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Although the basic architecture for high-
performance computing (HPC) plat-
forms has remained homogeneous and 

consistent for more than a decade, revolutionary 
changes are appearing on leading-edge supercom-
puters. Plans for future supercomputers promise 

even larger changes. But one 
troubling attribute of future HPC 
machines is the massive increase 
in concurrency required to sus-
tain peak computation. In fact, 
most project billions of threads 
to achieve an exaflop.1 This in-
crease is partially accredited to 
requiring more cores to achieve 
faster aggregate computing rates 
and partially accredited to using 
additional threads per core to 
hide memory latency. Because of 
cost and power limitations, the 

system memory will not commensurately increase, 
which means algorithms will need strong scaling 
(that is, more parallelism per datum). 

This trend toward massive threading can be seen 
in high-performance computing today. The cur-
rent leadership-class computer at the Oak Ridge 
National Laboratory, Titan, requires between 70 
and 500 million threads to run at peak, which is 
300 times more than was required by its prede-
cessor, JaguarPF. In contrast, the system memory 
grew only by a factor of 2.3. 

The increasing reliance on concurrency to achieve 
faster execution rates invalidates the scalability of 
much of our scientific HPC code. New processor 
architectures are leading to new programming 
models and new algorithmic approaches. The de-
sign of new algorithms and their practical imple-
mentation are a critical extreme-scale challenge.2,3

To address these needs, HPC scientific visual-
ization researchers working for the United States 
Department of Energy are building a new library 
called VTK-m that provides a framework for sim-
plifying the design of visualization algorithms on 
current and future architectures. VTK-m also pro-
vides a flexible data model that can adapt to many 
scientific data types and operate well on multi-

Traditional scientific 
visualization software 
approaches do not fare 
well in massively threaded 
environments. To address the 
needs of the high-performance 
computing community, the 
VTK-m framework fills the 
gaps in functionality by 
bringing together the most 
recent research.
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threaded devices. Finally, VTK-m serves as a con-
tainer for algorithms designed in the framework 
and gives the visualization community a common 
point to collaborate, contribute, and leverage mas-
sively threaded algorithms. 

The Challenges of Highly Threaded 
Visualization
The scientific visualization research community 
has been building scalable HPC algorithms for 
more than 15 years, and today there are multiple 
production tools that provide excellent scalability. 
However, our current visualization tools are based 
on a message-passing programming model. They 
expect a coarse decomposition of the data that 
works best when each processing element has on 
the order of 100,000 to 1 million data cells. 

For many years, HPC visualization applications 
such as ParaView, VisIt, EnSight, and FieldView 
have supported parallel processing on distributed 
memory computer systems. The approach used by 
all these software products is a bulk synchronous 
parallel model, where algorithms perform the 
majority of their computation on independent 
local operations.4 

This parallel computation model has worked 
well for the last 15 years. Even recent multicore 
processors could be leveraged reasonably effi-
ciently as independent message-passing processes 
on each core, allowing these tools to scale to pet-
ascale machines.5 

However, processors designed for HPC instal-
lations are undergoing transformative design 
changes. With physical limitations that prevent 
individual cores from executing instructions ap-
preciably faster than their current rate, manu-
facturers are increasing the total computational 
bandwidth by adding more cores to each proces-
sor.6 Some HPC processor designs go even further 
to increase the total possible execution throughput 
by removing latency-hiding features and incor-
porating vector processing. A consequence of all 
these features is that it is no longer sufficient to 
treat each core as an independent processor. 

The upshot is that our parallel computing model 
is no longer symmetric. The relationship between 
two cores on the same processor differs signifi-
cantly from the relationship between two nodes of 
a supercomputer. To address this asymmetry, a pop-
ular approach is to use a mixed-mode, or hybrid, 
parallel computing model that incorporates two 
levels of task organization. The first level comprises 
distributed-memory message-passing nodes in a 
cluster-like arrangement. Then, within each node 
of the distributed-memory arrangement is a proces-

sor or small set of processors capable of executing 
numerous threads that may require coordination. 

From our point of view, the principle advan-
tage of the mixed-mode parallel model is that 
we can leverage our existing software to manage 
the message-passing parallel units. The VTK-m 
framework focuses on the intranode parallelism 
that often requires massive threading and syn-
chronized execution.

Thus, new HPC systems require a much higher 
degree of parallelism that could require threads 
operating on as few as one to 10 data cells. At this 
fine degree of parallelism, our conventional visu-
alization breaks down in multiple different ways.

Load Imbalance
Typically, data are partitioned under the assumption 
that the amount of work per datum is uniform. How-
ever, this is not true for all visualization algorithms, 
many of which generate data conditionally based 
on the input values. With only a few exceptions, 
current parallel visualization functions completely 
ignore this load imbalance, which is considered tol-
erable when amortized over larger partitions. 

When the data gets decomposed to the cell level, 
this amortization no longer occurs, which results 
in a much more severe load imbalance. Finely 
threaded visualization algorithms need to be cog-
nizant of potential load imbalance and schedule 
work accordingly. 

Dynamic Memory Allocation
When the amount of data a visualization algo-
rithm generates is dependent on the values of the 
input data, the output data’s size and structure is 
not known at the execution outset. In such a case, 
the algorithm must dynamically allocate memory 
as data are generated. 

Because our conventional parallel visualiza-
tion algorithms operate on coarse partitions in 
distributed memory spaces, processing elements 
can dynamically allocate memory completely in-
dependent from one another. In contrast, dynamic 
memory allocation from many threads within a 
shared memory environment requires explicit syn-
chronization that inhibits parallel execution. 

Topological Connections
Scientific visualization algorithms are dominated 
by operations on topological connections in 
meshes. Care must be taken when defining these 
connections across boundaries of data assigned to 
different processing elements. Mutual data being 
read must be consistent, and mutual data being 
written must be coordinated. 
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A conventional parallel visualization algorithm 
typically manages topological connections across 
processes by replicating data on the boundaries. 
Because the partitions are coarse, there is a limited 
amount of replication. However, this replication 
cannot be sustained as the data decomposition ap-
proaches single cells. Instead, threads must share 
connected data, and generated data may require 
further processing to identify coincident topology. 

SIMD Execution
In addition to increasing execution bandwidth 
through multiple processing cores, modern HPC 
processors also enable vector processing, which 
allows the same instruction to be executed si-
multaneously on multiple data values. Whereas 
conventional parallel visualization algorithms al-
low for completely independent execution, efficient 
vector processing requires at least some parallel 
execution to run in single instruction, multiple 

data (SIMD) mode. New algorithms should mini-
mize code execution divergence. 

Visualization with Data Parallel Primitives
Data parallel primitives provide an abstraction 
layer between the low-level hardware architecture 
and the high-level code, which both increases the 
portability of VTK-m and simplifies the imple-
mentation of algorithms. Guy Blelloch originally 
proposed a scan-vector model for data parallel 
computing and outlined a variety of algorithms in 
data structures, computational geometry, graphs, 
and numerical analysis.7 All of VTK-m’s predeces-
sors (PISTON, Dax, and EAVL) leverage data paral-
lel primitives in some way (see the “Predecessors 
of VTK-m” sidebar for more details). VTK-m pro-
vides an abstract device model inherited from Dax 
and expanded to fulfill the needs of the algorithms 
inherited from PISTON. VTK-m makes use of the 
following data parallel primitives. 

A lthough the VTK-m software project itself started little 
more than a year ago, the software originated as an 

aggregation of three predecessor products: PISTON, Dax, 
and EAVL. The US Department of Energy (DoE) high-
performance computing (HPC) community predicted early 
on that leadership class facilities would be transitioning 
to heavily threaded processors and that we would need 
a significant change to our visualization algorithms and 
software.1 Consequently, researchers at the DoE national 
laboratories began considering the challenges of visualiza-
tion on accelerator processors and created three separate 
toolkits, each focusing on a specific aspect of the problem. 

The first toolkit, PISTON,2 considers the design of por-
table multithreaded visualization algorithms. Built on top 
of the Thrust library,3 algorithms in PISTON comprise a se-
quence of general parallel operations. Originally designed 
for CUDA, Thrust has a flexible device back end that now 
supports multicore CPU architectures. PISTON has demon-
strated scalability across multiple devices. 

The second toolkit, Dax,4 considers a top-down approach 
to a multithreaded visualization framework. Recognizing 
that most visualization algorithms iteratively apply an op-
eration to each element in a mesh, the Dax framework lets 
developers concentrate on designing these per-element 
operations while the framework automatically builds the 
appropriate parallel scheduling. 

The third toolkit, EAVL,5 considers the data model used 
in modern visualization. EAVL updates the visualization data 
model to handle modern simulation codes using flexible 
mesh structures that are also easily accessible in multi-
threaded environments. 

Each originally focused on a different part of the extreme-

scale visualization problem, but the software packages did 
not integrate well. Recognizing the prospect of substantial 
duplication of effort, the developers of these software 
projects came together to work under a unified software 
product: VTK-m. Although VTK-m was born from a new 
code base, the PISTON, Dax, and EAVL developers con-
tributed and evolved their respective technologies. The 
development of its predecessors has been phased out, and 
VTK-m is now a unified, well-integrated product of these 
three predecessors with continuing evolving capabilities. 
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■■ Map applies the same unary operator to each el-
ement of an array in parallel. This is useful for 
element-wise field expressions or can be lever-
aged as a general scheduling capability. 

■■ Reduce computes a single value (such as the sum or 
product) from all the elements of an array, which 
is useful whenever aggregate values are needed. 

■■ Scan is similar to a reduction but stores inter-
mediate results (that is, a running total) at each 
element of the array. Scans are particularly use-
ful for finding array indices. 

■■ Sort is a versatile reordering operation that is 
particularly useful for identifying all groups of 
common values in an array. 

■■ Search can simultaneously find multiple values 
in an array. This can be used to find a reverse 
mapping of values in one input array to their 
locations in a second sorted input array.

Algorithms that employ hierarchical parallelism 
may make use of segmented versions of data paral-
lel primitives. For example, when constructing KD-
trees or other types of graphs, the graph’s structure 
may be encoded using a segment vector, where 
each segment represents a node. Operations such 
as sorts and scans can then be performed indepen-
dently within each node but still all in parallel. 

Although research has found effective ways to uti-
lize these data parallel primitives for many visualiza-
tion problems, the application of these primitives is 
not always obvious. Fortunately, many visualization 
algorithms follow similar patterns of operation,8 
and these patterns are embodied by objects called 
worklets in VTK-m, a concept inherited from Dax. 

Worklets extend the functionality of the basic data 
parallel primitives by providing common features. 
For example, several flavors of worklets can trace 
topological connections in map operations. VTK-m 
handles the indexing of the topology structure inter-
nally, which makes it easier and safer to write work-
lets than to directly operate on data structures in 
parallel. Other worklet types can manage algorithms 
with sparse output or find coincident topology, fur-
ther reducing the burden on the programmer. 

Performance Portability with Data 
Parallel Primitives
Unlike many “in house” HPC software applications 
that can be written for a specific HPC installation, 
the software our team develops is used across all 
the US DoE supercomputer facilities and many 
others around the world. This means our software 
must perform well on a variety of hardware types 
and configurations. Furthermore, the critical code 
in a visualization system is not limited to a small 

number of iterative loops. Our software contains 
numerous algorithm implementations to address 
visualization needs across many scientific disci-
plines. For example, the Visualization Toolkit, on 
which ParaView and VisIt are based, contains more 
than 400 distinct filters. 

Upgrading this functionality is a daunting chal-
lenge. Attempting to create multiple algorithm 
implementations targeted to each known platform 
(and possibly currently unknown platforms in the 
future) creates a combinatorial explosion of work. 
This approach would require significant developer 
investment, likely exceeding worldwide funding 
available for this task. 

Instead, VTK-m uses data parallel primitives to 
achieve performance portability. VTK-m defines an 
abstract device model constructed from the afore-
mentioned data parallel primitive operations (such 
as map, scan, sort, and reduce) that run in parallel 
on the device. The VTK-m team is rethinking visu-
alization algorithms as a sequence of these parallel 
primitive operations. When implemented as such, 
the entirety of algorithms in VTK-m can be ported 
to a new device by providing only the parallel 
primitives for that device. Algorithms need only 
be written once to VTK-m’s abstract device model, 
which dramatically reduces the implementation 
work for various architectures (see Figure 1).

The indirection of using data parallel primitives 
to implement algorithms can limit the amount 

VTK-m

(a)

CPU GPU MIC Others

Contour External
faces Clip Particle

advection
Others

(b)

CPU GPU MIC Others

Contour External
faces Clip Particle

advection
Others

Figure 1. VTK-m’s abstract device model. (a) Implementing all of our 
visualization algorithms separately for every architecture we need to 
support leads to an unmanageable amount of software. (b) By using 
VTK-m’s abstract device model based on data parallel primitives, we can 
reduce the amount of software to implement to a feasible level.
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of optimization that can be done, which raises 
the question of how much performance portabil-
ity costs. Evidence collected from recent research 
using data parallel primitives9,10 including work 
presented here suggests a fairly low overhead. The 
benefits of simplified implementation and perfor-
mance portability outweigh any overheads intro-
duced by the approach. 

Advanced Data Models
VTK-m is intended to be used in many scientific 
disciplines and with data of many different ar-
rangements and structures. It is important that the 
data model in VTK-m be flexible enough to capture 
the different representations of data while still 
providing clear semantics for the elements in the 
data. Furthermore, the data representation must 
be space efficient and accessible on the different 
processor types we use (that is, work on both CPUs 
and GPUs). To achieve these goals, VTK-m provides 
a data model inherited from its predecessor EAVL 
(see the “Predecessors of VTK-m” sidebar) with 
some modifications and extensions. 

The utility of the data models is further en-
hanced by integrating them with the aforemen-
tioned data parallel primitives, abstract device 
adapters, and worklet mechanisms. Datasets in 
VTK-m seamlessly move between devices. Algo-
rithms built within VTK-m use abstract concepts 
that can be applied to datasets of many different 
structures without having to be reimplemented. 

Datasets
Traditional dataset models often choose a set of 
rigid characteristics for a dataset and then label 
that collection of characteristics as a specific type 
of mesh. For example, a uniform dataset has regu-
lar axis-aligned coordinates and a logical [i, j, k] 
cell arrangement. An unstructured dataset has 
fully explicit coordinates (an [x, y, z] value sepa-
rately defined for each point) with fully explicit 
cell connectivity defined by arrays of indices. A 
curvilinear grid is a mix with logical cell arrange-
ment but explicit coordinates. 

However, this selection of grid types is some-
what arbitrary. It is easy to generate unsupported 
meshes. For example, consider a tetrahedralization 
of a uniform grid. This would be most efficiently 
represented with regular coordinates and explicit 
cells, but most data models require a fully explicit 
unstructured grid. 

VTK-m removes this restriction entirely by de-
fining a dataset as a mere container for arbitrary 
collections of coordinates, cell sets, and fields. 
Although this allows VTK-m to support more 

mesh types, the algorithm designer does not have 
to manage this complexity. At the worklet level, 
cell shape and field values are decoupled from the 
mesh representation, meaning the algorithm need 
only be implemented once for all mesh types. 

The ability to correctly represent mesh struc-
tures is important for computational efficiency 
and accuracy. It is also critical for in situ visual-
ization and analysis tasks because any mismatch 
between the representational capabilities of the 
analysis code relative to the targeted simulation 
code will result in expensive (both computation-
ally and in terms of memory footprint) copies and 
transformations of data arrays. 

Coordinate Systems
Because it allows an arbitrary collection of coor-
dinates, VTK-m supports datasets with no coordi-
nates (such as graph data with no physical location 
for the vertices) or datasets with coordinate sys-
tems of spatial dimension other than three. VTK-
m also supports more than one coordinate system, 
which recognizes that a mesh might be interpreted 
in more than one spatial mapping independent of 
the underlying mesh structure. For example, geo-
spatial data could simultaneously have coordinate 
systems defined by 3D position, latitude-longitude 
coordinates, and any number of 2D projections. 

Cell Sets
A common problem in traditional dataset mod-
els is the inability to properly support more than 
one type of topological element in the same mesh, 
such as volumetric elements with boundary inter-
face polygons or point elements with connecting 
line segments. Although it can often be supported 
by merging these disparate topological element 
types into a single mesh, the lack of separation 
requires that fields contain dummy values for the 
element types for which they are inapplicable, an 
error-prone and inefficient practice. 

VTK-m solves this problem by allowing multiple 
cell sets to be contained in the same mesh. The 
unifying characteristic of belonging to the same 
mesh (as opposed to two different meshes) is that 
they both refer to the same set of points using the 
same set of indices, which allows efficient map-
ping between these two cell sets. 

Use Cases
There has been significant interest within the sci-
entific visualization community to experiment with 
and adopt the VTK-m framework. This section con-
tains several examples of VTK-m being used in a 
variety different projects, including volume render-
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ing, ray tracing, geometric operations, and work-
flows for large-scale scientific applications. 

Ray Tracing
Matthew Larsen and his colleagues implemented a 
ray tracer using data parallel primitives in an ef-
fort to provide a many-core capable infrastructure 
that can perform rendering on any architecture.10 
Ray tracing is a compelling algorithm for exploring 
the boundaries of data parallel primitives because it 
is computationally intensive and has unstructured 
memory accesses. Furthermore, the HPC commu-
nity has a growing interest in using ray tracing 
rather than the traditional rasterization-based ren-
dering because the computational complexity of 
ray tracing is much better with respect to the size 
of the geometry (which has been steadily growing 
in the HPC setting). 

To verify the efficiency of the VTK-m framework, 
we implemented Larsen’s ray-tracing algorithm in 
VTK-m and replicated many of the experimental 
runs in the Larsen paper.10 Figure 2 shows example 
output from the ray tracer, and Figure 3 summa-
rizes the results of our experiments. The datasets 
are the same ones used in the Larsen study, as 
are the timings for the Optix Prime, Embree, and 
EAVL algorithms. The GPU runs come from a Tesla 
K40, and the CPU runs come from dual Intel Xeon 

E5’s, which are equivalent to the GPU2 and CPU2 
configurations, respectively, in the Larsen paper. 
Likewise, all images are rendered with 1,080p 
resolution (1920 × 1080), as the Larsen paper re-
ported. 

Our experiments verify the conclusions drawn by 
the Larsen study in that our architecture-agnostic 
data parallel approach is competitive with highly 
optimized architecture-specific approaches (within 
a factor of two). Also, the VTK-m implementation 
is at least as fast as, and sometimes faster than, 
Larsen’s previous implementation written using 

Figure 2. 
Example output 
from VTK-m 
ray-tracing 
algorithm. 
The data in 
this rendering 
represent 
seismic wave 
propagation 
through the 
Earth.

Dataset Algorithm Millions of rays per second

LT_350K OptiX Prime 357.6
 EAVL   150.8
 VTK-m   164.5
LT_372K OptiX Prime  322.4
 EAVL   124.7
 VTK-m   140.8
RM_350K OptiX Prime  436.5
 EAVL   197.5
 VTK-m   200.8
RM_650K OptiX Prime  420.4
 EAVL   172.9
 VTK-m   166.0
RM_970K OptiX Prime  347.1
 EAVL   152.8
 VTK-m   163.5
RM_1.7M OptiX Prime  266.8
 EAVL   136.6
 VTK-m   148.8
RM_3.2M OptiX Prime  264.5
 EAVL   124.8
 VTK-m   134.5
Seismic OptiX Prime  267.8
 EAVL   106.3
 VTK-m   119.4

LT_350K Embree  51.9
 EAVL  27.7
 VTK-m  38.5
LT_372K Embree  56.5
 EAVL  26.1
 VTK-m  36.0
RM_350K Embree  64.8
 EAVL  33.3
 VTK-m  47.8
RM_650K Embree  65.9
 EAVL  35.6
 VTK-m  49.1
RM_970K Embree  59.1
 EAVL  29.3
 VTK-m  41.0
RM_1.7M Embree  52.4
 EAVL  27.0
 VTK-m  37.8
RM_3.2M Embree  48.4
 EAVL  28.3
 VTK-m  33.9
Seismic Embree  43.2
 EAVL  25.2
 VTK-m  34.5

Dataset Algorithm Millions of rays per second

(a) (b)

Figure 3. 
The speed 
(measured 
in millions 
of rays cast 
per second) 
to perform 
ray tracing 
using different 
algorithms on 
different data 
sets. (a) GPU 
times and  
(b) CPU times. 
The datasets 
are the same 
ones used in 
the Larsen 
study,10 as are 
the timings 
for the Optix 
Prime, Embree, 
and EAVL 
algorithms.
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EAVL, which suggests that the integration of data 
models with the execution model, algorithms, and 
other features of VTK-m does not add overhead. 

Direct Volume Rendering
Direct volume rendering, in which we render a 
volume in space with variable color and opacity, is 
a common but computationally intensive task in 
scientific visualization. Thus, direct volume ren-
dering is a good use case to demonstrate VTK-m’s 
capabilities. We implemented a simple ray-casting 
direct volume renderer within the VTK-m frame-
work. Figure 4 shows an example output of this 
volume renderer. 

For testing, we used the output of a supernova 
simulation dataset, consisting of a 4323 volume of 
voxels and rendered to a 1,024 × 1,024 window. 
Because performance is directly related to the 
number of rays that intersect the volume, and ul-
timately generate a color, the camera is positioned 
so that the volume occupies a large portion of the 

viewing window. The rendering time is averaged 
over the rendering of 16 frames. 

We tested the same VTK-m volume render-
ing on three different devices: a dual-processor 
Intel Xeon IvyBridge E5-2670 v2 (labeled CPU), 
an NVIDIA Titan X (labeled GPU), and an Intel 
Xeon Phi 5110p coprocessor (labeled MIC). For 
comparison purposes, we also rendered the vol-
ume using VTK (with the vtkFixedPointVolumeR-
ayCastMapper class). This VTK implementation is 
multithreaded but designed strictly for the CPU 
so it was only run on that architecture. We also 
compared our VTK-m volume rendering algorithm 
with a similar one implemented in Dax. Figure 5 
summarizes the results of these experiments. All 
implementations were multithreaded and run on 
all cores available. 

The comparison between our VTK-m volume 
rendering and the existing VTK volume rendering 
is not a direct comparison of the performances 
of the two respective libraries because there are 
significant differences between the two algorithm 
implementations. In particular, the VTK-m volume 
rendering is much simpler than the VTK volume 
rendering, which has optimizations such as empty 
space skipping, which is not yet implemented in 
our algorithm. Nevertheless, our simpler algo-
rithm performs comparatively well and is also 
portable across multiple architectures. 

In contrast, the volume rendering implementa-
tions in VTK-m and Dax are similar. We can clearly 
see that the integration of the Dax technologies 
with those of the other VTK-m predecessors has 
not resulted in a larger overhead. On the contrary, 
the VTK-m framework operated more efficiently. 

Isosurface
Isosurfacing is one of the most valuable and widely 
used algorithms in scientific visualization. Our 
isosurface algorithm is adapted from PISTON. 
The new implementation integrates the algorithm 
with VTK-m’s data model and worklet execution 
mechanism. 

We demonstrate the isosurface algorithm using 
a 4323 supernova dataset similar to the one used 

Entropy

High

Low

Figure 4. Example output of the VTK-m volume renderer. The rendered 
image is from supernova simulation data using a direct volume renderer 
implemented in VTK-m.

CPU VTK  2.08

 VTK-m  1.25

GPU Dax  3.55

 VTK-m  6.79

MIC Dax  0.07

 VTK-m  0.28

Device Algorithm Frames per second

Figure 5. Average rendering rate for a 1,024 × 1,024 volume rendering image. All implementations were 
multithreaded and run on all cores available.
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in the direct volume rendering experiments. Figure 
6 shows an example contour generated. The CPU 
run times were measured with two Xeon E5-2698 
processors, each with 16 cores and two times hy-
perthreading running at 2.3 GHz. The CUDA runs 
were measured on a Tesla K40. Figure 7 gives a 
summary of the time.

We compared the VTK-m algorithm with the 
similar algorithms in PISTON and a serial algo-
rithm in VTK that can be run in parallel with MPI. 
To make the comparison as authentic as possible, 
we used VTK’s Marching Cubes implementation 
of contouring (vtkMarchingCubes) without point 
merging. The MPI experiments were run on a sin-
gle node. 

In serial, our VTK-m Marching Cubes imple-
mentation ran at about half the speed of the VTK 
implementation. This is likely due to duplicate com-
putation during the two-pass algorithm in VTK-m. 
However, the VTK-m algorithm exceeded the VTK 
algorithm’s performance in parallel, almost dou-
bling the speed, which we attribute to there being 
load imbalance when using MPI to parallelize the 
old VTK version. The exact same VTK-m implemen-
tation also had good performance on the CUDA 
device on which it ran faster than any of the paral-
lel CPU implementations. The performance of the 
VTK-m implementation is comparable to the previ-
ous generation algorithm implemented in PISTON. 
The VTK-m implementation is slightly slower, 
which we attribute to the PISTON implementation 
consolidating some index computations. 

Surface Simplification
The simplification of polygonal meshes is a critical 
component of visualization applications that wish 
to provide rendering levels of detail. ParaView uses 
a point-clustering algorithm that combines mesh 
points using a regular grid of bins,11 as Figure 8 
demonstrates. We implemented this algorithm in 

VTK-m, which performs the clustering by identify-
ing the bins in a map operation and then combin-
ing points in the same bin by sorting based on bin 
identifier. 

We demonstrated this algorithm using the Lucy 
data from the Stanford 3D scanning repository 
(http://graphics.stanford.edu/data/3Dscanrep/). 
The experiments clustered using 5123, 1,0243, and 
2,0483 bins, which reduced the output by 97, 91, 
and 67 percent, respectively. For comparison pur-
poses, we can demonstrate the VTK-m algorithm 
in serial and the serial VTK algorithm (except for 
the 2,0483 grid, for which the VTK filter ran out of 
memory). The CPU runtimes were measured with 
two Intel Xeon E5-2699 processors, each with 16 
cores and two times hyperthreading running at 
2.3 GHz with 64 Gbytes of memory. The CUDA 
runs were measured on a Tesla K40. Figure 9 gives 
a summary of the time. 

Even when run in serial, the VTK-m implemen-
tation of surface simplification takes less time 
than the VTK implementation. This difference is 
mostly because the VTK-m algorithm uses a sim-
pler but effective vertex positioning that requires 

Figure 6. 
Example 
contour 
generated by 
VTK-m. The 
4323 supernova 
dataset is 
similar to the 
one used in the 
direct volume 
rendering 
experiments.

vtkMarchingCubes  Serial  11.917

vtkMarchingCubes  32 MPI ranks  1.352

vtkMarchingCubes  64 MPI ranks  1.922

PISTON  Serial  19.895

PISTON  CUDA  0.514

PISTON  TBB  0.955

VTK-m  Serial  20.784

VTK-m  CUDA  0.560

VTK-m  TBB  1.161

DeviceAlgorithm Time (sec)

Figure 7. Time (in seconds) to run different isosurface implementations on various devices with different 
output sizes. The VTK-m algorithm exceeded the VTK algorithm’s performance in parallel, almost doubling 
the speed.
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less computation and memory. Running the VTK-
m algorithm in parallel further reduces the run-
ning time. We did observe a limit in the speedup 
for this algorithm, particularly for Intel Threading 
Building Blocks (TBB). This appears to be a limit of 
the sort algorithm provided by TBB, which domi-
nates the runtime. 

Integration with HPC Applications
Visualization has long been a critical tool used by 
scientific applications for a variety of tasks, includ-
ing data exploration, debugging, and results vali-
dation and presentation. The size and complexity 
of the data generated by these application codes 
has pushed more and more visualization onto 
larger and more massively threaded and hetero-
geneous resources, including the supercomputer 
running the application using an in situ visual-
ization paradigm. 

VTK-m is designed to assist these applications by 
running on both dedicated visualization resources 
and with the application on the supercomputer 
using an in situ paradigm. We have been explor-
ing the integration of VTK-m with XGC1, a highly 
scalable physics code used to study plasmas in fu-

sion tokamak devices.12 Recent work has explored 
using lightweight plug-ins to perform visualiza-
tion both of the particles and the field variables 
in XGC1 using ADIOS and DataSpaces as a lightly 
coupled in situ framework.13

XGC1 production runs produce tremendous 
amounts of data, particularly particle data. Thus, 
XGC1 scientists are interested in visualization and 
analysis of these particles in numerous ways that 
include both the entire set of particles and various 
subsets of particles based on particular properties. 
Furthermore, these analyses might take place in 
different parts of the data workflow, from simula-
tion nodes, loosely coupled nodes, or disk. Depend-
ing on this workflow, the visualization and analysis 
code must perform well in a variety of different 
locations with different computer hardware. VTK-
m’s performance portability offers this flexibility 
while maintaining low overhead. Also, because of 
the size of this particle data, efficient representa-
tions on the simulation nodes and coupling nodes 
are paramount. VTK-m’s data model enables an ef-
ficient representation while taking full advantage of 
the data-parallel framework to process large num-
bers of particles. The initial work in visualization 
plug-ins was done using EAVL, but it is now being 
migrated over to the VTK-m framework. 

Figure 10 shows visualizations of particles from 
a recent XGC1 run. One particular interest to 
the scientists is understanding the interactions 
between the plasma particles and the tokamak 
containment vessel. The visualization workflow 
consists of identifying particles that begin in the 
plasma’s central core at the start of the simula-
tion and then migrate over time outside the cen-
tral core and collide with the tokamak wall. The 
visualization plug-ins we are developing for this 
application use ADIOS for the I/O, both file based 
and in situ. The in situ integration applies the 
VTK-m data model to the simulation particles and 
the tokamak wall, which lets VTK-m operate on 
these data without copying them. VTK-m worklets 
are used to first identify the particles inside and 
outside of the plasma core and then to flag par-
ticles that intersect with the tokamak wall. 

(a) (b)

Figure 8. Example of mesh simplification. (a) Original mesh and (b) a 
mesh simplified on a 5123 grid of bins.

Algorithm Device 5123  (sec) 1,0243 (sec) 2,0483 (sec)

VTK  Serial  3.65 11.40

VTK-m  Serial  2.73 2.93 5.22

VTK-m  TBB (36 threads)  0.36 0.45 0.72

VTK-m  TBB (72 threads)  0.41 0.49 0.74

VTK-m  CUDA  0.18 0.19 0.20

Figure 9. Time (in seconds) to run the surface simplification algorithm on various devices with different output 
sizes. The CUDA time does not include data transfers to or from the device.
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We plan to continue developing these and other 
visualization plug-ins for XGC1 as well as other 
codes running on HPC resources. We are particu-
larly interested in furthering our exploration of 
these plug-ins executing in loosely coupled in situ 
environments like ADIOS. 

Many of the scientific visualization applica-
tions in use today have roots in software 

that began development more than 20 years ago. 
Enhancements have been added over the years 
to address the needs of the HPC community, but 
these traditional approaches do not fare well in 
massively threaded environments. VTK-m fills this 
gap in functionality by bringing together the most 
recent research. 

However, VTK-m is not intended to replace VTK 
or any of the other existing visualization tools, 
such as ParaView and VisIt. Rather, our plan is to 
integrate VTK-m with these large, existing soft-
ware applications to enhance their performance. 
VTK-m exists as a separate entity so that it may 
be structured into the best possible framework for 
multithreaded development environments. 

Many visualization researchers and developers 
are adopting VTK-m for their scientific visualization 
needs. We expect VTK-m to be a major resource for 
visualization software for many years to come. �
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