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potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The
main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-
posedness. While many regularization techniques have been developed to control wild oscillations of
the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions
is still a subject of ongoing research. However there has been little rigorous comparison across
methods proposed by different groups. This study systematically compared various regularization
techniques for solving the ECGI problem under a unified simulation framework, consisting of both
1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and
2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being
modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different
regularization techniques to solve the inverse problem of recovering epicardial potentials, and found
that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov
regularizations outperformed other methodologies and resulted in similar average reconstruction errors.
© 2014 Elsevier Inc. All rights reserved.
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Introduction

In clinical practice, physicians assess, from a limited
number of electrocardiographic (ECG) signals, the complex
electrical activity of the heart, which is often simplified in the
form of a single dipole. Such an approach, despite being to a
large extent qualitative, still represents the cornerstone of a
day-to-day initial diagnosis in cardiology.

During the past 35 years, many research efforts have been
devoted to exploring and validating the utility of inverse
electrocardiography or electrocardiographic imaging (ECGI)
[1], in which potential distribution on the surface enveloping
the heart (often called the epicardial surface), or other
characterizations of cardiac electrical activity, are computed
from a distributed set of body-surface ECGs. Motivation for
ECGI in terms of epicardial potentials lies in the well-
documented observations that epicardial potentials directly
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reflect the underlying cardiac activity and thus could provide
a more effective means than, for example, an implicit single
dipole model for localizing regional cardiac events [2–5].

ECGI can be essentially defined as a non-uniform, or
filtered, “amplification” of body-surface ECG signals.
However, such amplification is far from being straightfor-
ward since it requires that all of the following technological
conditions are met:

1) Recording multiple ECGs, beyond the standard 12
leads both in their number (32, 64, or even 100 or
more) and spatial distribution (generally covering both
the anterior and posterior torso surface),

2) Defining a mathematical model that links potential
distributions on the torso surface to those on the
epicardial surface,

3) Constructing geometric models of both torso and
epicardial surfaces and any intrathoracic organs
deemed important, and approximating volume con-
ductor between torso and epicardial surfaces by a
system of linear equations,
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4) Regularizing this system of linear equations in order to
reconstruct, from the potential distributions on the
torso, reasonably physiologic distributions on the
epicardial surface.

Throughout the years, conditions #1 through #3 have
been progressively standardized [6–15]. Condition #4,
however, is still receiving considerable attention [16–19]
and is related to the peculiar (and challenging) problem of
the inherent ill-posedness of ECGI, which means that small
errors in body-surface measurements may result in unbound-
ed errors in the reconstruction of epicardial potentials. Given
that the ECGI community has developed a plethora of
regularization techniques to tackle the ill-posedness and to
suppress the rapidly oscillating epicardial reconstructions
that result from the ill-posedness, there is a growing need to
compare, structure, and unify those diversified regularization
methods. In particular, such a comparison requires the use of
the same volume conductor and the same cardiac source
models in order to eliminate other sources of variation in
results. For example, one of the open questions in
regularizing ECGI problem remains whether to choose L1-
norm penalty function, which may be – as recently indicated
[16] – better suited for localizing epicardial pacing sites and
reconstruction of epicardial potentials, instead of the more
standard L2-norm penalty function.

Accordingly, the purposes of this study were: 1) to
systematically evaluate the performance of different regu-
larization techniques using a realistic human torso model
with both idealized and physiological cardiac source models;
and 2) in particular, to test the hypothesis that non-quadratic
regularizations are superior to Tikhonov regularizations.
Methods

Problem formulation

The electric potential field induced by cardiac activity can
be modeled by a generalized Laplace’s equation defined over
the torso-shaped volume conductor subject to Cauchy
boundary conditions [10]. Assuming the human torso is
homogeneous and isotropic, this boundary value problem
can be solved by several numerical methods. One that has
been widely used for ECGI is the boundary element
method (BEM), which relates the potentials at the torso
nodes (expressed as an m-dimensional vector ΦB) to the
potentials at the epicardial nodes (expressed as an n-
dimensional vector ΦE),

ΦB ¼ AΦE ð1Þ
where A is the transfer coefficient matrix (m x n) and n b m.
The transfer coefficient matrix depends entirely on geometric
integrands [20,21] and implies piece-wise linear approxima-
tion of potentials over a given triangle.

In principle, the epicardial potential distribution could be
simply approximated in the form of a pseudoinverse ΦE =
(ATA)−1 AT ΦB. However, as a consequence of the
underlying ill-posedness, the matrix A is ill-conditioned,
i.e., its singular values tend to zero with no particular gap of
separation in the singular value spectrum, yielding highly
unstable solutions [22]. To find the true solution, extra
constraints are needed using some form of regularization; in
one of its articulations – called Tikhonov regularization [22] –
the inverse problem is expressed as the weighted least-
squares problem,

minΦE ΦB–AΦEj jj j2 þ λ2 ΛΦEj jj j2
� �

; ð2Þ

where || ||2 denotes the L2 (Euclidean) norm of a vector, λ is
the regularization parameter and the matrix Λ (n x n)
determines the regularizing operator. In typical practical
computations, the identity matrix (Λ = I), or the discretized
gradient, i.e., first-order operator (Λ = G), or Laplacian, i.e.,
second-order operator (Λ = L), is used. We determined the
regularization parameter λ for each data set and regulariza-
tion method separately, since the actual value of λ strongly
depends on both the data set and the regularization method.
A reasonable value of λ can be typically determined by the
L-curve method [23], e.g., using function l_corner from
Regularization tools 4.1 package [24].

Another possible approach to regularization are truncated
iterative methods, which are based on iteration schemes that
access the transfer coefficient matrix A only via matrix–
vector multiplications, and consequently produce a sequence
of iteration vectors, ΦE

(i), which converge toward the desired
solution. When iterative algorithms are applied to discrete ill-
posed problems, the iteration vector initially approaches the
correct solution, but in later stages of the iterations, some
other undesired vector is obtained, which can be eliminated
by regularization through truncating the iterations. From a
computational cost perspective, iterative methods are also
preferred whenA is large, because explicit decomposition of
A can require prohibitive amounts of computer memory. The
conjugate gradient (CG) method [25] is a well-known
technique for solving ill-posed problems, with matrices I, G
and L, representing constraints on amplitude and first and
second order spatial gradients, respectively, used as
regularizing operators. The ν-method [23] is an iterative
method derived from the classical Landweber method [26]
and deployed when a non-negativity constraint is required.
The CG method is actually one member of the family of
Krylov subspace methods, which are mathematically largely
equivalent in their expected solutions but differ in the
computational details involved [27]. Common members of
the Krylov subspace family, in addition to CG, include the
LSQR [28], GMRES [29], and MINRES [25] methods. Fast
methods also exist for calculating solutions for multiple
regularization parameters at little extra computational cost
[30,31].

Another approach is the so-called non-quadratic regulari-
zation technique [16,32], with the objective function defined as

minΦE ΦB–AΦEj jj j2 þ λ2 ΛΦEj jj j1
� � ð3Þ

where || ||1 denotes not the L2, but rather the L1 norm of a
vector of penalty function, inwhich the regularizing operator is
either the first (Λ = G) or second (Laplacian) order gradient
(Λ = L). This approach is computationally more demanding
than the previous ones since it is non-linear due to the non-
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differentiability of the L1-norm of the penalty function when
its argument is 0. The L1-norm can be shown to favor sparser
solutions than the corresponding L2-norm. Thus in the context
of Eq. (3) it might be hypothesized that using such a non-
quadratic regularization constraint might better preserve sharp
wavefronts in the reconstructed potentials which would be
smoothed out by the L2-norm penalty.

In this work, we analyzed in a unified computational
framework 13 regularization methods in total. For the sake of
structure, we organized these regularization techniques into 3
groups corresponding to the discussion above:
1) Tikhonov regularizations: zero order (ZOT) [22,33],
first order (FOT) [6,16], and second order (SOT) [33],

2) iterative techniques: truncated singular value decompo-
sition [23] (zero order (ZTSVD), first order (FTSVD),
and second order (STSVD)), conjugate gradient [25]
(zero order (ZCG), first order (FCG), and second order
(SCG)), ν-method [23], and MINRES method [25],

3) non-quadratic techniques [16,32]: total variation
(FTV), and total variation with Laplacian (STV).
These regularization techniques cover well the spectrum
of different regularization approaches used in ECGI.
Fig. 1. Cross-sectional views of dipole positions denoted by (a) frontal, (b) sagi
displayed with black and green colors, respectively. On each plane, sources within
cage is at x = −16 mm and y = 45 mm. Color illustration online.
Experimental protocol I: idealized source model

First, we assessed regularization techniques using pro-
gressively more complex idealized source models [34,35].
The reason for such an undertaking was twofold: 1) to test
the hypothesis that reconstruction of epicardial potentials
arising from complex (albeit idealized) sources would
benefit more from the non-quadratic regularizations than
from other regularizations, and 2) to test the hypothesis that
non-quadratic regularizations are superior in reconstructing
multiple ventricular events, for which we specifically used a
two-dipole source model.

The protocol consisted of the following steps:

Step 1. We used a geometry based on the homogeneous
torso model with the measurements taken on the torso
shaped outer boundary of an electrolytic tank (defined
with 771 nodes) and an internal, barrel-shaped, cage 602-
electrodes array, which surrounded all cardiac sources
during the measurements, as described in Experimental
Protocol II. In effect, the cage electrode surface was
regarded as a surrogate for the epicardial surface. Inside
of the cage surface, we placed three different idealized
source models: 1) single dipoles at 16 different locations
and 3 different orientations (in total 48 combinations), 2)
pairs of dipoles at 324 combinations, and 3) triplets of
dipoles at 24 different combinations. Fig. 1 shows cross-
sectional views of the tank-cage volume conductor model
ttal and (c–f) axial planes at different z levels. Tank and cage borders are
x or y or z levels ± tolerance are displayed. The polar axis of the cylindrical



Table 1
Average root-mean-square (rms) errors (±SD) for reconstruction results in a
single-dipole, 2-dipole, and 3-dipole models, with added 40-dB noise input.

Method 1-dipole 2-dipole 3-dipole

ZOT 0.42 ± 0.11 0.50 ± 0.13 0.49 ± 0.12
FOT 0.28 ± 0.16 0.43 ± 0.17 0.40 ± 0.20
SOT 0.33 ± 0.12 0.43 ± 0.14 0.42 ± 0.13
ZTSVD 0.44 ± 0.13 0.53 ± 0.15 0.51 ± 0.13
FTSVD 0.29 ± 0.17 0.46 ± 0.19 0.44 ± 0.22
STSVD 0.31 ± 0.20 0.48 ± 0.21 0.45 ± 0.23
ZCG 0.42 ± 0.12 0.51 ± 0.14 0.50 ± 0.12
FCG 0.31 ± 0.18 0.48 ± 0.19 0.42 ± 0.20
SCG 0.31 ± 0.18 0.44 ± 0.18 0.39 ± 0.17
ν 0.59 ± 0.15 0.65 ± 0.15 0.65 ± 0.17
MINRES 0.44 ± 0.14 0.56 ± 0.18 0.53 ± 0.12
FTV 0.29 ± 0.16 0.42 ± 0.17 0.40 ± 0.18
STV 0.28 ± 0.15 0.42 ± 0.17 0.39 ± 0.18
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and dipole positions on a given plane; the selection of
source locations is described in detail in the Appendix.
Step 2. We calculated torso potentials at 771 nodes and
cage potentials at 602 nodes using the well-known
discretized form of the fundamental integral equation
for electric potential within bounded homogeneous
medium [36],

� ¼ � þ B�; ð4Þ

where Φ = (ΦB, ΦE) and Φ∞ = (ΦB
∞, ΦE

∞) are (m + n)-
dimensional vectors of the discretized node potentials of
the torso and cage surfaces associated with the bounded
homogeneous torso. The square matrix B contains
geometrical integrands, already present in the matrix A
of Eq. (1)

B ¼
ABB 0
1
2
AEB 0

 !
ð5Þ

The torso and cylindrical-cage potentials in Eq. (4) were
obtained by means of the non-iterative, fast-forward
method [37]; finally, measurement noise level (at SNR of
40 dB with respect to the body surface measurements)
was added to the torso potentials to mimic experimental
measurement conditions.
Step 3. The 602-node cylindrical-cage potentials were
reconstructed by the 13 regularization techniques. To this
end, we used the transfer matrix A of Eq. (1).
Step 4. The cylindrical-cage potentials, calculated using
Eq. (4), served as the comparator to evaluate the accuracy
of the inverse solution. We used the normalized rms (root-
mean-square) error RE = ||ΦE

r − ΦE
m||2/||ΦE

m||2, and the
correlation coefficient, CC = ΦE

r · ΦE
m/||ΦE

r ||2||ΦE
m||2,

where ΦE
m are the directly-computed cylindrical-cage

potentials and ΦE
r are the reconstructed potentials. We

also compared qualitative features of both measured and
inversely computed potential maps (e.g., areas of negative
potentials and positions of extrema).

Experimental protocol II: canine heart model

A physiological source model offered an additional
means to test our hypothesis of superiority of the non-
quadratic regularization techniques. The protocol steps were
as follows:

Step 1. We modeled the cardiac source using a live canine
heart [3], which was retrogradely perfused via the aorta of
a second, “support” dog. The perfused heart was
suspended in roughly the correct anatomical position in
an electrolytic tank modeled from an adolescent thorax;
the geometries of the torso and the cage electrode array
were the same as in the Experimental Protocol I. We
recorded electric potentials (at 1 kHz sampling rate)
from the 602-lead cage enveloping the suspended canine
heart during sinus rhythm, in sample epochs of 4–
7 seconds duration.
Step 2. We calculated the torso potentials at 771 nodes
from the 602 cylindrical-cage potentials using Eq. (1). As
before, the same measurement noise level (40 dB) was
added to the torso potentials to mimic experimental
measurement conditions.
Steps 3 and 4. As in the Experimental Protocol I, except
the comparison is made to measured rather than simulated
cylindrical-cage potentials.
Results

Idealized source model

Table 1 summarizes average reconstruction results for
1-dipole, 2-dipole and 3-dipole models with 40-dB input
noise. When using 2 dipoles instead of 1 dipole, error levels
worsened for all methodologies; results were comparable for
2-dipole and 3-dipole models. It is evident that the
differences among regularization methodologies were rela-
tively small: for example, in a 1-dipole model, Tikhonov
regularization FOT (average relative error of 0.28 ± 0.16),
iterative methodology FTSVD (0.31 ± 0.20) and non-
quadratic techniques FTV (0.29 ± 0.16) and STV (0.28 ±
0.15) produced virtually identical results, with other
approaches (SOT, STSVD, FCG, SCG) not too inferior.
These differences remained small even in the presence of
complex sources, consisting of 3 dipoles: Tikhonov FOT
(0.40 ± 0.20) and least-squares SCG (0.39 ± 0.17) and non-
quadratic FTV (0.40 ± 0.18) and STV (0.39 ± 0.18) per-
formed on average, equally well. The only outlier that on
average consistently underperformed was the ν-method.

Simulations with the pairs of parallel dipoles served as
the surrogate of ventricular multiple events. Fig. 2
compares directly simulated cylindrical-cage potentials
with inversely computed potentials using SCG, SOT,
STV, FOT, and FTV, when the two dipoles were
30.6 mm apart. It is evident that two distinct extrema
were reconstructed only when using SOT (relative error of
0.56) or FTV (0.44); it is interesting that for this specific
example, the Laplacian was a more suitable operator than
the gradient when applying Tikhonov regularization, while
the opposite was true for the total variation technique.
When taking averages, however, the difference among
regularization techniques in the reconstruction of two-



Fig. 2. Cylindrical-cage potential distribution due to a pair of parallel dipoles, 30.6 mm apart, positioned close to the surface of the cage. (a) Cylindrical cage
potentials calculated directly. (b–f) Inversely computed cylindrical cage potentials using a second-order conjugate gradient iterative method (SCG), second-order
Tikhonov regularization (SOT), total variation algorithm, whose gradient operator was replaced by a Laplacian operator (STV), first-order Tikhonov
regularization (FOT), and first-order total variation technique (FTV), respectively. Two extrema were reconstructed clearly only by SOT and FTV. “M” denotes
maximum potential and “m” denotes minimum potential. Color illustration online.
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dipole potential distributions on the cylindrical-cage
surface was small and results were nearly identical when
using, FOT (0.43 ± 0.17), SOT (0.43 ± 0.14), FTV
(0.42 ± 0.17), or STV (0.42 ± 0.17). These observations
point toward the often-neglected notion that qualitative
features of reconstructed maps may show different
comparative assessment than do quantitative summary
statistics (e.g., relative error), and that in some instances,
smaller relative errors may not mean more potent
qualitative discrimination of localized events.
Table 2
Root-mean-square (rms) errors for reconstruction results during the initial phase
standard reference points of the sinus rhythm (peaks of P, R, S, and T waves) in

ZOT FOT SOT ZTSVD FTSVD STSVD

Q5 0.32 0.22 0.22 0.33 0.22 0.23
Q10 0.26 0.11 0.10 0.27 0.11 0.11
Q15 0.30 0.18 0.16 0.27 0.15 0.14
Qpk 0.49 0.43 0.39 0.44 0.38 0.31
P 0.47 0.43 0.42 0.51 0.42 0.42
R 0.45 0.40 0.39 0.42 0.39 0.37
S 0.48 0.42 0.40 0.50 0.41 0.40
T 0.27 0.16 0.16 0.27 0.16 0.16

Q5 refers to the potential distributions at 5 ms after the Q-onset; the same applies
22 ms after the Q-onset).
Canine heart model

Upper part of Table 2 illustrates reconstruction results
during the initial phase of the QRS complex, from the Q-
onset to the peak of the Q-wave (at 22 ms after the Q-onset),
in the presence of a 40-dB input noise. During the low-
signal-to-noise ratio after the onset, the normalized RMS
errors of the reconstructed cage potentials were relatively
high, ranging from 0.22 to 0.36, and the correlation
coefficients were in the range of 0.93–0.98, depending on
of the QRS complex, from the Q-onset to the peak of the Q-wave, and for
the presence of a 40-dB noise.

ZCG FCG SCG ν MINRES FTV STV

0.32 0.25 0.25 0.32 0.42 0.23 0.22
0.26 0.11 0.11 0.26 0.34 0.15 0.12
0.26 0.19 0.15 0.27 0.38 0.14 0.13
0.40 0.45 0.38 0.45 0.55 0.31 0.25
0.47 0.45 0.45 0.48 0.49 0.37 0.41
0.40 0.40 0.38 0.43 0.51 0.35 0.33
0.47 0.45 0.44 0.49 0.53 0.37 0.40
0.26 0.16 0.16 0.26 0.35 0.17 0.16

to Q10 and Q15; Qpk refers to the distributions at the peak of the Q-wave (at
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the regularization technique used. It appears that the
difference between non-quadratic methods and other regu-
larization techniques became most pronounced at the peak of
the Q wave.

Fig. 3 depicts the body-surface potentials and the
measured and calculated cage potentials at 5 ms after the
onset of the Q wave. The simulation was carried out by
adding 40-dB noise to the torso potentials calculated from
the measured cage potentials, and the cage potentials were
inversely computed by the FTV and STV, two methodolo-
gies recently deemed better suited for localizing cardiac
events [16]. The body-surface potentials exhibit initial
anterior maxima, resulting from the septal activation of the
left ventricle. Both FTV and STV capture well the qualitative
features of the cage potentials, with STV providing a
smoother solution.

Figs. 4 and 5 show the measured and calculated cage
potentials at 10 ms after the onset and at the peak of the Q
wave. The cage potentials were inversely computed by the
FOT, SOT, FTSVD, STSVD, FTV and STV, respectively.
As before with the idealized source model, the reconstructed
solutions from 3 of the methodologies were practically
indistinguishable at 10 ms into the Q wave, in both
quantitative and qualitative terms. At the peak of the Q
wave, according to quantitative measures, STV (0.25)
performed better than FTV (0.31), STSVD (0.31), FTSVD
(0.38), SOT (0.39) and FOT (0.43), although the differences
in qualitative features of the maps were not prominent.

Lower part of Table 2 summarizes results for the standard
fiducial points of the sinus rhythm (peaks of P, R, S, and T
waves), again using 40-dB input noise. Similar to results
during the initial phase of the QRS, both non-quadratic
regularization techniques (FTV, STV) performed – at least at
some time instants – somewhat better than the other 11
Fig. 3. Potential distributions at 5 ms after the onset of the Q wave. (a) Torso poten
element method (BEM). (b) Measured cylindrical cage potentials. (c and d) Inve
(FTV), and the total variation algorithm with the Laplacian instead of a gradient
qualitative terms, FTV better captures the measured potential distribution. Color i
methodologies tested. On average, however, these differences
were small and Tikhonov regularizations (FOT, SOT) and
iterative regularizations were, for the most part, on a par with
the non-quadratic techniques. Fig. 6 further emphasizes this
point by comparing average reconstruction results during the
entire sinus rhythm, with similar outcomes for FOT, SOT,
FTSVD, STSVD, FTV, and STV methodologies.
Discussion

The motivation for this study was to compare the
performance of various regularization techniques using a
unified computational framework derived from a realistic
torso model with both an idealized source model and a
canine heart. Our main hypothesis that non-quadratic
methods (FTV and STV) would be superior in regularization
of ECGI was not confirmed. In fact, our results indicate that
there is, on average over all source models, little difference
among three main groups (i.e., Tikhonov, iterative, and non-
quadratic) of regularization techniques. Somewhat disap-
pointing was the performance of the ν-method, which is
otherwise a potent tool in solving non-negativity constrained
ill-posed problems in related fields due to straightforward
implementation of the constraint [38].

We have observed some instances in which the non-
quadratic regularization FTV (and sometimes STV)
appeared to capture inverse solutions better than other
methodologies, but not on the level reported by Ghosh and
Rudy [16], who noted that FTV method (also called L1
regularization) markedly and consistently better captured the
spatial patterns of epicardial potentials. It appears that FTV
may, in some specific instances, be more potent in capturing
multiple sources that are not too far apart, although under
tials computed from the measured cylindrical cage potentials using boundary
rsely computed cylindrical cage potentials using the total variation method
operator (STV). Although both approaches have similar relative errors, in
llustration online.
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Fig. 4. Potential distributions at 10 ms after the onset of the Q wave. (a) Measured cylindrical cage potentials. (b, c) Inversely computed cylindrical cage
potentials using first (FOT) and second (SOT) order Tikhonov regularizations, (d, e) first (FTSVD) and second (STSVD) order truncated singular value
decomposition methods, and (f, g) total variation algorithms with a gradient (FTV) and a Laplacian operator (STV), respectively. Color illustration online.
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such circumstances SOT also performs quite well. It seems
that, for example, FTV tends to under-regularize the inverse
solution and hence provide more detail, providing, of course,
that the researcher has at least some a priori information
about the nature of sources (e.g., the possible sites of early
activation) and a systemized differentiation of quantitative
and qualitative features of maps with respect to a given
clinical application. Such under-regularization – which
really refers to under-suppression of type of error the
regularization penalizes for in the resulting solution – can
undermine the robustness of the solution and may well lead
in some instances to ambiguity when distinguishing between
the true source and noise. Our experience in the field of
inverse reconstructions suggests that slight over-regulariza-
tion (as provided by, e.g., SOT) is, at least for clinical
applications given the current uncertainties of the field, better
suited than any form of under-regularization.
Our study has some obvious limitations: the data from the
canine heart were directly measured only on the cylindrical-
cage surface, and this surface potential distribution was then
used as the equivalent source for calculating the torso
potentials. The cylindrical cage was some distance away from
the canine heart, which at least to some extent smoothed out
the potential distribution on the cage surface. To address
these potential limitations, we placed the idealized dipolar
sources close to the surface of the cylindrical cage (e.g., for
parallel-dipole examples shown in Fig. 2 the distance was
7.9 ± 0.9 mm). Maybe it is important to note that it is
extremely difficult to record potentials on the epicardium
while obtaining an accurate geometry of epicardial surface.

We plan to extend our research in five directions: 1) using
epicardial potentials instead of cage potentials, 2) testing
validity of a homogeneous torso assumption, 3) applying
regularization to identifying sites of early activation during

image of Fig.�4


Fig. 5. Potential distributions at the peak of the Qwave, i.e., at 22 ms from the onset of theQwave. (a)Measured cylindrical cage potentials. (b, c) Inversely computed
cylindrical cage potentials using a first (FOT) and second (SOT) order Tikhonov regularizations, (d, e) first (FTSVD) and second (STSVD) order truncated singular
value decomposition methods, and (f, g) total variation algorithms with a gradient (FTV) and a Laplacian operator (STV), respectively. Color illustration online.
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pacing, 4) in further assessing regularization techniques which
impose multiple spatial and spatiotemporal constraints on the
inverse solution [32,33,39,40], and 5) in using a simulation
framework with models of ventricular fibrillation [41].
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Appendix A

We created a cylindrical source space, consisted of 744
dipoles in 248 positions, which were arranged in 8 axial
planes 10 mm apart along the polar z-axis. There were three
perpendicular dipoles in each position: normal (radial, pρ)
and tangential (along the polar angle, pφ) to the cage side
surface, and alongside the polar axis (pz). In the first and
second source (axial) planes there were 7 source positions
(Fig. 1c), one in the center and 6 arranged along a concentric
circle with a radius of 10 mm (nodes of hexagon with side
10 mm). The center of the bottom plane was at (−16, 45,
230) mm in the Cartesian coordinate system of the torso-cage
model. In the next two source planes (Fig. 1d), there were 19
positions on each plane, 7 as in the first and second planes
and 12 arranged on an additional concentric circle with a
radius of 20 mm (nodes of a dodecagon with side 10 mm).
In the next two source planes, there were 37 positions on
each plane (Fig. 1e), 19 as in the previous two planes, and 18
on an additional concentric circle with a radius of 30 mm
(equivalent to the nodes of an octadecagon with a side length
of 10 mm). In the last two source planes, there were 61
positions on each plane (Fig. 1f), 37 as in the previous two
planes and 24 on an additional concentric circle with a radius
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Fig. 6. Comparison of average relative errors (with SD represented as the
bars above the columns) over the entire sinus rhythm (n = 484) for 13
regularization techniques. On average, FOT, SOT, FTSVD, STSVD, FTV,
and SVT perform equally well (p b 0.05).

28 M. Milanič et al. / Journal of Electrocardiology 47 (2014) 20–28
of 40 mm (nodes of tetracosagon with sides of 10 mm).
Additional details are available in technical supplement at
[http://fizika.imfm.si/ECGI/simulation.htm].
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