studies.

4 WORKFLOW
Figure 1 outlines the steps in the workflow, along with how infor-
mation flows between steps. During the (1) study design phase ,
the stimulus (visualization techniques), tasks, and any controlled
variables are defined. Although the initial study design is not in-
fluenced by the reVISit workflow when using this methodology to
run and analyze pilot studies, the study design can be iteratively
refined with the results of the analysis. The study is then (2) in-
strumented with detailed provenance and response logging, which
includes tracking interaction provenance, study provenance, and all
responses from participants. Interaction provenance captures the se-
quence of interactions a user performs with the visualization, often
defined as a series of time-stamped actions. ReVISit supports several
analysis tasks on interaction provenance data, including event se-
quence mining, filtering, and grouping sequences of interest. These
operations allow analysts to abstract lower level interactions into
higher level ‘analysis approaches’.

Study provenance refers to larger scale events that capture a par-
ticipant’s progression through the study phases. Unlike interaction
provenance, these events do not log interactions with the visualiza-
tion, but capture the start and end time of semantically meaningful
events within the context of the user study. These events include
logging when participants browse away from the study, how long
they spend on a training video, time spent on postsurvey questions,
etc. Overall, study provenance can provide valuable information
on how participants engage with the study that goes beyond their
performance and interactions in individual tasks.

Study responses contain the two main types of data collected dur-
ing the study itself: controlled responses that can then, for example,
be used to compute accuracy, and open-ended responses. Qualita-
tive responses can be particularly useful for capturing higher level
participant goals and insights during exploration. ReVISit supports
analysis of both types of result data with different affordances for
each one, as discussed in Section 5.

Once the study has been designed and instrumented, it can be
(3) deployed to participants . Given the automatic logging of user
interactions and input, these studies can scale to large numbers of
participants. The (4) data captured in the study contains computed
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performance metrics, qualitative responses, and both interaction
and study provenance. This data, together with the study parame-
ters, feed into a suite of data analysis methods, which we implement
in the (5) reVISit system. These methods support the dual analysis
of provenance and results, providing insights into tasks such as
how different analysis strategies influence study results. ReVISit
includes support for analyzing results, provenance, and capturing
analyst insights during the analysis process with qualitative tags.

The possible (6) outcomes of this workflow include perform-
ing quality control, grouping trials based on analysis strategies,
and generating new hypotheses on the strengths and weaknesses
of the visualization techniques being evaluated. Additionally, this
workflow can provide valuable insights into usability and process
validation for pilot studies. For example, study provenance can
highlight participants who take too long on training and trial sec-
tions and are struggling to understand the visualization technique.
If problems are detected, the workflow can be restarted, and adjust-
ments to any of the phases can be made, by, for example, improving
training or fixing usability problems. Detecting such problems at a
pilot stage can greatly enhance the quality of the final study.

5 VISUALIZATION AND INTERACTION
DESIGN

ReVISit supports the joint analysis of provenance and result data
in an interactive web-based tool. Here we report on the design
decisions that went into realizing this tool and how they support
the tasks outlined in section 3. ReVISit has five views: (1) The task
overview provides a summary of each task, including the stimulus
given for each condition, the top ten interaction patterns, and a
summary of qualitative and quantitative results (T1, T2, T6). (2)
The participant timeline view contains an annotated timeline for
each participant’s progression through the study (T4, T5). (3) The
task analysis view displays a table of participant provenance and
performance data that allows for flexible sorting, faceting, and
comparison of groups along any provenance or performance metric
(T2,T3,T4,T6). (4) The event manager allows the analysts to group,
hide, and create sequences of events to best suit their analysis needs
(T1, T6). Finally, (5) the playback view enables analysts to replay
interactions of selected participants directly in the original study
stimulus (T2, T5).

5.1 Task Overview
The task overview is the starting point for an analyst using re-
VISit. It provides a summary for tasks and conditions in the study.
The faceting order and rules (conditions first or tasks first) can be
customized. This view includes both study design aspects such as
stimulus and task prompt and summaries of study provenance and
study results. The view and interactions in the task overview are de-
signed to support top-down analysis tasks, such asWhich tasks had
greater variations in analysis strategies? (T1) orWhich tasks showed
the biggest difference in performance between conditions? (T6).

Figure 3 shows the task overview for a task in one of the crowd-
sourced studies we explore in Section 8. From left to right, the
summary includes study design, study provenance, and study results.
The study design information includes the task prompt, answer,
and stimulus, giving context to the study provenance and results.

Clicking on any of the study stimuli takes the analyst directly to the
live study, allowing for more detailed exploration of the interaction
affordances for that task.

Inquiries about the main analysis strategies used by partici-
pants (T1) are supported by the interaction provenance summary
(Figure 3–B), which displays the ten most common event sequences
for the task in that condition. Each interaction is represented by
a glyph that contains either an icon or a two-character abbrevia-
tion for that action. The top ten patterns are computed using the
PrefixSpan algorithm [20]. We also tested and considered several
algorithms in the SPMF data mining library [11], but found that
PrefixSpan performed best for the scale and level of iterations sup-
ported by reVISit. Whereas the output of different event sequence
mining algorithms has variations, our design for displaying these
summaries is agnostic to the choice of algorithm. The participant
count column uses unit visualizations [31] where each participant is
represented as a small glyph. If a participant performed a sequence,
they are shown in dark gray. We chose unit visualizations since they
are an intuitive encoding for showing intersection of sets. Analysts
can inspect the degree of overlap between participants with certain
analysis strategies by hovering over a row (T1), which highlights
in orange common participants between the hovered row and each
other row in the table. Clicking on a row highlights participants
who do not intersect with the clicked row in blue. Hovering over
a row updates the results section to show distribution plots and
qualitative results for only those participants (T2). Analysts can
inspect the effect of interactions sequence length as well as how
many participants used each sequence by sorting on the respective
columns in the table.

The study results section of the task overview provides a sum-
mary of both quantitative and qualitative results (T6). Quantita-
tive results are presented as histograms, with means and boot-
strapped 95% confidence intervals superimposed. We explored non-
aggregated representations such as beeswarm plots in order to
show the raw data, but those approaches did not scale well for large
studies with several quantitative metrics for each participant. Sum-
marizing qualitative data is not as straightforward since extracting
meaning from this type of data often involves input from a human
coder, which we support in the task analysis view in reVISit. For the
task overview, we show frequent words (excluding stopwords) so
that analysts can get an initial idea about the content. The 20 most
frequent words are displayed as a bar chart below the quantita-
tive results. These study result summaries allow analysts to detect
high-level patterns that can prompt a more detailed inspection for
particular tasks. Analysts can sort all tasks in reVISit based on any
metric and condition.

One of the key strengths of reVISit is the integrated analysis
of provenance and performance (T2). In the task overview, this
analysis is supported by linked highlighting between the interaction
provenance and results views. Showing these relationships supports
preliminary hypothesis generation as to possible effects of analysis
strategies on participant performance.

5.2 Event Manager
The interactions captured with provenance can vary greatly in
both level of abstraction and semantic meaning — from individual
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Figure 3: Task overview interface. (A) The condition, task description, and a screenshot of the stimulus are shown in the study
design panel. (B) The study provenance panel shows common interaction patterns and how frequently they were used. (C) The
results panel shows performance data and heuristics for qualitative data, such as word counts.

mouse clicks to high-level intents [36]. Whereas reVISit supports
analysis of provenance data at various degrees of abstraction, our
experience collecting and analyzing provenance revealed that (a)
capturing fine-grained data is essential, but (b) post hoc analysis
often requires moving up the ‘ladder of abstraction’ in order to
extract semantically meaningful findings. The concept of different
semantic levels is described by Gotz et al. [13], who characterize
analytic behavior at different levels of granularity based on the
semantic richness of the activity. In order to support analysis at
different semantic levels, the event manager in reVISit (Figure 4)
allows analysts to dynamically increase the level of abstraction of
the original data (T6). This can be done in one of two ways: (1)
event grouping and (2) sequence abstraction.

With event grouping, a new event is created as a proxy for a set of
lower level events based on ‘or’ logic. An example of such grouping
is to group ‘click’, ‘hover’, and ‘drag’ events into a ‘mouse action’
event. Alternatively, users can create sequences from lower level
events. Grouping is particularly useful to capture entire analysis
strategies in a single element. Figure 4 shows a ‘Node Select’ group
that joins different ways of selecting a node (attribute row, row
label, or simple selection) into a single ‘Node Select’ action. In
creating sequences and groups, analysts can easily compare the
performance metrics from participants with different strategies to
determine the effect of each approach. (T2).

Analogously, sequence abstractions group events but uses ‘and’
logic while also considering the order of events. Figure 4 shows an
example of a sequence event and a group being created: the ‘Quick
Answer’ sequence is composed of starting the task, selecting an
answer, and ending the task.

The event manager also supports configuring the color and label
for each event glyph. Analysts can use these encodings to visually
highlight events of interest in analysis across all views in reVISit.

5.3 Task Analysis
The task analysis view, shown in Figure 5, is used for the joint
exploration of provenance and performance data (T2). To support
this exploration, the data is shown in an interactive table, which
enables faceting, grouping, and sorting on any attribute. The initial
display of the table represents all participants who completed a
given task. The columns in the table include attributes on study
design, such as the condition, performance metrics such as accuracy

Figure 4: Event Manager view in reVISit. The interactive
panel allows analysts to edit the icon, color, and label for
each action in the dataset. Additionally, analysts can define
groups and sequences of interest.
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Figure 5: The task analysis panel allows analysts to select which attributes to visualize and then filter and group rows by
any relevant attributes. Dragging a column header to the top row groups the table by that attribute, creating aggregate rows
that can then be expanded to show individuals in that group. For free-form text fields, analysts can highlight and tag specific
sections, adding qualitative codes and tags to capture analyst insight.

and time, provenance information with sequences of glyphs for
each interaction, and a notes column to capture analyst insights
during the analysis. A menu on the far right of the table controls
which columns to show and hide. With these columns, analysts can
leverage sorting, filtering, and grouping to perform their analysis.
For example, investigating whether using a search feature in a study
improved participant performance can be done with a filter-then-
group operation (T2). The analysts can first use the filter header in
the ‘Events Used’ column to filter rows to only those that contain
a ‘search’ interaction. Dragging the event column header over to
the grouping area at the top of the table groups all rows into two
groups: those that contain the ‘search’ interaction and those that
do not. These aggregated rows display a summary distribution of
values across all columns. The analyst can now inspect and compare
the average accuracy, time, confidence, and any other collected
attributes for each of the groups in the table. Grouping can be done
on multiple attributes. New groups are added in a hierarchy. In the
current example, grouping by ‘condition’ then creates additional
nested groups inside the ‘contains search’ and ‘does not contain
search’ rows, one for each ‘condition’.

Insights achieved with the task analysis can be captured in the
‘Notes’ column via ‘tags’ or ‘codes’, added directly in the row of
interest (T3). Another useful application of tags is for qualitative
coding of free-form text responses. The task analysis view sup-
ports highlighting specific segments of text in participant answers,
and adding qualitative codes to those segments. This coding al-
lows analysts to perform thematic analysis directly in the table,
capturing dimensions of participant responses that require human
interpretation to do so. These tags can then be exported with the
accompanying data to perform additional analysis outside reVISit
(T4).

5.4 Study Playback
Analysis tasks that rely on interaction provenance can be well
served by the action glyphs used in the task overview and task anal-
ysis views. However, as a summary representation, these glyphs

cannot capture the surrounding context in which the actions were
performed. This context includes information such as the data
element interacted with and the state of the surrounding visual
components. To address the need for context, reVISit supports the
playback of a participant analysis sequence, directly in the original
study stimulus (Figure 9). This playback results in a video-like expe-
rience, similar to footage captured with observational user studies.
The analyst can choose to either auto play all the interactions se-
quentially, or navigate to specific actions with the navigation strip.
Visualizing participant actions in the study stimulus can help ana-
lysts to disambiguate similar analysis strategies (T2). For example,
in the network user study we analyzed, participants were asked to
find the shortest path between two nodes in the graph. Although
several analysis strategies involved selecting and de-selecting nodes,
playback of the interaction sequences allowed analysts to see ex-
actly which nodes were being interacted with and thereby identify
the search strategies used to find the shortest path.

The study playback can also help analysts inspect and understand
unsuccessful strategies for solving tasks. This analysis is particu-
larly important with complex techniques, where participants who
are not yet familiar with a visualization may struggle to properly
leverage its affordances to solve the task (T5). In the same network
user study, for example, study playback for incorrect responses to
the path task in the adjacency matrix revealed gaps in participants’
understanding of how neighbors are represented in the matrix.

5.5 Participant Timeline
Study provenance data captures how long participants spend on
each section of the study. This type of data is particularly important
for understanding phases of the study that can influence perfor-
mance on the tasks themselves, such as participant training. When
evaluating complex interactive techniques, particularly in a crowd-
sourced setting, training is a key element of ensuring appropriate
participant expertise [29]. Tracking how long participants spend
on training and how well they interact with trials before start-
ing the study can be fundamental in interpreting the results and
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Figure 6: The participant timeline view shows the time participants spent on each portion of the study. It also highlights events
such as when users browsed away from the study window, seen here as the blue segments overlaid on the gray bars.

can account for effects such as participants who did not properly
understand the technique (T5).

The participant timeline view displays the study provenance
data in a temporal context for each participant (Figure 6). Analysts
can assign different colors to events of interest, such as browsing
away from the study window, in order to highlight their duration.
For events that also contain participant input, such as tasks and
trials, the participant timeline shows a summary of analyst-selected
metrics in labels positioned around the timeline. This information
can give analysts an overview of how long participants took on
given tasks, as well as how well they performed on each task.

One of the main tasks this view supports is quality control of
participants (T4). Low average accuracies, as well as long times
browsed away from the study window, for example, can indicate a
low-effort participant who can be tagged for removal.

6 STUDY DESIGN GUIDELINES
The reVISit workflow and system can be used with new studies that
leverage all stages of the proposed workflow, or with data from
existing user studies. In this section, we outline considerations for
both cases.

Using reVISit with new studies allows analysts to carefully con-
sider the types and granularity of data captured during the study
(Steps 1 and 2 in Figure 1). Although instrumenting a visualization
system with detailed provenance tracking imposes a technical bur-
den, the quality of insights analysts can expect with the reVISit
workflow also increases. Furthermore, existing provenance tracking
libraries can significantly reduce that burden [8]. We recommend
capturing interactions at the highest possible semantic level, but
also recording information on the user interface element interacted
with. For example, if a user can sort in multiple ways in the visu-
alization, logging them all as ‘sort’ is logical in that they all have
the same outcome. However, also storing which UI elements were
interacted with allows for insights into whether certain features
are being leveraged as expected. Additionally, logging the data ele-
ment associated with an interaction is valuable when interpreting
task-based analysis strategies. With this information, analysts can
discern, for example, interactions with a specific target element
from another one and can reason about why an element was in-
teracted with. Finally, using provenace tracking and reVISit from
the beginning of the design phase facilitates pilots and testing of
data collection modalities so that surprises after a study can be
minimized.

When using reVISit in studies that are already completed, it is
most useful for the data analysis capabilities described in Step 5 of

Figure 1. Analysts can upload the collected provenance, log, and
response data in tabular form to the reVISit system, with a column
for every variable collected or computed by the analyst. Custom-
derived metrics, such as the number of insights achieved during
exploration, can be stored in additional columns and analyzed in
conjunction with the captured variables. ReVISit uploads these files
to an SQL database, and uses unique participant ids as foreign keys
to link the different tables. Analysts can customize the variables
along which the study data is faceted and aggregated (e.g., condi-
tions, tasks) in a configuration file. An example study dataset is
available at https://github.com/visdesignlab/reVISit.

7 IMPLEMENTATION
ReVISit is implemented as a React web application using Type-
script and D3 on the client and Python and Flask on the server.
The study data is stored in a MySQL database on the server, run-
ning in a separate Docker container on designated ports. Sequence
mining queries as well as access to the raw study data are ex-
posed through a REST API. The full stateful provenance data is
stored in a firestore database. ReVISit is open source and uses
the permissive BSD license. The reVISit tool can be accessed at
https://vdl.sci.utah.edu/reVISit/, the source code is available at https:
//github.com/visdesignlab/reVISit.

8 CASE STUDIES
We evaluate the workflow and the reVISit tool with two case studies
conducted on data from two published crowdsourced studies from
our lab with over 300 participants and 100 participants, respectively.
We asked the authors of each publication (who partially overlap
with the authors of this paper) to use reVISit with their study data
and report on their insights.

8.1 Multivariate Network Evaluation Study
Our team previously ran a crowdsourced user study to evaluate how
the two main forms of visualizing multivariate graphs — the node-
link diagram and the adjacency matrix — supported different types
of exploration tasks [29]. We collected provenance data with the
Trrack library [8], which captures both the state of the application
and the series of interactions that each participant performs in a
given task.

Each network visualization technique has its own strengths and
weaknesses. For example, node-link diagrams are well suited to
finding neighbors and paths but can become cluttered when dis-
playing multiple attributes. Conversely, finding paths in adjacency
matrices is known to be difficult. However, in dense networks or

https://github.com/visdesignlab/reVISit
https://vdl.sci.utah.edu/reVISit/
https://github.com/visdesignlab/reVISit
https://github.com/visdesignlab/reVISit
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Figure 7: Overview showing stimulus and results for a task that investigates whether encoding additional attributes that are
not essential to the task (‘distractors’) affects performance in either condition. The results indicate that participants who
used the adjacency matrix had an average score of 0.9, compared to the node-link participants who scored 0.6. The node-link
distribution reveals a bimodal trend with some participants performing well and others poorly.

large multivariate datasets, adjacency matrices lead to better per-
formance [28].

In one of the study tasks, analysts were looking to investigate
whether encoding additional attributes that were not essential to
the task (‘distractors’) would affect performance in either condition.
Participants were asked to ‘Find the European person or institu-
tion with the least likes’ in network visualizations that had several
‘distractor’ attributes encoded. The stimulus and results for each
condition are shown in the task overview (Figure 7). The study
results showed that adjacency matrix participants performed sig-
nificantly better and faster, with an average accuracy of 0.9 (on a
scale of 0–1) in the matrix vs the 0.6 in the node-link condition.
Superior performance for the adjacency matrix for this task was ex-
pected, since encoding multiple attributes directly on the nodes in
the node-link diagram can lead to visual clutter, and make solving
the task harder. This task aimed to confirm the analyst’s hypoth-
esis that the sorting affordances of the adjacency matrix made it
much more suitable to performing tasks on multiple attributes. The
distribution plot of accuracies for the node-link diagram, however,
showed a bimodal distribution (Figure 7), with some participants

doing well and others poorly. Hovering over the top interaction
patterns did not disambiguate the two user groups, so the analyst
drilled down into the data in the task analysis section to further
inspect the results.

The analyst grouped all participants by condition to separate the
adjacency matrix trials from the node-link ones. Hovering over the
histograms for accuracy and time confirmed the performance dif-
ferences between the two conditions. The analyst then grouped on
accuracy, creating one group for participants who got the answer
correct (N=67) and one for those who did not (N=64). The ‘Events
Used’ column displayed the top interaction sequences for each ag-
gregate row, revealing that for 43 of the 67 participants who scored
perfectly on this task used the drag operation one or more times.
Conversely, the drag operation does not show up at all in the top
five interactions for participants who got the task wrong. This find-
ing was somewhat surprising since the task required participants
to answer based on the attributes encoded in the node, and not
on the structure of the graph. To more precisely assess the impact
of dragging on successful interaction strategies for this task, the
analyst created groups of participants based on whether or not they
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Figure 8: Analysis of interaction strategies to solve the task that inspected whether encoding non-task-essential attributes
hindered performance in either condition. The table is grouped by participants in the node-link diagramwhodraggedmultiple
times, and shows that the average accuracy for the ‘multiDrag’ approach is 74% whereas it is 51% for non-draggers.

had dragged nodes, shown in Figure 8. Iterating over this strategy
led to the finding that participants who had dragged nodes multiple
times (three or more times) had an average accuracy 25 percentage
points higher than those who did not. This ‘multidrag’ interaction
strategy also impacted other participant metrics. Notably, users of
this interaction strategy took nearly a minute longer to complete
the task and had more confidence in their answers.

To understand why dragging enabled higher task accuracy, ana-
lysts selected participants from the ‘dragged’ group and watched
the playback of their original study. The playbacks showed that
the dragging operation was used to visually sort the nodes, shown
in Figure 9. Participants scanned each node to assess whether it
fit the criteria in the task and dragged it left or right accordingly.
This analysis revealed an unexpected way in which participants were

Figure 9: The playback view enables analysts to re-run an
individual analysis session step by step. The figure shows
a task for a participant who used the ‘multidrag’ approach
to solve a task in the node-link condition. The playback re-
veals an unexpected analysis strategy to solve a task with a
visualization that does not naturally support sorting.

using the node-link diagram to solve the task using a spatial arrange-
ment strategy [2]. Although this finding confirmed the analysts’
hypothesis that the node-link diagram does not easily support tasks
that involve sorting on multiple attributes, it also provided novel
information that can guide future implementations of interactive
graph visualizations.

Another task in the study asked participants to freely explore
the network and report on their insights. Analysts then used reVISit
to perform a qualitative coding of participant responses, catego-
rizing insights into whether they were based on the network’s
topology, attributes, or both. Grouping participants based on their
assigned network visualization revealed that the adjacency ma-
trix predominantly led to overview and ranked-attribute insights
whereas the node-link diagram resulted in many topology-only,
topology-attribute, and within-node-attribute comparison insights.

Overall, in a one-hour analysis session, our analyst found
eight interesting patterns between interaction strategies and
performance metrics of time, accuracy, confidence, and perceived
difficulty. Analysts commented that viewing participants’ analysis
strategies also served to validate the design decisions they made
when developing the study. For example, the adjacency matrix
allowed users to group neighbors by clicking on a node label. Ana-
lyzing strategies for solving neighborhood tasks in reVISit showed
that participants who used the grouping neighbors feature (N=82)
exhibited greater accuracy (90%) and a faster task completion time
(1 minute) when compared to those who did not (N=47, accuracy=
68%, time=1.25 minutes). Using this finding, the analysts could vali-
date that their design decision (enabling users to group neighbors)
had a demonstrable impact on participant performance.

A valuable outcome that became apparent from this session is
that reVISit can provide analysts with names for different analysis
strategies. Our analysts used terms like ‘the multidrag’ approach,
or the ‘sort and select’ strategy, when discussing which approaches
worked well and which did not. Naming analysis strategies serves to
give semantic meaning to similar sequences of events, which greatly
facilitates discussion of interactive features among visualization
designers. Using specific terms to discuss analysis approaches has
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Figure 10: Participants grouped by whether or not they used the auto-complete feature available in the supported condition.
Results show that using the auto-complete (middle row) led to improved accuracy and higher confidence than not using auto-
complete (bottom row).

also been done in observational studies [24], but such studies lacked
the scale necessary to make judgments on effectiveness.

8.2 Predicting Intent
Gadhave et al. [12] introduced a method to infer analyst intent for
selections and brushes in scatterplots. To evaluate their approach,
they ran a crowdsourced user study with 130 participants, where
each participant performed tasks in two conditions: (1) manual
selection of points in a scatterplot with no computer assistance, and
(2) selection with an ‘auto-complete’ feature that suggests selections
once the participant starts interacting with the visualization. They
collected detailed provenance logs as well as performance metrics
during the study. Statistical analysis of the performance metrics
revealed some surprising findings, such as longer completion times
for the ‘computer supported’ than the ‘manual’ condition, and
less difference in accuracies between the two conditions than they
had anticipated. To investigate how participants were using the

selections and auto-complete features, two authors from the
Gadhave et al. [12] study used reVISit to analyse the data from the
study.

The analysts first grouped all participants by condition, and
then created additional groups separating participants based on
whether they had used the ‘auto-complete’ feature available in
the supported condition.

Separating participants in the ‘supported’ condition showed that
those who used auto-complete took 10% longer to complete the
task than those who did not. Comparing trials that did not use
auto-complete in the supported condition with those that did not
have that option in the manual condition showed similar time and
accuracy metrics, but much higher self-reported confidence in the
manual condition. This finding led the analysts to infer that one
of the side effects of showing an auto-complete value that was
not used by participant lowered the confidence in the responses
(Figure 10).

Analysis of a separate task that asked participants to select points
in a cluster revealed specific strategies for highly successful par-
ticipants. Manual participants who used a select followed by an

de-select operation tended to have greater accuracy (90%, N=7)
when compared to those who did not use a de-select (73%, N = 54).

This ‘select and refine’ analysis strategy took nearly double the
amount of time (0.63 vs 0.37 minutes) and was seen only in tasks
with greater difficulty.

A post-analysis reflection revealed that analysts gained insights
into which strategies worked best for solving tasks. Additionally,
the analysts reported that using reVISit highlighted aspects of prove-
nance that they did not record (such as hovering over nodes) that
would have been useful in disambiguating people who explored the
auto-select option versus those who simply did not engage with the
prompt. The authors plan on running a follow-up study, and will
use these insights to plan their visualization and the granularity of
provenance to collect.

9 DISCUSSION AND CONCLUSION
When evaluating complex interactive visualizations with empirical
studies, traditional analysis methods cannot account for variations
in participant analysis strategies. We present a workflow and as-
sociated suite of methods for capturing and analyzing detailed
provenance data to shed light on how these strategies affect study
results. We believe this work is just a first step toward supporting
user studies that evaluate complex visualization techniques. Future
work can build on this approach by expanding on the types of prove-
nance to include, for example, audio data from think-aloud proto-
cols or eye-tracking data. Views that visualize mouse movement
and hovers could provide additional insights into a participant’s
attention during analysis. Additionally, expanding on the types of
event sequence mining algorithms, and enabling more complex,
regular-expression-like event grouping mechanisms, could give
analysts more flexibility in finding relevant analysis strategies.

A limitation of the current implementation of reVISit is that we
do not consider timing or duration of events in our event sequence
mining or visualization. This data could be integrated as an ad-
ditional layer in the participant timeline. For the event sequence
mining, both visualization and querying/filtering based on temporal
information would make additional ways of grouping/visualizing
participant trials possible.

The statistics-enabled workflow in reVISit relates to the broader
discussion in visualization and human-computer interaction con-
cerning statistical standards and tools that support them. ReVISit,
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through features like faceting, filtering, and visualizations of sta-
tistical measures, provides users with a range of capabilities for
analyzing user studies beyond aggregate measures — like means
and confidence intervals — that form the basis of a large portion of
task-based empirical studies in visualization. As illustrated in recent
works [10], systems that support multiple comparisons in datasets
must take care to avoid leading users toward “p-hacking”, which
involves exploring and manipulating data and making statistical
comparisons until a desired result is found. ReVISit was designed
with these considerations in mind. For example, no statistical tests
are run in reVISit. Instead, the bootstrapped 95% confidence inter-
vals aim to align workflows in reVISit with statistical standards rec-
ommended in methods-focused proposals [9]. Furthermore, given
reVISit’s explicit focus on using interactive visualization to disam-
biguate variance in participants’ performance in user studies, future
iterations may align efforts to use statistical approaches more ro-
bust to variance such as the Bayesian methods proposed by Kay et
al. [21] and others.

Another area for future work is data integration: we plan on
developing guidelines on how to store provenance data, so that
it can easily be ingested by a tool like reVISit, without the need
for pre-processing. In this way, studies could monitor pilots in
real-time, and re-play and analyze data as soon as a participant
has completed a task, and flexibly adjust the study design or data
collection modalities if problems become apparent.

The visualization community has significant knowledge about
how to design static and simple interactive visualizations to support
data exploration. However, more complex interactive visualizations
are only now being studied more closely, and efforts such as re-
VISit can provide valuable insights to inform the design of these
interactive visualizations. Analyzing how participants engage with
interactive visualizations can either validate or challenge our as-
sumptions as visualization designers. In either case, they inform our
efforts in this direction, and pave the way to creating interactive
visualizations that cater to the users it aims to support.
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