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Abstract. Longitudinal imaging studies involve tracking changes in individuals
by repeated image acquisition over time. The goal of these studies is to quantify
biological shape variability within and across individuals, and also to distinguish
between normal and disease populations. However, data variability is influenced
by outside sources such as image acquisition, image calibration, human expert
judgment, and limited robustness of segmentation and registration algorithms. In
this paper, we propose a two-stage method for the statistical analysis of longitu-
dinal shape. In the first stage, we estimate diffeomorphic shape trajectories for
each individual that minimize inconsistencies in segmented shapes across time.
This is followed by a longitudinal mixed-effects statistical model in the second
stage for testing differences in shape trajectories between groups. We apply our
method to a longitudinal database from PREDICT-HD and demonstrate our ap-
proach reduces unwanted variability for both shape and derived measures, such
as volume. This leads to greater statistical power to distinguish differences in
shape trajectory between healthy subjects and subjects with a genetic biomarker
for Huntington’s disease (HD).

1 Introduction

Statistical shape modeling and analysis is of critical importance for better understanding
of longitudinal imaging and shape data, especially in the context of dynamic processes
like aging and disease progression. To model evolution of shape, many regression ap-
proaches for cross-sectional data have been proposed [1–4]. However, regression has
limitations when applied to longitudinal analysis, since each individual could start at
a different point and evolve in a different manner. Longitudinal studies therefore en-
tail development of subject-specific spatiotemporal models, and also a way to compare
these models across different subjects [5–8].
? This research was supported by NIH Grants U01 NS082086, NS40068, NS050568 (PREDICT-

HD), U54 EB005149 (NA-MIC), S10 RR023392 (NCCR Shared Instrumentation Grant),
and NSF CAREER Grant 1054057. Also supported by NIH (NINDS; 5RO1NS040068,
5RO1NS054893) and the CHDI Foundation to Jane S. Paulsen. We thank the PREDICT-HD
sites, the study participants, the National Research Roster for HD Patients and Families, the
Huntington Disease Society of America and the Huntington Study Group.



2

Longitudinal image data has several sources of variability. First, there is inherent
biological variability, both within a subject changing over time and also between sub-
jects in a population. The goal of longitudinal analysis is to quantify this variability and
make inferences about changes over time in a population. However, longitudinal imag-
ing data also include unwanted sources of variability, such as noise in image acquisition,
segmentation and registration errors, and human expert judgment, among others. These
extraneous errors tend to dampen statistical power, especially when trying to distinguish
between trajectories of two different populations, e.g., healthy and diseased.

In this paper, we propose a framework that first seeks to reduce this extraneous vari-
ability, thus improving consistency of longitudinal segmentations in the first stage. We
follow the procedure of [9] by estimating diffeomorphic geodesic trajectories of shape
evolution for each individual. The estimated trajectories are smooth, resulting in tem-
porally consistent and more biologically plausible shape evolution. We then employ a
mixed effects model for shapes [10, 7] to conduct longitudinal statistical shape anal-
ysis on the consistent shape trajectories. We demonstrate the benefit of our two stage
approach by a comparison of longitudinal mixed-effects analysis on cortical volumes
obtained from raw observed data against consistent measurements obtained from per-
sonalized spatiotemporal shape models. We also show our method reduces unwanted
variability for both shape and derived measures, such as volume. This leads to greater
statistical power to distinguish shape evolution between healthy subjects and subjects
with a genetic biomarker for Huntington’s disease (HD).

2 Methodology

We present here methodology for the statistical analysis of longitudinal shape com-
plexes. This is based on spatiotemporal modeling of diffeomorphic shape trajectories
(Section 2.1) to produce temporally consistent shape sequences. Estimated model tra-
jectories represent more biologically plausible and smooth shape changes associated
with anatomical evolution in time. Statistical measures and group hypothesis testing is
then conducted on both scalar measurements extracted from shape as well as the shape
complexes themselves. For measuring individual and group shape differences, we es-
timate a multivariate mixed-effects model (Section 2.2) for shapes, designed to take
advantage of longitudinal shape data.

2.1 Spatiotemporal modeling for consistency in longitudinal segmentation

Anatomical change over time associated with neurodevelopment or aging is assumed
to be a smooth process. That is, the trajectory of a particle on an anatomical surface
should be differentiable, with no instantaneous change of direction. The presence of
a disorder such as Huntington’s disease (HD) would not invalidate the smoothness as-
sumption. Rather, the neurodegeneration process associated with HD has been observed
as a temporally smooth process [11]. However, our anatomical measurements (medical
images and extracted anatomical shapes) are often not representative of samples from
a smooth process, due to the natural variability attributed to image acquisition, sub-
ject positioning, segmentation, etc. Without temporal consistency in our measurements,
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Fig. 1. Left: For one subject, volume of observed caudates (open circles) and temporally consis-
tent continuous volume extracted from diffeomorphic shape model (solid line). The difference in
caudate volume extracted from scans obtained on the same day highlights the need for consistent
segmentation. Right: Observed volume and volume extracted from diffeomorphic shape mod-
els for all 65 subjects. While the volume of the discrete shape observations show considerable
variation, volume extracted from personalized models are continuous and temporally consistent.

it becomes difficult to distinguish between anatomical change associated with disease
from changes due to noise.

One emerging model of smooth anatomical change is to consider continuous trans-
formations of the ambient space by differentiable and invertible deformations. We model
anatomical trajectories by a geodesic flow of diffeomorphisms that continuously de-
forms a given anatomical configuration X0 over time to closely match a set of observed
anatomical shapes Oti [9]. The initial anatomical configuration (baseline shape), as
well the flow of diffeomorphisms φt, are estimated by minimizing the criterion

E(X0, φt) =
∑
i

D(φti(X0)−Oti) + Reg(φt),

where D represents a distance metric on shapes and Reg(φt) is a measure of the regu-
larity of the geodesic flow of diffeomorphisms φt. For choice of D, we favor the met-
ric on currents, which is robust to topological differences and allows for comparison
between shapes without the need for point correspondence. Also, being in an infinite-
dimensional space of diffeomorphisms, geodesic trajectories have the flexibility to cap-
ture complex deformations.

The continuous geodesic flow of diffemorphisms φt is applied to the estimated
anatomical configuration to produce a continuous and temporally consistent sequence
of shapes. The improved temporal consistency is illustrated on the left side of Fig. 1
by comparing the volume of observed caudates with the volume extracted continuously
from the spatiotemporal model of caudate shape. Also note that we can now obtain
shapes or measurements extracted from shapes at any time point of interest, not just
those corresponding to observations.

2.2 Mixed effects model for shapes

We now have a diffeomorphic flow of anatomical shapes for each individual, from
which we obtain shapes at time points corresponding to actual observations. These es-
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timated shapes no longer represent independent (and potentially noisy) measurements,
but instead take into account correlation between repeated scans of the same individual.

Statistical interpretation of longitudinal shape data is extremely useful in ascertain-
ing differences in repeated image scans of an individual and also between individuals
within and across populations. A compact statistical representation of shape was pro-
posed by [10], wherein the surface of a shape is represented by a collection of points,
also referred to as a particle system. Particle positions are optimized to be in correspon-
dence across an ensemble of shape configurations. A faithful shape representation is
achieved by minimizing a cost function, that balances a low residual error of model to
data, also seeking configurations of uniformly-distributed correspondence positions on
shape surfaces.

To analyze longitudinal data, [7] generalize the methods in [10] to incorporate a
linear mixed-effects model in the optimization framework. Let Yi be the longitudinal
response variable for the ith individual (a shape configuration), and Xi denote the ex-
planatory variable, typically time. The mixed-effects model for longitudinal correspon-
dences is given as

Yi = Xi(α+ bi) + εi,

where α are the fixed-effects parameters (group intercept, group slope), while bi are
random-effects parameters with εi being the error in correspondences for the ith indi-
vidual. For details on model parameter estimation, see [7].

Hypothesis testing In order to test the statistical significance of group-parameter dif-
ferences between two groups of longitudinal data, [7] also outline a statistical hypothe-
sis permutation test based on the Hotelling’s T 2 statistic.

Given two groups of data, {p1, . . . , pm} and {q1, . . . , qn}, with sample means p̄, q̄,
recall that Hotelling’s T 2 statistic is a test statistic to test for significant differences
between sample means, relative to the pooled sample covariance W:

W =

∑
i(pi − p̄)(pi − p̄)T +

∑
i(qi − q̄)(qi − q̄)T

m+ n− 2
.

The T 2 statistic can be thought of as a squared Mahalanobis distance between the
means, using the pooled covariance W . The sample T 2 statistic is given by

t2 =
mn

m+ n
(p̄− q̄)TW−1(p̄− q̄).

The permutation test procedure is as follows: (1) compute the t2 statistic, (2) ran-
domly permute (swap) data points between the p and q groups, computing a t2k statistic
for the permuted groups, (3) repeat step 2 for k = 1, . . . , P , (4) compute the p-value:
p = B/(P +1), where B is the number of t2k < t2. The final p-value can be interpreted
as the probability of finding a larger group difference by random chance under the null
hypothesis (that there is no difference between the means). The underlying assumption
of any permutation test is that the data should be exchangeable under the null distri-
bution. Our null hypothesis is that the groups (e.g., healthy and diseased) are from the
same distribution. We permute individuals (keeping their timepoints all intact), which
under this null assumption is exchangeable.
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To test for differences in anatomical trajectories between a healthy and disease
group, also note that it is important to distinguish if the shape differences are present
at baseline (intercept) or if they develop over time (slope). To make this distinction, we
also separate the above Hotelling’s T 2 test into these two components.

3 Experimental Validation

We study subcortical change associated with Huntington’s disease (HD), leveraging the
longitudinal study PREDICT-HD. The longitudinal database consists of 65 female sub-
jects: 23 controls (CTRL), 14 (LOW), 15 (MED), and 13 (HIGH). The LOW / MED /
HIGH categories represent probability of onset of manifesting signs of HD. All subjects
have had at least 3 MR images acquired approximately one year apart, with many sub-
jects undergoing multiple scans per visit. Six subcortical pairs (caudate, putamen, hip-
pocampus, thalamus, acumben, and pallidus) were segmented from each image (Fig. 2)
and manually verified and cleaned [12].

Fig. 2. Example of six sub-
cortical pairs extracted for
each subject and timepoint.

The quality of each segmentation varies considerably for
each time point, even when scans are obtained on the same
day from the same scanner, as individual single-subject seg-
mentation is prone to errors related to variability of imag-
ing, image calibration, human expert judgment, and limited
robustness of segmentation algorithms. While the segmenta-
tion quality is not easily assessed by viewing the 3D anatom-
ical surfaces, the temporal inconsistency becomes clear by
investigating volume extracted from the shapes. The right
side of Fig. 1 shows the variability in segmentation, illus-
trated by the temporal inconsistency of observed caudate
volume, motivating the need for temporally consistent segmentations which properly
account for correlated longitudinal data.

Personalized spatiotemporal models of subcortical change Continuous models of
shape trajectory are estimated for each subject using the methodology outlined in 2.1,
resulting in personalized and temporally consistent anatomical evolution. Model esti-
mation does not require point correspondence, facilitating the inclusion of all subcorti-
cal shapes simultaneously without imposing any topological constraints. Each subject’s
personalized model allows us to generate shapes at any instant in time, from which
desired shape properties, such as volume, can be extracted. We can therefore obtain a
continuous evolution of volume for all subcortical structures without any explicit mod-
eling of volume. Fig. 1 shows caudate volume extracted from each subject’s continuous
shape model, demonstrating the flexibility of the shape model to capture both linear and
non-linear volume trends with no prior assumption or constraint on linearity. Though
we only display caudate volume here, recall that each model is estimated by leveraging
all shape data simultaneously (Fig. 2), which respects shape boundaries and locations,
incorporating important geometric relationships between shapes.
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Fig. 3. Longitudinal mixed-effects analysis of striatal volumes obtained from observed shapes
(Left) and temporally consistent shapes (Right). Volume data are shown as filled black circles
with corresponding individual trends. Note the improvement of the model fit in the consistent
striatal volume over the observed striatal volume, which results in lower standard error of esti-
mated mixed-effects parameters. (See Table 1)

Longitudinal analysis of striatal volume Here we conduct a univariate analysis of
volume extracted from shape, as striatal volume loss has been shown to be associ-
ated with the progression of HD [11]. We aim to evaluate the benefit of spatiotem-
poral shape modeling, by comparing striatal volume extracted from the temporally
consistent shapes with volume extracted from the raw shape observations. Figure 3
shows the results of linear mixed-effects analysis on striatal volumes for observed (left)
and temporally consistent shapes (right), testing for the interaction between age and
group membership. The estimated fixed-effects parameters for the temporally consis-
tent (smoothed) category were found to be significant, as shown in Table 1. This demon-
strates the benefit of spatiotemporal shape modeling, as striatal volumes extracted from
the temporally consistent shapes provide better separation between the control and
LOW groups, and also between the control and HIGH groups.

Another benefit of spatiotemporal shape modeling is seen in the standard error of
estimated parameters (Table 1). The standard error is consistently lower for temporally
consistent shapes, which implies a reduction in unwanted variability present in the orig-
inal segmentations. Further note in Fig. 3, the mixed-effects model fits the temporally
consistent data better than the observed striatal volume. We also performed separate
longitudinal mixed-effects analysis on the caudate and the putamen, and found a simi-
lar story in both cases.

Longitudinal analysis of striatal shape We next perform a multivariate Hotelling’s
T 2 hypothesis test (Section 2.2) of the baseline shape (intercept) and trend (slope) be-
tween controls and the combined HD groups. We compare the results for analyses using
the original observed segmentations versus those obtained from spatiotemporal model-
ing as described in (Section 2.1). We represent these shapes in the particle optimization
framework to estimate longitudinal fixed and random effects. Note that we do not nor-
malize for size in these experiments, which means that we test for differences between
control and combined HD groups based on both shape and size.
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Fig. 4. Left: Fixed-effects parameters for observed caudate shapes (Far Left-Control, Mid Left-
HD), Right: Fixed-effects parameters for temporally consistent caudate shapes (Mid Right-
Control, Far Right-HD); Fixed effects slope: Blue-Red indicates Local Contraction - Expansion

Figure 4 shows the estimated fixed-effects parameters for both groups, i.e., the base-
line (intercept) shape with trajectory (slope) displayed as a color map. When comparing
baseline shapes, we don’t find significant difference between controls and HD in either
analysis. This is expected, as the onset of degeneration in HD is expected at a later age.
But when comparing shape trends, we find significant differences between controls and
HD for the temporally consistent shapes, but not in the case of raw shape observations.

Table 2 provides the p-values from the statistical hypothesis test between the control
and combined HD groups. In both the left and right caudate, the temporally consistent
shapes result in lower p-values. Specifically, the left caudate is statistically significant at
the 5% level. Similar to the volume analysis, this demonstrates that temporally consis-
tent shape trajectories result in greater ability to distinguish differences in longitudinal
trends between controls and HD groups.

4 Conclusion

Diffeomorphic trajectories are good at capturing smooth anatomical shape changes,
while the particle optimization framework excels at finding compact statistical shape

Parameter Std. error (obs.) Std. error (smoothed) p-value (obs.) p-value (smoothed)
Fixed-effects (slope) 26.23 14.10 0.002 < 0.001

Slope (high) 66.56 23.73 0.182 < 0.001
Slope (med) 36.43 22.14 0.003 < 0.001
Slope (low) 38.73 26.60 0.143 < 0.001

Table 1. Comparison of the standard error and significance values of fixed-effects parameters of
longitudinal volumes obtained from observed and temporally consistent shapes
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Structure Observed Temporally consistent
Left caudate 0.15 0.005

Right caudate 0.23 0.06

Table 2. p-values: Hypothesis test for differences in shape change (“slope”), between controls
and HD groups, for observed caudates (Left) and temporally consistent caudate shapes (right)

representations with increased statistical power. The novelty of our work is to leverage
the strengths of both approaches, to provide an integrated solution, characterized by
improved statistical performance in the analysis of both scalar and shape trajectory
data derived from noisy segmentations. We demonstrate the advantages of our method
through improved statistics on temporally consistent shape and volume measures in the
analysis of the PREDICT-HD dataset.
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