
48	 May/June 2016	 Published by the IEEE Computer Society� 0272-1716/16/$33.00 © 2016 IEEE

Feature Article

VTK-m: Accelerating the
Visualization Toolkit for Massively
Threaded Architectures
Kenneth Moreland ■ Sandia National Laboratories

Christopher Sewell ■ Los Alamos National Laboratory

William Usher ■ University of Utah

Li-ta Lo ■ Los Alamos National Laboratory

Jeremy Meredith and David Pugmire ■ Oak Ridge
National Laboratory

James Kress ■ University of Oregon

Hendrik Schroots ■ Intel

Kwan-Liu Ma ■ University of California, Davis

Hank Childs ■ University of Oregon

Matthew Larsen ■ Lawrence Livermore National
Laboratory

Chun-Ming Chen ■ Ohio State University

Robert Maynard and Berk Geveci ■ Kitware

Although the basic architecture for high-
performance computing (HPC) plat-
forms has remained homogeneous and

consistent for more than a decade, revolutionary
changes are appearing on leading-edge supercom-
puters. Plans for future supercomputers promise

even larger changes. But one
troubling attribute of future HPC
machines is the massive increase
in concurrency required to sus-
tain peak computation. In fact,
most project billions of threads
to achieve an exaflop.1 This in-
crease is partially accredited to
requiring more cores to achieve
faster aggregate computing rates
and partially accredited to using
additional threads per core to
hide memory latency. Because of
cost and power limitations, the

system memory will not commensurately increase,
which means algorithms will need strong scaling
(that is, more parallelism per datum).

This trend toward massive threading can be seen
in high-performance computing today. The cur-
rent leadership-class computer at the Oak Ridge
National Laboratory, Titan, requires between 70
and 500 million threads to run at peak, which is
300 times more than was required by its prede-
cessor, JaguarPF. In contrast, the system memory
grew only by a factor of 2.3.

The increasing reliance on concurrency to achieve
faster execution rates invalidates the scalability of
much of our scientific HPC code. New processor
architectures are leading to new programming
models and new algorithmic approaches. The de-
sign of new algorithms and their practical imple-
mentation are a critical extreme-scale challenge.2,3

To address these needs, HPC scientific visual-
ization researchers working for the United States
Department of Energy are building a new library
called VTK-m that provides a framework for sim-
plifying the design of visualization algorithms on
current and future architectures. VTK-m also pro-
vides a flexible data model that can adapt to many
scientific data types and operate well on multi-

Traditional scientific
visualization software
approaches do not fare
well in massively threaded
environments. To address the
needs of the high-performance
computing community, the
VTK-m framework fills the
gaps in functionality by
bringing together the most
recent research.

g3mor.indd 48 4/19/16 2:07 PM

	 IEEE Computer Graphics and Applications� 49

threaded devices. Finally, VTK-m serves as a con-
tainer for algorithms designed in the framework
and gives the visualization community a common
point to collaborate, contribute, and leverage mas-
sively threaded algorithms.

The Challenges of Highly Threaded
Visualization
The scientific visualization research community
has been building scalable HPC algorithms for
more than 15 years, and today there are multiple
production tools that provide excellent scalability.
However, our current visualization tools are based
on a message-passing programming model. They
expect a coarse decomposition of the data that
works best when each processing element has on
the order of 100,000 to 1 million data cells.

For many years, HPC visualization applications
such as ParaView, VisIt, EnSight, and FieldView
have supported parallel processing on distributed
memory computer systems. The approach used by
all these software products is a bulk synchronous
parallel model, where algorithms perform the
majority of their computation on independent
local operations.4

This parallel computation model has worked
well for the last 15 years. Even recent multicore
processors could be leveraged reasonably effi-
ciently as independent message-passing processes
on each core, allowing these tools to scale to pet-
ascale machines.5

However, processors designed for HPC instal-
lations are undergoing transformative design
changes. With physical limitations that prevent
individual cores from executing instructions ap-
preciably faster than their current rate, manu-
facturers are increasing the total computational
bandwidth by adding more cores to each proces-
sor.6 Some HPC processor designs go even further
to increase the total possible execution throughput
by removing latency-hiding features and incor-
porating vector processing. A consequence of all
these features is that it is no longer sufficient to
treat each core as an independent processor.

The upshot is that our parallel computing model
is no longer symmetric. The relationship between
two cores on the same processor differs signifi-
cantly from the relationship between two nodes of
a supercomputer. To address this asymmetry, a pop-
ular approach is to use a mixed-mode, or hybrid,
parallel computing model that incorporates two
levels of task organization. The first level comprises
distributed-memory message-passing nodes in a
cluster-like arrangement. Then, within each node
of the distributed-memory arrangement is a proces-

sor or small set of processors capable of executing
numerous threads that may require coordination.

From our point of view, the principle advan-
tage of the mixed-mode parallel model is that
we can leverage our existing software to manage
the message-passing parallel units. The VTK-m
framework focuses on the intranode parallelism
that often requires massive threading and syn-
chronized execution.

Thus, new HPC systems require a much higher
degree of parallelism that could require threads
operating on as few as one to 10 data cells. At this
fine degree of parallelism, our conventional visu-
alization breaks down in multiple different ways.

Load Imbalance
Typically, data are partitioned under the assumption
that the amount of work per datum is uniform. How-
ever, this is not true for all visualization algorithms,
many of which generate data conditionally based
on the input values. With only a few exceptions,
current parallel visualization functions completely
ignore this load imbalance, which is considered tol-
erable when amortized over larger partitions.

When the data gets decomposed to the cell level,
this amortization no longer occurs, which results
in a much more severe load imbalance. Finely
threaded visualization algorithms need to be cog-
nizant of potential load imbalance and schedule
work accordingly.

Dynamic Memory Allocation
When the amount of data a visualization algo-
rithm generates is dependent on the values of the
input data, the output data’s size and structure is
not known at the execution outset. In such a case,
the algorithm must dynamically allocate memory
as data are generated.

Because our conventional parallel visualiza-
tion algorithms operate on coarse partitions in
distributed memory spaces, processing elements
can dynamically allocate memory completely in-
dependent from one another. In contrast, dynamic
memory allocation from many threads within a
shared memory environment requires explicit syn-
chronization that inhibits parallel execution.

Topological Connections
Scientific visualization algorithms are dominated
by operations on topological connections in
meshes. Care must be taken when defining these
connections across boundaries of data assigned to
different processing elements. Mutual data being
read must be consistent, and mutual data being
written must be coordinated.

g3mor.indd 49 4/19/16 2:07 PM

50	 May/June 2016

Feature Article

A conventional parallel visualization algorithm
typically manages topological connections across
processes by replicating data on the boundaries.
Because the partitions are coarse, there is a limited
amount of replication. However, this replication
cannot be sustained as the data decomposition ap-
proaches single cells. Instead, threads must share
connected data, and generated data may require
further processing to identify coincident topology.

SIMD Execution
In addition to increasing execution bandwidth
through multiple processing cores, modern HPC
processors also enable vector processing, which
allows the same instruction to be executed si-
multaneously on multiple data values. Whereas
conventional parallel visualization algorithms al-
low for completely independent execution, efficient
vector processing requires at least some parallel
execution to run in single instruction, multiple

data (SIMD) mode. New algorithms should mini-
mize code execution divergence.

Visualization with Data Parallel Primitives
Data parallel primitives provide an abstraction
layer between the low-level hardware architecture
and the high-level code, which both increases the
portability of VTK-m and simplifies the imple-
mentation of algorithms. Guy Blelloch originally
proposed a scan-vector model for data parallel
computing and outlined a variety of algorithms in
data structures, computational geometry, graphs,
and numerical analysis.7 All of VTK-m’s predeces-
sors (PISTON, Dax, and EAVL) leverage data paral-
lel primitives in some way (see the “Predecessors
of VTK-m” sidebar for more details). VTK-m pro-
vides an abstract device model inherited from Dax
and expanded to fulfill the needs of the algorithms
inherited from PISTON. VTK-m makes use of the
following data parallel primitives.

A lthough the VTK-m software project itself started little
more than a year ago, the software originated as an

aggregation of three predecessor products: PISTON, Dax,
and EAVL. The US Department of Energy (DoE) high-
performance computing (HPC) community predicted early
on that leadership class facilities would be transitioning
to heavily threaded processors and that we would need
a significant change to our visualization algorithms and
software.1 Consequently, researchers at the DoE national
laboratories began considering the challenges of visualiza-
tion on accelerator processors and created three separate
toolkits, each focusing on a specific aspect of the problem.

The first toolkit, PISTON,2 considers the design of por-
table multithreaded visualization algorithms. Built on top
of the Thrust library,3 algorithms in PISTON comprise a se-
quence of general parallel operations. Originally designed
for CUDA, Thrust has a flexible device back end that now
supports multicore CPU architectures. PISTON has demon-
strated scalability across multiple devices.

The second toolkit, Dax,4 considers a top-down approach
to a multithreaded visualization framework. Recognizing
that most visualization algorithms iteratively apply an op-
eration to each element in a mesh, the Dax framework lets
developers concentrate on designing these per-element
operations while the framework automatically builds the
appropriate parallel scheduling.

The third toolkit, EAVL,5 considers the data model used
in modern visualization. EAVL updates the visualization data
model to handle modern simulation codes using flexible
mesh structures that are also easily accessible in multi-
threaded environments.

Each originally focused on a different part of the extreme-

scale visualization problem, but the software packages did
not integrate well. Recognizing the prospect of substantial
duplication of effort, the developers of these software
projects came together to work under a unified software
product: VTK-m. Although VTK-m was born from a new
code base, the PISTON, Dax, and EAVL developers con-
tributed and evolved their respective technologies. The
development of its predecessors has been phased out, and
VTK-m is now a unified, well-integrated product of these
three predecessors with continuing evolving capabilities.

References
	 1.	 S. Ahern et al., “Scientific Discovery at the Exascale: Report

from the DOE ASCR 2011 Workshop on Exascale Data

Management, Analysis, and Visualization,” Dept. of Energy

Office of Advanced Scientific Computing Research, Feb.

2011; http://science.energy.gov/~/media/ascr/pdf/program

-documents/docs/Exascale-ASCR-Analysis.pdf.

	 2.	 L. Lo, C. Sewell, and J. Ahrens, “PISTON: A Portable

Cross-Platform Framework for Data-Parallel Visualization

Operators,” Proc. Eurographics Symp. Parallel Graphics and

Visualization (EGPGV), 2012, pp. 11–20.

	 3.	 N. Bell and J. Hoberock, “A Productivity-Oriented Library for

CUDA,” GPU Computing Gems, Jade Edition, W.W. Hwu, ed.,

Morgan Kaufmann, 2011, pp. 359–371.

	 4.	 K. Moreland et al., “Flexible Analysis Software for Emerging

Architectures,” Proc. SC’12 Companion: High Performance Com­

puting, Networking Storage and Analysis, 2012, pp. 821–826.

	 5.	 J.S. Meredith et al., “EAVL: The Extreme-Scale Analysis

and Visualization Library,” Proc. Eurographics Symp. Parallel

Graphics and Visualization, 2012, pp. 21–30.

Predecessors of VTK-m

g3mor.indd 50 4/19/16 2:07 PM

	 IEEE Computer Graphics and Applications� 51

■■ Map applies the same unary operator to each el-
ement of an array in parallel. This is useful for
element-wise field expressions or can be lever-
aged as a general scheduling capability.

■■ Reduce computes a single value (such as the sum or
product) from all the elements of an array, which
is useful whenever aggregate values are needed.

■■ Scan is similar to a reduction but stores inter-
mediate results (that is, a running total) at each
element of the array. Scans are particularly use-
ful for finding array indices.

■■ Sort is a versatile reordering operation that is
particularly useful for identifying all groups of
common values in an array.

■■ Search can simultaneously find multiple values
in an array. This can be used to find a reverse
mapping of values in one input array to their
locations in a second sorted input array.

Algorithms that employ hierarchical parallelism
may make use of segmented versions of data paral-
lel primitives. For example, when constructing KD-
trees or other types of graphs, the graph’s structure
may be encoded using a segment vector, where
each segment represents a node. Operations such
as sorts and scans can then be performed indepen-
dently within each node but still all in parallel.

Although research has found effective ways to uti-
lize these data parallel primitives for many visualiza-
tion problems, the application of these primitives is
not always obvious. Fortunately, many visualization
algorithms follow similar patterns of operation,8
and these patterns are embodied by objects called
worklets in VTK-m, a concept inherited from Dax.

Worklets extend the functionality of the basic data
parallel primitives by providing common features.
For example, several flavors of worklets can trace
topological connections in map operations. VTK-m
handles the indexing of the topology structure inter-
nally, which makes it easier and safer to write work-
lets than to directly operate on data structures in
parallel. Other worklet types can manage algorithms
with sparse output or find coincident topology, fur-
ther reducing the burden on the programmer.

Performance Portability with Data
Parallel Primitives
Unlike many “in house” HPC software applications
that can be written for a specific HPC installation,
the software our team develops is used across all
the US DoE supercomputer facilities and many
others around the world. This means our software
must perform well on a variety of hardware types
and configurations. Furthermore, the critical code
in a visualization system is not limited to a small

number of iterative loops. Our software contains
numerous algorithm implementations to address
visualization needs across many scientific disci-
plines. For example, the Visualization Toolkit, on
which ParaView and VisIt are based, contains more
than 400 distinct filters.

Upgrading this functionality is a daunting chal-
lenge. Attempting to create multiple algorithm
implementations targeted to each known platform
(and possibly currently unknown platforms in the
future) creates a combinatorial explosion of work.
This approach would require significant developer
investment, likely exceeding worldwide funding
available for this task.

Instead, VTK-m uses data parallel primitives to
achieve performance portability. VTK-m defines an
abstract device model constructed from the afore-
mentioned data parallel primitive operations (such
as map, scan, sort, and reduce) that run in parallel
on the device. The VTK-m team is rethinking visu-
alization algorithms as a sequence of these parallel
primitive operations. When implemented as such,
the entirety of algorithms in VTK-m can be ported
to a new device by providing only the parallel
primitives for that device. Algorithms need only
be written once to VTK-m’s abstract device model,
which dramatically reduces the implementation
work for various architectures (see Figure 1).

The indirection of using data parallel primitives
to implement algorithms can limit the amount

VTK-m

(a)

CPU GPU MIC Others

Contour External
faces Clip Particle

advection
Others

(b)

CPU GPU MIC Others

Contour External
faces Clip Particle

advection
Others

Figure 1. VTK-m’s abstract device model. (a) Implementing all of our
visualization algorithms separately for every architecture we need to
support leads to an unmanageable amount of software. (b) By using
VTK-m’s abstract device model based on data parallel primitives, we can
reduce the amount of software to implement to a feasible level.

g3mor.indd 51 4/19/16 2:07 PM

52	 May/June 2016

Feature Article

of optimization that can be done, which raises
the question of how much performance portabil-
ity costs. Evidence collected from recent research
using data parallel primitives9,10 including work
presented here suggests a fairly low overhead. The
benefits of simplified implementation and perfor-
mance portability outweigh any overheads intro-
duced by the approach.

Advanced Data Models
VTK-m is intended to be used in many scientific
disciplines and with data of many different ar-
rangements and structures. It is important that the
data model in VTK-m be flexible enough to capture
the different representations of data while still
providing clear semantics for the elements in the
data. Furthermore, the data representation must
be space efficient and accessible on the different
processor types we use (that is, work on both CPUs
and GPUs). To achieve these goals, VTK-m provides
a data model inherited from its predecessor EAVL
(see the “Predecessors of VTK-m” sidebar) with
some modifications and extensions.

The utility of the data models is further en-
hanced by integrating them with the aforemen-
tioned data parallel primitives, abstract device
adapters, and worklet mechanisms. Datasets in
VTK-m seamlessly move between devices. Algo-
rithms built within VTK-m use abstract concepts
that can be applied to datasets of many different
structures without having to be reimplemented.

Datasets
Traditional dataset models often choose a set of
rigid characteristics for a dataset and then label
that collection of characteristics as a specific type
of mesh. For example, a uniform dataset has regu-
lar axis-aligned coordinates and a logical [i, j, k]
cell arrangement. An unstructured dataset has
fully explicit coordinates (an [x, y, z] value sepa-
rately defined for each point) with fully explicit
cell connectivity defined by arrays of indices. A
curvilinear grid is a mix with logical cell arrange-
ment but explicit coordinates.

However, this selection of grid types is some-
what arbitrary. It is easy to generate unsupported
meshes. For example, consider a tetrahedralization
of a uniform grid. This would be most efficiently
represented with regular coordinates and explicit
cells, but most data models require a fully explicit
unstructured grid.

VTK-m removes this restriction entirely by de-
fining a dataset as a mere container for arbitrary
collections of coordinates, cell sets, and fields.
Although this allows VTK-m to support more

mesh types, the algorithm designer does not have
to manage this complexity. At the worklet level,
cell shape and field values are decoupled from the
mesh representation, meaning the algorithm need
only be implemented once for all mesh types.

The ability to correctly represent mesh struc-
tures is important for computational efficiency
and accuracy. It is also critical for in situ visual-
ization and analysis tasks because any mismatch
between the representational capabilities of the
analysis code relative to the targeted simulation
code will result in expensive (both computation-
ally and in terms of memory footprint) copies and
transformations of data arrays.

Coordinate Systems
Because it allows an arbitrary collection of coor-
dinates, VTK-m supports datasets with no coordi-
nates (such as graph data with no physical location
for the vertices) or datasets with coordinate sys-
tems of spatial dimension other than three. VTK-
m also supports more than one coordinate system,
which recognizes that a mesh might be interpreted
in more than one spatial mapping independent of
the underlying mesh structure. For example, geo-
spatial data could simultaneously have coordinate
systems defined by 3D position, latitude-longitude
coordinates, and any number of 2D projections.

Cell Sets
A common problem in traditional dataset mod-
els is the inability to properly support more than
one type of topological element in the same mesh,
such as volumetric elements with boundary inter-
face polygons or point elements with connecting
line segments. Although it can often be supported
by merging these disparate topological element
types into a single mesh, the lack of separation
requires that fields contain dummy values for the
element types for which they are inapplicable, an
error-prone and inefficient practice.

VTK-m solves this problem by allowing multiple
cell sets to be contained in the same mesh. The
unifying characteristic of belonging to the same
mesh (as opposed to two different meshes) is that
they both refer to the same set of points using the
same set of indices, which allows efficient map-
ping between these two cell sets.

Use Cases
There has been significant interest within the sci-
entific visualization community to experiment with
and adopt the VTK-m framework. This section con-
tains several examples of VTK-m being used in a
variety different projects, including volume render-

g3mor.indd 52 4/19/16 2:07 PM

	 IEEE Computer Graphics and Applications� 53

ing, ray tracing, geometric operations, and work-
flows for large-scale scientific applications.

Ray Tracing
Matthew Larsen and his colleagues implemented a
ray tracer using data parallel primitives in an ef-
fort to provide a many-core capable infrastructure
that can perform rendering on any architecture.10
Ray tracing is a compelling algorithm for exploring
the boundaries of data parallel primitives because it
is computationally intensive and has unstructured
memory accesses. Furthermore, the HPC commu-
nity has a growing interest in using ray tracing
rather than the traditional rasterization-based ren-
dering because the computational complexity of
ray tracing is much better with respect to the size
of the geometry (which has been steadily growing
in the HPC setting).

To verify the efficiency of the VTK-m framework,
we implemented Larsen’s ray-tracing algorithm in
VTK-m and replicated many of the experimental
runs in the Larsen paper.10 Figure 2 shows example
output from the ray tracer, and Figure 3 summa-
rizes the results of our experiments. The datasets
are the same ones used in the Larsen study, as
are the timings for the Optix Prime, Embree, and
EAVL algorithms. The GPU runs come from a Tesla
K40, and the CPU runs come from dual Intel Xeon

E5’s, which are equivalent to the GPU2 and CPU2
configurations, respectively, in the Larsen paper.
Likewise, all images are rendered with 1,080p
resolution (1920 × 1080), as the Larsen paper re-
ported.

Our experiments verify the conclusions drawn by
the Larsen study in that our architecture-agnostic
data parallel approach is competitive with highly
optimized architecture-specific approaches (within
a factor of two). Also, the VTK-m implementation
is at least as fast as, and sometimes faster than,
Larsen’s previous implementation written using

Figure 2.
Example output
from VTK-m
ray-tracing
algorithm.
The data in
this rendering
represent
seismic wave
propagation
through the
Earth.

Dataset Algorithm Millions of rays per second

LT_350K OptiX Prime 357.6
 EAVL 150.8
 VTK-m 164.5
LT_372K OptiX Prime 322.4
 EAVL 124.7
 VTK-m 140.8
RM_350K OptiX Prime 436.5
 EAVL 197.5
 VTK-m 200.8
RM_650K OptiX Prime 420.4
 EAVL 172.9
 VTK-m 166.0
RM_970K OptiX Prime 347.1
 EAVL 152.8
 VTK-m 163.5
RM_1.7M OptiX Prime 266.8
 EAVL 136.6
 VTK-m 148.8
RM_3.2M OptiX Prime 264.5
 EAVL 124.8
 VTK-m 134.5
Seismic OptiX Prime 267.8
 EAVL 106.3
 VTK-m 119.4

LT_350K Embree 51.9
 EAVL 27.7
 VTK-m 38.5
LT_372K Embree 56.5
 EAVL 26.1
 VTK-m 36.0
RM_350K Embree 64.8
 EAVL 33.3
 VTK-m 47.8
RM_650K Embree 65.9
 EAVL 35.6
 VTK-m 49.1
RM_970K Embree 59.1
 EAVL 29.3
 VTK-m 41.0
RM_1.7M Embree 52.4
 EAVL 27.0
 VTK-m 37.8
RM_3.2M Embree 48.4
 EAVL 28.3
 VTK-m 33.9
Seismic Embree 43.2
 EAVL 25.2
 VTK-m 34.5

Dataset Algorithm Millions of rays per second

(a) (b)

Figure 3.
The speed
(measured
in millions
of rays cast
per second)
to perform
ray tracing
using different
algorithms on
different data
sets. (a) GPU
times and
(b) CPU times.
The datasets
are the same
ones used in
the Larsen
study,10 as are
the timings
for the Optix
Prime, Embree,
and EAVL
algorithms.

g3mor.indd 53 4/19/16 2:07 PM

54	 May/June 2016

Feature Article

EAVL, which suggests that the integration of data
models with the execution model, algorithms, and
other features of VTK-m does not add overhead.

Direct Volume Rendering
Direct volume rendering, in which we render a
volume in space with variable color and opacity, is
a common but computationally intensive task in
scientific visualization. Thus, direct volume ren-
dering is a good use case to demonstrate VTK-m’s
capabilities. We implemented a simple ray-casting
direct volume renderer within the VTK-m frame-
work. Figure 4 shows an example output of this
volume renderer.

For testing, we used the output of a supernova
simulation dataset, consisting of a 4323 volume of
voxels and rendered to a 1,024 × 1,024 window.
Because performance is directly related to the
number of rays that intersect the volume, and ul-
timately generate a color, the camera is positioned
so that the volume occupies a large portion of the

viewing window. The rendering time is averaged
over the rendering of 16 frames.

We tested the same VTK-m volume render-
ing on three different devices: a dual-processor
Intel Xeon IvyBridge E5-2670 v2 (labeled CPU),
an NVIDIA Titan X (labeled GPU), and an Intel
Xeon Phi 5110p coprocessor (labeled MIC). For
comparison purposes, we also rendered the vol-
ume using VTK (with the vtkFixedPointVolumeR-
ayCastMapper class). This VTK implementation is
multithreaded but designed strictly for the CPU
so it was only run on that architecture. We also
compared our VTK-m volume rendering algorithm
with a similar one implemented in Dax. Figure 5
summarizes the results of these experiments. All
implementations were multithreaded and run on
all cores available.

The comparison between our VTK-m volume
rendering and the existing VTK volume rendering
is not a direct comparison of the performances
of the two respective libraries because there are
significant differences between the two algorithm
implementations. In particular, the VTK-m volume
rendering is much simpler than the VTK volume
rendering, which has optimizations such as empty
space skipping, which is not yet implemented in
our algorithm. Nevertheless, our simpler algo-
rithm performs comparatively well and is also
portable across multiple architectures.

In contrast, the volume rendering implementa-
tions in VTK-m and Dax are similar. We can clearly
see that the integration of the Dax technologies
with those of the other VTK-m predecessors has
not resulted in a larger overhead. On the contrary,
the VTK-m framework operated more efficiently.

Isosurface
Isosurfacing is one of the most valuable and widely
used algorithms in scientific visualization. Our
isosurface algorithm is adapted from PISTON.
The new implementation integrates the algorithm
with VTK-m’s data model and worklet execution
mechanism.

We demonstrate the isosurface algorithm using
a 4323 supernova dataset similar to the one used

Entropy

High

Low

Figure 4. Example output of the VTK-m volume renderer. The rendered
image is from supernova simulation data using a direct volume renderer
implemented in VTK-m.

CPU VTK 2.08

 VTK-m 1.25

GPU Dax 3.55

 VTK-m 6.79

MIC Dax 0.07

 VTK-m 0.28

Device Algorithm Frames per second

Figure 5. Average rendering rate for a 1,024 × 1,024 volume rendering image. All implementations were
multithreaded and run on all cores available.

g3mor.indd 54 4/19/16 2:07 PM

	 IEEE Computer Graphics and Applications� 55

in the direct volume rendering experiments. Figure
6 shows an example contour generated. The CPU
run times were measured with two Xeon E5-2698
processors, each with 16 cores and two times hy-
perthreading running at 2.3 GHz. The CUDA runs
were measured on a Tesla K40. Figure 7 gives a
summary of the time.

We compared the VTK-m algorithm with the
similar algorithms in PISTON and a serial algo-
rithm in VTK that can be run in parallel with MPI.
To make the comparison as authentic as possible,
we used VTK’s Marching Cubes implementation
of contouring (vtkMarchingCubes) without point
merging. The MPI experiments were run on a sin-
gle node.

In serial, our VTK-m Marching Cubes imple-
mentation ran at about half the speed of the VTK
implementation. This is likely due to duplicate com-
putation during the two-pass algorithm in VTK-m.
However, the VTK-m algorithm exceeded the VTK
algorithm’s performance in parallel, almost dou-
bling the speed, which we attribute to there being
load imbalance when using MPI to parallelize the
old VTK version. The exact same VTK-m implemen-
tation also had good performance on the CUDA
device on which it ran faster than any of the paral-
lel CPU implementations. The performance of the
VTK-m implementation is comparable to the previ-
ous generation algorithm implemented in PISTON.
The VTK-m implementation is slightly slower,
which we attribute to the PISTON implementation
consolidating some index computations.

Surface Simplification
The simplification of polygonal meshes is a critical
component of visualization applications that wish
to provide rendering levels of detail. ParaView uses
a point-clustering algorithm that combines mesh
points using a regular grid of bins,11 as Figure 8
demonstrates. We implemented this algorithm in

VTK-m, which performs the clustering by identify-
ing the bins in a map operation and then combin-
ing points in the same bin by sorting based on bin
identifier.

We demonstrated this algorithm using the Lucy
data from the Stanford 3D scanning repository
(http://graphics.stanford.edu/data/3Dscanrep/).
The experiments clustered using 5123, 1,0243, and
2,0483 bins, which reduced the output by 97, 91,
and 67 percent, respectively. For comparison pur-
poses, we can demonstrate the VTK-m algorithm
in serial and the serial VTK algorithm (except for
the 2,0483 grid, for which the VTK filter ran out of
memory). The CPU runtimes were measured with
two Intel Xeon E5-2699 processors, each with 16
cores and two times hyperthreading running at
2.3 GHz with 64 Gbytes of memory. The CUDA
runs were measured on a Tesla K40. Figure 9 gives
a summary of the time.

Even when run in serial, the VTK-m implemen-
tation of surface simplification takes less time
than the VTK implementation. This difference is
mostly because the VTK-m algorithm uses a sim-
pler but effective vertex positioning that requires

Figure 6.
Example
contour
generated by
VTK-m. The
4323 supernova
dataset is
similar to the
one used in the
direct volume
rendering
experiments.

vtkMarchingCubes Serial 11.917

vtkMarchingCubes 32 MPI ranks 1.352

vtkMarchingCubes 64 MPI ranks 1.922

PISTON Serial 19.895

PISTON CUDA 0.514

PISTON TBB 0.955

VTK-m Serial 20.784

VTK-m CUDA 0.560

VTK-m TBB 1.161

DeviceAlgorithm Time (sec)

Figure 7. Time (in seconds) to run different isosurface implementations on various devices with different
output sizes. The VTK-m algorithm exceeded the VTK algorithm’s performance in parallel, almost doubling
the speed.

g3mor.indd 55 4/19/16 2:07 PM

56	 May/June 2016

Feature Article

less computation and memory. Running the VTK-
m algorithm in parallel further reduces the run-
ning time. We did observe a limit in the speedup
for this algorithm, particularly for Intel Threading
Building Blocks (TBB). This appears to be a limit of
the sort algorithm provided by TBB, which domi-
nates the runtime.

Integration with HPC Applications
Visualization has long been a critical tool used by
scientific applications for a variety of tasks, includ-
ing data exploration, debugging, and results vali-
dation and presentation. The size and complexity
of the data generated by these application codes
has pushed more and more visualization onto
larger and more massively threaded and hetero-
geneous resources, including the supercomputer
running the application using an in situ visual-
ization paradigm.

VTK-m is designed to assist these applications by
running on both dedicated visualization resources
and with the application on the supercomputer
using an in situ paradigm. We have been explor-
ing the integration of VTK-m with XGC1, a highly
scalable physics code used to study plasmas in fu-

sion tokamak devices.12 Recent work has explored
using lightweight plug-ins to perform visualiza-
tion both of the particles and the field variables
in XGC1 using ADIOS and DataSpaces as a lightly
coupled in situ framework.13

XGC1 production runs produce tremendous
amounts of data, particularly particle data. Thus,
XGC1 scientists are interested in visualization and
analysis of these particles in numerous ways that
include both the entire set of particles and various
subsets of particles based on particular properties.
Furthermore, these analyses might take place in
different parts of the data workflow, from simula-
tion nodes, loosely coupled nodes, or disk. Depend-
ing on this workflow, the visualization and analysis
code must perform well in a variety of different
locations with different computer hardware. VTK-
m’s performance portability offers this flexibility
while maintaining low overhead. Also, because of
the size of this particle data, efficient representa-
tions on the simulation nodes and coupling nodes
are paramount. VTK-m’s data model enables an ef-
ficient representation while taking full advantage of
the data-parallel framework to process large num-
bers of particles. The initial work in visualization
plug-ins was done using EAVL, but it is now being
migrated over to the VTK-m framework.

Figure 10 shows visualizations of particles from
a recent XGC1 run. One particular interest to
the scientists is understanding the interactions
between the plasma particles and the tokamak
containment vessel. The visualization workflow
consists of identifying particles that begin in the
plasma’s central core at the start of the simula-
tion and then migrate over time outside the cen-
tral core and collide with the tokamak wall. The
visualization plug-ins we are developing for this
application use ADIOS for the I/O, both file based
and in situ. The in situ integration applies the
VTK-m data model to the simulation particles and
the tokamak wall, which lets VTK-m operate on
these data without copying them. VTK-m worklets
are used to first identify the particles inside and
outside of the plasma core and then to flag par-
ticles that intersect with the tokamak wall.

(a) (b)

Figure 8. Example of mesh simplification. (a) Original mesh and (b) a
mesh simplified on a 5123 grid of bins.

Algorithm Device 5123 (sec) 1,0243 (sec) 2,0483 (sec)

VTK Serial 3.65 11.40

VTK-m Serial 2.73 2.93 5.22

VTK-m TBB (36 threads) 0.36 0.45 0.72

VTK-m TBB (72 threads) 0.41 0.49 0.74

VTK-m CUDA 0.18 0.19 0.20

Figure 9. Time (in seconds) to run the surface simplification algorithm on various devices with different output
sizes. The CUDA time does not include data transfers to or from the device.

g3mor.indd 56 4/19/16 2:07 PM

	 IEEE Computer Graphics and Applications� 57

We plan to continue developing these and other
visualization plug-ins for XGC1 as well as other
codes running on HPC resources. We are particu-
larly interested in furthering our exploration of
these plug-ins executing in loosely coupled in situ
environments like ADIOS.

Many of the scientific visualization applica-
tions in use today have roots in software

that began development more than 20 years ago.
Enhancements have been added over the years
to address the needs of the HPC community, but
these traditional approaches do not fare well in
massively threaded environments. VTK-m fills this
gap in functionality by bringing together the most
recent research.

However, VTK-m is not intended to replace VTK
or any of the other existing visualization tools,
such as ParaView and VisIt. Rather, our plan is to
integrate VTK-m with these large, existing soft-
ware applications to enhance their performance.
VTK-m exists as a separate entity so that it may
be structured into the best possible framework for
multithreaded development environments.

Many visualization researchers and developers
are adopting VTK-m for their scientific visualization
needs. We expect VTK-m to be a major resource for
visualization software for many years to come. �

Acknowledgments
We thank Kewei Lu from the Ohio State University
for valuable contributions to the VTK-m isosurface
implementation. This material is based on work sup-
ported by the US Department of Energy (DoE), Office
of Science, Office of Advanced Scientific Computing
Research, under award numbers 14-017566 and 12-
015215. Sandia National Laboratories is a multipro-
gram laboratory managed and operated by Sandia, a
wholly owned subsidiary of Lockheed Martin, for the
US DoE’s National Nuclear Security Administration
under contract DE-AC04-94AL85000, SAND 2016-
1719 J. The original manuscript was authored by UT-
Battelle LLC under contract DE-AC05-00OR22725
with the US DoE. The US government retains and
the publisher, by accepting the article for publication,
acknowledges that the US government retains a non-
exclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this man-
uscript, or allow others to do so, for US government
purposes. The DoE will provide public access to these
results of federally sponsored research in accordance
with the DoE Public Access Plan (http://energy.gov/
downloads/doe-public-access-plan).

References
	 1.	 S. Ahern et al., “Scientific Discovery at the Exascale:

Report from the DOE ASCR 2011 Workshop on Exas
cale Data Management, Analysis, and Visualization,”
Dept. of Energy Office of Advanced Scientific Com
puting Research, Feb. 2011; http://science.energy
.gov/~/media/ascr/pdf/program-documents/docs/
Exascale-ASCR-Analysis.pdf.

	 2.	 S. Ashby et al., “The Opportunities and Challenges
of Exascale Computing,” Summary Report of the
Advanced Scientific Computing Advisory Committee
(ASCAC) Subcommittee, Fall 2010; http://science
.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale
_subcommittee_report.pdf.

	 3.	 H. Childs et al., “Research Challenges for Visualization
Software,” Computer, vol. 46, no. 5, 2013, pp. 34–42.

	 4.	 C.C. Law et al., “A Multi-threaded Streaming
Pipeline Architecture for Large Structured Data Sets,”
Proc. IEEE Visualization, 1999, pp. 225–232.

	 5.	 H. Childs et al., “Extreme Scaling of Production
Visualization Software on Diverse Architectures,”
IEEE Computer Graphics and Applications, vol. 30, no.
3, 2010, pp. 22–31.

	 6.	 S.H. Fuller and L.I. Millett, “Computing Performance:
Game Over or Next Level?” Computer, vol. 44, no. 1,
2011, pp. 31–38.

	 7.	 G.E. Blelloch, Vector Models for Data-Parallel
Computing, MIT Press, 1990.

	 8.	 K. Moreland et al., “A Classification of Scientific
Visualization Algorithms for Massive Threading,”
Proc. 8th Int’l Workshop Ultrascale Visualization
(UltraVis), 2013, article no. 2.

	 9.	 L. Lo, C. Sewell, and J. Ahrens, “PISTON: A Portable
Cross-Platform Framework for Data-Parallel Visual
ization Operators,” Proc. Eurographics Symp. Parallel
Graphics and Visualization (EGPGV), 2012, pp. 11–20.

	10.	 M. Larsen et al., “Ray Tracing within a Data Parallel
Framework,” Proc. IEEE Pacific Visualization Symp.
(PacificVis), 2015, pp. 279–286.

(a) (b)

Figure 10. Particle visualization from XGC1. (a) The classification of
particles inside (pink) or outside (white) of the plasma core and (b) the
particles that interact with the containment wall (red).

g3mor.indd 57 4/19/16 2:07 PM

58	 May/June 2016

Feature Article

	11.	 P. Lindstrom, “Out-of-Core Simplification of Large
Polygonal Models,” Proc. SIGGRAPH, 2000, pp.
259–262.

	12.	 C.S. Chang et al., “Compressed Ion Temperature
Gradient Turbulence in Diverted Tokamak Edge,”
Physics of Plasmas, vol. 16, no. 5, 2009, p. 056108.

	13.	 D. Pugmire et al., “Towards Scalable Visualization
Plugins for Data Staging Workflows,” Proc. SC14
Workshop Big Data Analytics: Challenges and
Opportunities (BDAC-14), 2014.

Kenneth Moreland is a principal member of the technical
staff at Sandia National Laboratories. His research inter-
ests include large-scale and finely threaded scientific visual-
ization algorithms. Moreland has a PhD in computer science
from the University of New Mexico. Contact him at kmorel
@sandia.gov.

Christopher Sewell is a staff scientist in the Computer and
Computational Sciences Division at Los Alamos National
Laboratory. His research interests include portable data-
parallel programming models and large-scale visualization
and analysis. Sewell has a PhD in computer science from
Stanford University. Contact him at csewell@lanl.gov.

William Usher is a graduate student research assistant at
the Scientific Computing and Imaging Institute at the Uni-
versity of Utah. His research interests include large-scale and
in situ scientific visualization algorithms. Usher is currently
pursuing a PhD in computer science at the University of
Utah. Contact him at will@sci.utah.edu.

Li-ta Lo is a technical staff member at Los Alamos Na-
tional Laboratory. His research interests include task and
data-parallel programming for scientific visualization and
simulation and big data analytics. Lo has an MS in applied
mechanics from National Taiwan University. Contact him
at ollie@lanl.gov.

Jeremy Meredith is a senior research and development staff
member at Oak Ridge National Laboratory. His research in-
terests include high-performance computing and large-scale
scientific visualization. Meredith has an MS in computer
science from Stanford University. Contact him at jsmeredith
@ornl.gov.

David Pugmire is a senior staff scientist at Oak Ridge
National Laboratory. His research interests include methods
for scientific visualization on high-performance computers.
Pugmire has a PhD in computer science from the University
of Utah. Contact him at pugmire@ornl.gov.

James Kress is a third-year PhD student in computer sci-
ence at the University of Oregon. His research interests in-
clude scientific visualization, high-performance computing,

and the intersection of the two. Kress has a BS in computer
science with a minor in political science from Boise State
University. Contact him at jkress@cs.uoregon.edu.

Hendrik Schroots is a software engineer at Intel. His re-
search interests include large-scale visualization and graph-
ics. Schroots has an MS in visualization and graphics from
the University of California, Davis. Contact him at hschroot
@ucdavis.edu.

Kwan-Liu Ma is a professor of computer science at the Uni-
versity of California, Davis, where he directs VIDI Labs and
the UC Davis Center for Visualization. His research inter-
ests include visualization, high-performance computing, and
user interface design. Ma has a PhD in computer science
from the University of Utah. He is an IEEE fellow and a
recipient of the IEEE VGTC Visualization Technical Achieve-
ment Award. Contact him at ma@cs.ucdavis.edu.

Hank Childs is an associate professor at the University
of Oregon and a staff scientist at Lawrence Berkeley Na-
tional Laboratory. His research interests include large data
visualization, visualization systems, and flow visualization.
Childs has a PhD in computer science from the University
of California, Davis. Contact him at hank@uoregon.edu.

Matthew Larsen is staff scientist at Lawrence Livermore
National Laboratory and a PhD student at the University
of Oregon. His research interests include computer graphics,
scientific visualization, and HPC. Larsen received an MS in
computer science from the University of Oregon. Contact
him at larsen30@llnl.gov.

Chun-Ming Chen is a PhD candidate of the Department
of Computer Science and Engineering at Ohio State Univer-
sity. His research interests include analysis and visualization
for large flow data. Chen has an MS in computer science
from the University of Southern California. Contact him at
chen.1701@osu.edu.

Robert Maynard is an R&D engineer at Kitware. He is one
of the primary developers of VTK-m with a focus on scien-
tific visualization on heterogeneous architectures. Maynard
has a BS in computer science from Laurentian University.
Contact him at robert.maynard@kitware.com.

Berk Geveci is the senior director of scientific computing
at Kitware. His research interests include large-scale data
analysis and visualization within the VTK and ParaView
frameworks. Geveci has a PhD in mechanical engineer-
ing from Lehigh University. Contact him at berk.geveci
@kitware.com.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

g3mor.indd 58 4/19/16 2:07 PM

