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Abstract

Density tracking by quadrature (DTQ) is a numerical procedure for computing solutions to
Fokker-Planck equations that describe probability densities for stochastic differential equations
(SDEs). In this paper, we extend upon existing tensorized DTQ procedures by utilizing a flex-
ible quadrature rule that allows for unstructured, adaptive meshes. We propose and describe
the procedure for N -dimensions, and demonstrate that the resulting adaptive procedure is sig-
nificantly more efficient than a tensorized approach. Although we consider two-dimensional
examples, all our computational procedures are extendable to higher dimensional problems.
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1 Problem History and Background

Stochastic differential equations (SDEs) are prevalent in many areas of research. Kloeden and
Platen [1] outline a variety of SDE uses, including population dynamics, protein kinetics, psychol-
ogy problems involving neuronal activity, investment finance and option pricing, turbulent diffusion
of a particle, radio-astronomy and the analysis of stars, helicopter rotor and satellite orbit stability,
biological waste treatment with analysis of air and water quality, seismology and structural mechan-
ics, the stability of materials prone to fatigue cracking, and blood clotting dynamics and cellular
energetics. In this paper, we are interested in solving SDEs and their associated Fokker-Planck
equations.

1.1 Stochastic Differential Equations

Let Wt be an N -dimensional Wiener Process and Xt be an N -dimensional vector stochastic Itô
diffusion process governed by the SDE

dXt = f(Xt, t)dt+ g(Xt, t)dWt (1)

with the drift f(Xt, t) as an N -dimensional vector and the diffusion defined by an N×N -dimensional
matrix g(Xt, t). This equation is endowed with a t = 0 initial condition X0.
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The evolution of the probability density function for Xt is governed by the corresponding Fokker-
Planck partial differential equation (PDE). The Fokker-Planck equation for the evolution of the
probability density p(x, t) of the random variable Xt from (1) is given by

∂

∂t
p(x, t) = −

N∑
i=1

∂

∂x(i)
[fi(x, t)p(x, t)] +

N∑
i,j=1

∂2

∂x(i)∂x(j)
[Dij(x, t)p(x, t)] (2)

where x = (x(1), . . . , x(N))T . The diffusion tensor D is related to the SDE diffusion g by

Dij(x, t) =
1

2

N∑
`=1

gi`(x, t)gj`(x, t),

see, e.g., [2, p. 5]. Since p(x, t) is a probability density function, it satisfies a normalization condition∫
p(x, t)dx = 1.

This paper focuses on numerical approximation of the time-dependent probability density function
p(x, t) governed by (2).

1.2 Current Methods

Several methods have been developed to numerically approximate the statistics of SDE solution Xt,
or the probability density function p(x, t) from the associated Fokker-Planck PDE in equation (2).
Perhaps among the more straightforward approaches to approximate statistics is through Monte
Carlo simulation [3], which typically collects a potentially large ensemble of realizations of Xt by
computing solutions to (1). The large number of samples needed to sufficiently approximate the
solution of the SDE makes using this method with sufficient accuracy computationally expensive.

Numerous numerical methods compute solutions to the Fokker-Planck equation, such as finite
element methods (FEMs) [4, 5, 6, 7, 8, 9, 10, 11] and finite difference methods (FDMs) [4, 11, 12].
FEMs are often preferable over FDMs to solve the Fokker-Plank equation because of their accuracy
and stability; however, they can be more complicated to implement compared to FDMs. Current
FDMs are empirically less numerically stable than FEMs, but they also usually require less memory
and computational power to implement [4, 11]. Both FEMs and FDMs suffer from the curse of
dimensionality stemming from the computational difficulty of forming a sufficiently dense mesh in
N dimensions.

When using FDMs or FEMs, erroneous oscillations and negative values often arise if the drift
is large compared to the diffusion. One method to address this challenge utilizes a moving finite
element mesh [13]; basis functions, which depend on time instead of only on space, such as standard
FEMs, and that satisfy the drift part of the equation, are used to eliminate the spurious oscillations.
Some adaptive FEM procedures monitor regions of non-negligible probability and adjust the mesh
coarseness appropriately [14]. Adaptive FEM procedures also adjust the mesh based on the local
value and gradient of p near boundary regions [15]. Additionally, finite volume methods (FVMs)
have been applied to the conservation form of the Fokker-Plack equation, utilizing a linear multistep
method for temporal discretization [16]. Such procedures are also typically adaptive, adjusting the
mesh and time step based on an error tolerance criterion. Furthermore, adaptive meshes are utilized
in numerical path integration methods, also called transformed path integral methods [17]. These
methods propagate the grid in a Lagrangian way relative to a given fixed grid in a transformed
space.

Deep learning approaches have been leveraged to numerically approximate solutions to the
Fokker-Planck equation. If a large amount of training data is available, neural networks can be
used to learn solution behavior [18]. Of course, this requires availability of such training data, and
guaranteeing generalizability and accuracy with such approaches is often difficult.

2



The curse of dimensionality is still a concern with the above approaches. The difficulty of solving
the Fokker-Planck equation increases substantially with the dimension N of the problem. Some
nontraditional FEM methods have been used to solve four-dimensional problems [10], but more
work is needed for higher dimensional problems to become tractable.

In this paper, we wish to extend the results of Bhat and Madushani to approximate the proba-
bility density function of SDEs in high dimensions using density tracking by quadrature (DTQ) [19,
20]. DTQ has also been described previously as numerical path integration [21]. In one dimension,
DTQ has been shown to be a convergent method that computes an approximation to the proba-
bility density function p(x, t) of Xt on a discrete grid. In some examples, DTQ is 100 times faster
compared to other methods with similar accuracy [20]. Existing DTQ methods utilize a trapezoidal
rule for integration with a tensorized mesh over N -dimensional space. N = 1 dimension and N = 2
dimensional formulations have been investigated [20, 19], but the challenge of applying such methods
in higher dimensions is still significant.

1.3 Outline and Contributions of this Paper

In this paper, we work to augment current DTQ methods by implementing a more accurate and
flexible quadrature rule along with adaptive mesh updates to minimize the computational cost
when solving the Chapman-Kolmogorov update in equation (6) using quadrature. More specifically,
allowing an unstructured mesh provides flexibility in high dimensions to allocate degrees of freedom
to areas of high probability and away from areas of low probability. The unstructured mesh allows
for nontensorial discretizations and partially addresses the curse of dimensionality.

We summarize the DTQ method and its previous use with a tensorized mesh and trapezoidal
quadrature rule by Bhat and Madushani [19]. Then, we discuss the advances made in this paper
by utilizing an unordered, adaptive mesh with an interpolatory quadrature rule. A Laplace ap-
proximation is used to rewrite the Chapman-Kolmogorov integral in equation (5) so that Hermite
polynomials can be utilized to interpolate the integrand on Leja points and step the solution forward
in time. We also detail the implementation of an adaptive mesh where the boundary values are ad-
justed to track the density values while reducing the number of points necessary for the procedure.
Finally, we apply the adaptive DTQ method to some example problems.

2 Density Tracking by Quadrature

2.1 DTQ Procedure

We present DTQ in the framework of N -dimensional autonomous SDEs in (1). For a fixed temporal
stepsize h > 0, we first discretize the SDE (1) in time using the Euler-Maruyama method,

X̃n+1 = X̃n + f(X̃n, t)h+ g(x̃n, t)
√
hZn+1 (3)

where X̃n represents an approximation of the state Xt at time tn = nh. Zn+1 is a standard N -
dimensional normal random variable (i.e., mean 0, identity covariance).

The work in [19, 20] interprets the time discretized equation (3) as a discrete-time Markov

chain where the initial state, X̃0, corresponds to a discretization of the density p(x, 0) of the initial
condition of the SDE (1). Let p̃(x, tn) denote the density at location x at time tn of the Markov

chain. From equation (3), we observe that the conditional density of X̃n+1 given X̃n = y is Gaussian

with mean µ̃ = y + f(y)h and covariance Σ̃ = hg(y)g(y)
T

,

p̃(X̃n+1 = x|X̃n = y) := G(x,y) (4)

G(x,y) :=
1√

(2π)N |Σ̃|
exp

(
−1

2
(x− µ̃)

T
Σ̃−1 (x− µ̃)

)
.
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Notice that G(x,y) depends on the drift f and diffusion g through µ̃ and Σ̃, but we omit this explicit
notational dependence.

The evolution of the density of X̃ is described by the associated Chapman-Kolmogorov equation,

p̃(x, tn+1) =

∫
RN

p̃(xn+1 = x|xn = y)p̃(y, tn)dy

=

∫
RN

G(x,y)p̃(y, tn)dy.

(5)

The evolution of p̃(x, tn) proceeds by discretizing (5) in space. Let {y1, . . . ,ys} be a set of mesh
points. Then, the density p̃ in (5) can be approximated by p̂, which is defined as a discretization of
(5):

p̂
(
yj , tn+1

)
=

m∑
i=1

G(yj ,yi)p̂(yi, tn)ωi (6)

with the starting condition p̂(yj , 0) = p̃(yj , 0), where ωi are quadrature weights. In N = 1 dimension
with an equispaced mesh, the trapezoidal rule (on an infinite domain) has previously been employed,
and is accompanied by error estimates [20]. DTQ using a trapezoidal rule for quadrature has been
used for parameter inference problems [22], and a two-dimensional implementation was employed to
analyze basketball tracking data from the National Basketball Association [20].

2.2 Tensorized DTQ

In more than one dimension, N > 1, a straightforward choice for the mesh is a tensorial grid, e.g.,
an isotropic grid is formed from tensorization of a univariate grid,

{yi}
s
i=1 =

N⊗
j=1

{x1, . . . , xq} , {x1, . . . , xq} ⊂ R.

In this case, the discretization of (6) can proceed dimension by dimension. If the univariate grid
{xi}qi=1 is equispaced with mesh stepsize κ > 0, then (6) can be written as

p̂(yj , tn+1) = κN
s∑
i=1

G(yj ,yi)p̂(yi, tn).

In vector form, the above is

Pn+1 = κNGPn, (G)i,j = G(yi,yj),

where Pn+1 := [p̂(y1, tn+1), . . . , p̂(ys, tn+1)]T ∈ Rs. Gi,j contains values describing the movement
of mass density; however, the matrix κNG is not a stochastic matrix in general [20].

The numerical solution p̂ can, in principle, be directly computed using this procedure. However,
for higher dimensional problems we require qN mesh points for the tensorization strategy. For
example, in four dimensions with 100 points per dimension, we will need m = 108 points, which is
computationally prohibitive. In order to extend DTQ to higher dimensions, we provide an alternative
strategy to discretize the integral in equation (5), which uses an unstructured set of mesh points.

3 DTQ on an Unstructured Mesh

We describe our procedure for implementing DTQ on an unstructured mesh in N dimensions.We
utilize a nontensorized, adaptive mesh and an interpolatory quadrature rule to approximate the
integral in (5) by treating a portion of the integrand as a Gaussian density. For each point in the
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global unstructured mesh, yj ∈ {y1, . . . ,ys}, we use a set of nearest neighbors of yj to compute Leja
points to use in the quadrature rule (3.3). The set of nearest neighbors, in a specifically transformed

space discussed in section 3.2, to yj , is used to compute Leja points and will be notated as N̂. We
will call the Leja points {η1, . . . ,ηm}, but we will suppress the j dependence since the procedure

updates one mesh point at a time (eg. N̂ = N̂j and {η1, . . . ,ηm} = {η1, . . . ,ηm}j).
Now we will update a member of the global mesh yj .

p̃(yj , tn) =

∫
RN

G(yj ,y)p̃(y, tn)dy

=

∫
RN

r(y)N (y;µ,Σ)dy (7)

≈
m∑
i=1

r(ηi)wi (8)

where

N (x;µ,Σ) =
1√
πN |Σ|

exp
(
− (x− µ)

T
Σ−1 (x− µ)

)
.

In section 3.1, we describe how we effect the integral in (7) by using a Laplace approximation of the
integrand to identify N (·;µ,Σ) and r. These values differ for different yj (e.g., µ = µj ,Σ = Σj, r =
rj , but we again suppress this j dependence). Section 3.2 subsequently details how we identify the
quadrature rule and weights in (8), and section 3.3 covers the selection of Leja points, {η1, . . . ,ηm}.

3.1 Laplace Approximation via Least Squares

In this section, we describe how r and N in (7) are identified. In short, we identify N as a Laplace
approximation to the integrand of equation (5); we implement this practically by performing a local
least-squares quadratic fit to the log-integrand using nearby data.

The Laplace approximation around a point yj is computed using the Leja points {η1, . . . ,ηm}
if they are known from a previous time step, or a set of nearest neighbor points N when Leja points
are not yet known. Initially, we do not know Leja points, so for the first time step, all points in the
mesh use their corresponding N set; however, Leja points are more common to use once they are
known in future time steps. In this section, we will assume the use of {η1, . . . ,ηm}; however, the
procedure is equivalent if the nearest neighbor points are used instead.

Let the ith component of the vector ψ be given as

ψ(i) := − log(G(yj ,ηi)p̂(ηi, tn))

for i = 1, . . . ,m so that ψ is an m × 1 vector. The Laplace approximation would model this
log-integrand as a quadratic polynomial,

ψ(i) ≈ ψ̃(ηi) := c+ bTηi + (ηi)
TAηi, (9)

for a scalar c, vector b ∈ RN , and a symmetric matrix A ∈ RN×N that we identify via least-squares
polynomial approximation. To describe this procedure, we require more notation. With α ∈ NN0 a
multi-index, we use the standard convention,

α = (α1, . . . , αN ), |α| :=
N∑
j=1

αj , ηα =

N∏
j=1

(
η(j)
)αj

,

with η = (η(1), . . . , η(N))T . Then, define

Pk := span
{
ηα

∣∣ α ∈ Λk
}
, rk = |Λk| = dimP,
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where we take Λk ∈ NN0 to be the set of multi-indices corresponding to degree-k approximation,

Λk :=
{
α ∈ NN0

∣∣ |α| ≤ k} , rk =

(
N + k

N

)
We will perform a quadratic fit with k = 2. With α(1), . . . , α(r2) an enumeration of the elements of
Λ2, then with the Vandermonde matrix, M ∈ Rm×r2 is defined as

(M)i,j = ηα
(j)

i ,

a least-squares fit to the data ψ is the emulator,

q(η) =

r2∑
j=1

hjη
α(j)

, h = (h1, . . . , hr2)T ,

where h is given as the least-squares solution to the linear system,

Mh = ψ.

Once the coefficients h are computed, we translate q into the symmetric quadratic form (9) using
the following identification of the entries of c, b and A:

c = hi(0), bj = hi(ej), Aj,` =
1

2− δj,`
hi(ej+e`)

where δj,` is the Kronecker delta, ej ∈ NN0 is the cardinal unit vector in direction j with entry 1 in
location j and zeros elsewhere, and i(α) is a function that returns the linear index in Λ2 associated
to α,

i = i(α) =⇒ α = α(i).

In order to associate this quadratic fit with a normal distribution, the matrix A must be positive-
definite. We will explain in section 3.1.1 how we address situations when A is not positive-definite.
However, when A is positive-definite, we have the following immediate identification of a normal
distribution density N from this quadratic fit to the log-integrand:

Proposition 1. If A in (9) is positive-definite, then

exp(−ψ̃(x)) = CN (x,µ,Σ)
√
πN |Σ|,

where

µ = −1

2
UΛ−1d Σ−1 = A C = exp(−c+

1

4
dTΛ−1d)) (10)

Proof. Since A is symmetric and positive-definite, it has an orthogonal diagonalization

A = UΛUT , UUT = I, Λ = diag(λ1, . . . , λd).

with positive eigenvalues λj > 0 for all j. Defining γ := UTx, then

ψ̃(x) = −(c+ dTγ + (γ)TAγ)
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With d(i), γ(i) the components of d, γ, a rearrangement yields

−ψ̃
(i)

= c+

N∑
j=1

(
d(j)γ(j) + λj(γ

(j))2
)

= c−
N∑
j=1

(d(j))2

4λj
+

N∑
j=1

(√
λjγ

(j) +
d(j)

2
√
λj

)2

= c− 1

4
dTΛ−1d+

(
γ +

1

2
Λ−1d

)T
Λ

(
γ +

1

2
Λ−1d

)
= c− 1

4
dTΛ−1d+

(
η +

1

2
UΛ−1d

)T
A

(
η +

1

2
UΛ−1d

)
,

so that

exp(−ψ̃
(i)

) = C exp
(
− (ηi − µ)

T
Σ−1 (ηi − µ)

)
,

with µ, Σ, and C as given in (10).

Using this identification of N using the least-squares fit, we accomplish the equality in (7) as

p̃(yj , tn+1) =

∫
RN

r(y)N (y,µ,Σ)dy, r(y) =
G(yj ,y)p̃(y, tn)

N (y;µ,Σ)
. (11)

3.1.1 Alternative Method

In some situations we cannot use the above Laplace approximation procedure. For example, Propo-
sition 1 requires that A be positive-definite, which may not occur in practice, particularly when the
integrand G(yj ,ηi)p̂(ηi, tn) is not locally Gaussian. When A is not positive-definite, we must use
the alternative method shown in equation (12). Additionally, we use the alternative method when
the quadrature rule is ill-conditioned. In practice, the alternative method is typically used at or
near the mesh boundary when an insufficient number of points are around the point being updated,
yj . Use of the alternative method varies, but it usually is only used for around 1-2% of mesh points
per time step on average in two-dimensional problems. We expect this usage would remain low in
higher dimensions.

We wish to take advantage of the structure of G(x,y) to procure a weight function so that

p̃(yj , tn+1) =

∫
RN

r(y)N (y; yj + hf(yj), hg(yj)g(yj)
T

)dy

r(y) =
G(yj ,y)p̃(y, tn)

N (y; yj + hf(yj), hg(yj)g(yj)
T

)
.

(12)

The Gaussian used for the weight function has a mean and variance that depends only on the current
point we are updating, yj . Since, in practice, this alternative method is used primarily for points
on or near the boundary, the density p̂ should be relatively flat, making this simplified procedure
sufficient. If the calculated value using this procedure is negative, we replace it with the minimum
value of p̂ at the previous time step to maintain positivity of p̂.

3.2 Quadrature Weights

This section describes how the quadrature rule in (8) is generated, assuming the nodes {ηi}mi=1 are
provided. Section 3.3 later describes the more complex procedure of how the nodes are chosen.
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For each point yj in the global mesh, the Laplace approximation of section 3.1 allows us to write
the integral for the update of p̂ at yj as in (7). We now discretize this integral with a quadrature
rule, ∫

RN

r(y)N (y,µ,Σ) dy ≈
m∑
i=1

r(ηi)wi.

First, let Σ = LLT be any decomposition of Σ (e.g., through the Cholesky decomposition). Then,
the integral (7) can be rewritten as∫

RN

r(y)N (y,µ,Σ) dy
y=Lζ+µ

=

∫
RN

r(Lζ + µ)N (ζ,0, I) dζ,

and under this same map, we define quadrature nodes {ηi}mi=1 which are in y space as

ηi = Lζi + µ (13)

where {ζi}mi=1 are nodes in ζ space. The weights wi of the quadrature rule are chosen as the
interpolatory weights associated to a particular polynomial space. The nodes {ζi}mi=1 are chosen in
a way that guarantees unisolvence of a polynomial interpolation problem, i.e., we can construct a
unique polynomial Q ∈ P such that

r (Lζi + µ) = Q(ζi), i ∈ [m].

More precisely, let {φi}mk
i=1 be a basis for the degree-k polynomial space Pk, so that

Q(ζ) =

mk∑
j=1

ĉjφj(ζ),

where ĉ = (ĉ1, . . . , ĉmk
)T solves the linear system, where we select m = mk,

Vĉ = r, Vi,j = φj(ζi), V ∈ Rm×m,

and where r = (r(η1), . . . , r(ηm))T . We generate the quadrature weights as exact integration of q
in place of r: ∫

r(Lζ + µ)N (ζ,0, I) dζ ≈
∫
q(ζ)N (ζ,0, I) dζ =

m∑
i=1

r (ηi)wi, (14)

where wi are given by

w = (w1, . . . , wN ) = ξTV −1, ξj :=

∫
φj(ζ)N (ζ,0, I)dζ. (15)

The expression for w can be somewhat simplified computationally if we choose the basis φi as a
family of polynomials that are L2-orthogonal under the weight function N . Since this weight is a
Gaussian, the appropriate orthonormal polynomial family are (normalized and tensorized) Hermite
polynomials. In particular, with α(1), . . . , α(mk) an(y) enumeration of the elements of Λ that satisfies
|α(j)| ≤ |α(j+1)|, then we consider the basis,

φj(ζ) =

N∏
i=1

ĥ
α

(j)
i

(ζi) , (16)
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where ĥ`(·) is the degree-` normalized univariate Hermite polynomial, satisfying the orthogonality
condition, ∫

R

ĥ`(ζ)ĥk(ζ)N (ζ, 0, 1) dζ = δ`,k, deg ĥ` = `,

where δi,j is the Kronecker delta. The uniqueness of each ĥ` is assured if we insist that the leading

coefficient is positive. Since N (·, 0, 1) is a probability density, ĥ0(ζ) ≡ 1. The chosen basis (16) for
Pk then satisfies the following multivariate orthogonality condition,∫

RN

φj(ζ)φi(ζ)N (ζ,0, I) dζ = δi,j , φ1(ζ) ≡ 1, (17)

so that the moments ξ in (15) are given by ξj = δj,1. Therefore, with this basis, the formula (15)

implies that the quadrature weights are simply given as the first row of V −1,

wT =
(
V −1

)
1,:
. (18)

In terms of the quadrature nodes {ηi}mi=1, we connect ωi from (6) to wi as

ωi =
r(ηi)

G(ηj ,ηi)p̂(ηi, tn)
wi.

3.3 (Weighted) Leja Sequences

We describe the selection of quadrature nodes {ηi}mi=1. In the following discussion, fix a global mesh

index j and recall that for a point yj in the global mesh, N̂ denotes the set of nearest neighbors to

yj in transformed space. In general, the neighbors N̂ are not directly related to the points in N,
and the number of points used for each set usually differs. We can now define how this modified
set is identified. With (L,µ) the affine map found via Laplace approximation, the global mesh is
transformed, i.e., defining vq := L−1

(
yq − µ

)
, then Z is defined as the M nearest neighbors to vj

(counting itself). N̂ is defined through the affine map in (13),

N̂ = LZ + µ :=
{
Lζ + µ

∣∣ ζ ∈ Z
}
.

Given this nearest neighbor set Z, our goal will be to identify a subset of nodes ζi, i ∈ [m], from this
set, which defines ηi through (13), and which are used in the approximation (14). Recall at time
zero and when Leja points are not known, we use the set of nearest neighbor points N introduced
in section 3.1 for the Laplace approximation to recover µ and L for the transformation.

We suppress notational dependence on j (the global mesh index) in the remaining discussion of
this section. The m quadrature points ζi, i ∈ [m], are a subset of Z and are computed as discrete
weighted Leja sequence from Z. To formalize this connection, we first describe Leja sequences, along
with weighted and discrete versions. Leja sequences are unstructured, flexible, and nested, and
discrete versions are easily calculated.

In one dimension on a compact interval [a, b], a Leja sequence is classically defined as any sequence
of points ζn ∈ [a, b] ⊂ R for n = 1, 2, . . . that solve the sequential optimization problem,

ζs+1 = argmax
ζ∈[a,b]

s∏
i=1

|ζ − ζi|, (19)

where ζ1 is arbitrarily chosen in the interval [a, b] [23, 24]. Leja sequences are not unique due to the
choice of the initial point ζ0 as well as the potential for multiple maximizers at each step of (19).
Sequences chosen in this way empirically have good approximation properties. In particular, they
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form polynomial interpolants of good quality and empirically yield accurate interpolatory quadrature
rules.

In the one-dimensional setting, we are interested in identifying nodes whose corresponding in-
terpolatory quadrature rule is an accurate approximation of the form (14). To accomplish this, we
must consider integrals over the entire real line with respect to the Gaussian weight N (ζ, 0, 1). A
naive extension of the optimization (19) that replaces [a, b] by R is not well defined, so we adopt
the strategy from [25] that uses a particular type of weighted Leja sequence, and shows that these
sequences have accurate interpolatory quadrature rules with respect to the weight function.

For notational convenience, we define w(ζ) = N (ζ, 0, 1), and let ζi for i = 1, 2, . . . be any sequence
of solutions to a modified version of (19),

ζs+1 = argmax
ζ∈R

√
w(ζ)

s∏
i=1

|ζ − ζi|, (20)

where ζ1 is chosen arbitrarily as an initial point. The use of the weight function penalizes the selection
of points at infinity. The use of

√
w is an appropriate choice is motivated by the fact that weighted

Leja sequences defined by (20) satisfy the asymptotic Fekete property, and asymptotically distribute
like w-Gaussian quadrature rules [25]. Empirically, these sequences also form stable quadrature rules
for approximating w-weighted integrals.

We cannot directly use (20) in our framework because we do not have the freedom to choose
points arbitrarily. Instead, we pose the optimization problem as one not over the continuum R but
instead over the discrete set Z, which are (mapped) nearest neighbors around a global mesh point.
We therefore construct the following discrete, weighted Leja sequence:

ζs+1 = argmax
ζ∈Z

√
w(ζ)

s∏
i=1

|ζ − ζi|. (21)

Ideally, the candidate set Z should form a so-called weakly admissible mesh so that the points suf-
ficiently cover the domain of interest [26, 27, 28]. The above discussion holds for one dimension,
but the objective function being maximized in (21) does not directly generalize to higher dimen-
sions. However, we can rewrite the one-dimensional problem in a form that can be extended to the
multivariate case.

The calculation of weighted discrete Leja sequences in (21) can be simplified. It is possible to show
that (21) is equivalent to constructing a Vandermonde-like matrix via a particular kind of greedy
determinant maximization [29] which reduces the process into a simple numerical linear algebra
problem. The sequence in (21) can be computed from the pivots of a row-pivoted LU factorization

on a Vandermonde-like matrix. In particular, let Ṽ ∈ RM×m denote a weighted Vandermonde-like
matrix on the candidate points Z,

Ṽ `,q =
√
w(z`)φq(z`), Z = {z1, . . . , zM}, (22)

where {φq}mq=1 is any ordered basis satisfying Pk = span{φq, q ∈ [k]}. We choose φq as the w(·)-
orthonormal Hermite polynomials from (17). With P Ṽ = L̃Ũ the pivoted LU decomposition of Ṽ ,
a solution to (21) for 1 ≤ i ≤ m is given by the first m points of the P -permuted points in Z:

ζi = zpi , (p1, . . . , pM )T = P (1, 2, . . . ,M)
T
. (23)

Because of this equivalence between the solution to (21) and pivoted linear algebra, in practice we
compute equation (20) via an LU factorization with partial row pivoting of a Vandermonde-like
matrix [29].

Note that this linear algebraic procedure is directly generalizable to multiple dimensions. In
dimension N > 1, defining Ṽ as in (22) (with zj replaced with the N -dimensional points zj from
Z, and φq the Pk-orthonormal basis from (17)), we can again accomplish a greedy determinant
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maximization procedure implemented via the pivoted LU approach described above. We define the
points ζi from (23) as the weighted discrete Leja sequence that we use for quadrature nodes in
the approximation (14), which we emphasize are computable by a simple LU decomposition on a
weighted Vandermonde-like matrix on Z.

For the overall DTQ procedure, the procedure above must be repeated for every point in the
global mesh (i.e., for every global index j). Our computation of these discrete weighted Leja se-
quences makes use of the PyApprox package [30].

3.3.1 Leja Point Reuse

Although the Laplace-approximated affine map parameters (L,µ) are recomputed at every time
step, to save computational effort, we recompute Leja sequences only if a stability condition is
violated. Leja points are reused from time step to time step as long as the condition number

Γ := ‖w‖1 < 1 + ε,

where ‖ ·‖1 is the `1 norm on vectors, w are the interpolatory quadrature weights from (18), and ε is
a tunable parameter.. In practice, the number of mesh points on which we can reuse Leja sequences
from the previous time step, depends on the drift and diffusion. However, we find that we are often
able to reuse Leja points from the previous time step which increases the speed of the algorithm
substantially. We will quantify Leja sequence reuse in the results section.

4 DTQ with an Adaptive Mesh

In this section, we describe the adaptive part of the procedure, which updates the mesh based on
the density as time evolves. We outline the overall Adaptive DTQ method in Algorithm 1.

Algorithm 1 Adaptive DTQ

1: procedure AdaptiveDTQ:
2: while step forward do:
3: add points to mesh boundary if needed (section 4.2)
4: remove points from mesh boundary if needed (section 4.3)
5: for each mesh point do:
6: attempt local quadratic fit (section 3.1)
7: if quadratic fit is successful then:
8: locate Leja points (reuse or compute) (section 3.3)
9: compute quadrature weights (section 3.2)

10: step forward in time using (8) with r from (11)
11: else:
12: use alternative procedure (section 3.1.1)
13: step forward in time using (8) with r from (12)

The adaptive procedures attempts to reduce the number of mesh points required to compute
p̂(x, t) by adaptively updating the mesh as the solution evolves in time. The basic idea is that we
form a mesh that covers most of the support/mass of the solution. Figure 1 gives a visual example
of how the mesh is updated to track the density.

4.1 Identifying the mesh “boundary”

The adaptive procedure operates only on the boundary of the mesh, removing or adding points as
appropriate. In order to identify the “boundary” of the mesh, we utilize a procedure that combines
a mesh triangulation and alpha shape procedure. First, we construct a Delaunay triangulation of the
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Figure 1: Shifting the mesh to keep track of the density is achieved through adding and removing
mesh points.

global mesh {yj}sj=1, which is a triangulation satisfying the condition that no mesh point lies in the
interior of any circumscribing circle of any triangle in the triangulation. The Delaunay triangulation
ensures that the minimum angle is maximized for all the triangles in the triangulation to avoid
sliver triangles [31]. The alpha shape algorithm recovers the boundary points of a point mesh in
Algorithm 2. A survey of alpha shapes from Edelsbrunner is available for more information [32].
For the procedure, we select α̂ = Λ, which is the enforced maximum distance between points in the
mesh. Then, for each simplex found using the Delaunay triangulation, the radius of the circumcircle
is computed. If the radius is less than α̂, then we know the two points associated with that edge are
boundary points.

Algorithm 2 AlphaShape

1: procedure AlphaShape(α̂):
2: procedure AddEdge(boundaryEdgesSet, edgeToAdd):
3: if edgeToAdd not in boundaryEdgesSet then:
4: append edgeToAdd to boundaryEdgesSet

5: return boundaryEdgesSet

6: initialize boundaryEdgesSet
7: for each simplex do:
8: compute the radius of the simplex circumcircle
9: if radius < α̂ then:

10: for each simplex edge do:
11: boundaryEdges = AddEdge(boundaryEdges, simplexEdge)

12: return boundaryEdgesSet

4.2 Adding Boundary Points

We assume the mesh boundary is identified as described in the previous section. We add mesh points
based on a prescribed tolerance parameter, β, which is tuned to maintain a sufficiently small value
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Figure 2: A depiction of a completed two-dimensional alpha shape procedure. The Delaunay trian-
gulation is shown, and the red edges indicate the boundary that is identified.

of p̂ on the mesh boundary. For each boundary point where p̂ is larger than 10−β , candidate points
are generated as θ equispaced points on a circle (in two dimensions) or higher order N-dimensional
sphere of radius (λ+Λ)/2. Here, θ is the number of equispaced points that are candidates for adding
to the mesh. For a candidate point to be added to the mesh, the distance to the closest point in the
mesh must be greater than a set value λ and it must be less than a set value Λ. Essentially, λ and
Λ are the enforced minimum and maximum distances, respectively, between mesh points. After all
new points to add to the mesh are determined, the density values p̂ are computed via local, linear
interpolation. If the new point is outside the convex hull of the current mesh or interpolates to
a negative value, we assign it the value of the minimum of p̂ from the previous time step. This
procedure for adding points is typically run at every time step.

4.3 Removing Boundary and Interior Points

We remove the mesh points that are deemed unnecessary in terms of the value of the density p̂.
Points are removed based on the prescribed tolerance, β from section 4.2, which is used to maintain
a sufficiently small value of p̂ at the boundary. More specifically, all mesh points that are smaller than
10−β−0.5 are removed from the mesh. This procedure for adding points is typically run periodically;
however, not at every time step.

5 Results

The code for the adaptive DTQ procedure and examples is located on GitHub [33]. We demonstrate
Algorithm 1 in this section on several two-dimensional (N = 2) examples. We first describe some
experimental setup characteristics that are common among all examples. The initial condition is
taken to be a Dirac mass centered at the origin and a radial initial mesh centered at the origin
comprised of concentric circles with radii that are multiples of the enforced minimum distance
between points, λ, and ranges up to a radius R− (R mod λ), where R is a parameter defining the
initial mesh radius.

When adding new points in these examples, we use θ = 8 so that 8 candidate samples are
considered for adding to the mesh. The threshold for Leja point reuse is ε = 0.1, and the threshold
of the condition number for using the alternative method is set as 8. We use m = 10 Leja points for
the quadrature rule (choosing the index set Λ to correspond to polynomials of degree k = 3 in N = 2
dimensions). The number of nearest neighbors in the set N used for the Laplace approximation is

20, and the number of nearest neighbors in the set N̂ used for selecting Leja points is 40.
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We report errors in the experiments below, which are measured in the following ways. Let p be
the exact solution and p̂ be the computed (adaptive DTQ) solution. With s the number of points
in the mesh, define the following spatial errors at a fixed time:

L2w =

√√√√ 1∑s
j=1 p(xj)

s∑
j=1

(
(p(xj)− p̂(xj))2p(xj)

)

L2 =

√√√√ 1

m

s∑
j=1

(p(xj)− p̂(xj))2

L1 =
1

m

s∑
j=1

|p(xj)− p̂(xj)|

L∞ = max
j∈[s]
|p(xj)− p̂(xj)|,

which are, respectively, approximations of the L2
p(R

N ), L2(RN ), L1(RN ), and L∞(RN ) norms.

5.1 Moving Hill Example

Consider the solution to the SDE in equation (1) with constant drift and diffusion,

f =

(
A
0

)
, g =

(
B 0
0 B

)
,

This SDE corresponds to the Fokker-Planck PDE

∂p(x, t)

∂t
= −A ∂

∂x
p(x, t) +

B2

2

∂2

∂(x(1))2
p(x, t) +

B2

2

∂2

∂(x(2))2
p(x, t)

which has the exact solution

p(x, t) =
1

4πBt
exp

(
−(x(1) −A)2 + (x(2))2)

4Bt

)
We set simulation parameters as (λ,Λ,R, h) = (0.15, 0.17, 1.5, 0.01). Recall that λ,Λ are mesh

spacing parameters, R is the initial mesh radius, and h is the temporal step size.

5.1.1 β Parameter

We explore the effect of the β parameter, which from section 4.2 is the tolerance parameter for
allowable density values on boundary nodes. The adaptive DTQ approach error values for time
t = 1.15 for varying β are shown in Table 1.

We observe that β has a somewhat direct control on error of the approach for this simple example:
For larger β, more points are used to form a mesh on a larger region, which improves the overall
accuracy of the method. Table 1 shows that as β increases, the error tends to decrease. Thus, the
adaptive DTQ method can be quite accurate if β is chosen appropriately. However, the selection
of β must be balanced with the computational cost associated with a larger mesh. The number of
mesh points s at the last time step are also shown in Table 1.

5.1.2 Adaptive vs Tensorized DTQ

We compared the computational timing for a two-dimensional tensorized DTQ procedure (section
2.2) against the adaptive DTQ procedure for this example. All timings were recorded relative to the
time the adaptive DTQ procedure takes to run, indicated by the star in Figure 3. The hardware
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β L2w Error L2 Error L1 Error L∞ Error # Points s

1 2.450786e-02 2.206468e-02 1.970326e-03 8.008655e-02 179
2 1.581447e-03 2.460677e-03 4.913179e-05 1.170814e-02 717
3 8.981020e-05 1.458679e-04 2.454267e-06 5.253691e-04 1335
4 1.160785e-05 1.480656e-05 2.243876e-07 5.567885e-05 1913
5 1.322241e-06 1.535408e-06 1.897660e-08 4.314279e-06 2486
6 1.259077e-07 1.485520e-07 1.413359e-09 2.896678e-07 3134
7 1.275439e-08 1.629120e-08 1.252540e-10 2.654943e-08 3674
8 7.997140e-10 1.747622e-09 6.116165e-12 2.734659e-09 4238
9 9.476715e-11 1.808187e-10 5.943385e-13 2.850035e-10 4796

10 2.295830e-11 2.162911e-11 1.158005e-13 7.404828e-11 5359

Table 1: Adaptive DTQ errors for different values of the boundary tolerance
parameter β at time t = 1.15 for the moving hill example of section 5.1. Also
shown are the number of points s in the adaptively formed mesh at t = 1.15.
Generally, as β increases, the error decreases because we use more points to cover
a larger area of the domain.

for these timings used an AMD EPYC 7702P 64-Core Processor with 255 GiB of system memory.
We ran each adaptive and tensorized method scenario five times and reported the average time. We
varied the accuracy and cost for these two methods by changing a parameter. For the adaptive
procedure, we adjusted the β parameter, and for the tensorized method we adjusted the equispaced
spatial step size κ from section 2.2. The minimum and maximum values in each dimension used by
the mesh points in the most accurate adaptive procedure shown in Figure 3 were used to generate
the rectangular domain with essential support for the tensorized procedure.

Figure 3 shows that, for similar effort (relative time), the tensorized procedure achieves 10−2

error versus 10−6 error for the adaptive procedure. To achieve approximately 10−2 error, the ten-
sorized procedure requires about 10 times more computational effort than the adaptive DTQ for
this example. We emphasize that this example is very simple, and we expect adaptive DTQ to be
quicker and even more accurate than the tensorized approach for more complicated examples.

5.2 Four hills example

We consider the solution to the SDE (1) in two dimensions with drift and constant diffusion,

f =

(
3erf(10x(1))
3erf(10x(2))

)
, g =

(
0.75 0

0 0.75

)
We set simulation parameters as (λ,Λ,R, h, β) = (0.12, 0.14, 1, 0.01, 3). The solutions at various
times are shown in Figure 4. The adaptive DTQ procedure begins with 287 mesh points and
increases the mesh size to 3,720 mesh points at t = 1.15. If a tensorized grid spanned the domain
sufficiently, it would need to span about [−5.7, 5.7]× [−5.7, 5.7]. Spacing of λ = 0.12 would require
about 9,000 points. However, a priori knowledge of the necessary grid domain size is frequently not
available and depends on our choice of terminal time t = 1.15.

In this example, the percent of Leja points reused from the previous time step averaged about
80% per time step. This reuse is one source of computational savings for the adaptive procedure.
The alternative procedure for local Gaussian fitting from section 3.1.1 was used for less than 0.75%
of the mesh on average per time step.
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Figure 3: Relative timings for the tensorized vs. adaptive DTQ procedures for the moving hill
example of section 5.1. The timings are reported relative to the time taken to run the scenario
marked by the star shown in the figure. The cost increases when more accuracy is desired for both
methods.
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Figure 4: The solution at various times for the four hills example of section 5.2. Top row: Density
values are colored only for values greater than 2 × 10−3 for visualization purposes. Bottom row:
Adaptive DTQ mesh points at the indicated times.
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Figure 5: The solution at various times for the two-dimensional spiral example of section 5.3. Top
row: Colored density plot, visualizing only values greater than 2× 10−3. Bottom row: The adaptive
mesh used at the listed times.

5.3 Spiral Example

Consider the solution to the SDE (1) in two dimensions with drift and diffusion,

f =
3

||x||2 + 10

[
10erf(10x(1)) + 5x(2)

(−4x(1) + 2x(2))

]
, g =

[
0.6 0
0 0.6

]
,

with simulation parameters (λ,Λ,R, h, β) = (0.08, 0.1, 1, 0.02, 3). The solution to this problem
features a single mass splitting into two and rotating in a clockwise spiral. The computational
solution at various times is shown in Figure 5. On average, Leja points were reused approximately
85% of the time per time step, and the alternative method for Gaussian fitting was used about 0.9%
of the time.

5.4 More Complex Diffusion

Finally, consider the SDE in equation (1) in two dimensions with drift and diffusion

f =

[
2erf(10x(1))

0

]
, g =

[
0.01(x(1))2 + 0.7 0.2

0.2 0.01(x(2))2 + 0.7

]
,

with simulation parameter values (λ,Λ,R, h, β) = (0.1, 0.12, 1, 0.01, 3). The solution at various times
is shown in Figure 6. On average, Leja points were reused approximately 85% per time step, and
the alternative Gaussian fit method was used for about 0.5% of the mesh points for each time step.
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Figure 6: The solution at various times for the example in section 5.4. Top row: Colored density
plot, visualizing only values greater than 2 × 10−3. Bottom row: The adaptive mesh used at the
listed times.

6 Conclusion

We have outlined the building blocks for an accurate and adaptive N -dimensional DTQ solver that
uses fewer mesh points than a tensorized DTQ procedure and does not require a priori knowledge
of the domain or mesh size. The adaptive procedure can be about 10 times more efficient than a
tensorized approach, even on examples where a tensorized approach is expected to perform well.
Two-dimensional examples were shown as a proof of concept for the adaptive procedure. Future
work will involve applying the adaptive DTQ procedure to higher dimensional problems.
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