
Dynamic Task Scheduling for the Uintah
Framework

Qingyu Meng, Justin Luitjens, Martin Berzins
School of Computing

University of Utah
Salt Lake City, Utah 84112

Email: {qymeng, luitjens, mb}@cs.utah.edu

Abstract—Uintah is a computational framework for fluid-
structure interaction problems using a combination of the ICE
fluid flow algorithm, adaptive mesh refinement (AMR) and MPM
particle methods. Uintah uses domain decomposition with a task-
graph approach for asynchronous communication and automatic
message generation. The Uintah software has been used for a
decade with its original task scheduler that ran computational
tasks in a predefined static order. In order to improve the
performance of Uintah for petascale architecture, a new dynamic
task scheduler allowing better overlapping of the communication
and computation is designed and evaluated in this study. The
new scheduler supports asynchronous, out-of-order scheduling
of computational tasks by putting them in a distributed directed
acyclic graph (DAG) and by isolating task memory and keeping
multiple copies of task variables in a data warehouse when
necessary. A new runtime system has been implemented with a
two-stage priority queuing architecture to improve the scheduling
efficiency. The effectiveness of this new approach is shown
through an analysis of the performance of the software on large
scale fluid-structure examples.

I. INTRODUCTION

A widely-adopted general approach to parallel solution of
large-scale scientific and engineering computing problems is to
use domain decomposition in which the domain is decomposed
into sub-domains that are allocated to processors. Although
the tasks associated with the sub-domains may be executed in
a loosely synchronous manner, it is also possible to view the
execution of these tasks as a workflow. This more general view
of the computation as a set of coupled tasks allows greater
flexibility in task execution and makes it possible to potentially
achieve greater computing efficiency.

Often applications are typically structured as a sequence of
computational tasks, where each sequence is executed on a
different data set. Every task has its own communication and
computation requirements: it reads inputs from the previous
task, processes the data, and outputs results to next task. Initial
data are input to the first task and final results are obtained as
the output from the last task.

In the mean time, however, the data sets and therefore
the task execution time may change dynamically and unpre-
dictably during the simulation process. This is particularly
likely to happen in applications using techniques such as
adaptive mesh refinements (AMR) [1], in which the mesh (and
hence the total work) is dynamically modified depending on
the solution. As a result, the execution time of synchronized

tasks may vary greatly with the task wait time sometimes
increasing. Unless care is taken with coding, a standard
MPI program may have significant wait time in situations
in which it is difficult to predict when data arrives, because
tasks are executed in a fixed order. Hence, the application’s
performance and parallel efficiency may suffer. In order to
efficiently schedule up to millions of tasks, this paper uses
task scheduling and resource management ideas from many-
task computing (MTC) [2] to arrive of a novel task driven
application.

A number of software frameworks and codes make use of
task-based paradigms to solve large scale scientific computing
problems. Underlying this approach is the idea of using
directed acyclic graph (DAG) to guide the task execution.
This approach is adopted in Uintah, the software framework
considered in this study. In the Uintah code, tasks are not
written explicitly to deal with MPI calls but instead with the
availability of its inputs. Once all the inputs of a task are
available in local memory, the task is ready for execution.
The tasks correspond to numerical solution algorithms for very
general fluid-structure problems on a hexahedral regular mesh
patch.

Similar DAG techniques are used by Charm++ [3],
TBLAS [4] and Scioto [5]. All of them have a DAG based
dynamic runtime systems. Computational entities in Charm++
can be defined using any of a variety of programming models,
and the execution of these entities is mediated by a message-
driven scheduler. The scheduler will automatically interleave
the execution of the computational entities. TBLAS is a
task based linear library. A matrix in the TBLAS library is
divided into blocks and mapped to different compute nodes.
Tasks are created based on output blocks. The scheduler will
automatically select a ready task and execute it. After finishing
the task, dependencies are resolved causing other tasks to
become ready. The Scioto framework uses a global array
library to manage all distributed data. Therefore, all data is
accessible using a one-sided communication operations. Tasks
can only be scheduled if all its inputs are in a ”ready state”.
The workload balancing is based on a voting system, which
allows an idle processor to randomly steal tasks from other
processors. While DAG based runtime systems have been used
in these applications, Uintah needs to apply this design to
run more general tasks at large scale. Also, Uintah’s DAG

978-1-4244-9705-8/10/$26.00 c©2010 IEEE

is not explicitly defined by task dependencies through tags
or messages, instead it is automatically generated through the
compilation of input and output variables of tasks.

In this paper, we consider the design of a dynamic task
scheduling mechanism in Uintah [6]–[8] by allowing the
tasks to run not in a sequential order, but dynamically,
asynchronously and out-of-order according to the runtime
information like a dataflow programming model. As Uintah is
a general computational framework, it supports various tasks
which may have asynchronous communication with different
neighbors or calls to third party libraries such as PETSc. The
dynamic scheduler must be robust enough to guarantee all
these tasks compute the correct results.

We accomplished this by putting fine-grained computational
tasks in a directed acyclic graph (DAG) and by isolating task
memory. To achieve high scalability, we use a decentralized
scheduling scheme for distributed memory system. That is,
each node schedules its tasks privately and communicates with
other nodes regarding data dependencies only when necessary.
Further more, Uintah’s scheduler respects task priorities and
supports scheduling tasks which require a global synchro-
nization operation. In order to create as many independent
tasks as possible (to prevent processors from becoming idle),
we allow multiple versions of memory by adding a variable
version table. This can help the system to remove certain task
dependencies and generate more independent tasks.

II. UINTAH

Uintah was originally written by a team led by Steve Parker,
[7], as part of the Center for Simulation of Accidental Fires
and Explosions (C-SAFE) [9]. Uintah was intended to simulate
fires and explosions and other multi-physics computational
problems. The primary objective of Uintah is to provide a
software system in which fundamental chemistry and engi-
neering physics are fully coupled with nonlinear solvers and
visualization tools. The framework is built upon a set of
parallel software components and libraries using the DOE
Common Component Architecture (CCA) that facilitate the
solution of partial differential equations (PDEs) on block
structured adaptive mesh refinement (AMR) grids [1], [8],
[10].

The Uintah software, is designed to solve reacting fluid-
structure problems involving large deformations and fragmen-
tation, and operates on a structured AMR mesh. The under-
lying methods inside Uintah are a combination of standard
fluid-flow methods and material point (particle) methods. The
basis of the multi-material CFD formulation used in Uintah is
the ICE (for Implicit, Continuous-fluid, Eulerian) method. The
general solution approach is well-developed and described in
[11].The particle method known as the Material Point Method
(MPM) [12] is used in Uintah to compute the movement of
the solid materials and uses the same cartesian grid as used for
fluid flow as a computational scratch-pad to compute particle
movement.

The problems solved in Uintah require a large amount of
processing power necessitating the need for both parallelism

and adaptive mesh refinement. Uintah achieves parallelism by
dividing the grid into hexahedral mesh patches, which are
uniquely assigned to processing processors. Figure 1 shows
a Uintah patches which contains 64 cells. Each cell owns
several types of variables: i) node centered variables, such as
as velocity, mass, volume, and temperature; ii) cell centered
variables, such as density, internal energy, momentum; iii)
particles in cell, which also has their own variables like mass,
volume, temperature, and velocity. All these variables are
stored in a data warehouse, a directory based hash map. Each
variable is indexed by name, type and the patch id of the patch
it belongs to.

Uintah Patch

Cells

Particles

Cell Centered Variable

Node Centered Variable

Particle Variables

Uintah Variable Types

Fig. 1. 4x4x4 cells in a Uintah patch

AMR focuses computational resources where they are
needed by adding mesh refinement in areas where rapidly
evolving physical processes are occurring [1]. Uintah currently
contains three main simulation components released together
with the framework, that are capable of using AMR: i) the ICE
compressible multi-material CFD formulation, ii) the particle-
based Material Point Method for structural mechanics, and iii)
the combined fuid-structure interaction algorithm MPMICE.
In addition, Uintah integrates numerous sub-components in-
cluding equations of state, constitutive models, and reaction
models.

The heart of Uintah is a sophisticated computational frame-
work that can integrate multiple simulation components, an-
alyze the dependencies and communication patterns between
them, and efficiently execute the resulting multi-physics sim-
ulation, [6], [7]. The design of Uintah builds on C++ com-
ponents that follow a very simple interface to establish con-
nections with other components in the system. Uintah utilizes
an abstract task-graph representation of parallel computation
and communication to express data dependencies between
multiple components. This task-graph is a directed acyclic
graph of tasks. Each task reads inputs and produces some
outputs (which are in turn the inputs of some future task).
These inputs and outputs are specified for each patch in a
structured AMR grid. Each component specifies a list of tasks
to be performed and the data dependencies between them. A
scheduler component in Uintah sets up MPI communication
for data dependencies and then executes the tasks that have
been assigned to it. When the task completes, the infras-
tructure will send data to other tasks that require that task’s
output. A measurement-based load balancer component [10]
is responsible for assigning each detailed task to a core on

a processor. This allows parallelism to be integrated between
multiple components while maintaining overall scalability. The
task-graph allows the Uintah runtime system to analyze the
structure of the computation in order to automatically enable
load-balancing, data transfer, parallel I/O, and checkpoint-
ing/restarts.

The Uintah programming model is based on original far-
sighted design of Steve Parker [7] before the current authors
joined the project, in which there is complete separation
between the user code and the parallelism infrastructure. This
allows the aspects of parallelism such as schedulers, load-
balancers, grid refinement, parallel input/output, checkpointing
and restarts, to operate independently of the simulation code.
This design allows the scientists to be concerned only with
their area of expertise, working on on the simulation compo-
nents design without fully needing to understand complexities
outside of their domain. This has led to a highly flexible
simulation package which has been able to simulate a wide
variety of problems including shape charges, stage-separation
in rockets, the biomechanics of microvessels, the properties of
foam under large deformation, and the evolution of large pool
fires caused by transportation accidents.

III. BACKGROUND

In moving Uintah to petascale machines, such as Ranger1

and Kraken2 in TeraGrid, it was initially observed that there
was a substantial increase in MPI communication time when
using larger numbers of cores. The time spent waiting for com-
munication comes from the dependencies between computing
tasks distributed to different processors. This wait time is a
combination of time spent waiting for data to be computed
by another task and time spent waiting for the data to be
transmitted through the network. Uintah’s task scheduler is
designed to reduce this wait time by automatically overlapping
communication and computation.

A. Uintah Task Scheduler Design

In Uintah, the scheduler is responsible for computing the
dependencies of tasks, determining the order of execution and
ensuring that the correct inter-process communication via MPI
is made when necessary. Uintah uses a call back task design
[9]. A task may be related to a single equation or stage of a
simulation algorithm. A simulation component contains a list
of these user written tasks by defining input variables, output
variables and call back functions. Those tasks will be given to
a scheduler, and the scheduler determines when to call each
task during the execution. The task generation algorithm will
be introduced in Section IV-A below.

The original task scheduler in Uintah uses asynchronous
MPI communication and combines messages which have the
same source and destination. These techniques can overlap
some communication and computation and reduce the data

1Ranger is a NSF supercomputer located at the University of Texas at
Austin with 62,976 cores.

2Kraken is a NSF supercomputer located at the University of Tennessee
with 99,072 cores.

transmit time through the network. For example, after a task
is finished, the processor can execute a new task while sending
the messages produced by the last task, but a task must wait
for the required messages arrival before it can be executed, the
computation can not start without the data contained in these
messages. The original Uintah task scheduler generated a task
graph to statically analyze task dependencies and combine
MPI messages. The task graph is a directed acyclic graph
(DAG) in which each node in the graph represents a task.
Directed edges are used to represent a data dependency or
MPI communication. After the static analysis is complete the
task execution order is determined and the scheduler runs tasks
based on this order.

If all tasks in the same period take same amount of time
to execute, there will be little time spend waiting for data to
arrive, as all the data are computed and ready to be sent out
at the same time when the whole simulation is synchronized.
Uintah supports AMR, in which the workloads for different
patches may not be equal, and particles move from a cell to
another cell during the simulation, and so the task workload
with particles is not constant. These functions cause the time
spent waiting for data dependencies to be the majority of
Uintah’s MPI Wait. Measurements show that this type of wait
is as much as 80 percent of the total MPI wait time in Uintah.
In order to reduce the task wait time and further improve the
performance of Uintah simulations, we will now investigate
alternate scheduling algorithm which can dynamically execute
tasks.

B. Related DAG Approaches

There are a number of similar DAG approaches. Most work
that uses DAG based scheduling has a global view of the
task graph. The runtime system maps the tasks to multiple
threads on shared-memory systems, such as Cick [13], or to
multiple nodes through migration such as Charm++ [3] on
distributed memory systems. Cick is a multi-threaded parallel
programming language for SMP. It schedules tasks by using
a ”work-stealing” algorithm on the task graph. Charm++ has
global object graph that contains numbers of medium-grained
processes which interact with each other via messages. The
runtime system of Charm++ will map these medium-grained
processes to appropriate processors to balance the load by
migrating the data.

PLASMA [4] is a new parallel linear algebra library
which also represent its algorithm as DAG and enforces
asynchronous, out-of-order scheduling of operations. The cur-
rent PLASMA release is scheduled statically with a trade
off between load balancing and data reuse. TBLAS [14] is
another task based parallel linear algebra library. It uses a
dynamic scheduler with decentralized task graph to archive
high scalability.

These proposed models suggest that the DAG approaching
model may be important for petascale architecture. The current
interest in DAG-based execution models as well as this pro-
posed model reflects the potential importance of this approach.

IV. UINTAH’S DISTRIBUTED TASK GRAPH

As described above in Section II, Uintah’s task-graph ap-
proach provides a high degree of automated parallelism. The
task graph in Uintah was originally used with static analysis
of the data dependencies of user defined tasks. The scheduler
generated a correct order of tasks for later execution through
a task graph compilation. The execution order was originally
identical for all processors and the simulation process in
Uintah was synchronized. In the approach adopted here, new
data structures for the task graph are added to support dynamic
execution of tasks without changing the task interfaces for
users.

A. Tasks

In order to create a Uintah task, the programmer speci-
fies variables which are required for the task’s computation,
variables the task computes and a call back function (where
the computation to be performed). The following example
equation shows the algorithm of the fourth stage of ICE, which
computes face-centered velocities, according to the function:

~U∗f

= f(∆t, Peq, ~g, ρ, ~U).

By specifying a task name (ICE::computeVel_FC) and a
call back function pointer (&ICE::computeVel_FC), the
Uintah task can be created:

Task task=new Task("ICE::computeVel_FC",
&ICE::computeVel_FC);

In this algorithm, the requirements of this task include follow-
ing input variables:

1) ∆t : delT global timing variable from last timestep.
2) Peq : press equil CC cell centered pressure variable

from current timestep.
3) ~g : sp vol CC cell centered volume variable from

current timestep.
4) ρ : rho CC cell centered density variable from current

timestep.
5) ~U : vel CC cell centered velocity variable from last

timestep.
where ∆t is a per level global variable. The variables Peq , ~g,
ρ, ~U need one extra cell data value from neighboring patches.
These extra cells of data, referred to as ghostcells, are copied
locally to fulfill the data requirement of the ICE discretization
stencil. Variables exist either on a patch or a mesh level and
have various types, such as FaceCenter, CellCenter, Global.
During the simulation, variables are stored in a dictionary
data structure, the data warehouse. Variables that existed on
a previous timestep are stored in the old data warehouse
(OldDW) and variables that are computed in current timestep
are stored in the new data warehouse (NewDW). At the end
of each timestep, the variables in NewDW are mapped to
the OldDW for the next timestep in the simulation and a
new NewDW is initialized. That is to say, variables from
last timestep should be queried from OldDW; variables from
current timestep should be queried from NewDW. In this
example, the requirements for task ICE::computeVel_FC
can be set up as:

Ghost::GhostType gac = Ghost::AroundCells;

task->requires(OldDW, delT, getLevel(p));
task->requires(NewDW, press_equil_CC, gac,1);
task->requires(NewDW, sp_vol_CC, gac, 1);
task->requires(NewDW, rho_CC, gac, 1);
task->requires(OldDW, vel_CC, gac, 1);

From the algorithm, this task computes ~U∗f

on all three faces
of the cell: uvel FC, vvel FC, wvel FC. They are all face
centered variables. All output variables are stored in NewDW.
e.g.

task->computes(uvel_FC);
task->computes(vvel_FC);
task->computes(wvel_FC);

Finally, the task is added to the scheduler component with
specifications regarding which patches and materials are asso-
ciated with the actual computation.

scheduler->addTask(task, patches);

For more complex problems involving multiple materials and
multi-physics calculations, a subset of the materials may only
be used in the calculation of particular tasks. The Uintah
framework allows for the independent scheduling and com-
putation of variables associated with an individual material
within a multi-physics calculation.

B. Patch Assignment and Migration

Uintah’s grid is divided into small patches during the
regridding process. As the simulation progresses, individual
grid cells are tagged for refinement. The regridder will take
flags, and, wherever there are refinement flags, patches are
constructed around them on a finer level.

After regridding, these patches are partitioned and assigned
to different processing resources by the load balance algo-
rithm. Uintah’s load balancer determines a reasonable alloca-
tion of patches to nodes using measurement and geometric in-
formation [10]. The load balancer attempts to guarantee that an
equal amount of work is distributed to each processor allowing
for optimal scaling of the simulation to multiple processors.
The weight for each patch is predicted through certain criteria,
such as history weights, number of particles, number of cells,
etc. In additional to reducing the communication cost, the
load balancing algorithm clusters neighboring patches together
because communication is predominantly local in that only
a small area of ghost cells around each patch needs to be
communicated.

Uintah’s load balancer also monitors the work load of all
processors during the simulation. After each time step, the
load balancer computes the load imbalance value in the last
timestep. Once this value exceeds a certain threshold, the load
balancer computes a new patch distribution and the data are
migrated to their new locations.

C. Generation of Detailed Tasks

In the Uintah framework, processors running on different
nodes execute the same program and load the same simulation
component. Each patch will create its own instance of a task
which is referred to as a detailed task. Suppose a Uintah
component designed M tasks, and there are total N patches

in the grid, a total of M × N detailed tasks will be created
globally. It is not trivial to generate a centralized directed
acyclic graph(DAG) by creating one edge per dependency
between detailed tasks.

Centralized Version In order to be more precise regarding
the form of a task graph we use the flowing definition:

Definition 1. A centralized task graph is a two-tuple
GGlobal =< Tg, Dg >, where Tg is a set of nodes and Dg

is a set of direct edges. Each node ti ∈ Tg is a detailed task
associated to a patch in the global mesh and a task. There is
an edge d < ti, tj >∈ Dg if there is a dependency that ti
need to be executed before tj .

The complexity of creating a centralized task graph will be
nearly O(|Tg| log |Tg|). Since the number of tasks on a patch
M is a constant, the complexity can be written as O(N logN).
There will be thousands to millions of patches created in total
depending on what problem size we are running. A centralized
version of task graph will thus clearly not scale on large
simulations with high resolution meshes. Therefore, Uintah
uses a distributed algorithm to generate task graphs.

Distributed Version After patches are assigned to proces-
sors, each processor creates its own and neighbors’ instances
of tasks. The neighbors’ detailed tasks are created only for de-
pendency analysis and will not be actually executed. Suppose
the number of processors is P , each processor approximately
has N/P local patches.

Definition 2. A distributed task graph is a two-tuple
GGlobal =< Tl

⋂
Tn, Dd >, where Tl is a set of locally

detailed tasks and Tn is a set of neighbor detailed tasks. Each
node ti ∈ Tl is a detailed task associated with a local patch.
Each node ti ∈ Tn is a detailed task associated with a patch
in its neighborhood. These is an edge d < ti, tj >∈ Dd if ti
need to be executed before tj , ti ∈ Tl or tj ∈ Tl.
The complexity of creating a distributed task graph in Defini-
tion 2 will be approximately [8]:

O(|Tl| log |Tl + Td|) = O(
N

P
log

N2

P
)

Consequently, a distributed version of the task graph will scale
if the ratio of N/P is sufficiently bounded.

Scheduler

Task A on patch 0

Task A on patch 1

Task B on level 1

Task C on patch 0

...

Detailed Task

Name

Task

Patch ID

Require

Variables

Compute

Varibles

Internal

Dependent

Tasks

External

Dependency

Counter

Internal Ready

External Ready

string

Task

Function

Input Label

Output Label

integer

Pointers to OLD data warehouse variables

Pointers to NEW data warehouse variables

Pointers to NEW data warehouse variables

integer

boolean

boolean

...

Initialization

Task Graph Compile

Scheduled

Data Available after

Fig. 2. Data structure of detailed task

These Uintah detailed tasks contain all the necessary in-
formation for the scheduler to analyze data dependencies
and execute the tasks in a completely distributed manner.
Figure 2 shows the data structure of a detailed task in the
Uintah scheduling system. A detailed task contains following
information: 1) Patch: the patch that the current detailed task
will process, as assigned by the load balancer. 2) Task-related
information such as task name, task type, call back function.
3) Input: Variables required for the computation in this task.
These variables may come from the task’s patch or from
neighbor patches. 4) Output: Variables computed by this task.
These variables will be written to local memory.

After the task graph is compiled, each detailed task also
contains: an internal dependency pointer that links to tasks
which require variables from this task, an external dependen-
cies counter that specifies the number of MPI messages need
to be received from other processor. During run time, there
are also some task status flags. These flags indicate whether
or not a task has all its internal data, external data, is running
or has finished respectively.

By using this design, computing patches and variables are
not owned by individual tasks. They are stored in on-demand
data warehouse, a directory based data structure. This enables
the data warehouse to do the allocation and deallocation
work automatically. Also there are no MPI calls inside tasks.
All the MPI communication buffers are also created and
destroyed automatically by the data warehouse. A detailed task
is essentially a runtime instance for a task on a specific patch,
and the smallest schedulable unit in Unitah.

D. Task Dependency

As the simulation component programmer writes tasks se-
quentially and does not explicitly define dependencies between
tasks, in order to ensure the task will run in a correct order,
Uintah’s scheduler will automatically detect these dependen-
cies. If there exists a data dependence between tasks, the
scheduler can determine which task precedes another. There
are two types of dependencies in the Uintah framework: inter-
nal dependencies and external dependencies. Internal depen-
dencies are between patches on the same processor and exter-
nal dependencies are between patches on different processors.
Thus internal dependencies imply a necessary order where
external dependencies also specify necessary communication.

Internal Dependency The Uintah scheduler detects a read
after write (RAW), write after read (WAR) and write after
write (WAW) dependencies based on the task inputs and
outputs. Each Uintah task always has the input and output
variables defined through requires and computes function.
Therefore the scheduler can go through all the detailed tasks
to match the patch and variables information.

Whenever two tasks access the same variable in the same
patch, the scheduler detects a data dependency and updates
the detailed tasks to put an dependency link between them. In
the RAW case, variable is computed by the previous task and
required by the second. In the WAR case, variable is required
by the previous task, but the second task updates its value. In

the WAW case, both tasks compute the same variable. Since
WAR and WAW dependencies can be removed by renaming,
we only consider the true dependencies.

Require(…,…)

Require(…,…)

Compute("Var0")

Require("Var0", 1)

Require(…,…)

Compute(…)

Patch 0 Patch 1

Processor 0 Processor 1

Fig. 3. Detecting external dependencies

External Dependency In Uintah almost every external
dependency comes from input variables with a ghost cell re-
quirement, in that a task may require the variable from multiple
additional layers of cells around its patch, as demonstrated
by the variables press, rho and velocity in the example of
Section IV-A. Figure 3 shows two patches are assigned to two
different processors, the task on patch 1 requires one additional
layer of ghost cells which are on patch 0. Since all detailed
tasks of neighbors are also created, whenever a task requires
ghost cells, we can always find the corresponding originating
task which computes that variable. If the originating task has
been assigned to the same processor, an internal dependency
will be added, otherwise an external dependency batch object
will be created. The external dependency batch objects will
later be used for MPI messages combination and tag assign-
ment.

Since the external dependencies for detailed tasks are com-
puted in this distributed environment, each node only computes
its own side of sends and receives. Uintah’s distributed task
graph can then guarantee that those sends and receives will
match each other without additional communication.

E. Task graph compilation

Once all tasks and data dependencies are detected, each
processor creates a distributed directed acyclic graph (DAG)
by creating one-edge-per-variable dependency between tasks.
An initial graph is generated once we have processed all
data dependencies and made edges. For example, in Figure 4
(middle), the graph has a lot of redundant dependencies. If
the number of variables is large, the overhead for tracing
the availability of all input variables will be dramatically
increased. In addition, a task graph will be executed many
times and may need to be simplified to record dependencies
between tasks. Also, for those tasks requiring old dataware-
house variables, a special system task called SendOlddata
will be generated by the Unitah infrastructure to prepare
old data warehouse variables by copying necessary variables
from previous timestep. As a result, all dependencies from
previous time step will be replaced by dependencies from
SendOlddata task. A dependency is also removed if it can be
recursively represented by other dependencies. Figure 4 (right)
shows part of the compiled task graph.

press_CC

rho_CC

temp_CC

f_theta_CC
press_equil_CC

sp_vol_CC
rho_CC

press_equil_CC

sp_vol_CC

rho_CC

del_T
uvel_FC

wvel_FC

wvel_FC

uvel_FC

wvel_FC
wvel_FC

uvel_FCME

vvel_FCME

wwel_FCME

sp_vol_CC

Compute

Pressure

Compute

Vel_FC

Compute

Contributio

nToFCVel

press_equil_CC

sp_vol_CC

rho_CC

uvel_FCwvel_FCwvel_FC

sp_vol_CC
Create

Edges

del_T

Previous Timestep

Combine

Dependencies

Compute

Pressure

Compute

Vel_FC

Compute

Contributio

nToFCVel

Send

OldData

Tasks TaskGraph

Compute

Pressure

Compute

Vel_FC

Compute

Contributio

nToFCVel

Fig. 4. Task graph compilation

External dependencies are also combined if they will send
data to a same destination detailed task. MPI message tags
are assigned after message combination has taken place.
Each detailed task will then initialize an external dependency
counter to trace the outstanding MPI messages. After a task
graph is compiled, the scheduler will continue to execute the
same task graph on each time step until the grid is refined
or the simulation component decides the task list is no longer
valid.

F. On-demand Data Warehouse

Uintah variables are now stored in a new distributed dictio-
nary data structure called the on-demand data warehouse. The
data warehouse is an abstraction of a global single-assignment
memory, with automatic data lifetime management and storage
reclamation. The dictionary uses three elements to index a
variable: variable name, variable type and patch id. A variable
in the data warehouse is a reference-counted pointer to the
local memory where the data is stored. The variable type is
used to identify the data structure and for managing memory,
e.g. automatic cleanup. Besides the common data types such
as integer, double and vector, Uintah also defined its own set
of variable types. For example, the ”Particle” variable type
associates with a particle with its location. Grid variable types
including FaceCenter type or CellCenter type associates with
a face of cell or a center of cell respectively. Grid variables
are typically 2D or 3D array-structured values with geometric
information. Patch id is used to identify which patch the
variables are located physically.

The on-demand data warehouse not only contains local
patch variables but also contains foreign variables from other
processors. A task can read the variables from all local and
foreign patches by calling get function to get the data pointer
but can only write to its own patch by calling put function.
All the temporary memory that task allocated in its own code
should be discarded when it finished. In this way, a task is
limited to work on its own memory and exchange data only
through the data warehouse. If task sets up its input and output
variables correctly, the variables of related patches will be
ready in the data warehouse to read and write when the task
is being scheduled. In addition, the data warehouse will also
track the life span of all variables. The data warehouse will
also clean up variable memory if no future tasks are going to

Task Graph

Running

Task

Data

Warehouse
N

e
tw

o
rk

Get Var

Put Var

Completed

Satisfied

Counter

==Zero

Send

Receive

Internal

Ready

Queue

External

Ready

Queue

Valid Foreign Var

Add

Foreign

 Var

Schedule

External

Dependency

Counter

Task Flow Data / Control Flow

Fig. 5. Architecture of Uintah dynamic task scheduling system

use that variable.

V. DYNAMIC RUNTIME SYSTEM DESIGN

Results from preliminary scaling studies on petascale ma-
chines such as Kraken showed that there was a substantial
increase in MPI communication time at larger numbers of
cores. We discovered that the time spent waiting for com-
munication is due to data dependencies between computing
tasks distributed to different processors.

As mentioned above, when the regridder changes the sim-
ulation grid and the loadbalancer generates the patch dis-
tribution, new sets of detailed tasks and a new task graph
are created. Originally, Uintah used a static scheduler in
which tasks were executed in a pre-determined order. After
a static analysis of the task graph, a sorted task list is created.
The scheduler then execute tasks from this sorted list. A
limitation of static scheduling is that a single task waiting for
messages will cause the whole of the simulation to sit idle.
Measurements showed that this type of wait cost nearly 80
percent of total MPI waiting time in Uintah. The new scheduler
solves this problem by dynamically determining the order
during execution to overlap communication and computation.
The architecture of the runtime system has been extended to
support the out-of-order execution.

A. Tasks Ready Queues

Comparing to Uintah’s static scheduler, the new dynamic
scheduler has two task queues (Figure 5): the internal ready
queue and external ready queue. After the task graph is
compiled, all the pre-satisfied tasks will be placed in the
internal ready queue. The value of the counter for tracking
outstanding MPI messages is set according to information
provided by the task graph. When this counter reaches zero,
the communication phase is complete and the task is ready to
be executed. At that point it is placed in the external ready
queue. When scheduling a task the scheduler chooses a task in
the external ready queue based on a prioritization algorithm.

When a task is completed, the task graph will check if a
task’s local dependencies are satisfied. Newly satisfied tasks
will also be placed in the internal ready queue and have their
external dependencies initialized. The new scheduler allows
multiple tasks to wait for communication at the same time,
a task can also be executed when other tasks are waiting
for foreign variables which are owned by other processors
to arrival. To prevent conflicting access on an uncompleted
foreign variables, the variable needs to be set to valid after
communication is finished, and then it can be accessed by
tasks.

When the scheduler begins to run, the tasks will at first wait
for all internal dependencies to be satisfied and then wait for
MPI messages to arrive. If a task finally reaches the external
ready queue that means that it can be executed immediately; all
the variables it requests are available. As long as the external
queue is not empty, the processor always has tasks to run.
This can help to overlap task execution time with wait time
for communication.

B. Variable Versioning

In Uintah, different tasks may require the same variable on
the same neighboring patch multiple times: 1) They may need
different ghost cells in the same patch; 2) They may need the
input variables that are about to be modified. The original data
warehouse was designed for static scheduling and so has one
variable under each key. As tasks are executed in a fixed order,
a new variable will replace an existing one. But when tasks are
running in an out-of-order way, multiple copies of the same
variable may exist in the same time. In order to let the correct
values are available for each requesting task, we have created
multiple versions of variables under the same key. The data
warehouse is thus modified to automatically select a proper
version of variable according to the task’s requests.

For example, in Figure 6, patch 0 is assigned to processor
0, patch 1,2,3 are assigned to processor 1. If three tasks on
patch 1,2,3 all require ghost cells of variable v1, three regions

A,B,C of the variable on patch 0 need to be send to and stored
at processor 1. Combining all the three regions and sending a
single message to save variable in the original datawarehouse
will create new data dependencies. This removes the possibil-
ity that task on patch 1 may run when region A is received
and region B and C are still waiting for data. To allow these
tasks to be scheduled independently, the data warehouse uses
variable versions to store all the regions on the same patch.

Patch 0 Patch 1

Patch 2 Patch 3

Processor 0 Processor 1

A

B C

A
B C

DataWarehouse

(on Processor 1)

V1, Patch 1

(local)

V1, Patch 0

(foreign)

Fig. 6. Region versions of foreign variable

As mentioned above in Section IV-D, variable renaming
can be used to avoid false dependencies (WAR and WAW).
A variable can be renamed and therefore be written into
another memory location other than the conflicting variable.
For example, if variable v is both an input variable and an
output variable of a task, we can rename the output variable
v to v new. But in some situations, such as calling a library
whose output must be at the same memory location of its input,
variable renaming can not be used. In Uintah, programmer can
define a modifiable variable requirement for a Uintah task to
allow the task to read and write at the same variable. When
scheduling, dependencies will be added to local task graph to
enforce that any task requires a newer version of this variable
will not be executed before the modifiable task. As multiple
time versions of a variable under the same name will be send
through the network, the newer time version of a variable will
be appended to the end of version list under the same key.
The Uintah data warehouse can then select a correct version
of variable for the task which requires it.

Each variable may have several versions under the same
label during execution. This increased the memory usage in the
data warehouse. Our experiments show that the new structure
uses around 10 percent more memory. This appears to be an
acceptable overhead.

C. Synchronization Phases

Tasks that require the result of a global communication
require a specialized scheduling mechanism when tasks are
running out of order. Those global tasks are created when: a)
A task computes a global variable which needs to be updated
through the whole grid. i.e., computation of the total mass of
the system. b) A task calls a third party library which need the
MPI communicator as an argument. i.e., calling PETSc. These
global tasks will create one instance on each processor instead
of one on each patch and need to be scheduled everywhere in
the system at the same time. In a static scheduler, as all tasks

are executed on a fixed order, the global tasks do not need
special treatment, but when task runs out order, two issues are
noticed: deadlock and load imbalance.

Due to the limitation of MPI, there are no nonblocking
reduction operations provided to us. If global tasks run in an
out-of-order way, processors may not make progress if they
are both blocked in different MPI reduction calls. The load
imbalance problem shows itself when processors choose dif-
ferent path before executing a global synchronization task. As
they need to synchronize at that task, when one processor has
finished more tasks than another processor, a load imbalance
is observed.

To solve these two problems, tasks are divided into different
phases in which each phase contains only one global task. The
scheduler only executes the global task if all of other tasks in
its phase have completed then moves to the next phase. In this
way, global task will be execute in a fixed order. In addition,
the scheduler allows non-global tasks to be executed in an
earlier phase but not a later phase.

VI. PERFORMANCE EVALUATION EXPERIMENTS

The new dynamic scheduler has produced a significant per-
formance benefit in lowering both the MPI wait time and the
overall runtime. In this section, we present performance results
of dynamic scheduler with various benchmark to demonstrate
and analyzes its advantage. These tests were preformed at
Kraken at National Institute for Computational Sciences, the
University of Tennessee and Ranger at Texas Advanced Com-
puting Center, the University of Texas at Austin.

A. Dynamic Scheduling Speedup

Component timing results show that our new dynamic
scheduler significantly reduced the task communication wait
time. Figure 7 and Figure 8 show the percent reduction of
both wait time (which is as high as 90% in some cases)
and total execution time on Ranger and Kraken. The example
problem used is a two material compressible Navier Stokes
type problem that models the movement of one material
through another at high speed as in [10]. This problem was
chosen as it is a typical example of the problems solved by
Uintah and is also challenging due to the AMR method used.

The results on Ranger (Figure 7) were computed on a fixed
problem size (strong scaling) with 24578 patches of 163 cells.
Task wait time from 512 to 4096 processors are reduced by
about 65% to 90%. The overall execution time is reduced
up to 50% on runs with 49K cores, as when we use more
processors the part of MPI wait is increasing. The results on
Kraken (Figure 8) were produced on a fixed problem size per
processor (weak scaling) with 8 patches of 163 cells on each
processor. Task wait time from 192 to 48K processors are
reduced by around 50 to 60%. The MPI wait time is small
part of total run time on Kraken, due to the benefit of a
faster communication network. The overall execution time is
reduced by nearly constant 10% on larger processor counts.
These results show that this approach is especially benefited

512 1024 2048 4096

0

10

20

30

40

50

60

70

80

90

100

T
im

e
R

ed
uc

ed
 (

P
er

ce
nt

)

Processors

ICE Dynamic vs Static Scheduling (TACC Ranger)

Avg. Task Wait
Total Execution

Fig. 7. Scheduling speedup, strong scaling

192 768 3072 12288 49152

0

10

20

30

40

50

60

70

80

90

100

T
im

e
R

ed
uc

ed
 (

P
er

ce
nt

)

Processors

ICE Dynamic vs Static Scheduling (NICS Kraken)

Avg. Task Wait
Total Execution

Fig. 8. Scheduling speedup, weak scaling

on systems with slow and less consistent communication, a
situation that may arise on very large future system.

B. Task Priority

As Uintah does not have a global view of the task graph,
traditional scheduling algorithms based on the knowledge of
a complete task graph can not be used here. We designed and
tested different algorithms which use only local tasks status
and local part of task graph. As the performance of dynamic
scheduling depends on how well the task executions overlap
the communication between processors. As long as processer’s
external ready queue is not empty, the processor will always
have task to run while waiting for incoming messages. That
is to say, the scheduler will have more opportunity to reduce
wait times if the external ready queue is longer. One way
to lengthen the external ready queue to give the priority
to the task which can generate more ready tasks. Several
prioritization algorithms are designed to maintain a priority
external task queue. Once a task’s external inputs are available,
it is inserted into an appropriate position in this priority queue.
The processer will always pick the top task of the priority

queue to run, which in turn is the task with the highest priority.
The prioritization algorithms we tested here are: i) Random:

Randomly give out priority. ii) First Come First Serve (FCFS):
Give priority to the task which is earliest satisfied. iii) Patch
Order: Give priority to the task according its patch’s geometric
position (e.g. from left to right). iv) MostMessages: Give pri-
ority to the task which can satisfy most external dependencies
(a.k.a the task will send out most MPI messages)

TABLE I
PRIORITIZATION ALGORITHMS EFFECT

Algorithm Random FCFS PatchOrder MostMsg.
Queue Length 3.11 3.16 4.05 4.29

Wait Time 18.9 18.0 7.0 2.6
Overall Time 315.35 308.73 187.19 139.39

The ready queue length, wait time and overall runtime on
an ICE problem with above task algorithms are shown in Ta-
ble I. Results show that dynamic scheduler needs an effective
prioritization algorithm to perform well. We discovered that
a prioritization algorithm which can maintain a larger queue
length will led to a lower wait time on the basis of this and
other experiments. The Random and FCFS algorithms don’t
take the communication into account and their scheduling
results are worse than others. The Patch Order algorithm uses
the patch’s typologically sorted order to guide the execution.
This causes the scheduled task order trend to a fixed order
and causes possible communication synchronization. We chose
MostMessages as our default prioritization algorithm, as it
favors the MPI sending tasks, which can reduce the MPI
waiting time of neighbors nodes.

C. Granularity Effects

We can also increase the size of external ready queue by
reducing the patch size. Uintah’s patch design allows the user
to easily change the size and data layout which can affect
performance. When the patch size is smaller, there are more
patches per processor. Therefore, more tasks are created per
processor and the size of external ready queue increases.
Following granularity results are generated from a fixed ICE
problem running with 24K cores on Kraken. If patches are
smaller, there are more patches per processor, the average
length of task ready queue increases and the task wait time is
lower.

Figure 9 shows that if we use smaller patches, the task
wait time is small, but the overhead of regridding, patch
migration and task scheduling is relatively large. As a result,
the program’s overall execution time will decrease first and
then increase, depending on which part of the effects dominate.
This experiment also shows that the 12x12x12 is an optimal
patch size for this ICE problem running on Kraken with
24K cores. From other experiments, this optimal patch size
may change when solving different problems or running on
different machines.

8 12 16 20 24
0

2

4

6

8

10

12

14

16

18

Patch Size

M
ea

n
T

im
e

P
er

 T
im

es
te

p
[s

ec
.]

ICE with different patch sizes (Kraken, with 24K cores)

Total Execution
Task Wait
Regrid & Migrate
Scheduling

Fig. 9. Granularity effects

VII. SUMMARY AND FUTURE WORK

We discovered that the time spent waiting for communica-
tion in Uintah is due to dependencies between computing tasks
distributed across different processors. A new dynamic task
scheduler that allows better overlapping of the communication
and computation is designed and evaluated in this study to
improve the performance of Uintah for petascale architecture.
Uintah framework’s component design allows us to replace
its original static task scheduler without changing user’s in-
terfaces or codes. In order to support asynchronous, out-of-
order scheduling of computational tasks, the new scheduler
can determine the execution order of tasks according to both
task graph and runtime information by putting tasks in a
distributed directed acyclic graph (DAG) and further isolat-
ing task memory. This new approach is shown significantly
reduced the communication wait time on large scale fluid-
structure examples.

We are developing a new task scheduler to include a multi-
threaded option to take advantage of the most recent and
emerging multi-core architectures as well as future GPU-like
architectures. The new mixed scheduler will use MPI for inter-
node communication and multi-threaded task graph execution
within nodes. Such an execution model will certainly give us
an additional dimension of parallelization and can also reduce
the overhead of regridding, load balancing and MPI library
cost.

ACKNOWLEDGMENT

This work was supported by the NSF SDCI program under
subcontract No. OCI0721659, and the NSF PetaApps program
under subcontract No. OCI0905068.

REFERENCES

[1] P. Colella, J. Bell, N. Keen, T. Ligocki, M. Lijewski, and
B. van Straalen, “Performance and scaling of locally-structured
grid methods for partial differential equations,” Journal of Physics:
Conference Series, vol. 78, p. 012013, 2007. [Online]. Available:
http://stacks.iop.org/1742-6596/78/012013

[2] I. Raicu, I. T. Foster, and Y. Zhao, “Many-task computing for grids and
supercomputers,” in IEEE Workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS08) 2008.

[3] L. V. Kale and S. Krishnan, “Charm++: Parallel Programming with
Message-Driven Objects,” in Parallel Programming using C++, G. V.
Wilson and P. Lu, Eds. MIT Press, 1996, pp. 175–213.

[4] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A
class of parallel tiled linear algebra algorithms for multicore
architectures,” Parallel Computing, vol. 35, no. 1, pp. 38 – 53,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V12-4TTMJJH-1/2/12b32429842e685edffbb21c84df5eed

[5] J. Dinan, S. Krishnamoorthy, L. Brian, J. Nieplocha, and P. Sadayappan,
“Scioto: A framework for global-view task parallelism,” in Parallel
Processing, 2008. ICPP ’08. 37th International Conference on, 9-12
2008, pp. 586 –593.

[6] S. G. Parker, J. Guilkey, and T. Harman, “A component-based parallel
infrastructure for the simulation of fluid structure interaction,” Engineer-
ing with Computers, vol. 22, no. 3, 2006.

[7] S. G. Parker, “A component-based architecture for parallel multi-physics
pde simulation,” Future Generation Computing System, vol. 22, no. 1,
pp. 204–216, 2006.

[8] J. Luitjens, B. Worthen, M. Berzins, and T. Henderson, “Scalable
parallel amr for the uintah multiphysics code,” in Petascale Computing
Algorithms and Applications, D. Bader, Ed. Chapman and Hall/CRC,
2007.

[9] J. Davison, S. Germain, J. Mccorquodale, S. G. Parker, and C. R.
Johnson, “Uintah: A massively parallel problem solving environment,”
in Proc. of the 9th IEEE Intl. Symposium on High Performance and
Distributed Computing, 2000.

[10] J. Luitjens and M. Berzins, “Improving the performance of Uintah:
A large-scale adaptive meshing computational framework,” in Proc.
of the 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS10), 2010. [Online]. Available: http://www.sci.utah.
edu/publications/luitjens10/Luitjens ipdps2010.pdf

[11] B. Kashiwa and R. Rauenzahn, “A cell-centered ICE method for
multiphase flow simulations,” Los Alamos National Laboratory, Tech.
Rep. LA-UR-93-3922, 1994.

[12] D. Sulsky, Z. Chen, and H. L. Schreyer, “A particle method
for history-dependent materials,” Computer Methods in Applied
Mech. and Eng., vol. 118, no. 1-2, pp. 179 – 196,
1994. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V29-4816VK3-C/2/8fc9db6df79fe1d53d1ce068ca4c72de

[13] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” in SFCS ’94: Proceedings of the 35th Annual
Symposium on Foundations of Computer Science. Washington, DC,
USA: IEEE Computer Society, 1994, pp. 356–368.

[14] F. Song, A. YarKhan, and J. Dongarra, “Dynamic task scheduling for
linear algebra algorithms on distributed-memory multicore systems,” in
SC ’09: Proc. of the Conf. on High Performance Computing Networking,
Storage and Analysis. New York, NY, USA: ACM, 2009.

