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Abstract

Objectives: Built environments can affect health, but data in many geographic areas are limited. We used a big data source 
to create national indicators of neighborhood quality and assess their associations with health.

Methods: We leveraged computer vision and Google Street View images accessed from December 15, 2017, through July 
17, 2018, to detect features of the built environment (presence of a crosswalk, non–single- family home, single- lane roads, 
and visible utility wires) for 2916 US counties. We used multivariate linear regression models to determine associations 
between features of the built environment and county- level health outcomes (prevalence of adult obesity, prevalence of di-
abetes, physical inactivity, frequent physical and mental distress, poor or fair self- rated health, and premature death [in years 
of potential life lost]).

Results: Compared with counties with the least number of crosswalks, counties with the most crosswalks were associated 
with decreases of 1.3%, 2.7%, and 1.3% of adult obesity, physical inactivity, and fair or poor self- rated health, respectively, and 
477 fewer years of potential life lost before age 75 (per 100 000 population). The presence of non–single- family homes was 
associated with lower levels of all health outcomes except for premature death. The presence of single- lane roads was asso-
ciated with an increase in physical inactivity, frequent physical distress, and fair or poor self- rated health. Visible utility wires 
were associated with increases in adult obesity, diabetes, physical and mental distress, and fair or poor self- rated health.

Conclusions: The use of computer vision and big data image sources makes possible national studies of the built environ-
ment’s effects on health, producing data and results that may inform national and local decision- making.
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The built environment refers to the settings in which people 
live, work, and play, and it is defined by human- built or 
human- designed spaces and features.1,2 Factors such as road-
way characteristics, building type and condition, access to 
public transportation, green spaces, and walkability have 
substantial effects on both physical and mental health out-
comes.3-6 The built environment may influence a person’s 
accessibility and, therefore, likelihood to engage in healthy 
behaviors such as engaging in regular physical activity,7,8 
obtaining adequate nutrition,9,10 and regularly visiting a 
health care provider,11 all of which may contribute to the 
improvement of physical and mental health.12

The built environment is especially important when 
addressing location- based health disparities. Rates of obe-
sity,13-15 all- cause mortality,16 and fair or poor self- rated 
health17 are significantly higher in rural areas than in urban 
areas in the United States. In the United States, populations 
in rural areas have an estimated all- cause mortality of 40 201 
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excess deaths per 100 000 population per year compared 
with urban areas, and the average person living in a nonmet-
ropolitan area has 30% higher odds of reporting fair or poor 
health when compared with the average person living in a 
metropolitan area.16,17 These health disparities may be 
largely explained by the structural disadvantages in rural 
communities. Because rural environments typically have 
fewer built features, such as buildings, modes of public 
transportation, and sidewalks, than urban areas, rural resi-
dents may find it more difficult to access health care or other 
services than residents in urban areas.18

In addition, physical disorder in neighborhood environments 
predicts rates of chronic diseases19 and poor self- rated health.20 
Physical disorder refers to features of the environment that sig-
nal decay, disrepair, and uncleanliness. Examples of neighbor-
hood indicators of physical disorder include vacant or abandoned 
housing, dilapidated buildings, abandoned cars, graffiti, and lit-
ter.21 Physical disorder is hypothesized to indicate a breakdown 
of social disorder and control, which reduces personal well- 
being and increases fear, mistrust, isolation, anger, anxiety, and 
demoralization because of the daily stress imposed by environ-
ments that are deemed unsafe.22

Researchers and policy makers are interested in continu-
ally monitoring and documenting these associations at the 
county level. As an administrative and demographic unit, 
county governments are responsible for many features of the 
built environment, including roads, crosswalks, and public 
spaces. County governments are also responsible for provid-
ing law enforcement, keeping vital statistics data, and con-
trolling communicable disease, all of which may directly 
affect population health or the creation of policy.23 Learning 
more about the built environment and its relationship with 
population health at the county level may be pivotal for mak-
ing informed policy decisions in the future.

Research investigating the built environment and popula-
tion health has relied on time- and resource- intensive site 
visits to conduct assessments of community features24 or 
manual annotations of street images.25-27 Given the time and 
expense of those data, only local studies have been con-
ducted. Other data include self- reported survey data,28 
administrative data,29 or satellite imaging,3 each of which 
brings its own sets of strengths and limitations. Self- reported 
data provide insights into how a neighborhood is perceived 
from a resident’s point of view but can also be inherently 
biased or subjective as a result. In addition, satellite imagery 
provides only views from overhead and, thus, may not allow 
for examination of some neighborhood features that require 
ground- level views.

Google Street View (GSV) images provide a unique per-
spective into the local built environment, with ground- level 
views not possible with other data sources. These ground- 
level views can be used to quantify the existence of resources 
(eg, crosswalks, sidewalks) or risks (eg, dilapidated build-
ings) in an area. In addition, by using GSV, investigators 
gain flexibility in assessing various features of the built envi-
ronment from one data source. GSV images are collected in 
a standardized, uniform manner and are publicly available to 
researchers. Collecting millions of images on a large portion 
of the United States, GSV has the potential to both bridge 
previous gaps in methodology and reduce time and effort 
previously spent completing expensive in- person data 
collection.

Previous research using GSV has found it to be consistent 
with field assessments26 and that it can also be used to accu-
rately identify certain features of the built environment, such 
as crosswalks, commercial buildings, highways, and grass-
lands.30,31 Li et al32 found GSV to be an appropriate tool for 
assessing street- level urban greenery. Yin and Wang33 used 
GSV images to objectively create measures of visual enclo-
sure, which were then significantly inversely associated with 
pedestrian counts (ie, number of pedestrians passing a sam-
pled street block during a 10- minute observation period) and 
walk score (ie, a proxy of neighborhood walkability). Using 
GSV images is comparatively cost- efficient because it lever-
ages an existing data source rather than asking people to 
assess features of the built environment. GSV also provides 
near- complete coverage of the US road system.34

In a previous study, we demonstrated the feasibility and 
accuracy of using computer vision to label GSV images from 
visually distinct areas.30 Subsequent analyses from our group 
showed that a greater presence of highways was related to a 
lower prevalence of chronic diseases and premature mortal-
ity on a county level. Compared with urban areas, rural areas, 
defined as areas with limited infrastructure in GSV images, 
had higher rates of chronic disease, including obesity, diabe-
tes, and premature mortality, but lower rates of excessive 
drinking. An examination of the same data at the census- tract 
level for cities across the United States found that features of 
the built environment were related to chronic conditions and 
health behaviors.19

The objective of this study was to use GSV images to 
measure the association between features of the built envi-
ronment (eg, presence of a crosswalk, building type other 
than single- family homes, single- lane roads, and visible util-
ity wires) and health behaviors and outcomes at the county 
level. Unlike census tract–level analyses,19 which had 
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outcomes available only for urban areas from the 500 Cities 
Project, we were able to include both urban and rural areas 
using national data sources for health outcomes and image 
data.

Methods

Google Street View Image Collection
In the United States, vast, sparsely populated, roadless areas 
abound, especially mountain ranges and deserts. We chose 
street intersections because they can represent hubs of activ-
ity, where people and traffic gather. Street intersections also 
provide views of commercial buildings (if present) and resi-
dential buildings. As such, our measures are interpreted as 
the percentage of features of the built environment seen at 
these intersections. We assessed roadway network files from 
the 2017 Census Topologically Integrated Geographic 
Encoding and Referencing data set and downloaded all road 
types.35 We identified street intersections using PostgreSQL 
(an open- source object- relational database system) with the 
PostGIS plugin, a spatial database extender that enables 
location queries to be run in SQL.36

We retrieved GSV images for street intersections using 
the corresponding coordinates identified from PostgreSQL. 
From December 15, 2017, through July 17, 2018, we used 
Google’s Street View Image application programming inter-
face (API) to obtain images. In total, we collected 31 247 
167 images from across the United States, excluding Alaska 
and Hawaii. GSV- derived indicators were available for 93% 
of counties. Parameters for the API included the following: 
image size (640 × 640 pixels, the maximum image resolution 
for nonpremium plan users), geographic location (geo-
graphic coordinates or addresses), field of view (zoom level), 
up or down angle of the camera relative to the Street View 
vehicle (default is 0), and heading (direction the camera is 
facing, with 0 = north, 90 = east, 180 = south, and 270 = 
west). We obtained 4 GSV images (directions: west, east, 
north, and south) for each pair of coordinates to capture 
360- degree views of the environment. GSV API provides the 
most recent image available for a location. However, areas 
differ in the rate at which their GSV images are updated. In 
our data set, image dates ranged from 2007 to 2017, and the 
median year was 2013.

Neighborhood Characteristics and Image Processing
Details on our methods can be found elsewhere.30,37 Briefly, 
we examined the following neighborhood characteristics at 
each intersection: (1) presence of a crosswalk (yes/no), (2) 
presence of a non–single- family home (yes/no), (3) presence 
of a single- lane road (yes/no), and (4) visible utility wires 
overhead (yes/no). We used crosswalks as an indicator of 
walkability.19,38-46 We used the presence of a building that 
was not a single- family home (eg, schools, stores) as an 

indicator of mixed land use, which is associated with better 
health outcomes than having few non–single- family 
homes.19,47,48 Images without any buildings received a value 
of 0 for presence of a non–single- family home. We used 
single- lane roads as an indicator of low levels of urban 
development, which is in turn associated with worse health 
outcomes than having fewer single- lane roads.47,49,50 Visible 
utility wires were an indicator of physical disorder, which is 
correlated with worse health outcomes than having fewer 
visible utility wires.19 A study in Brazil that examined utility 
wires indicated they may also present the risk of electrocu-
tion/electrical fire.51 Studies show an association between 
visible utility wires and negative health outcomes.19 
Computer vision models were unable to accurately identify 
other indicators of physical disorder, including litter (too 
small to be seen), graffiti (rare outside of some urban set-
tings), and poor building condition (large variation in 
appearance).

We manually annotated images (from Chicago, Illinois; 
Charleston, West Virginia; and nationally) for neighborhood 
characteristics from December 1, 2016, through February 
28, 2017. We chose few images for manual annotation from 
these 2 visually distinct and geographically dispersed cities 
to help ensure that the computer vision models could predict 
the presence or absence of built- environment features across 
different landscapes. Chicago and Charleston have small and 
medium population sizes and vary in population density, 
demographic characteristics, and visual features. A map of 
the geographic distribution of GSV- derived features of the 
built environment in these 2 areas appears elsewhere.30 We 
added a national subsample of images to help ensure our 
training data set could be used to create prediction models 
for the entire United States. We increased the size of the 
training data set until prediction models reached accuracies 
>85%. In total, our investigative team manually labeled 18 
700 images. Interrater agreement was >85% for all neighbor-
hood indicators. We randomly divided each labeled image 
data set into a training set (80%), which we used to calibrate 
the model, and a test set (20%), which we used to evaluate 
the trained model’s accuracy. We used a deep convolutional 
network (Visual Geometry Group model) for object recogni-
tion. We used Stochastic Gradient Descent with the Adam 
optimizer, to train the network with cross entropy loss for 
classification. We trained separate networks for each neigh-
borhood indicator and achieved high accuracies (85%-93%) 
for the separate recognition tasks.

Demographic and Socioeconomic Data
We used 2013 five- year estimates from the American 
Community Survey to control for demographic differences 
among counties.38 Demographic variables included popula-
tion density; percentage female, Hispanic, non- Hispanic 
Black, non- Hispanic Asian, and American Indian/Alaska 
Native; percentage not proficient in English; and percentage 
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aged <18 and ≥65. All these variables were standardized to 
have a mean of 0 and standard deviation of 1. We created a 
composite variable for economic disadvantage using the per-
centage of female- headed households, children living in 
poverty, some college (reverse coded), unemployment rate, 
and median household income (reverse coded). In addition, 
we controlled for violent crime rate per 100 000 popula-
tion,39,40 the ratio of population to number of primary care 
physicians,41-45 and average daily density of fine particulate 
matter in micrograms per cubic meter (PM2.5)46,48 to account 
for other neighborhood characteristics that influence health.

Health Outcome Data
We obtained data on county- level health outcomes from the 
2019 County Health Rankings for adults aged ≥18.52 We 
examined prevalence of adult obesity, prevalence of diabe-
tes, physical inactivity, frequent physical and mental dis-
tress, poor or fair self- rated health, and premature death (in 
years of potential life lost). We derived these measures from 
the 2014 Centers for Disease Control and Prevention (CDC) 
Diabetes Interactive Atlas, the 2016 Behavioral Risk Factor 
Surveillance System, and 2014-2016 mortality data from the 
CDC Wide- ranging ONline Data for Epidemiologic 
Research.53-55

Statistical Analysis
For each county, we calculated the prevalence of the built- 
environment indicator or the percentage of total number of 
images that contained a given feature of the built environ-
ment (eg, [number of images with a crosswalk/total number 
of images] × 100 = percentage with crosswalk). Tertiles were 
created based on the county- level prevalence of the built- 
environment indicator. The third tertile represents the tertile 
with the highest percentage of the built- environment indica-
tor, and the lowest tertile represents the reference group. We 
modeled health outcomes as continuous variables. We fit 
multivariate linear regression models to estimate the effects 
of features of the built environment and covariates on the 
selected outcomes. We ran separate regressions for each 
health outcome, but we included the GSV- derived indicators 
in the same model. We hypothesized that counties with more 
crosswalks (an indicator of walkability) and non–single- 
family homes (an indicator of mixed commercial/residential 
use) would be associated with better health outcomes as 
compared with counties with fewer numbers of these built- 
environment features. We further hypothesized that counties 
with more single- lane roads (an indicator of low levels of 
urban development) and more visible utility wires (an indi-
cator of high levels of physical disorder) would be associated 
with worse health outcomes compared with counties with 
fewer numbers of these features.

We used stratified models to examine whether relation-
ships between features of the built environment and health 

outcomes differed by metropolitan status as defined by rural–
urban continuum codes. We assessed multicollinearity 
between independent variables using variance inflation fac-
tors (variance inflation factor < 10) and did not find any mul-
ticollinearity in the data. We calculated Moran I of the 
residuals estimated from the linear regression models as a 
measure of spatial autocorrelation. We used Stata IC15 
(StataCorp) for all data analyses. The University of Maryland 
Institutional Review Board approved this study.

Results

Samples of processed GSV images show intersections with 
different features of the built environment (Figure). Our 
image classification model, described in the Methods sec-
tion, made predictions for presence or absence of neighbor-
hood features for all the GSV images. Our investigative team 
assigned “true” labels (ie, labels manually assigned by the 
research team) to a few of these GSV images for presence or 
absence of neighborhood features. Across all counties in the 
United States, 3.0% of images contained a crosswalk, 32.1% 
of images contained buildings that were not single- family 
homes, 52.5% of images contained a single- lane road, and 
58.0% of images had visible utility wires (Table 1).

A 1- SD increase in population aged <18 and ≥65 was 
associated with a 0.51% and 0.46% county average decrease, 
respectively, in crosswalks and a 2.29% and 4.00% county 
average increase, respectively, in buildings that were not 
single- family homes (Table 2). A 1- SD increase in popula-
tion aged <18 was associated with a 1.44% and 2.17% county 
average increase in single- lane roads and visible wires, 
respectively. A 1- SD increase in non- Hispanic Black and 
non- Hispanic Asian population was associated with a 0.57% 
and 1.49% county average increase, respectively, in cross-
walks. A 1- SD increase in Hispanic, non- Hispanic Black, 
and American Indian/Alaska Native population was associ-
ated with a 14.29%, 1.45%, and 4.89% county average 
increase, respectively, in non–single- family homes. A 1- SD 
increase in Hispanic population was associated with a 3.89% 
county average increase in visible wires, and a 1- SD increase 
in American Indian/Alaska Native population was associated 
with a 1.50% county average decrease in visible utility wires. 
A 1- SD increase in economic disadvantage was associated 
with a 0.62%, 5.46%, and 1.76% county average decrease, 
respectively, in crosswalks, buildings that were not single- 
family homes, and visible utility wires.

GSV- derived features of the built environment were asso-
ciated with county- level health outcomes. Compared with 
counties in the lowest tertile, counties in the third (highest) 
tertile for the presence of crosswalks had a lower prevalence 
of all examined negative health outcomes, including a lower 
prevalence of adult obesity, physical inactivity, and fair or 
poor self- rated health, as well as 477 fewer years of potential 
life lost per 100 000 population before age 75 (Table 3). An 
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Figure. Samples of processed Google Street View images. Predictions were algorithm- derived labels for neighborhood features. (A) A 
commercial scene with multiple lanes of traffic, no crosswalk, and visible utility wires overhead (1 non–single- family home, 1 visible utility 
wire, no crosswalk, no single- lane roads); (B) a residential neighborhood with all single- family homes, a crosswalk, and visible utility wires 
overhead (0 non–single- family homes, 1 visible utility wire, 1 crosswalk, 1 single- lane road).
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Table 1. Descriptive statistics for county- level prevalence of built- environment features derived from Google Street View images of street 
intersections across the United States and health outcomes at the county level, 2013-2018

Characteristic No. of images No. of counties
Mean (standard 

deviation)

Built- environment indicatorsa

  Presence of a crosswalk 31 247 167 2916 3.0 (4.6)

  Presence of buildings that were not single- family homes (eg, 
school, store)

31 247 167 2916 32.1 (19.3)

  Presence of a single- lane road 31 247 167 2916 52.5 (15.9)

  Presence of visible utility wires overhead 31 247 167 2916 58.0 (15.3)

County health outcomesb

  Prevalence of obesity — 3135 31.5 (4.5)

  Prevalence of diabetes — 3135 11.4 (2.5)

  Prevalence of leisure- time physical inactivity — 3135 26.3 (5.2)

  Prevalence of frequent physical distress — 3135 12.0 (2.3)

  Prevalence of frequent mental distress — 3135 12.2 (1.9)

  Prevalence of fair or poor self- reported health — 3135 17.5 (4.7)

  Years of potential life lost for all residents in a county — 3071 401.1 (109.2)

aGoogle Street View images were accessed from December 15, 2017, through July 17, 2018, to detect features of the built environment. Each image was 
examined for presence of a crosswalk, non–single- family home, single- lane roads, and visible utility wires. The percentage of total number of images that 
contained a specific built- environment indicator was calculated for each county. The values in the table represent mean percentages across 2916 counties.
bData sources for health outcomes: mortality data from 2014-2016 Centers for Disease Control and Prevention (CDC) Wide- ranging ONline Data for 
Epidemiologic Research; 2014 CDC Diabetes Interactive Atlas for prevalence of obesity and leisure- time physical activity among adults aged ≥18; 2016 
Behavioral Risk Factor Surveillance System for percentage of adults reporting poor mental health and physical health days.53-55

Table 2. Associations between county social and demographic characteristics and prevalence of built- environment indicators (derived 
from Google Street View image data for street intersections), at the county level (N = 2594 counties), United States, 2013-2017a,b

County characteristics

Prevalence of built- environment indicator (95% CI) [P valuec]

Presence of a crosswalk

Presence of buildings that 
were not single- family 

homes (eg, school, store)
Presence of a single- lane 

road
Presence of visible utility 

wires overhead

Percentage aged <18 −0.51 (−0.70 to −0.31) [<.001] 2.29 (1.41 to 3.16) [<.001] 1.44 (0.57 to 2.31) [.001] 2.17 (1.36 to 2.98) [<.001]

Percentage aged ≥65 −0.46 (−0.65 to −0.28) [<.001] 4.00 (3.16 to 4.84) [<.001] 0.06 (−0.77 to 0.89) [.89] 0.14 (−0.63 to 0.92) [.72]

Percentage Hispanic −0.08 (−0.45 to 0.30) [.68] 14.29 (12.61 to 15.97) [<.001] −0.82 (−2.50 to 0.85) [.33] 3.89 (2.33 to 5.45) [<.001]

Percentage non- Hispanic 
Black

0.57 (0.37 to 0.77) [<.001] 1.45 (0.56 to 2.35) [.001] −0.22 (−1.11 to 0.67) [.63] 0.09 (−0.74 to 0.91) [.84]

Percentage non- Hispanic 
Asian

1.49 (1.30 to 1.67) [<.001] 0.71 (−0.12 to 1.54) [.10] −1.41 (−2.24 to −0.58) [<.001] 0.59 (−0.18 to 1.36) [.13]

Percentage American 
Indian/Alaska Native

−0.02 (−0.20 to 0.16) [.82] 4.89 (4.09 to 5.70) [<.001] −1.75 (−2.55 to −0.94) [<.001] −1.50 (−2.25 to −0.75) [<.001]

Economic disadvantaged −0.62 (−0.78 to −0.45) [<.001] −5.46 (−6.19 to −4.74) [<.001] 0.22 (−0.50 to 0.94) [.55] −1.76 (−2.43 to −1.08) [<.001]

Percentage not proficient  
in English

0.61 (0.33 to 0.89) [<.001] −1.47 (−2.73 to −0.21) [.02] −1.39 (−2.64 to −0.13) [.03] −0.44 (−1.61 to 0.73) [.46]

Violent crime rate 0.38 (0.22 to 0.54) [<.001] 0.95 (0.23 to 1.67) [.01] 0.89 (0.18 to 1.61) [.01] 1.24 (0.57 to 1.90) [<.001]

Ratio of population to 
number of primary  
care physicians

0.42 (0.20 to 0.65) [<.001] −0.88 (−1.88 to 0.11) [.08] −0.08 (−1.06 to 0.91) [.88] 0.20 (−0.72 to 1.12) [.67]

aAdjusted linear regression models were run for each outcome separately. Models controlled for county- level demographic characteristics: population density, percentage female, 
percentage aged <18, percentage aged ≥65, percentage Hispanic, percentage non- Hispanic Black, percentage non- Hispanic Asian, percentage American Indian/Alaska Native, 
economic disadvantage, percentage not proficient in English, violent crime rate, primary care physicians, and average daily PM2.5.
bThe county- level prevalence of built- environment indicators was obtained by calculating the percentage of images that contained a specific built- environment indicator for all the 
counties.
cUsing the 2- tailed t test, with P < .05 considered significant.
dEconomic disadvantage factor score derived from the following county characteristics: percentage female- headed households, percentage children living in poverty, unemployment 
rate, percentage attended some college (reverse coded), and median household income (reverse coded).
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Table 3. Associations between county health outcomes and county- level prevalence of built- environment features derived from Google 
Street View images (N = 2594 counties), United States, 2014-2016a,b

County 
characteristics

County health outcomes, prevalence difference (95% CI) [P valuec]

Prevalence of 
obesity (%)

Prevalence of 
diabetes (%)

Prevalence of 
physical inactivity 

(%)

Prevalence of 
frequent physical 

distress (%)

Prevalence of 
frequent mental 

distress (%)

Prevalence of fair 
or poor self- rated 

health (%)

Premature death 
(years of potential 

life lost) (%)

Presence of a crosswalk

  Third tertile 
(highest)

−1.31 (−1.68 to −0.94) 
[<.001]

−0.85 (−1.02 to 
−0.67) [<.001]

−2.68 (−3.09 to 
−2.27) [<.001]

−0.48 (−0.60 to 
−0.35) [<.001]

−0.36 (−0.47 to 
−0.26) [<.001]

−1.25 (−1.47 to 
−1.03) [<.001]

−476.90 (−637.53 to 
−316.27) [<.001]

  Second tertile −0.24 (−0.57 to 0.09) 
[.15]

−0.12 (−0.27 to 
0.04) [.14]

−0.28 (−0.64 to 
0.09) [.14]

−0.24 (−0.35 to 
−0.13) [<.001]

−0.19 (−0.28 to 
−0.09) [<.001]

−0.36 (−0.56 to 
−0.16) [<.001]

112.53 (−31.32 to 
256.38) [.13]

Presence of buildings that were not single- family homes (eg, school, store)

  Third tertile 
(highest)

−1.13 (−1.55 to −0.71) 
[<.001]

−1.25 (−1.44 to 
−1.05) [<.001]

−0.97 (−1.43 to 
−0.50) [<.001]

0.45 (−0.59 to 
−0.31) [<.001]

−0.50 (−0.62 to 
−0.39) [<.001]

−0.73 (−0.98 to 
−0.48) [<.001]

66.44 (−115.84 to 
248.72) [.48]

  Second tertile 0.05 (−0.28 to 0.39) 
[.76]

−0.40 (−0.56 to 
−0.24) [<.001]

−0.14 (−0.52 to 
0.24) [.47]

−0.11 (−0.22 to 
0.00) [.05]

−0.15 (−0.24 to 
−0.05) [.003]

−0.11 (−0.31 to 
0.09) [.29]

−5.87 (−152.74 to 
141.00) [.94]

Presence of a single- lane road

  Third tertile 
(highest)

0.20 (−0.14 to 0.55) 
[.25]

−0.03 (−0.20 to 
0.13) [.68]

0.90 (0.51 to 1.28) 
[<.001]

0.20 (0.09 to 0.32) 
[<.001]

0.07 (−0.03 to 0.17) 
[.18]

0.41 (0.20 to 0.61) 
[<.001]

375.08 (224.11 to 
526.05) [<.001]

  Second tertile 0.01 (−0.32 to 0.34) 
[.95]

−0.02 (−0.18 to 
0.13) [.77]

0.41 (0.04 to 0.77) 
[.03]

0.10 (0.00 to 0.21) 
[.06]

0.02 (−0.08 to 0.11) 
[.74]

0.18 (−0.01 to 0.38) 
[.07]

168.76 (25.88 to 
311.64) [.02]

Presence of visible utility wires overhead

  Third tertile 
(highest)

1.64 (1.29 to 1.99) 
[<.001]

0.47 (0.31 to 0.64) 
[<.001]

1.93 (1.54 to 2.32) 
[<.001]

0.22 (0.10 to 0.34) 
[<.001]

0.23 (0.13 to 0.33) 
[<.001]

0.42 (0.21 to 0.63) 
[<.001]

138.54 (−14.11 to 
291.20) [.08]

  Second tertile 0.84 (0.51 to 1.17) 
[<.001]

0.18 (0.02 to 0.34) 
[.02]

1.07 (0.70 to 1.44) 
[<.001]

0.18 (0.07 to 0.29) 
[.001]

0.10 (0.01 to 0.20) 
[.03]

0.24 (0.04 to 0.44) 
[.02]

−48.05 (−192.53 to 
96.44) [.51]

Covariates

  Percentage aged <18 1.37 (1.15 to 1.58) 
[<.001]

0.44 (0.34 to 0.54) 
[<.001]

1.52 (1.28 to 1.76) 
[<.001]

−0.17 (−0.24 to 
−0.10) [<.001]

−0.25 (−0.31 to 
−0.18) [<.001]

0.00 (−0.13 to 0.13) 
[.97]

364.92 (271.32 to 
458.52) [<.001]

  Percentage aged ≥65 −0.24 (−0.44 to −.03) 
[0.025]

0.53 (0.44 to 0.63) 
[<.001]

0.71 (0.48 to 0.94) 
[<.001]

−0.42 (−0.49 to 
−0.35) [<.001]

−0.39 (−0.45 to 
−0.34) [<.001]

−0.87 (−0.99 to 
−0.74) [<.001]

161.48 (70.93 to 
252.03) [<.001]

  Percentage Hispanic −2.78 (−3.18 to −2.39) 
[<.001]

−0.74 (−0.93 to 
−0.55) [<.001]

−1.96 (−2.40 to 
−1.52) [<.001]

0.26 (0.13 to 0.39) 
[<.001]

−0.22 (−0.33 to 
−0.10) [<.001]

1.42 (1.18 to 1.66) 
[<.001]

196.85 (23.42 to 
370.29) [.03]

  Percentage non- 
Hispanic Black

0.27 (0.07 to 0.47) 
[.01]

0.08 (−0.01 to 0.18) 
[.09]

0.23 (0.01 to 0.45) 
[.04]

−0.19 (−0.25 to 
−0.12) [<.001]

−0.16 (−0.21 to 
−0.10) [<.001]

−0.14 (−0.26 to 
−0.02) [.02]

−4.65 (−90.62 to 
81.32) [.92]

  Percentage non- 
Hispanic Asian

−0.76 (−0.98 to −0.55) 
[<.001]

−0.01 (−0.11 to 
0.09) [.82]

−0.51 (−0.75 to 
−0.27) [<.001]

−0.14 (−0.21 to 
−0.07) [<.001]

−0.17 (−0.23 to 
−0.11) [<.001]

−0.11 (−0.24 to 
0.02) [.10]

−64.38 (−157.77 to 
29.01) [.18]

  Percentage 
American Indian/
Alaska Native

−0.13 (−0.31 to 0.06) 
[.17]

0.02 (−0.07 to 0.11) 
[.67]

−0.53 (−0.73 to 
−0.32) [<.001]

0.39 (0.33 to 0.45) 
[<.001]

0.44 (0.38 to 0.49) 
[<.001]

0.22 (0.11 to 0.33) 
[<.001]

558.88 (478.45 to 
639.30) [<.001]

  Economic 
disadvantaged

1.57 (1.39 to 1.74) 
[<.001]

1.29 (1.21 to 1.37) 
[<.001]

2.20 (2.01 to 2.39) 
[<.001]

1.82 (1.76 to 1.88) 
[<.001]

1.40 (1.36 to 1.45) 
[<.001]

3.65 (3.55 to 3.76) 
[<.001]

1472.13 (1397.47 to 
1546.78) [<.001]

  Percentage not 
proficient in 
English

0.32 (0.04 to 0.59) 
[.03]

−0.09 (−0.22 to 
0.04) [.18]

0.03 (−0.28 to 0.34) 
[.86]

−0.01 (−0.11 to 
0.08) [.76]

0.04 (−0.04 to 0.11) 
[.37]

0.05 (−0.11 to 0.22) 
[.53]

−720.51 (−842.44 to 
−598.58) [<.001]

  Violent crime rate 0.14 (−0.02 to 0.30) 
[.10]

0.15 (0.08 to 0.23) 
[<.001]

0.07 (−0.11 to 0.25) 
[.42]

0.03 (−0.03 to 0.08) 
[.32]

0.04 (−0.01 to 0.08) 
[.09]

0.07 (−0.03 to 0.17) 
[.16]

251.50 (181.64 to 
321.35) [<.001]

  Ratio of population 
to number of 
primary care 
physicians

−0.57 (−0.79 to −0.35) 
[<.001]

−0.10 (−0.21 to 
0.00) [.05]

−0.44 (−0.69 to 
−0.20) [<.001]

0.06 (−0.01 to 0.13) 
[.09]

0.08 (0.01 to 0.14) 
[.02]

−0.15 (−0.29 to 
−0.02) [.02]

−32.34 (−126.53 to 
61.84) [.50]

  Population density −0.16 (−0.30 to −0.03) 
[.02]

−0.02 (−0.09 to 
0.04) [.47]

0.18 (0.03 to 0.33) 
[.02]

−0.03 (−0.07 to 
0.02) [.27]

−0.03 (−0.06 to 
0.01) [.19]

−0.04 (−0.12 to 
0.04) [.36]

−9.04 (−67.67 to 
49.59) [.76]

  Average daily PM2.5 −0.04 (−0.19 to 0.11) 
[.61]

0.23 (0.16 to 0.30) 
[<.001]

0.27 (0.10 to 0.44) 
[.002]

0.18 (0.13 to 0.23) 
[<.001]

0.10 (0.05 to 0.14) 
[<.001]

0.28 (0.18 to 0.37) 
[<.001]

154.01 (87.09 to 
220.94) [<.001]

  Percentage female −0.22 (−0.39 to −0.06) 
[.01]

0.13 (0.05 to 0.21) 
[.001]

−0.23 (−0.41 to 
−0.04) [.02]

0.13 (0.07 to 0.18) 
[<.001]

0.28 (0.23 to 0.33) 
[<.001]

0.13 (0.03 to 0.23) 
[.01]

58.78 (−13.51 to 
131.07) [.11]

Adjusted R2 0.45 0.59 0.48 0.76 0.74 0.81 0.63

aAdjusted linear regression models were run for each outcome separately. Models controlled for county- level demographic characteristics: population density, percentage female, percentage aged 
≤18, percentage aged ≥65, percentage Hispanic, percentage non- Hispanic Black, percentage non- Hispanic Asian, percentage American Indian/Alaska Native, economic disadvantage, percentage not 
proficient in English, violent crime rate, primary care physicians, and average daily PM2.5.
bPrevalence or percentage of total number of images that contained a specific built- environment indicator were calculated for each county. Tertiles were created based on the county- level prevalence 
of built- environment indicator. The third tertile represents the tertile with the highest percentage of the built- environment indicator and the lowest tertile represents the reference group.
cUsing the 2- tailed t test, with P < .05 considered significant.
dEconomic disadvantage factor score derived from the following county characteristics: percentage female- headed households, percentage children living in poverty, unemployment rate, percentage 
attended some college (reverse coded), and median household income (reverse coded).
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increase in the number of non−single- family homes was 
associated with a decrease in the prevalence of all negative 
health outcomes except premature death. Counties in the 
third (highest) tertile for single- lane roads had a 0.90% 
increase in physical inactivity, a 0.20% increase in frequent 
physical distress, and a 0.41% increase in fair or poor self- 
rated health compared with counties in the lowest tertile. 
Counties in the second and third tertiles for single- lane roads 
had 169 and 375 more years of potential life lost per 100 000 
population, respectively, compared with the lowest tertile. 
Visible utility wires were associated with a higher preva-
lence of obesity, diabetes, physical inactivity, physical and 
mental distress, and fair or poor self- rated health in both the 
second and third tertiles compared with the lowest tertile.

We also examined patterns stratified by metropolitan sta-
tus. Metropolitan counties had a higher prevalence of cross-
walks and visible utility wires and a lower prevalence of 
negative health outcomes, such as obesity and premature 
death, than nonmetropolitan counties (data available from 
authors upon request). Associations between GSV- derived 
variables and health outcomes were qualitatively similar in 
metropolitan and nonmetropolitan counties (data available 
from authors upon request), with the exception of associa-
tions involving visible utility wires and non–single- family 
homes for obesity prevalence and physical inactivity; those 
associations were stronger in metropolitan counties than in 
nonmetropolitan counties. The Moran Is were small but sig-
nificant, indicating some residual spatial autocorrelation 
(data available from authors upon request).

Discussion

Consistent with the body of literature on neighborhood effects56 
and our previous analyses using similar methods,19,30,31 features 
of the built environment we examined were significantly asso-
ciated with health behaviors and outcomes. This analysis con-
tributes to the literature by including both urban and rural areas, 
as nearly all counties in the United States are represented. 
Significant associations between population demographic char-
acteristics and features of the built environment suggest group 
differences in access or preferences for varying neighborhood 
conditions. Increasing access to high- quality neighborhoods is a 
potential lever for addressing health disparities and improving 
population health.

The presence of crosswalks was associated with a lower 
prevalence of all negative health outcomes. Crosswalks may 
encourage residents to walk to commercial or leisure destina-
tions or to access public transit, leading to higher levels of phys-
ical activity and, thus, decreasing prevalence of obesity and 
associated comorbidities. Crosswalks also increase perceived 
safety,20 which could explain the association with decreased 
mental distress. Similarly, a higher frequency of buildings that 
were not single- family homes (indicating mixed land use) was 
associated with decreases in all negative outcomes except 

premature death. This association may be driven by the health- 
related advantages of urban development, which provides 
improved proximity to amenities. Studies have found a positive 
association between single- lane roads, an indicator of less urban 
development, and adverse health outcomes.47,50

Previous research has connected physical disorder with an 
array of detrimental health outcomes, including poor mental 
health, higher substance use, poor physical functioning, and 
chronic conditions.20 In our study, the presence of visible utility 
wires, an indicator of physical disorder, was associated with an 
increased prevalence of all negative health outcomes except for 
years of potential life lost. Visible utility wires hanging over-
head are visually striking and may affect residents’ aesthetic 
sense of their environment, alter perceptions of safety or plea-
sure, and influence both mental health (by affecting stress lev-
els) and physical health (by disincentivizing walking).

Strengths and Limitations
This study had several strengths. First, the use of GSV images 
as a source of data on the built environment brings a novel 
approach to neighborhood effects research. Second, the avail-
ability of a large volume of images of the built environment, in 
conjunction with machine learning techniques to identify fea-
tures of interest with high accuracy, is a more efficient and con-
venient way to analyze relationships between health behaviors 
and outcomes than in- person audits of the neighborhood envi-
ronment. In the past, data on physical features of the environ-
ment have been cumbersome to obtain on a large scale. Use of 
GSV data for virtual audit is particularly meaningful in rural 
areas, where populations are spread out over large geographic 
areas and public health agencies have few resources.

This study also had several limitations. First, because all 
GSV- derived indicators, County Health Rankings outcomes, 
and covariates were aggregated at the county level, the analysis 
was ecological; therefore, the findings should not be extrapo-
lated to individual outcomes. Second, because all data in the 
models were aggregated at the county level, some residual con-
founding may be present. Associations found at the county level 
do not necessarily apply to other levels. Third, we used adjusted 
linear regression models, but this model assumed statistical 
independence of observations and spatial stationarity of the 
relationship between health outcomes and predictor variables. 
Future research will account for spatial autocorrelation with 
spatial regression models.

Fourth, each GSV image depicts a unique location only 
once, so we could not account for changes in the built envi-
ronment over time. We sampled images from street intersec-
tions, which do not capture all important environmental 
features. A denser sampling of points from street segments 
would have enabled the inclusion of even more counties in 
the analyses (>93%). Further research is needed to validate 
GSV measures with other neighborhood data; for example, 
investigating whether GSV- derived features such as cross-
walks and sidewalks add to current measures of walkability 
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in predicting health behaviors and health outcomes. Certain 
features of the built environment are difficult to capture with 
computer vision, particularly features that are small in scale 
(litter or leaves), vary widely in appearance (dilapidated 
buildings), or require subjective assessments (perceived 
safety). We used one type of technique for image classifica-
tion, but other methods are available and our group published 
a study comparing several approaches.37 Finally, the data 
sources had different time frames, so the temporal alignment 
is not exact. For example, the 31 million GSV images were 
taken from cars during a period of several years; data on 
county health rankings are determined using CDC data rang-
ing from 2014 to 2016; and American Community Survey 
data on covariates were taken from 5- year estimates to 
ensure that as many counties as possible had data available.

Conclusions

The built environment is associated with various health 
behaviors and outcomes. GSV images provide a large, pub-
licly available source of data on the physical environment 
that can be assessed and categorized using machine learning 
techniques. This data source affords researchers the opportu-
nity to assess associations between the prevalence of features 
of interest and population health outcomes. Our analysis 
contributes to the literature by measuring these associations 
on the county level consistently across geographies and 
includes both rural and urban areas. Additional research can 
use this data source to further explore how the built environ-
ment affects the health of communities across the United 
States.
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