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Abstract 

We present a visual data mining application 
using the combination of clinical data, pathways and 
biomolecular data. Using pathways to navigate and 
filter the clinical and molecular data allows a more 
systematic and efficient investigation of problems in 
modern life science. A multiplicity of hypotheses can 
be evaluated in the same period of time, enabling a 
much better exploitation of the data.  We present a 
system for data preprocessing and automatic 
classification, a set of visualization views and finally 
the integration of the views in the Caleydo 
visualization framework, which enables the 
“coupling” of molecular and a broad spectrum of 
clinical data. With the help of the Caleydo framework 
the medical expert can identify connections between 
genetic parameters, patient subgroups, and drug 
responses in an intuitive way.  
 

1. Introduction 

Today masses of data are being produced in 
science and engineering applications, promising new 
insights. But how can an expert find meanings in 
terabytes of data? To successfully search for new 
hypotheses in large datasets, we must find 
unexpected patterns and interpret evidence in ways 
that frame new questions and suggest further 
explorations. Visual analytics methods will help us to  
• overview large datasets, as the human visual 

sense is optimized for parallel processing, 
• connect the global view with detail information, 

e.g. the selection of a single gene can modify all 
views, 

• provide different contextual views depending on 
users’ needs and experience level, 

• deal with inhomogeneous data sets and a broad 
range of data quality.  

 
In order to achieve these goals, we developed a 

set of methods for data preprocessing, visualization 
and interaction (see Figure 1). With the ability to 

integrate a broad range of medical data, to filter 
either by clinical parameters or by gene expression 
data (i.e. molecular data), dynamically reload 
pathways in which a gene plays a role, and to 
synchronize different visualizations through linked 
views,  an expert can, in the truest sense of the word, 
travel through the data space.  

2. Related Work 

The essential but to date unsolved problem in the 
emerging field of personalized medicine is the 
question of how to identify connections between 
genetic variants and their corresponding diseases or 
the response to certain drugs and treatments, 
respectively. It is therefore necessary, for example to 
connect gene data and clinical data in order to 
categorize specific subgroups of patients with certain 
diseases. The huge amount of data provided by 
molecular analytical methods (genetic 
polymorphisms, gene expression data, proteomics) 
can only be accomplished by applying 
bioinformatical and statistical methods.  However, 
standard methods of statistics and bioinformatics fail 
when the data is inhomogeneous – as is the case with 
clinical data – and when data structures are obscured 
by noise and dominant patterns.   

This has led to a stronger demand on data 
visualization, which addresses the problem of the 
very large datasets and the particularities of medical 
data analysis. We build our work on visual data 
exploration methods of large datasets, especially 
hierarchical data structures as described by Hege et 
al. [1], Keim and Kirgel [2,3], Grinstein and Meneses 
[4] and Fekete and Plaisant [5]. Related work on the 
integrated visualization of clinical and health record 
data was done by Jiye et al. [6], Chittaro [7], 
Ganslandt [8], and Aigner and Miksch [9]. Further 
related work can be found in the description of the 
single processing and visualization steps. 



3. Data Preprocessing 

Many hospitals and medical universities have a 
large medical data pool, which contains information 
of great relevance for biomedical research. In order 
to utilize the knowledge of these assets, it is 
necessary to search data of medical records in a 
structured way.   

The starting point of our undertaking is the tissue 
collection of the Institute of Pathology in Graz, 
which contains approx. 2.9 million samples from 
800.000 patients representing a non-selected patient 
group characteristic for Central Europe, which is now 
the core of the BioBank of the Medical University of 
Graz [10] and part of the Central Research 
Infrastructure for Molecular Pathology (CRIP) [11]. 
The scientific value of the tissue collection is not 
only characterized by its size and its technical 
homogeneity (all samples have been processed in one 
institute under constant conditions for more than 20 
years), but also by its population-based character. 
These features provide ideal opportunities for 
epidemiological studies and allow the validation of 
biomarkers for the identification of specific diseases 
and the response to treatment regimes.  

Each tissue sample is linked to a 
histopathological diagnosis and additional medical 
data such as staging and grading of tumors as well as 
information on patient survival. Furthermore, for 
some samples whole genome gene expression data is 
available. Medical data is given as free text in 
German language. While working with this data we 

realized that it is very difficult to extract the 
information for the visualization pipeline, with an on-
demand search in the plain text findings. The 
alteration of terms in past years, the change of 
classification, misspellings in the texts and different 
description of clinical findings pose the main 
challenges in this area. 

In order to extract well-structured medical 
information from plain text findings, we use a simple 
rule-based text mining approach. However, before 
the text mining step, all findings, which belong to the 
same patient and disease, need to be merged. The 
results build the starting point for the classification 
process and are stored in a relational database for 
back referencing.  

Our classification is based on ICD-10 
(International Classification of Diseases 10th 
revision) [12] and ICD-O-3 (International 
Classification of Diseases for Oncology 3rd revision) 
[13], but also other classification systems can be 
supported. In a separate module tumor stagings and 
organ receptors states are extracted. The information 
is then stored in a relational database in a well-
structured and searchable way.  

The data preprocessing can be divided into three 
steps, as depicted in Figure 2: 

 
(A) Data Import and Merge  

In the first step we import the unstructured data 
from an existing system (for example an Access 
Database, XML data, *.csv, *.txt or from other 
databases like Oracle or PostgreSQL). The 
extracted text blocks are then inserted into a 
single relational database.  

 
Figure 1 - Overall architecture   



(B) Cleanup 
In the second step a text cleanup module 
corrects misspellings and replaces abbreviations. 
Additionally, when available, some separate 
fields are processed with dictionary ID entries, 
to stay abreast for the relational database design. 
For example, the physician’s name is not stored 
in a plain text field for every case he was 
involved but only with an ID, which then points 
on a table with all physicians. For this mapping 
of text fields to dictionary fields we use spell 
checks to find all different (mis)spellings of the 
physicians. We also provide a special system for 
the title of the physicians because in the course 
of time these can change. The text cleanup runs 
through the database when a new mistake or 
abbreviation is found in the text blocks. 
  

(C) Classification  
The core part of the system is the classification 
module. In the first step we merge certain words 
to terms. For example such a term in our 
represented pathological data is “Metastase 
eines” (metastasis of a) which means that the 
following tumor is not the tumor itself – it is a 
metastasis of the tumor. In this step the text is 
also split into single terms, left and right 
neighbors, sentences and findings.  
 

 
 

Figure 2 – Data preprocessing steps 
 
In our text mining approach we use a 

classification tree-based system. Every node of the 
classification tree describes the matching word by a 
regular expression pattern for different spellings and 
a set of processing rules. These rules contain flags 
about the valid position of the term (“foreword”, 
“ending”, “negation”, “in sentence”, “in finding”, “in 
the whole case”). 

In Figure 3 a single node of the decision tree can 
be seen. The node shows the rule for the synonym 
“Neuroendokrin”. The color of the node depicts the 
node type: root node (orange), rule node (green), 
negation node (red). The pattern is a regular 
expression to match different spellings of the 
synonym. The numbers on the left and right side 
indicate how many words have to be between two 
matches. 

 

 
Figure 3 – Node of the decision tree  

 
Currently we use a set of 104 classification trees 

with an overall number of 2670 nodes. The 
classification trees were created by medical 
specialists at the Institute of Pathology in Graz 
during the last 2 years and are currently in the 
evaluation phase at several other pathology institutes. 

Figure 4 shows the complete tree for the 
classification of ICD-10 codes and ICD-O codes 
related to mamma carcinoma. The decision tree 
consists of the start node (orange), rule nodes (green) 
and negation nodes (red). The resulting classification 
can be either ICD-10 (blue circle) or ICD-O (violet 
circle).  
 

 
 Figure 4 – Structure of the decision tree for 

the classification of mamma carcinoma 
 

The evaluation of the data preprocessing and 
automatic classification shows that we have a recall 
of 86,1% and a precision of 83,9% for the ICD-10 
codes. For the ICD-O codes we have a precision of 
90,3%, and a recall of 93,1%.  

 

 

 



4. Visualizations 

The Caleydo framework (www.caleydo.org) 
[14], developed at the Graz University of 
Technology, describes clinical/patient data, gene 
expression data and pathway graphs. The software 
suite is written in Java and implements state-of-the-
art visualization techniques such as multiple 
coordinated views, linking & brushing and details on 
demand. The rendering of 2D and 3D views uses the 
Java OpenGL (JOGL) library, a Java binding that 
provides access to the OpenGL 2.0 specification. The 
building blocks of the presented solution are a set of 
synchronized views: 

 
• Multilevel Data Glyphs 
• Parallel Coordinates 
• Hierarchical Heat Map 
• Pathway Graphs 

4.1 Multilevel Data Glyphs 

Ropinski and Preim [15]  investigate glyph-
based visualization techniques in medical 
visualization. They build a glyph taxonomy based on 
the way information is processed when interpreted 
and propose guidelines for the usage of glyphs. Ward 
gives a general introduction to multivariate glyphs 
[16] and describes taxonomy of glyph placement 
strategies. He distinguishes between data-driven and 
structure-driven approaches and introduces strategies 
to avoid the overlapping problem and a novel space-
filling layout of hierarchically structured data. We 
developed data glyphs [17] described by: 

 
• a set of graphical primitives, organized into level 

of detail combined with a description of the 
visual capabilities of each graphical primitive, 

• mapping of data variables to graphical 
primitives,  

• rendering algorithms for each level and  
• spatial positioning algorithms. 
 

Data glyphs are modeled as 3D objects. This 
allows a high information density - at the highest 
level of detail a data glyph visualizes up to 15 
variables. However, problems introduced with this 
approach are occlusion, perspective distortion, 
complex navigation and orientation in 3D space for 
inexperienced users.  

To avoid these problems we have restricted the 
3D space to an isometric view, where only the 2D 
position of glyphs can be altered. An isometric view 
is known to users from technical illustrations and 
from the early years of computer and video games.  

In an isometric projection data glyphs can be 
compared independently of their spatial position and 
no perspective distortion is applied. Furthermore 
several performance optimization strategies, e.g. 
bitmap caching, can be applied because of the 
restricted 3D projection. Our glyph designs also 
ensure, that all geometric primitives are visible in the 
isometric projection. 

In order to achieve well-graded and consistent 
levels of details for data glyphs, we use the semantic 
zoom approach and rely on the principle that the 
dominant visual variable of level n is also the 
strongest visual variable in level n+1. We use three 
levels of detail for a single glyph: 

 
A.)  Primary level, the pixel view 

In the primary level one data variable 
determines the color of the glyph. This color is 
also the dominant color in all higher levels.  A 
glyph is rendered in the pixel view when its 
screen size is very small, e.g. below 4x4 pixels.  
By using data glyphs in the pixel view level we 
can interact with several millions of elements at 
a time.  
 

B.)  Secondary level, the iconic view 
In the secondary level we add 4 additional data 
variables. A glyph is rendered in the iconic 
view when its screen size is approx. between 4 
by 4 and 64 by 64 pixel.  By using data glyphs 
in the iconic view we can interact with several 
thousands of elements at a time.  
 

C.)  Tertiary level, the detail view 
In the tertiary level we add approximately 10 
geometric primitives to the data glyph, which 
results in an overall number of no more than 15 
data variables mapped to a single glyph.  A 
glyph is rendered in the detail view when its 
size is greater than 64x64 pixels.  By using data 
glyphs in the detail view we can compare 
several hundreds of glyphs.  
 

Figures 5 shows three glyph types: Cubic glyphs 
are well suited to visualize multivariate data sets with 
a broad range of data types, crystal glyphs are 
optimized for more homogenous data sets and human 
glyphs are well suited for the visualization of person 
related data, e.g. the localization of metastases or 
laboratory values.  

 



 

Figure 5 – Multillevel data glyphs  
 
Figure 6 shows data glyphs arranged in a 

scatterplot. At the bottom of the window, the value 
distribution is shown for each attribute (i.e. staging 
attributes, sex and disease free survival) as an 
interactive histogram. With the help of the histogram 
the user can select subgroups for further visualization 
steps.   

 

 
Figure 6 – Level 2 glyphs arranged in a 
scatterplot by T-Staging and Grading 

4.2 Parallel Coordinates 

We use parallel coordinates [18] to visualize 
clinical data as well as gene expression data. Our 
implementation of parallel coordinates uses one- 
dimensional brushes as well as angular brushes [19] 
to select a subset of the data. In gene expression 
analysis a common task is to remove all genes that 
are neither up nor down regulated for all 
experimental conditions. Therefore, we implemented 
a global brush, visible on the left in Figure 7, which 
removes all genes that never leave the region the blue 
bar is spanning. 

 
Figure 7 - Parallel coordinates showing 14 

experiments as axis and genes as polylines. 
The blue brushes (1D and angular) allow 

filtering of the dataset. The leftmost brush 
filters out all elements that never leave the 

spanned region.  
 

Furthermore, our parallel coordinates 
implementation allows to switch between polylines 
and axes at runtime. For gene expression analysis this 
means that in one mode the genes are the polylines, 
while in the other the experiments are (and obviously 
vice versa for the axes). The only limitation is the 
number of axes – which should not be more than 
about 50 for a meaningful analysis. This allows the 
analysis of a limited number of genes for a large 
number of experiments and furthermore immediately 
identifies experiments which run against a trend 
visible in others. 

Our implementation can visualize up to 5000 
polylines interactively on a Notebook with an Intel 
Core2 Duo CPU with 2 GHz and a NVIDIA Quadro 
NVS 140M with 128 MB VRAM.  

We use a random sampling approach to allow 
the exploration of much larger data sets. Thereby, the 
sampling only affects the visualization – all 
operations are always executed on the whole data set. 
If random sampling is used, the system always 
displays a predefined number of lines. If the number 
of lines to be visualized drops below the threshold 
due to filtering, the visualization renders every line. 
This approach allows us to give users a 
representative overview of large datasets while still 
allowing manipulation on individual elements when 
filtering is used.  

4.3 Hierarchical Heat Map 

Heat maps are a common way of visualizing 
gene expression data [20]. The genes are arranged in 
rows and the experiments in axes. The color encodes 
the regulation of the gene. Due to the large number of 
genes it is not feasible to visualize all values 
simultaneously on a traditional computer screen. 



Therefore, we have implemented a hierarchical 
approach [21].  

The hierarchy consists of three levels. On the 
leftmost side an overview of all genes is shown, 
which helps to localize the current position in the 
dataset. The next level shows a selection of about 
500 genes. In this view individual elements can 
already be recognized. In the detailed view on the 
right a set of 10-80 genes are shown, with labelling 
for each individual gene. 
 

 
Figure 8 - Hierarchical heat map. The heat 
map shows a total of 41 experiments and 

4634 genes. The three layers from left to the 
right provide different levels of detail while 

preserving the context. 
 

Selections are highlighted in all three levels. 
Multiple selections that occur outside of the detailed 
views are highlighted in the overview levels thus 
permitting to rapidly switch to the equivalent entity. 
We are currently working on integrating clustering 
into the heat map, which will significantly increase 
the meaning of the localization in the different levels. 

4.4 Pathway Graphs 

Pathways are models of cellular functions 
represented by graphs. Nodes in pathway graphs are 
enzymes/genes/proteins (depending on the biological 
level) and chemical compounds. The edges are 
signals or chemical reactions on the cellular level. 
Genes occur in different pathways and therefore 
perform various roles depending on its biological 
context. We integrate approx. 700 pathways from 
two major public databases: KEGG [22] and 
BioCarta [23]. Figure 9 shows an exemplary KEGG 
pathway. 

When a particular gene in a pathway is selected 
the corresponding row in the heat map as well as the 
polyline in the parallel coordinates plot is 
highlighted. Vice versa, nodes in the pathways are 
highlighted upon selections performed in connected 
views. 

 
Figure 9 – Sample KEGG pathway graph 

“Vibrio Cholerae Infection”.  

5. Connecting Genes with Diseases  

Due to the comprehensive collaboration of 
experts from various fields (pathologists, geneticists, 
molecular biologists and oncologists) within the 
project, we are in the fortunate position to have 
access to datasets that contain contributions from all 
domains. The following figures are based on a 
dataset consisting of 180 patients (experiments), each 
consisting of various clinical parameters, like sex, 
age, disease free survival and other personal 
information. It also includes disease related 
information like tumor staging and medication. 
Furthermore, for each patient the full gene expression 
data (37,632 regulation values) is available. 

Different aspects of the data are depicted in 
separate coordinated visualizations. In addition to 
this classic multiple view approach, Caleydo supports 
an arbitrary placement of 2D views in a 3D scene and 
enriches the highlighting of selected entities (genes, 
patients) by using visual links [14,24].  

An integral part of the Caleydo framework is the 
so-called Bucket which allows the management of up 
to 20 related views (see Figure 10). The setup 
consists of a view in the center and four contextual 
views forming the side walls of the bucket. Related 
views which are not of immediate interest are placed 
as thumbnails on the rim. In addition the framework 
provides zoom features as well as drag and drop 
support for views. 
 



 
Figure 10 – The Bucket is a concept that 
arranges related views in a 2.5D scene. 

Identity relations of elements in different 
views are connected by visual links (yellow).  
 
Figure 11 shows the integration of a glyph view, a 
heat map, parallel coordinates and several pathways 
inside the Bucket.  
 

 
Figure 11 - Linking clinical and gene 
expression data inside the Bucket.  

 
This way genetic data is mixed with clinical data 

in one scene. Colored visual linking trees are 
connecting data entities from the same data space. 
The mutual basis of these data spaces are the heat 
map and parallel coordinates. For example a patient 
is represented by a glyph and visually connected to 
the axis of the parallel coordinates as well as to the 
column of the heat map (pink connection tree). In 
turn, a gene, represented by a polyline in the parallel 
coordinates and by a row in the heat map, is linked to 
pathway nodes depicting their biological context 
(yellow connection tree). 

This holistic approach has the potential to give 
the domain expert a deeper understanding of possible 
coherences between gene functions and diseases.  

6. Conclusions 

In order to analyze huge medical datasets 
(several hundreds of experiments, several thousands 
of genes) we applied methods from the field of visual 
analytics. This was on the one hand done by the 
development of new visualization methods and on 
the other hand through the integration of these 
methods into the Caleydo framework.  

Our medical visualization kit consists of 
multilevel glyphs encoding patient data, parallel 
coordinates, a heat map view focused on the analysis 
of gene expression data, and pathway graphs 
showing the biological processes which are highly 
influenced by the regulation of genes.  

The Caleydo framework integrates views in a 
linked 3D environment and supports filtering and 
visual links for a broad range of medical data types. 
In the visualization process the heat map and the 
parallel coordinates are the crossing point between 
clinical and biomolecular data. Each cell in the heat 
map can be visually linked to either visualizations of 
clinical data, molecular data or the pathways 
containing the linked genes 

The visualization strongly depends on the quality 
of the input data.  The real world usage of our tools 
has shown that a lot of effort is necessary in the 
clearing of the input data. The Caleydo framework 
was very useful to find blank spots in the data space 
and to monitor the data quality.  
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