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ABSTRACT

The Uintah Software framework was developed to provide an envi-
ronment for solving fluid-structure interaction problems on struc-
tured adaptive grids on large-scale, long-running, data-intensive
problems. Uintah uses a combination of fluid-flow solvers and
particle-based methods for solids together with a novel asynchronous
task-based approach with fully automated load balancing. Uintah’s
memory use associated with ghost cells and global meta-data has
become a barrier to scalability beyond O(100K) cores. A hybrid
memory approach that addresses this issue is described and evalu-
ated. The new approach based on a combination of Pthreads and
MPI is shown to greatly reduce memory usage as predicted by a
simple theoretical model, with comparable CPU performance.

Categories and Subject Descriptors

D.1.3 [Software]: Concurrent Programing; G.1.8 [Mathematics
of Computing]: Partial Differential Equations; G.4 [Mathematics
of Computing]: Mathematical Software; J.2 [Computer Applica-
tions]: Physical Sciences and Engineering
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1. INTRODUCTION

An important trend in high performance computing is the plan-
ning and design of architectures for future computers with multi-
petaflop and eventually exaflop performance. A recent DARPA re-
port [5] discusses many of the challenges that face those trying to
program such architectures. One of these is expected to be signif-
icantly less memory per core than is available today. At the same
time today as the numbers of cores grow, the associated memory
per core is already being reduced in present-day architectures. In
this context a node will be assumed to consist of one or more sock-
ets, each of which has multiple cores.

In the case of large parallel problem solving environments for
computational science and engineering problems this trend is prob-
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lematic with regard to the traditional approach of using one MPI
process per core. There are two main reasons for this. The first is
that any global meta-data must be replicated on the process asso-
ciated with each core. The second is that in traditional domain de-
composition approaches for solving partial differential equations,
each core has a portion of the spatial mesh and must read the ghost
cell data it needs for the stencil being used in the computation, as
well as sending ghost-cell information to its neighbors. Thus each
cores must potentially assign data storage for multiple copies of
halo information that is already being stored on that node. Overall
this approach results in replication of variables in already limited
storage.

This problem has been recognized by a number of authors, e.g.
[4,20] and as a result a number of software frameworks have moved
from a model that only uses MPI to one that employs MPI to com-
municate between nodes and a shared memory model, often by us-
ing OpenMP, to map the work onto the cores in a node.

In this paper we consider the memory model and usage issues
associated with Uintah [6, 9, 21] an open-source software frame-
work (www.uintah.utah.edu). Uintah is novel in its use of
a task-based paradigm, with complete isolation of the user from
parallelism. The individual tasks are viewed as part of a directed
acyclic graph (DAG) and are executed adaptively, asynchronously
and now often out of order [18]. Uintah uses a novel adaptive mesh-
ing approach [16] as well as a variety of fixed mesh and particle
solution methods. In recent previous work we showed that Uintah
scales well to about 98K cores for some applications [6] includ-
ing a sympathetic explosion modeling problem, funded by the NSF
PetaApps Program, that is one of our main applications driving ex-
amples. As we approach problem sizes requiring greater than 100K
cores on machines such as Jaguar, ! and Kraken ? the memory re-
quirements of these problems requires a close examination of the
overall memory usage within the Uintah framework. The typical
message passing paradigm that Uintah operated under was that any
data that needed to be shared to a neighboring processor must be
passed via MPI. For multi-core architectures the process of passing
data that is local to a node is both wasteful in terms of latency from
MPI sends and receives and in the duplication of identical data that
is shared between cores.

The threading model that is described in this paper demonstrates

!Jaguar is a DOE supercomputer located at the Oak Ridge National
Laboratory with 18,688 compute nodes each of which contains dual
hex-core AMD Opteron 2435 (Istanbul 2.6GHz) processors, 16GB
memory, and a SeaStar 2+ router, giving 224,256 processing cores,
300TB of memory, and a peak performance of 2.3 petaflop/s
Kraken is an NSF supercomputer located at the University of Ten-
nessee/ Oak Ridge National Laboratory with 112,896 cores, and a
similar architecture to Jaguar.



the memory savings that we have observed by eliminating the du-
plication of data within a node. The memory savings allows us to
to expand the scope and range of problems that we have been un-
able to explore up until now. For the architectures of Kraken and
Jaguar where the memory per node is limited to 16GB per node,
the increase in memory savings is significant and potentially opens
up the range of problems and core counts that have been up until
now out of reach.

In this paper we look at how to extend the novel approach of
Uintah to the use of this hybrid model. In contrast to many other
approaches the Uintah task-based model lends itself better to the
use of Pthreads, see [2], rather than OpenMP. In what follows Sec-
tion 2 provides an overview of the Uintah software, while Section
3 describes examples of related efforts within other similar soft-
ware frameworks. Section 4 describes the main uses of memory in
Uintah related to ghost cells and global meta-data and provides a
simple model that makes it possible to predict the potential reduc-
tion in memory use. Uintah’s recent task execution algorithm and
its extension to a thread-based model at node level is described in
Section 5. Finally in Section 6 we describe experiments that illus-
trate over a range in scales of processor numbers what the improve-
ments in memory are and shows that they match the predictions in
Section 4. The paper concludes by describing future work in this
area.

2. OVERVIEW OF UINTAH SOFTWARE

The Uintah Software was originally written as part of the Uni-
versity of Utah Center for the Simulation of Accidental Fires and
Explosions (C-SAFE) [9]. C-SAFE, a Department of Energy ASC
center, focused on providing science-based tools for the numerical
simulation of accidental fires and explosions. Uintah was originally
capable of running on 4K processors and has now also been re-
leased as software® and extended to run on 98K processors through
additional DOE and NSF funding.

The aim of Uintah was to be able to solve complex multiscale
multiphysics problems, such as the benchmark C-SAFE problem.
This is a multi-physics, large deformation, fluid-structure problem
consisting of a small cylindrical steel container filled with a plastic
bonded explosive (PBX9501) subjected to convective and radiative
heat fluxes from a fire [12].

In order to solve such complex multi-scale multi-physics prob-
lems, Uintah makes use of a component design that enforces sep-
aration between large entities of software and can be swapped in
and out, allowing them to be independently developed and tested
within the entire framework. This has led to a very flexible sim-
ulation package that has been able to simulate a wide variety of
problems including shape charges, stage-separation in rockets, the
biomechanics of microvessels , the properties of foam under large
deformation, and the evolution of large pool fires caused by trans-
portation accidents [15], in addition to the exploding container de-
scribed above. The application of Uintah to a petascale problem
in hazard analysis arising from “sympathetic” explosions in which
the collective interactions of a large ensemble of explosives results
in dramatically increased explosion violence, was described in [6].

Uintah currently contains three main simulation algorithms, or
components, that are capable of using Adaptive Mesh Refinement
(AMR): the ICE compressible multi-material CFD formulation, the
particle-based Material Point Method (MPM) for structural me-
chanics, the combined fluid-structure interaction algorithm MP-
MICE [12].

ICE is a “multi-material" CFD algorithm that was originally de-

3see http://www.uintah.utah.edu

veloped by Kashiwa and others at LANL [14] for incompressible
and compressible flow regimes. This method conserves mass, mo-
mentum, energy, and the exchange of these quantities between ma-
terials and is used here on adaptive structured meshes consisting
of hexahedral patches, often of 8 or 16> cells [16]. The Mate-
rial Point Method is a particle method that is used to evolve the
equations of motion for the solid materials applications involving
complex geometries, large deformations and fracture. Originally
described by Sulsky, et al. [24], MPM is an extension to solid me-
chanics of the well-known particle-in-cell (PIC) method for fluid
flow simulation, that uses the ICE mesh as a computational scratch-
pad. The fluid-structure methodology is a combination of the MPM
and ICE [12].

In addition the fixed mesh Arches component was designed for
simulation of turbulent reacting flows with participating media ra-
diation. It is a three-dimensional, Large Eddy Simulation (LES)
code that uses a low-Mach number (Ma< 0.3), variable density for-
mulation to simulate heat, mass, and momentum transport in react-
ing flows. The LES algorithm solves the filtered, density-weighted,
time-dependent coupled conservation equations for mass, momen-
tum, energy, and particle moment equations in a Cartesian coordi-
nate system [15]. The Arches code exhibits parallel scaling through
its integration in the Uintah framework [22].

The Uintah component approach allows the application develop-
ers to only be concerned with solving the partial differential equa-
tions on a local set of block-structured adaptive meshes, without
worrying about explicit message passing calls or notions of paral-
lelization or load balancing. This approach also allows the develop-
ers of the underlying parallel infrastructure to focus on scalability
concerns including load balancing, task (component) scheduling
and communications. This component based approach to solving
complex problems allows improvements in scalability to be imme-
diately applied to applications without any additional work by the
applications developer. Uintah’s load balancer utilizes space-filling
curves in order to cluster patches together [17].

An important feature of Uintah is its adaptive meshing capabil-
ity. As reported in previous work [6, 16], Uintah’s adaptive mesh
regridder defines a set of fixed-sized tiles throughout the domain.
Each tile is then searched, in parallel, for refinement flags without
the need for communication. All tiles that contain refinement flags
become patches. This regridder is advantageous at large scales be-
cause cores only communicate once at the end of regridding when
the patch sets are combined. Testing of this new regridder showed
good scaling up to 98K cores at which point there are only one or
two patches with 4096 cells per core; at this point scalability be-
gins to break down. However, the key problem was that we were
not able to run a larger problem with more patches per core as there
was insufficient memory to accommodate the larger run. The main
challenge in moving Uintah up to the next size of parallel architec-
ture is thus to reduce the memory footprint of the code per core.
One approach that has been adopted by others to do this is that of
hybrid parallelism in which OpenMP or Pthreads are used to obtain
parallel performance at the level of a node and MP1 is used between
nodes.

3. RELATED PARALLEL FRAMEWORKS

At present there is much work on hybrid approaches often using
MPI and OpenMP and more recently extending sometimes to the
use of GPUs. These approaches have been used in several codes
which are similar to some parts of Uintah and have been run on
large parallel architectures. In the case of adaptive mesh codes
there are many such solvers and frameworks such as the Chicago
ASCI code FLASH [7] based on adaptive oct-tree meshes and the



physics AMR codes Enzo, [19] Cactus [11,20] and Castro [1]. The
highly adaptive mesh refinement (AMR) scalable codes of Ghat-
tas et al. [8] also use an oct-tree based approach for very different
problems using only MPI. The recent AMR Gamer hydrodynam-
ics codes of Schive [23] not only uses MPI with OpenMP, but also
extends the model to accommodate GPUs.

In a similar manner to the recent work on Uintah, the Enzo
framework [19] is also currently being extended with the Enzo-P
and Cello AMR frameworks being designed with new AMR fea-
tures designed for extreme parallel scalability, including new tech-
niques to address basic data type issues related to data structure
scalability.

The Cactus framework [11,20] allows the composition of indi-
vidually developed components (called thorns) to full applications.
Cactus parallelizes its data structures on distributed memory archi-
tectures via spatial domain decomposition, with ghost cells added
to each MPI processes part of the grid. The fourth order methods
used in Cactus require three ghost cells and consequently impose a
significant potential memory overhead for each MPI process. This
potential memory overhead is partially overcome by Cactus using
OpenMP within a multi-core node to avoid memory replication of
ghost cells and also to increase performance [20]. Similarly the
astrophysics Castro code [1] uses an OpenMP/MPI approach to
achieve weak scaling to 196K cores, for compressible flow prob-
lems.

However, there are overheads associated with OpenMP com-
mands, see [2, 10], and the natural task-based structure of Uintah
makes it more natural to consider Pthreads. Performance of the two
approaches seems broadly similar [3]. While Pthreads program-
ming is arguably more complex and potentially error-prone that the
relative, if beguiling, simplicity of OpenMP, within Uintah thread-
ing is only used at a systems level and is not visible to the user. It
is also perhaps somewhat easier to incorporate Uintah tasks within
threads at present, even though OpenMP from version 3.0 onwards
does support tasking.

4. UINTAH GLOBAL DATA STRUCTURES

The global memory usage of Uintah when using a straight MPI
model for communication and computation is broken down into
three main areas: shared ghost/halo data from the main computa-
tional data from the solution of partial differential equations,global
meta data for the underlying computational grid and load balanc-
ing, and finally the external library requirements. This last case is
most easily dealt with in that, based on experiments run on a single
node of Ranger, roughly a third of the memory use was devoted to
external third party libraries such as MPI and other operating sys-
tem dependencies, compared to the internal memory usage within
the Uintah framework,

4.1 Ghost cell data in Uintah

The ICE fluid-flow algorithm is a multi-material computational
fluid dynamics approach that solves the compressible Navier Stokes
representation of fluid materials. The state of a single material is
described by eight quantities and include mass, velocity, internal
energy, temperature, specific volume, volume fraction, stress, and
equilibration pressure. For N materials, there are N*§ state vari-
ables that are solved for during a single time step. During the in-
dividual steps of the ICE algorithm, ghost cell data from one patch
must be transferred to neighboring patches. For a typical step, a
single layer of ghost cell data is required, however, there are some
steps of the algorithm that require two layers of ghost cell data.
In cases in which turbulence modeling is included, three layers of
ghost cell data are included for several of the state variables. In the

computational experiments described in Section 6, two materials
were used in an AMR calculation, so there were 16 state variables
with their associated ghost cell data that needed to be transferred
during each timestep of the solution phase.

In the typical Uintah MPI model, ghost cell data is copied to a
buffer on the sending processor and then sent to the receiving pro-
cessor where it is stored in a buffer before being copied to the Data
Warehouse. This buffer holds a message consisting of variables
whose destination is the same. Although during the sending and
receiving stage, there are potentially four copies of the data that are
resident in memory, once the ghost cell data has been copied to the
Data Warehouse, the buffers holding ghost cell data are deallocated
requiring only two copies of the ghost cell data at any given time.
In Uintah the Data Warehouse is the repository of solution vari-
ables that exists inside each process. The applications code typi-
cally reads the variables it needs from the Data Warehouse, updates
these variables and then writes back the updated variables, see [18].

It is straightforward to articulate this overhead in a framework
like Uintah, as the following example illustrates. Consider the case
when each core has n2; cubic mesh patches each of which has nf’,
points in it. The number of mesh points native to that core is then
given by N, where

Npe = nzmi
Suppose that the computational stencil has a halo of nj, ghost cells,

then the storage needed per core for the halo information, as de-
noted by NV, is

2 2
Np = 2npbngn,

where the facor of two corresponds to a doubling of storage in
connection with MPI. The memory overhead percentage associated
with the halo is then given by Myyer, Where

N, 12
Mo'ue'r = h X 100% = h X 100%
Npc NelNyp

In Uintah n, is often in the range 2-4, n, = 12 [18] and n;, = 2
thus giving a halo overhead of 100% if n.; = 2 and a halo overhead
of 50% if ne; = 4. Of course this is a considerable simplification
and for a mesh partition that is not cubic when stored on a core the
halo may be even larger. These numbers correspond to a similar
overhead identified in Cactus [25].

4.2 Global meta-data in Uintah

The Uintah framework currently requires that certain data must
be replicated across the entire domain. This meta-data includes the
underlying grid layout and load balancing information. The cur-
rent implementation requires that every processor must know the
extents of every patch (currently just a high and low 3-vector in
index space) as well as which processor owns which patches. Al-
though this lightweight data structure is relatively small at present
(60 bytes or 7.5 doubles per patch) and can easily be communi-
cated, the growing demand for larger number of processors and
patches and the requirements of AMR can approach the point where
this data structure may, as we will see below, dominate the memory
per core in an MPI approach.

On a machine with NT, cores in total the size of this meta-data
structure is N,,q where

Nya = 7.5NT. nd,.

For a small number of partial differential equations each of which
will need storage of O (N, ) the mesh storage, Np,q will quite eas-
ily exceed the core storage if say, 100K cores are used.

Although only having one copy of the mesh data per node will
help to reduce the memory requirements, this may not completely



solve the problem when the number of cores and nodes approaches
those predicted for exascale machines [5].

4.3 A model for memory saving in Uintah

In order to assess the possible memory saving from the use of
a hybrid approach, consider a node with n. cores so that the total
number of cores is given by .

NT. = Npode X Ne.

On each node there are a total of 6n,. n’, internal and external faces
2

of all the patches. Of these only 6n2,n2 patch faces are on external
faces of the node in that they connect to patches on other nodes.
The potential memory saving consists of the difference between
these two terms as well as the saving due to there being only one
copy of the global data structure. Hence the percentage potential
memory saving, M, is given by

. 2 .
6(nend — n2nd)2npng + 7.5NTend (ne — 1)

x100%
6nend 2npng + nendnd + 7.5NTend ne) 0

My =

where the term ncnglnf, approximates the native variables stored
per node. Dividing both sides by n.n2; gives

(12a)npng + 7.57n0de (Re — 1)

My =
127’LhTL;,2J -+ TL% + 7.5”nodenc)

x 100%

where oo = 1 —n;llngl/?’. Given thatn, = 12, np = 2, n. = 12,

net ~ 2and a = 0.76 =~ 1 — 1/(2.3n.l) for Kraken, we get

29 4+ 0.91nn04e
58 + Nnode

Thus giving a potential memory saving of 90% as the number of

nodes , npodes, becomes large, or, alternatively, a memory reduc-
tion to below 10% of the memory used with MPI alone.

Memsaved ~ x 100%

S. UINTAH TASK-GRAPH ENGINE

As noted in the introduction, Uintah is a sophisticated compu-
tational framework that can integrate multiple simulation compo-
nents, analyze the dependencies and communication patterns be-
tween them, and execute the resulting multi-physics simulation.
This is done by utilizing an abstract task-graph representation of
parallel computation and communication to express data depen-
dencies between components. The task-graph is a directed acyclic
graph of tasks. Each task consumes some input and produces some
output (which is in turn the input of some future task). These in-
puts and outputs are specified for each patch in a structured AMR
grid. Associated with each task is a C++ method which is used to
perform the actual computation. Each component specifies a list
of tasks to be performed and the data dependencies between them.
The task-graph approach of Uintah shares many features with the
migratable object philosophy of Charm++ [13]. In order to increase
efficiency, the task graph is created and stored locally [6].

Uintah’s task scheduler is responsible for computing the depen-
dencies of tasks, determining the order of execution and ensur-
ing that the correct inter-process communication is performed [6].
Originally, Uintah used a static scheduler in which tasks were exe-
cuted in a pre-determined order. This caused delays when a single
task was waiting for a message. The new Uintah dynamic scheduler
changes the task order during the execution to overlap communica-
tion and computation [18]. This scheduler required a large amount
of development to support the out-of-order execution, which pro-
duced a significant performance benefit in lowering both the MPI
wait time and the overall runtime. The dynamic scheduler utilizes

two task queues: an internal ready queue and an external ready
queue. If a task’s internal dependencies are satisfied, then that task
will be put in the internal ready queue where they will wait until
all required MPI communication has finished. As long as the exter-
nal queue is not empty, the processor always has tasks to run. This
can help to overlap the MPI communication time with task execu-
tion. This approach reduces MPI wait times significantly, as shown
in [6,18].

5.1 Multi-Threaded MPI Runtime System

In the Uintah framework, after the regridder changes the simu-
lation grid and the load balancer generates the patch distribution,
the scheduler will create new sets of detailed tasks, compile a new
task graph and initialize data warehouses. Originally, Uintah used
both dynamic and static schedulers, based solely on MPI, in which
data structures were created on each MPI process. Although most
of Uintah infrastructure components are carefully designed to be
stored in a distributed manner, it is necessary for some data to
be stored multiple times, e.g. neighboring patch sets, neighboring
tasks and ghost variables. A limitation of pure MPI scheduling is
that tasks which are created and executed on the same node cannot
share data. The new multi-threaded MPI scheduler described be-
low solves this problem by dynamically assigning tasks to worker
threads during execution and share the same infrastructure com-
ponents between threads. The architecture of the runtime system
has been extended to support multi-threaded execution. Compared
to Uintah’s dynamic MPI scheduler, the new multi-threaded MPI
scheduler has one control thread and several worker threads per
MPI process. The control thread holds all infrastructure compo-
nents such as the regridder, the load balancer, the task graph and
the data warehouse and has read and write access to them.

As the control thread is responsible for sending ready tasks to all
worker threads, its efficiency is crucial for the performance of the
whole code. If bottlenecks exists in the control thread, the worker
threads may not able to get tasks in time and so will stay idle. This
will cause the whole simulation process to slow down. In Uintah’s
multi-threaded MPI scheduler, the control thread is designed to be
lightweight in order to provide very quick responses to each worker
thread. In the implementation considered here, the control thread
gives priority to assigning tasks to worker threads. Only when all
ready tasks have been assigned, will the control thread then start to
process task queues and received MPI messages. Also, a separate
core is allocated for the control thread. This allows control thread
to manage task queues and process MPI receives without undue
delay.

The worker threads are designed to be easily manageable and
only to execute tasks assigned by the control thread. Each worker
thread has read-only access to all infrastructure components and
also has write access to the data warehouse and the scheduler queues.

5.2 Control Thread

The control thread has two task queues (Figure 1): the internal
ready queue and external ready queue. After the task graph is com-
piled, all the pre-satisfied tasks will be placed in the internal ready
queue. The value of the counter for tracking outstanding MPI mes-
sages is set according to information provided by the task graph.
When this counter reaches zero, the communication phase is com-
plete and the task is ready to be executed. At that point it is placed
in the external ready queue. When scheduling a task the scheduler
chooses a task in the external ready queue based on a prioritization
algorithm.

At the time when a task is being scheduled, the control thread
will select an idle thread as a target thread and assign a task to it.
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Figure 1: Architecture of Uintah hybrid task scheduling system

Algorithm 1 Control Thread

while doneTasks < totalTasks do
if ReadyQ.Count () > 0 then
if idleThreads.Count () = 0 then
nextCondition.W ait()
end if
targetThread — pickIdleThreadl()
targetThread.task — ReadyQ.pop()
targetT hread.runCondition.Signal()
doneT asks + +
else
if runnigThreads.Count () = 0 then
recetve M PIs.W aitSome()
else
receiveM PIs.Test()
end if
end if
end while

After the assignment, the control thread will then wake up this tar-
get worker thread through the worker thread’s condition variable
signal. If all threads are busy, the control thread will block itself by
waiting based on its own condition variable until a worker thread
signals it. Since MPI receives and task dependencies are also pro-
cessed by control thread, when the external ready queue is empty,
the control thread will call MPI_Testsome or MPI_Waitsome to
process or wait for incoming MPI messages. The control thread
has three states: processing MPI receives and task dependencies,
blocked while requesting idle thread and blocked in MPI wait. The
algorithm for the control thread must be carefully designed to han-
dle all these cases. A simplified version of control thread code is
shown in Algorithm 1. The task external ready queue is referred to
as ReadyQ here, and the internal ready queue is not shown.

5.3 Worker Thread

In Uintah’s multi-threaded MPI scheduler, each worker thread
has been made easily manageable in that its data structure only
contains few variables for thread controlling and status recording.
The scheduler will create a number of worker threads according to
user’s specification. When those threads are initialized, they will
immediately block on their run conditions. Algorithm 2 shows the
main loop of every worker thread. When a run signal is called by
the control thread, the worker thread will be awoken and then start
running tasks. After each task is executed, its MPI Sends will also
be posted by worker thread. As the MPI send operation only re-
quires read only access to the data warehouse, multiple messages
can be sent out concurrently. The worker thread will then ask the
control thread for its next task and block on a run condition again
until the next task is assigned. If control thread is blocked, a signal
from worker thread will wake the control thread up. When a task
is completed, the worker thread will also check if any task’s local
dependencies are satisfied based on the task graph. Any newly sat-
isfied task will be placed in the internal ready queue waiting for the



control thread’s process.

Algorithm 2 Worker Thread

while |QUIT do
runCondition.W ait()
task.Run()
task.SendM P1s()
task — EMPTY
controlThread.nextCondition.Signal()
end while

5.4 Thread-safe Data Warehouse

As mentioned above, the core scheduler component that stores
simulation variables is the data warehouse. The data warehouse
is a hashed-map-based dictionary which maps variable name and
patch id’s to the memory address of a variable. Each task can get
its read and write variable memory by querying the data warehouse
with a variable name and a patch id. The task dependencies of
the task graph guarantees that there are no memory conflicts on lo-
cal variables access, while variable versioning guarantees that there
are no memory conflicts on foreign variables access. These mecha-
nisms have been implemented for supporting out-of-order task ex-
ecution in our previous work using a dynamic MPI scheduler [18].
This means that a task’s variable memory has already been iso-
lated. Hence, no locks are needed for reads and writes on a task’s
variables memory.

However, the dictionary data itself still needs to be protected
when a new variable is created or an old variable is no longer
be needed by other tasks. As dictionary data must be consistent
across the worker threads, the data warehouse has to be modified
to be thread-safe by the addition of read-only and read-write locks.
When a task needs to query the memory position of a variable,
a read-only lock must be acquired before this operation is done.
When a task needs the data warehouse to allocate a new variable,
or to cleanup an old variable, a read-write lock must be acquired
before this operation is done. while this increases the overhead of
multi-thread scheduling, locking on dictionary data is still more ef-
ficient way than locking the all the variables.

5.5 Task Requirements

The Uintah scheduler ensures that no input and output variable
conflicts will exist in any two simultaneously running tasks. This
also greatly helps users to write thread-safe simulation components.
In fact, all tasks in the ICE and AMRICE components are thread
safe and can be supported by the multi-threaded scheduler without
rewriting any task code. It is still possible, however, that some
components are not thread safe even through all tasks’ input and
output are isolated. For example, when tasks reuse temporary static
buffers which are allocated inside the task code, those tasks can not
be executed concurrently. In order to enforce thgis will require a
rewrite of some task code. We are still working to make more of
Uintah’s simulation components compatible with the new multi-
threaded MPI scheduler.

5.6 Global Synchronization

In the approach proposed here, control threads may receive an
MPI message and more than one worker thread may send MPI mes-
sages concurrently. The implication is that those MPI routines must
be capable of being used by multiple threads. Many MPI libraries
such as MPICH2 and OpenMPI already support thread-safety with-
out the need for any user-provided thread locks. Once parallel
environment setups up are done correctly, the point-to-point MPI

communication interfaces do not require any changes. In the Uin-
tah framework, this type of task, which only communicates with
neighboring tasks, are called Normal tasks.

However, Uintah also support Global tasks that require the result
of a global communication. Those global tasks are created when a
task computes a global variable which needs to be updated through
the whole grid, e.g., computation of the total mass of the system,
or when a task calls a third party library which need the MPI com-
municator as an argument. e.g., calling PETSc. These global tasks
will create one instance on each processor instead of one on each
patch and need to be scheduled everywhere in the system at the
same time. In the purely MPI scheduler, as no non-blocking reduc-
tion routines are provided, a synchronization phase is introduced
to support scheduling global tasks. Tasks are divided into differ-
ent phases in which each phase contains only one global task. The
scheduler only executes the global task if all of the other tasks in
its phase have completed and then moves to the next phase. In this
way, global tasks will be execute in a fixed order.

When running in a multi-threaded environment, since many MPI
collective communications can happen at the same time, the whole
of the task schedule will not be blocked by a single global task.
Hence the synchronization phase is removed in Uintah’s multi-
threaded MPI scheduler. However there is another problem that
arises when scheduling this type of task in a multi-threaded MPI
environment. At present there are no message tags in current MPI
collective routines. One process may not able to process multiple
MPI collective calls correctly as there are no message tags to dis-
tinguish them. In order to solve this problem, multiple copies of
communicators are created. When scheduling, one communicator
is assigned to each global task. This allows multiple global tasks
to run at the same time safely without blocking or interfering with
each other.

6. COMPUTATIONAL EXPERIMENTS

The aim of this section is to examine whether the hybrid mem-
ory version of Uintah reduces the memory requirement sufficiently
for us to consider running larger problems. In what follows, mea-
surements of the memory usage were obtained by the MallocTrace
memory profiling library described in [16]. Two prototypical simu-
lation studies were used to compare the hybrid multi-threaded/MPI
approach versus the MPI approach. The two metrics that we looked
at were memory usage and run time. The ICE algorithm was tested
in both the single level and AMR case using a simulation of the
transport of two fluids with a prescribed initial velocity of Mach
two. For this problem, the conservation of mass, momentum, and
energy equations were solved for two inviscid fluids. The fluids
exchange momentum and heat through the exchange terms in the
compressible Navier Stokes governing equations. This simulation
is an explicit formulation and utilized the w-cycle execution model
for time stepping in which proportionally smaller timesteps were
used on adaptively refined mesh patches. This problem exercises
all of the main features of ICE and amounts to solving eight partial
differential equations, along with two point-wise solves, and one it-
erative solve [6,16]. This AMR ICE benchmark [16] involved three
runs of varying sizes denoted by A,B and C. The refinement algo-
rithm used tracked the interface between the two materials, causing
the simulation to regrid often while maintaining a fairly constant
sized grid, which allows the scalability to be more accurately mea-
sured. This criteria led to each problem being about four times as
large as the previous one. All three runs are based on a same 3 level
adaptive mesh problem but with different resolutions. Run A uses a
64x64x64 coarse level resolution and contains in total 26.8 million
cells on all 3 levels of the refined mesh. Run B uses a 128x128x128
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Figure 2: Scalability Results for Cases A,B and C.

coarse level resolution and contains 108 million cells. Run C uses
a 256x256x256 coarse level resolution and contains 435 million
cells. Thus the problem size of run C is thus about four times than
run B and the problem size of run B is also about four times that of
run A. The refinement ratio of all three runs is 4 to 1. Three sets of
experiments were run on the 12 cores per node of Kraken: a pure
MPI case, a case where the 12 cores were split into two times 6
threads and a third case of 12 threads per node. The results with
12 threads were slightly better, but not significantly different and
so are reported here.

The scalability results for cases A,B, and C are shown in Figure
2. Weak scalability is represented by the almost horizontal lines
and strong scalability by the almost straight diagonal lines in the
three cases. These runs are similar to those reported in [6].

ICE Strong/Weak Runs Memory % Used Relative to MPI
Weak | Strong Run A | Strong RunB | Strong RunC
Run Cores % Cores % Cores %

1 192 50 768 60 3072 61
2 384 46 1536 53 6144 47
3 768 43 3072 44 12288 36
4 1536 34 6144 33 24576 27
5
6

3072 25 12288 24 49152 18
6144 19 24576 17 98304 11

ICE Strong/Weak Runs CPU % Used Relative to MPI

Weak | Strong Run A | Strong RunB | Strong RunC
Run Cores CPU% | Cores CPU% | Cores CPU%
1 192 85 768 85 3072 88

2 384 84 1536 85 6144 91

3 768 90 3072 90 12288 95

4 1536 86 6144 90 24576 97

5 3072 98 12288 99 49152 100
6 6144 107 24576 104 98304 101

Table 1: AMR ICE Relative Memory and CPU time with Hy-
brid Approach Compared to MPI.

Table 1 show the reductions in memory and the relative CPU
times when using the hybrid approach. In the strong scaling cases,
the memory saving increases when running with more cores. This
follows from the analysis in the previous section, because for the

same grid, the ghost cell data increases as a proportion of the total
data when running with more cores, but a fixed size problem size,
hence the saving is larger when the number cores increases. How-
ever the saving of CPU time decreases and some times slightly ex-
ceeds the pure MPI case when running with more cores. The reason
is that most of CPU savings come from eliminating in-socket MPI
communications. When the number of cores increases, the amount
of in-socket MPI communication decreases. Hence the saving of
CPU time decreases when running with more cores. The overhead
due to the use of the threaded approach, principally that of locking
on the data warehouse and other non-threaded components such as
the load balancer will offset the savings from eliminating in-socket
MPI communications.

For the weak scaling cases, the memory saving shows a slight
increase when running with more cores. This is because the global
meta-data increases as the number of core increases. Even through
most of memory savings that come from reducing ghost cell data
copies stays constant, the memory saving from reducing the num-
ber of copies of global meta-data increases, as shown in Section 4.
Hence we can see more memory savings on large number of cores
in weak scaling tests even though the ghost cell data per node is
constant. In terms of CPU usage, as the in-socket MPI communi-
cation per node stays the same, the effect of switching to the hybrid
approach is also roughly constant for these weak scaling cases.

Using the hybrid multi-threaded MPI scheduler, we have also
been able to successfully run both the AMR problem and the non-
AMR fluid structure interaction problem described in Sections 6
and 7 of [6] on as many as 196K cores on Jaguar, with good scaling
results, due to the reduced memory requirement. These reductions
in memory are illustrated by the two material CFD test problem
from [16] used on Jaguar using 110K cores that could not have been
previously run using due to memory constraints. This problem had
a resolution of 2048 cells and 1283 patches distributed amongst
110,592 cores on Jaguar. The overall memory use per node was
reduced from 13.5 GB per node to 1GB per node (12 cores) when
running the same size problem using the non-threaded MPI sched-
uler with 98K cores. Attempts were made to run this same problem
on 110K cores with the MPI scheduler, but the problem size was
too large and we ran out of memory on each node. The hybrid
MPl/threaded approach thus allows us to consider problems that
were previously out of our scope due to memory constraints.

7. FUTURE WORK

These preliminary results show great memory savings, and show
great promise so far on 200K cores on Jaguar. However alongside
these memory improvements, it is the case that further algorith-
mic improvements will be needed, particularly for fluid-structure
interaction problems, for Uintah to be used routinely used with
200-300K cores. Achieving this level of fidelity and scalability is
the next challenge of this PetaApps project. Although the present
approach has introduced considerable memory savings, the global
mesh meta-data will probably have to be revised in the future as
the number of nodes, sockets, cores and hence mesh patches used
keeps growing. Instead of every process currently knowing the ex-
tents of every patch and which processors own which patches, as
the number of patches grow the size of this global meta-data will
also grow and a hierarchical or local algorithm and data structure
will probably need to be devised. The present model also has the
potential advantage in that it may be possible to adapt it to make
use of threads executing on GPUs for example. This will probably
require considering the possible decomposition of individual tasks
to take advantage of the GPUs architecture.
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