
The Uintah Framework: A Unified Heterogeneous
Task Scheduling and Runtime System

Qingyu Meng
Scientific Computing and

Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA
Email: qymeng@sci.utah.edu

Alan Humphrey
Scientific Computing and

Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA
Email: ahumphrey@sci.utah.edu

Martin Berzins
Scientific Computing and

Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA
Email: mb@sci.utah.edu

Abstract—The development of a new unified, multi-threaded
runtime system for the execution of asynchronous tasks on
heterogeneous systems is described in this work. These asyn-
chronous tasks arise from the Uintah framework, which was
developed to provide an environment for solving a broad class of
fluid-structure interaction problems on structured adaptive grids.
Uintah has a clear separation between its MPI-free user-coded
tasks and its runtime system that ensures these tasks execute
efficiently. This separation also allows for complete isolation of
the application developer from the complexities involved with the
parallelism Uintah provides. While we have designed scalable
runtime systems for large CPU core counts, the emergence of
heterogeneous systems, with additional on-node accelerators and
co-processors presents additional design challenges in terms of
effectively utilizing all computational resources on-node and man-
aging multiple levels of parallelism. Our work addresses these
challenges for Uintah by the development of new hybrid runtime
system and Unified multi-threaded MPI task scheduler, enabling
Uintah to fully exploit current and emerging architectures with
support for asynchronous, out-of-order scheduling of both CPU
and GPU computational tasks. This design coupled with an
approach that uses MPI to communicate between nodes, a shared
memory model on-node and the use of novel lock-free data
structures, has made it possible for Uintah to achieve excellent
scalability for challenging fluid-structure problems using adaptive
mesh refinement on as many as 256K cores on the DoE Jaguar
XK6 system. This design has also demonstrated an ability to
run capability jobs on the heterogeneous systems, Keeneland
and TitanDev. In this work, the evolution of Uintah and its
runtime system is examined in the context of our new Unified
multi-threaded scheduler design. The performance of the Unified
scheduler is also tested against previous Uintah scheduler and
runtime designs over a range of processor core and GPU counts.

I. INTRODUCTION

An important trend in high performance computing is the
planning and design of software framework architectures for
emerging and future systems with multi-petaflop and eventu-
ally exaflop performance [1]. Such frameworks must address
the formidable scalability and performance challenges asso-
ciated with running on these systems, and must also insulate
application developers from the inherent complexity of the
parallelism involved. Traditional systems are now commonly
augmented with graphics processing units (GPUs), and will
soon be subject to the availability of other co-processor

designs such as the Intel Xeon Phi [2]. Software framework
designs must consider these heterogeneous architectures and
additionally plan for future many-core designs.

In its near 15 year history, the Uintah Computational Frame-
work (UCF) has continually addressed and overcome these
challenges. Originally Uintah used an MPI-only approach
to scheduling of computational tasks using an out-of-order
execution model [3] that worked well for many cases, recently
scaling to near 100K [4] cores on challenging fluid-mechanics
problems. One limitation of its pure MPI scheduling is that
tasks which are created and executed on different cores on the
same node cannot share data.

A multi-threaded MPI scheduler was then used [1] to
solve this problem by dynamically assigning tasks to worker
threads during execution. This multi-threaded MPI scheduler
used a master-slave model which had one control thread and
several worker threads per MPI process. The control thread
processed MPI receives, managed tasks queues and assigned
ready tasks to worker threads. The worker threads simply
executed their task and then asked the control thread to assign
the next task. The control and worker threads communicated
through Pthread conditional variables. Experimental results
on challenging simulations using Adaptive Mesh Refinement
(AMR) showed a 50% to 90% savings on memory usage by
using the multi-threaded scheduler. This scheduler was then
extended to heterogeneous systems [5], able to dispatch work
to both CPU cores and GPUs on-node. This approach still did
not result in the scalable execution of the target fluid-structure
problem beyond 200K cores however.

A potential bottleneck in the master-slave model is that a
worker thread may become idle if the control thread cannot
respond to its next ready task request quickly enough. In
order to guarantee a short response time, the control thread
was assigned to a dedicated core. This approach led to this
core being under-utilized when running with small numbers
of cores, as there was not enough work for the control
thread. When running with larger numbers of cores per node
there is an increase in master control thread CPU usage with
increasing numbers of worker threads. This made it difficult to
balance the control thread workload with the worker threads
and it has been observed that the master-slave model hits a



control thread bottle neck as the number of cores per node
increases. We has addressed this issue with the design of the
Unified scheduler, presented here. This new scheduler allows
all threads to process MPI sends and receives or to execute
tasks concurrently without a control thread. In contrast to the
master slave model, the decentralized scheduler is able to fully
utilize all available cores on-node, regardless of the number of
cores and can also fully utilize one or more GPUs available
on-node. This design seeks to not only maximize node-level
parallelism in current architectures, but also in future, many-
core architectures with the looming prospect of less memory
per core. This design remains broad enough to support other
co-processor designs, such as the Intel Xeon Phi [2].

In this work, we examine the evolution of Uintah’s hybrid
multi-threaded MPI runtime system [1] to support, schedule
and execute both CPU and GPU tasks simultaneously, without
a central control thread. In what follows Section 2 provides an
overview of the Uintah software, while Section 3 covers the
history of Uintah task schedulers and their respective designs
and ultimate scalability and performance barriers. Section 4
details the current Unified multi-threaded runtime system and
how this design is well-suited for both current and emerging
HPC architectures. In Section 5, we describe computational
experiments that illustrate the effectiveness and performance
of the Unified scheduler. This paper concludes by describing
future work in this area.

II. OVERVIEW OF UINTAH SOFTWARE [5]

The Uintah Software was originally written as part of the
University of Utah Center for the Simulation of Accidental
Fires and Explosions (C-SAFE) [6]. C-SAFE, a Department of
Energy ASC center, focused on providing science-based tools
for the numerical simulation of accidental fires and explosions.
The aim of Uintah was to be able to solve complex multi-
scale multi-physics problems. Uintah is regularly released as
open source software [7]. Uintah is novel in its use of a
asynchronous, task-based paradigm, with complete isolation
of the application developer from parallelism. The individual
tasks are viewed as part of a directed acyclic graph (DAG)
and are executed adaptively, asynchronously and often out of
order [3]. Uintah uses a novel adaptive meshing approach [4]
as well as a variety of fixed mesh and particle solution
methods.

In order to solve complex multi-scale multi-physics prob-
lems, Uintah makes use of a component design that enforces
separation between large entities of software that can be
swapped in and out, allowing them to be independently
developed and tested within the entire framework. This has
led to a very flexible simulation package that has been able
to simulate a wide variety of problems [8]. The Uintah
component approach allows the application developer to only
be concerned with solving the partial differential equations
on a local set of block-structured adaptive meshes, without
worrying about explicit message passing calls, GPU memory
operations or notions of parallelization and load balancing.
This approach also allows the developers of the underlying

parallel infrastructure to focus on scalability concerns includ-
ing load balancing, task scheduling, component switching and
communications. This component based approach to solving
complex problems allows improvements in scalability to be
immediately applied to applications without any additional
work by the application developer.

Uintah currently contains four main simulation algorithms,
or components: the ICE compressible multi-material Compu-
tational Fluid Dynamics (CFD formulation, the particle-based
Material Point Method (MPM) for structural mechanics the
combined fluid-structure interaction algorithm MPMICE [9],
and the ARCHES combustion simulation component.

III. HISTORY AND SURVEY OF UINTAH TASK
SCHEDULERS AND RUNTIME SYSTEMS

Uintah components define abstract but connected tasks on
a generic grid patch. The connections between these tasks are
defined by the variables that the tasks require and compute on
the patch and its ghost cells. During the simulation, these tasks
are created on the patches of a continually adapting grid and
then mapped by Uintah onto the parallel machine. These tasks
are the fundamental unit of work within Uintah and associated
with each task is a C++ method which is used to perform
the actual computation. This C++ method is implemented by
the component developer and represents the serial algorithm
to run on each patch. User tasks are shielded from the
underlying parallelism being managed by Uintah itself, and
in the context our new Unified scheduler, there are multiple
levels of heterogeneous parallelism Uintah must manage (MPI,
Pthreads and Nvidia CUDA). Without any knowledge of the
underlying parallelism, the component developer need only
register a particular task with the Uintah infrastructure and
specify what variables the task will require and compute. The
separation of these tasks from the runtime system is managed
by the data warehouse along with a task scheduler and its
associated data structures. The data warehouse is a dictionary
based data structure, that manages all Uintah variables. A task
can use a variable name and a patch ID key to load and
save variables into the data warehouse. The data warehouse
also manages MPI message buffers and automatically garbage
collects variables when they are no longer needed. The Uintah
task scheduler is responsible for computing the dependencies
of tasks, determining the order of execution and ensuring that
the correct inter-process communication is performed [10]. It
also ensures that no input or output variable conflicts will exist
in any two simultaneously running tasks. Uintah originally
used a simple static MPI scheduler in which tasks were
executed from a pre-determined list that was solely computed
from a task graph’s critical path. A limitation of this scheduler
is that a single task waiting for messages caused the calculation
on a particular core to sit idle.

The simulation grid in Uintah is partitioned into patches
by a highly scalable regridder and assigned to nodes by a
measurement-based load-balancer [10]. In each MPI process,
the Uintah runtime system will schedule the tasks on local
patches by using a local task graph and the data warehouse.



Fig. 1. Uintah CPU Task Scheduler: Master-Slave Model [1]

The task graph is a directed acyclic graph (DAG) [11] which
is compiled by making connections on task’s required and
computed variables.

To address the scalability and performance challenges pre-
sented with each successive generation of machine and new
architecture, many Uintah schedulers have been developed.
The following subsections explore this design history in detail.

A. Dynamic MPI Scheduler [3]

In order to reduce the CPU idle time due to the wait
for MPI communications, Uintah needed to move away from
its decade-old static scheduler. Although the overlapping of
communications had been used to compute this task list, the
uncertainty of MPI message arrival had begun to increase
on larger machines. In order to address this issue, a new
Uintah dynamic scheduler was developed in [3] to better
overlap communication and computation by using out-of-order
task execution. A task was then allowed to execute once
its required(input) variables were available. The static task
list was replaced by multi-stage task queues to allow the
scheduler to keep track of the different input availability states
of tasks. An internal ready queue stored tasks whose required
variables from local tasks were available. An external ready
queue stored tasks whose foreign required variables from MPI
messages were also available. As long as the external ready
queue was not empty, the CPU could always execute tasks
to overlap communications. When a task was running out-of-
order, multiple versions of a variable may exist at the same
time. A data warehouse variable versioning system was imple-
mented to ensure correct memory access. Several runtime task

priority algorithms [3] were also designed and tested to further
improve scheduler performance. This scheduler significantly
reduced the MPI wait time by 40% to 60%, allowing Uintah
to scale to 98K cores on the NSF Kraken system and also
improved the over all performance of Uintah [3].

B. Multi-threaded CPU Scheduler (Master-Slave Model) [1]

While the out-of-order execution model worked well for
many cases, one limitation of its pure MPI scheduling is that
variables have to be passed through MPI messages and copied
to another process’ memory even if the source and destination
tasks were on the same multi-core node. A new multi-threaded
MPI scheduler (Figure 1, from [1]) was designed in [1] to
eliminate intra-node MPI messages and memory copies by
adopting a shared memory model on-node. This was realized
by creating multiple worker threads on the same multi-core
node. In this way, tasks running on different cores could
directly access all variables on the same node.

This multi-threaded MPI scheduler had one control thread
and several worker threads per MPI process, which com-
municated through Pthread conditional variables. The control
thread processed MPI receives, managed tasks queues and
assigned ready tasks to worker threads. The worker thread
simply executed the task that the control thread assigned
to it. As Uintah variables can be accessed freely by any
thread, many shared data structures, such as data warehouse
and task queues, were redesigned to guarantee thread-safety.
Experimental results [1] on typical fluid AMR simulations
showed 50% to 90% savings on memory usage. This new
multi-threaded MPI scheduler enabled Uintah to scale up to



Fig. 2. Uintah CPU-GPU Task Scheduler: Master-Slave Model [5]

196K cores on the DoE Jaguar XT5 system and became the
basis for the heterogeneous multi-threaded MPI scheduler [5]
which allowed Uintah to dispatch tasks to GPUs as well as
CPU cores on a node.

C. Multi-threaded CPU-GPU Scheduler (Master-Slave
Model) [5]

In the same fashion that Uintah insulates the application
developer from the parallelism its infrastructure provides via
the multi-threaded CPU scheduler, the hybrid CPU-GPU ver-
sion also hides and carefully manages details related to GPU
memory allocation and transfer. Associated with each Uintah
task is a C++ method which is used to perform the actual
computation. In the context of the hybrid CPU-GPU scheduler,
a GPU task is represented by an additional C++ method that
is used for GPU kernel setup and invocation. This design
uses Nvidia CUDA C/C++ exclusively for both the Uintah
infrastructure and user GPU tasks.

Central to the master-slave design of the hybrid multi-
threaded CPU-GPU scheduler (Figure 2, from [5]) is the multi-
stage queuing architecture for efficient scheduling of CPU
and GPU tasks. The CPU-GPU scheduler utilized four task
queues: an internal ready and external ready queue for CPU
tasks and an additional pair of queues for the GPU; one
for initially ready GPU tasks; those that have their requisite
simulation variable data copies from host-to-device pending,

and a second for the corresponding device-to-host data copies
pending completion. It should be noted that both GPU task
queues are priority queues and thus preserve a given task
priority algorithm established by the scheduler itself.

The hybrid CPU-GPU scheduler also maintained a set of
queues for CUDA stream and event handles (one per device
representing separate CUDA contexts for each), and assigned
them to each simulation variable per time step to overlap with
other host-to-device memory copies as well as kernel execu-
tion [5]. These stream and event handles provide a mechanism
to detect completion of asynchronous memory copies without
a busy wait, using cudaEventQuery(event). This allows
querying the status of all device work preceding the most
recent CUDA 4.0 API call to cudaEventRecord() [12].
On systems with multiple on-node GPUs, the hybrid CPU-
GPU scheduler must additionally manage a CUDA calling
context for each device.

First, if a task’s internal dependencies were satisfied, then
that task was placed in the CPU internal ready queue where
it waited until all required MPI communication had finished.
In this same step, if the task was GPU-enabled, the task was
then put into the host-to-device copy queue for advancement
toward execution. As long as the CPU external queue was
not empty, there were always tasks to run. Execution of a
task took place on the first available CPU core or GPU and
the scheduler resided on a single, dedicated core per node.



CPU tasks were dispatched by the control thread to available
CPU cores when they signaled the need for work. GPU tasks
were assigned in a round-robin fashion to available GPUs on-
node once their asynchronous host-to-device data copies had
completed. This design helped to overlap MPI communication
and asynchronous GPU data transfers with CPU and GPU task
execution, significantly reducing MPI wait times [5].

Ultimately, the GPU task went to the pending device-to-
host copies queue. A GPU-enabled task in most cases has
several computed Uintah variables to return from the device
to the host. The device-to-host copies queue was where tasks
resided while waiting for these operations to complete. Upon
completion of these data transfers, the task was marked as
completed and its MPI sends were posted. Finally the GPU
task was removed from the pending device-to-host copies
queue, allowing other dependent tasks to proceed.

D. Multi-threaded CPU Scheduler (Decentralized
Model) [13]

A potential bottleneck in the centralized, master-slave model
was that a worker thread might become idle if the control
thread could not respond to its next ready task request quickly
enough. In the presence of additional GPU tasks, this could
potentially be even more pronounced as the control thread
must also coordinate data transfers to and from the GPU
and also manage the additional GPU task queues. To better
facilitate a quick response, the control thread was assigned
to a dedicated core. However, this ultimately led to the
control thread core being under-utilized. The solution adopted
in [13] was the design of a new decentralized multi-threaded
scheduler, eliminating the central control thread, thus allowing
all threads to process MPI sends and receives and also to
execute tasks freely and concurrently without using a control
thread [13]. Instead of requesting a ready task from the
control thread, all threads in the decentralized multi-threaded
scheduler can directly pull tasks from the one of two ready
queues. When a thread pulls a task from the internal ready
queue, non-blocking MPI receives are then posted. When a
thread pulls a task from the external ready queue, the call-back
function for that task is executed after which its MPI sends are
posted. The decentralized CPU scheduler was then able to fully
utilize all available cores on-node, regardless of the number
of cores and outperformed the previous master-slave model. It
was also confirmed that the de-centralized model solved the
issue of under utilization of the control thread core.

The multi-threaded scheduler originally used locking to
protect shared data structures. This overhead increases with
the number of cores per node as contention for acquiring
locks also increases. Based on our timing results on Uintah
read-write locks, the data warehouse lock was seen to be
the largest single source of overhead. With this overhead in
mind, novel lock-free data structures and algorithms using
atomic instructions were designed to replace the use of high-
level, heavy-weight Pthread locks on frequently accessed data
structures [13].

IV. A NEW UNIFIED RUNTIME SYSTEM (DECENTRALIZED
CPU-GPU MODEL)

The natural design progression given the success of the
original CPU-GPU scheduler and the generally superior per-
formance and potential of the decentralized model, was to ex-
tend the decentralized CPU design to heterogeneous systems,
allowing all threads to process MPI sends and receives and
to execute both CPU and GPU tasks concurrently without
a control thread. Through this design extension, a unified
multi-threaded runtime system and approach to scheduling
Uintah computational tasks has been developed. The Unified
Scheduler and runtime system is the principal contribution
in this work and allows Uintah to not only exploit current
heterogeneous architectures, but also plans for emerging and
future many-core designs. Much of this design path has been
motivated by machines such as NSF Keeneland and the up-
coming DoE Titan and NSF Stampede systems. As mentioned
in [5], to adapt the Uintah Computational Framework for
hybrid CPU-GPU architectures, we elected to use Nvidia
CUDA C/C++ for numerous reasons, namely looking at the
upgrade path of the DoE Jaguar XK6 system to Titan [14] and
also the Keeneland Initial Delivery System (KIDS) [15], we
see a trend in the use or planned use of Nvidia GPUs.

Adding GPU capability to a decentralized multi-threaded
model presents several notable challenges. As stated earlier, all
threads in the decentralized multi-threaded model can directly
pull tasks from task queues, not solely the control thread, thus
creating potential race conditions on all shared data structures
in general, but specifically in the task queues. Within the
Unified scheduler and runtime system there are now four
total task queues; two queues for staging CPU tasks and
a corresponding pair for GPU tasks, all of which must be
thread-safe. Individual access to the GPU queues is relatively
infrequent, and more often a read than a write, hence multiple
reader, single writer synchronization primitives are used to
protect access and minimize lock overhead.

In the same way that access to CPU-only task data in the
data warehouse must be guaranteed to be thread-safe, access
to the current data structures that track corresponding GPU
data must be similarly protected. As described in [5], before
a GPU task is placed into the GPU host-to-device copy queue
the Unified scheduler initiates the device memory allocations
and asynchronous host-to-device data copies for the task’s
simulation variables. To carry out these operations, the data
warehouse must be queried by the Unified scheduler for the
location and size of the data required for computation on
the GPU. It is here that space in the data warehouse for the
result of the GPU computation is also allocated on the host.
These operations produce sets of pointers to device and host
memory for both a task’s requires(input) and computes(output)
variables that must be managed. Additionally, host memory
pointers are registered by the Unified scheduler to be copied to
the GPU via DMA using a call to cudaHostRegister()
combined with the cudaHostRegisterPortable flag
from the CUDA 4.1 API. This creates page-locked memory



from pre-allocated host memory that is considered page-
locked by all CUDA contexts and ultimately accelerates PCIe
transfers and eliminates resetting of CUDA contexts when
referencing the registered host memory [5]. This information
must also be tracked in order to cleanly unregister the page-
locked host memory when a task has completed. All of this
pointer information is kept in a set of maps maintained by
the Unified scheduler. Access to each of these maps must
also be guaranteed thread safe. Here, access to these data
structures is currently infrequent as the overall number of
GPU-enabled Uintah tasks is relatively low. Hence access to
the maps can be regulated by the same read-write locks used
in the task queues without significant overhead. However, as
more Uintah tasks are ported to the GPU, this could become
a potential bottleneck. This issue, should it arise, will be
addressed through the creation of a GPU data warehouse that
encapsulates these maps and uses the same novel lock-free
data structures and algorithms used in the current Uintah data
warehouse to eliminate the heavier-weight Pthread locks.

In addition to computational tasks, the Uintah task-graph
also consists of global tasks that require the result of MPI
collective operations. Third party library tasks that ”hijack”
the Uintah framework to do their own MPI communication are
also global tasks. As the current MPI standard does not provide
non-blocking collective operations, these global tasks need to
be scheduled at the same time to proceed without a load
imbalance. This load imbalance occurs when nodes choose
different paths before executing a global synchronization task,
as they need to synchronize at that particular global task. So
if a particular node has completed more tasks than another,
the thread running the global task in the node with fewer
completed tasks stays idle, hence a load imbalance is observed.
To solve this problem, tasks are divided into different phases.
Each phase contains only one global task and this task is only
scheduled if all other tasks in its phase have completed. In this
way, we can minimize the blocking time in global tasks and
reduce synchronization load imbalance. The addition of GPU
tasks and the associated logic involved with processing GPU
tasks and task queues has introduced additional challenges
with regard to global Uintah tasks. Existing logic has been
reorganized and further logic has been added in the Unified
scheduler to ensure scheduling of a given global task remains
delayed until both CPU and GPU tasks in its phase have
completed.

The run method for each thread also exposes a potential
performance bottleneck in that the Unified scheduler contains
a critical section that is protected by Mutex, a Pthread mutual
exclusion primitive called the scheduler lock. This critical
section contains numerous choices for work that a particular
thread may choose from. Thus for any given thread, the
duration between acquiring and releasing the scheduler lock
must be as short as possible or risk a serialization point. With
the addition of the GPU task queues, the number of places to
poll for work in this section has now increased. The Unified
scheduler addresses this issue with the simple use of a set
of flags, one of which will be set for a thread that holds the

scheduler lock, after which the lock is promptly released. The
set flag dictates what work the thread will do concurrently
with other threads beyond the critical section.

Preliminary results have confirmed that Uintah’s new Uni-
fied scheduler and runtime system demonstrate an ability to
effectively and efficiently utilize all available computational
resources on-node, even on heterogeneous systems and also
outperforms the previous master-slave model. This design also
proves a promising direction for future many-core architec-
tures with high core counts per node and the prospect of
diminishing amounts of memory per core.

V. IMPROVEMENT AND RESULTS

In evaluating the relative performance improvements of the
Unified scheduler, several initial tests were performed. The
first test looks at CPU only data from a single 32-core Cray
XE6 node and compares execution times of the CPU-only
master-slave model [1] to the new Unified scheduler. The
second test looks at data from a single 12-core, 3-GPU hetero-
geneous node, comparing execution times of the hybrid CPU-
GPU master-slave model [5] to the new Unified scheduler.
Lastly we plot scaling data from runs on the DoE Jaguar
system (CPU-only) and compare Uintah’s MPI-only scheduler
to its multi-threaded schedulers (master-slave model). These
plots also include data from TitanDev1, comparing GPU and
CPU implementations of the RMCRT problem from [5].

Number of Cores 2 4 8 16 32
Master-Slave 57.28 20.72 9.40 4.81 2.95

Unified 29.79 15.70 8.23 4.54 2.78

TABLE I
EXECUTION TIME: CPU-ONLY MASTER-SLAVE VS UNIFIED

Table I shows a CPU only performance comparison between
the master-slave and Unified models on a single Cray XE6
node (two 16-core AMD Opteron 6200 Series processors each
with Interlagos cores @2.6GHz) for a combined MPMICE
problem using AMR. In this case the Unified model outper-
forms the master-slave model on all runs up to 32 cores. By
monitoring the CPU utilization of each core, it was confirmed
that the unified model solved the issue of load imbalance of
the core that runs the control thread and the cores running the
worker threads. Furthermore, when one master control thread
with 1, 3, 7, 15 and 31 worker threads are used, the CPU loads
on the control thread increases linearly and are about 0.3%,
0.7% 1.7% 3.0% and 6.9% respectively. There is an increase
in master control thread CPU usage with increasing numbers
of worker threads.

Table II shows a hybrid CPU-GPU performance comparison
between the master-slave and unified models on a 12-core
heterogeneous node (two Intel Xeon X5650 processors each

1TitanDev is a 960 node partition on the DoE supercomputer Jaguar,
available during its upgrade to Titan in late 2012. Each node contains a single
16-core AMD Opteron 6200 Series (Interlagos cores @2.6GHz) processor on
one of its two sockets, the second socket contains a single Nvidia Tesla 20-
series GPU, for a total of 15,360 CPU cores and 960 GPUs.



with Westmere 6-core @2.67GHz, 2 Nvidia Tesla C2070
GPUs and 1 Nvidia GeForce 570 GTX GPU) for the GPU-
enabled Reverse Monte Carlo Ray Tracer (RMCRT) presented
in [5] with 25 rays per cell and a problem size of 413. This
is the benchmark problem from [16]. In this case the Unified
model outperforms the master-slave model on all runs up to
12 cores. These results also confirm that the performance
bottleneck found in the de-centralized model is even more
pronounced in the presence of additional GPU tasks, with
performance when using 2 and 12 threads respectively being
16% to 37% faster for the Unified model for this problem.

Number of Cores 2 4 6 8 10 12
Master-Slave 4.55 4.09 3.95 3.68 3.64 3.34

Unified 3.82 3.52 3.09 2.90 2.50 2.09

TABLE II
EXECUTION TIME: CPU-GPU MASTER-SLAVE VS UNIFIED

1N 2N 4N 8N 16N 32N 64N
1X

2X

4X

8X

16X

32X

Processing Units

S
p
e
e
d
u
p
 (

ti
m

e
s
)

 

 

MPI only, AMR MPMICE

Thread/MPI, AMR MPMICE

Thread/MPI, RayTracing

Thread/MPI/GPU, RayTracing

Ideal Scaling

Fig. 3. Uintah Scaling Overview (MPI only AMR MPMICE: N=6144 CPU
cores, Largest = 98K CPU cores; Thread/MPI AMR MPMICE: N=8192 CPU
cores, Largest=256K CPU cores; Thread/MPI RayTracing: N=16 CPU cores,
Largest=1024 CPU cores; Thread/MPI/GPU RayTracing: N=16 CPU and 1
GPU, Largest=1024 CPU and 64 GPU)

Figure 3 shows the Uintah strong scaling results when using
MPI-only, multi-threaded MPI and multi-threaded MPI with
GPU schedulers on two different problems: AMR MPMICE
and RMCRT Raytracing. For a large-scale MPMICE AMR
problem, Uintah originally scaled up to 96K CPU cores with
MPI only on the DoE Jaguar XK6 system. By using the multi-
threaded MPI scheduler (decentralized), Uintah can achieve
significantly better scalability, up to 256K CPU cores on
Jaguar. This simulation used 3.62 billion particles with three
refinement grid levels. For the GPU-enabled Reverse Monte
Carlo Ray Tracer (RMCRT) problem, 100 rays per cell were
used with a problem size of 1283.

Figure 4 isolates the CPU vs GPU scaling results in an
effort to better clarify the scaling breakdown in the GPU im-
plementation of the RMCRT problem. Although the mean time

1N 2N 4N 8N 16N 32N 64N
10

−1

10
0

10
1

10
2

10
3

Processing Units

M
e
a
n
 T

im
e
 p

e
r 

T
im

e
s
te

p
 (

s
)

 

 

Thread/MPI, RayTracing

Thread/MPI/GPU, RayTracing

Ideal Scaling

Fig. 4. Uintah GPU/CPU Execution Time (Thread/MPI RayTracing: N=16
CPU cores, Largest=1024 CPU cores; Thread/MPI/GPU RayTracing: N=16
CPU and 1 GPU, Largest=1024 CPU and 64 GPU)

per timestep for the GPU implementation is still considerably
lower than the CPU implementation at this point (up to 64
GPUs), ultimately there is insufficient work, and the GPU
implementation is subject to the same communication costs
as the CPU implementation [5] due to the all-to-all nature
involved with radiation modeling.

CONCLUSIONS AND FUTURE WORK

In this paper, we have covered the history and evolu-
tion of Uintah in the context of its task schedulers and
runtime systems, all leading up to the development of the
Unified heterogeneous task scheduler and runtime system
described in this work. We have shown that our Unified multi-
threaded scheduler design is capable of utilizing all on-node
computational resources on current and emerging multi-core
and heterogeneous systems efficiently and automatically. This
work has also illustrated how our Unified design keeps the
application developer insulated from the multiple levels of
parallelism inherent in heterogeneous systems by a separa-
tion of the user implemented tasks from the Uintah runtime
system. We have also shown preliminary results that confirm
the decentralized multi-threaded design used in the Unified
scheduler not only outperforms previous designs, but is also
well positioned to efficiently exploit emerging and future
many-core architectures.

Through the development of Unitah’s Unified scheduler, the
data warehouse lock was seen to be the largest single source of
overhead based on timing results on Uintah read-write locks,
and in the way the data warehouse has been made efficient
with a lock-free implementation, we are also considering an
efficient, lock-free GPU data warehouse. Additionally, we
would like to pursue designing a mechanism for the Unified
scheduler to decide at runtime whether to run a particular task
on a CPU core or on a GPU.

In the near future, we will be using early access to Intel



Xeon Phi [2] with plans to extend Uintah’s scheduler to
support such co-processor designs as well. And, with the
eminent arrival of the massive-scale heterogenous DoE Titan
in late 2012, larger scaling runs to further test our Unified
scheduler and runtime design will also be performed. Given
that Titan will potentially have 10,000 or more Nvidia Kepler
K20 GPUs, we will also be leveraging the advanced features
available through CUDA 5.0 and Kepler, specifically Dynamic
Parallelism to further improve GPU utilization by the Uintah
framework.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under subcontracts No. OCI0721659, the NSF OCI
PetaApps program, through award OCI 0905068, by DOE IN-
CITE award CMB015 and Director’s Discretionary Allocation
CMB021 for time on Jaguar and DOE NETL for funding under
NET DE-EE0004449. Uintah was written by the University
of Utahs Center for the Simulation of Accidental Fires and
Explosions (C-SAFE) and funded by the Department of En-
ergy, subcontract No. B524196. This research used resources
of the Keeneland Computing Facility at the Georgia Institute
of Technology, which is supported by the National Science
Foundation under Contract OCI-0910735. This research also
used resources from the TitanDev program, the 960-node
partition of the Cray XK6 Jaguar system outfitted with Nvidia
GPUs located at Oak Ridge National Laboratory (ORNL). We
would like to thank the Resource Utilization Council at the
Oak Ridge Leadership Computing Facility for granting our
project early access to TitanDev resources. We would also
like to thank all those previously involved with Uintah, Justin
Luitjens in particular.

REFERENCES

[1] Q. Meng, M. Berzins, and J. Schmidt, “Using Hybrid Parallelism to
Improve Memory Use in the Uintah Framework,” in Proc. of the 2011
TeraGrid Conference (TG11), Salt Lake City, Utah, 2011.

[2] Intel Corporation, “Intel MIC Web Page,” 2012,
http://www.intel.com/content/www/us/en/architecture-and-
technology/many-integrated-core/intel-many-integrated-core-
architecture.html.

[3] Q. Meng, J. Luitjens, and M. Berzins, “Dynamic task scheduling for
the uintah framework,” in Proceedings of the 3rd IEEE Workshop
on Many-Task Computing on Grids and Supercomputers (MTAGS10),
2010. [Online]. Available: http://www.sci.utah.edu/publications/meng10/
Meng TaskSchedulingUintah2010.pdf

[4] J. Luitjens and M. Berzins, “Improving the performance of
Uintah: A large-scale adaptive meshing computational framework,”
in Proc. of the 24th IEEE Int. Parallel and Distributed
Processing Symposium (IPDPS10), 2010. [Online]. Available:
http://www.sci.utah.edu/publications/luitjens10/Luitjens ipdps2010.pdf

[5] A. Humphrey, Q. Meng, M. Berzins, and T. Harman, “Radiation
modeling using the uintah heterogeneous cpu/gpu runtime system,” in
Proceedings of the XSEDE 2012 Conference. ACM, 2012.

[6] J. D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R.
Johnson, “Uintah: A massively parallel problem solving environment,”
in Ninth IEEE International Symposium on High Performance and
Distributed Computing. IEEE, Piscataway, NJ, nov. 2000, pp.
33–41. [Online]. Available: http://www.sci.utah.edu/publications/dav00/
uintah-hpdc00.pdf

[7] The Center for the Simulation of Accidental Fires and Explosions,
“Uintah Web Page,” 2012, http://www.uintah.utah.edu/.

[8] M. Berzins, “Status of Release of the Uintah Computational Frame-
work,” Scientific Computing and Imaging Institute, Tech. Rep. UUSCI-
2012-001, 2012.

[9] J. E. Guilkey, T. B. Harman, and B. Banerjee, “An eulerian-lagrangian
approach for simulating explosions of energetic devices,” Computers and
Structures, vol. 85, pp. 660–674, 2007.

[10] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. Wight, and J. Peterson,
“Uintah - a scalable framework for hazard analysis,” in TG ’10: Proc.
of 2010 TeraGrid Conference. New York, NY, USA: ACM, 2010.

[11] M. Berzins, Q. Meng, J. Schmidt, and J. Sutherland, “Dag-based
software frameworks for pdes,” in Proceedings of HPSS 2011 (Europar
Bordeaux August 2011), 2012.

[12] N. Corp., “Nvidia Developer Zone Web Page,” 2012,
http://developer.nvidia.com/nvidia-gpu-computing-documentation.

[13] Q. Meng and M. Berzins, “Scalable large-scale fluid-structure interaction
solvers in the uintah framework via hybrid task-based parallelism
algorithms,” Submitted to Concurrency and Computation: Practice and
Experience, 2012.

[14] U.S. Department of Energy, Oak Ridge Natioanl Laboratory and
Oak Ridge Leadership Computing Facility, “Titan Web Page,” 2011,
http://www.olcf.ornl.gov/titan/.

[15] J. Vetter, R. Glassbrook, J. Dongarra, K. Schwan, B. Loftis, S. McNally,
J. Meredith, J. Rogers, P. Roth, K. Spafford, and S. Yalamanchili,
“Keeneland Web Page,” 2009, http://keeneland.gatech.edu/.

[16] S. P. Burns and M. A. Christen, “Spatial domain-based parallelism in
large-scale, participating-media, radiative transport applications,” Nu-
merical Heat Transfer, Part B: Fundamentals, vol. 31, no. 4, pp. 401–
421, 1997.


